1
|
Shi L, Wu C, Wang Y, Wang L, Tian P, Shang KX, Zhao J, Wang G. Lactobacillus plantarum reduces polystyrene microplastic induced toxicity via multiple pathways: A potentially effective and safe dietary strategy to counteract microplastic harm. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137669. [PMID: 39978201 DOI: 10.1016/j.jhazmat.2025.137669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Plastic materials, ubiquitous in daily life, degrade into microplastics (MPs) that can accumulate in humans through the food chain, leading to health issues. While some antioxidants have been shown to mitigate the toxicity caused by MPs exposure, they are only effective at high doses, which can be harmful to human health when ingested in excess. Concurrently, Lactobacillus species have demonstrated the ability to adsorb onto micro- and nano-plastics (MNPs), with certain strains exhibiting high antioxidant activity. In this study, Lactobacillus plantarum strains with varying antioxidant capacities and affinities for polystyrene nanoparticles (PS-NPs) were utilized to investigate their effects on toxicity induced by exposure to PS-MPs. The results indicated that the antioxidant capabilities of Lactobacillus plantarum can reduce oxidative damage caused by PS-MPs exposure, and their ability to bind with PS-MNPs can reduce the body's PS-MPs content and increase fecal PS-MPs content, thereby reducing toxicity. Notably, the strain 89-L1, which possesses low antioxidant activity and low binding affinity for PS-MNPs, also reduced toxicity, potentially through repairing the intestinal barrier and modulating bile acid (BAs) metabolism. Our findings suggest that the mechanisms by which Lactobacillus plantarum reduces PS-MPs-induced toxicity extend beyond antioxidant and binding capabilities; the repair of the intestinal barrier and modulation of BAs metabolism also play significant roles in reducing toxicity caused by PS-MPs exposure and may act partially independently of these capacities. This study provides a theoretical basis for the future development of strategies for Lactobacillus plantarum to reduce toxicity caused by exposure to MPs.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Changyin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yuye Wang
- School of Food Science, Shihezi University, Shihezi, Xinjiang 832099, PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ke-Xin Shang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China.
| |
Collapse
|
2
|
Li Q, Zhang Y, Zha H, Xu L, Su Y, Jiang H, Li L. Short-term subacute di(2-ethylhexyl) phthalate exposure disrupts gut microbiota, metabolome, liver transcriptome, immunity, and induces liver injury in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117948. [PMID: 40009945 DOI: 10.1016/j.ecoenv.2025.117948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is recognised as a pollutant with multiple health risks. In this study, multi-omics approaches were used to examine the alterations in immunity, gut microbiota and metabolome, and liver transcriptome in the rats with DEHP-induced subacute liver injury. Following short-term subacute DEHP exposure, the rats exhibited decreased body weight, increased liver weight, impaired liver function and immunity, and signs of liver injury. DEHP exposure reduced the richness, diversity, and evenness of gut microbiota, resulting in elevated levels of Lactobacillus, Romboutsia, and Alistipes and decreased levels of unclassified Muribaculaceae, Oscillibacter, and Akkermansia in the intestine. Multiple gut metabolic pathways were altered by DEHP, among which sphingolipid metabolism was enriched with the most differentially expressed metabolites. In the liver tissues of rats exposed to DEHP, lipid metabolism-related pathways were altered, including downregulated steroid biosynthesis and upregulated fatty acid degradation. In conclusion, the relevant findings suggest that DEHP can cause immune alteration, gut microbiota dysbiosis, gut metabolome disruption, liver transcriptome dysregulation, and result in liver injury in rats. These results could benefit the clinical diagnosis of DEHP-induced subacute liver injury.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - He Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China.
| |
Collapse
|
3
|
Wulczynski M, Brooks SPJ, Green J, Matias F, Kalmokoff M, Green-Johnson JM, Clarke ST. Environmental enrichment with nylon gnaw sticks introduces variation in Sprague Dawley rat immune and lower gastrointestinal parameters with differences between sexes. Anim Microbiome 2025; 7:12. [PMID: 39891232 PMCID: PMC11786542 DOI: 10.1186/s42523-024-00369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Environmental enrichment (EE) is commonly included as an important component of animal housing to promote well being of laboratory animals; however, much remains to be learned about the impact of chewable forms of EE on experimental outcomes in the context of nutritional and microbiome-related studies, and whether outcomes differ between sexes. In the present study, nylon chew bones (gnaw sticks, GS) were evaluated for their effects on fermentation profiles, microbial community structure, and cytokine profiles of gastrointestinal and systemic tissues in pair-housed female and male Sprague Dawley (SD) rats. RESULTS Food consumption and weight gain were not significantly altered by access to GS. Cecal short-chain fatty acid and branched-chain fatty acid profiles significantly differed between sexes in rats with access to GS, and alpha diversity of the microbiome decreased in females provided GS. Sex-related tissue cytokine profiles also significantly differed between rats with and without access to GS. CONCLUSIONS These findings indicate that including GS can influence microbiota and immune-related parameters, in a sex dependent manner. This shows that environmental enrichment strategies need to be clearly reported in publications to properly evaluate and compare experimental results, especially with respect to the use of chewable EE in the context of studies examining diet, microbiome and immune parameters.
Collapse
Affiliation(s)
- Mark Wulczynski
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, ON, Canada
| | | | - Judy Green
- Bureau of Nutritional Sciences, Health Canada, Ottawa, ON, Canada
| | - Fernando Matias
- Bureau of Nutritional Sciences, Health Canada, Ottawa, ON, Canada
| | - Martin Kalmokoff
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, ON, Canada
| | - Sandra T Clarke
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, ON, Canada.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada.
| |
Collapse
|
4
|
Koppula S, Wankhede N, Kyada A, Ballal S, Arya R, Singh AK, Gulati M, Sute A, Sarode S, Polshettiwar S, Marde V, Taksande B, Upaganlawar A, Fareed M, Umekar M, Kopalli SR, Kale M. The gut-brain axis: Unveiling the impact of xenobiotics on neurological health and disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111237. [PMID: 39732317 DOI: 10.1016/j.pnpbp.2024.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The Gut-Brain Axis (GBA) is a crucial link between the gut microbiota and the central nervous system. Xenobiotics, originating from diverse sources, play a significant role in shaping this interaction. This review examines how these compounds influence neurotransmitter dynamics within the GBA. Environmental pollutants can disrupt microbial populations, impacting neurotransmitter synthesis-especially serotonin, gamma-aminobutyric acid (GABA), and dopamine pathways. Such disruptions affect mood regulation, cognition, and overall neurological function. Xenobiotics also contribute to the pathophysiology of neurological disorders, with changes in serotonin levels linked to mood disorders and imbalances in GABA and dopamine associated with anxiety, stress, and reward pathway disorders. These alterations extend beyond the GBA, leading to complications in neurological health, including increased risk of neurodegenerative diseases due to neuroinflammation triggered by neurotransmitter imbalances. This review provides a comprehensive overview of how xenobiotics influence the GBA and their implications for neurological well-being.
Collapse
Affiliation(s)
- Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Nitu Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, -360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | | | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Astha Sute
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sanskruti Sarode
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shruti Polshettiwar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vaibhav Marde
- Indian Institute of Technology (IIT), Hyderabad, Telangana 502284, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mayur Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
5
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Sabaredzovic A, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Philippat C, Eggesbø M, Lepage P, Slama R. Associations between pre- and post-natal exposure to phthalate and DINCH metabolites and gut microbiota in one-year old children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125204. [PMID: 39490662 DOI: 10.1016/j.envpol.2024.125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The gut microbiota is a collection of symbiotic microorganisms in the gastrointestinal tract. Its sensitivity to chemicals with widespread exposure, such as phthalates, is little known. We aimed to investigate the impact of perinatal exposure to phthalates on the infant gut microbiota at 12 months of age. Within SEPAGES cohort (Suivi de l'Exposition à la Pollution Atmosphérique durant la Grossesse et Effet sur la Santé), we assessed 13 phthalate metabolites and 2 di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) metabolites in repeated urine samples collected in pregnant women and their offspring. We obtained stool samples from 356 children at 12 months of age and sequenced the V3-V4 region of the 16S rRNA gene, allowing gut bacterial profiling. We used single-chemical (linear regressions) and mixture (BKMR, Bayesian Kernel Machine Regression) models to examine associations of phthalates and DINCH metabolites, with gut microbiota indices of α-diversity (specific richness and Shannon diversity) and the relative abundances of the most abundant microbiota phyla and genera. After correction for multiple testing, di(2-ethylhexyl) phthalate (ΣDEHP), diethyl phthalate (DEP) and bis(2-propylheptyl) phthalate (DPHP) metabolites 12-month urinary concentrations were associated with higher Shannon α-diversity of the child gut microbiota in single-chemical models. The multiple-chemical model (BKMR) suggested higher α-diversity with exposure to the phthalate mixture at 12 months, driven by the same phthalates. There were no associations between phthalate and DINCH exposure biomarkers at other time points and α-diversity after correction for multiple testing. ΣDEHP metabolites concentration at 12 months was associated with higher Coprococcus genus. Finally, ΣDEHP exposure at 12 months tended to be associated with higher phylum Firmicutes, an association not maintained after correction for multiple testing. Infancy exposure to phthalate might disrupt children's gut microbiota. The observed associations were cross-sectional, so that reverse causality cannot be excluded.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France.
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Merete Eggesbø
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France; SMILE, Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France; PARSEC, Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| |
Collapse
|
6
|
Ri H, Zhu Y, Jo H, Miao X, Ri U, Yin J, Zhou L, Ye L. Di-(2-ethylhexyl) phthalate and its metabolites research trend: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50142-50165. [PMID: 39107640 DOI: 10.1007/s11356-024-34533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most widely used plasticizers. Many studies focus on the impact of continuous exposure to DEHP on humans and ecosystems. In this study, the bibliometric analysis of DEHP and its metabolites research was conducted to assess the research performances, hotspot issues, and trends in this field. The data was retrieved from a Web of Science Core Collection online database. VOSviewer 1.6.18 was used to analyze. A total of 4672 publications were collected from 1975 to 2022 October 21. The number of publications and citations increased annually in the last decades. China had the largest number of publications, and the USA had the highest co-authorship score. The most productive and most frequently cited institutions were the Chinese Academy of Sciences and the Centers for Disease Control & Prevention (USA), respectively. The journal with the most publications was the Science of Total Environment, and the most cited one was the Environmental Health Perspectives. The most productive and cited author was Calafat A. M. (USA). The most cited reference was "Phthalates: toxicology and exposure." Four hotspot issues were as follows: influences of DEHP on the organisms and its possible mechanisms, assessment of DEHP exposure to the human and its metabolism, dynamics of DEHP in external environments, and indoor exposure of DEHP and health outcomes. The research trends were DNOP, preterm birth, gut microbiota, microplastics, lycopene, hypertension, and thyroid hormones. This study can provide researchers with new ideas and decision-makers with reference basis to formulate relevant policies.
Collapse
Affiliation(s)
- Hyonju Ri
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Hyonsu Jo
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Unsim Ri
- Department of Epidemiology, Central Hygienic and Anti-Epidemiologic Institute, Ministry of Health, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
7
|
Zhu YT, Wang XJ, Liu SL, Lai JH, Li JL, Li Q, Hu KD, Liu AP, Yang Y, He L, Chen SJ, Ao XL, Zou LK. Lactiplantibacillus plantarum RS20D Alleviates Male Reproductive Toxicity Induced by Pubertal Exposure to Di-n-butyl Phthalate and Mono-n-butyl Phthalate. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10276-6. [PMID: 38683273 DOI: 10.1007/s12602-024-10276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Phthalate acid esters (PAEs) and their metabolites, such as di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP), are known to cause male reproductive damage. Lactiplantibacillus plantarum RS20D has demonstrated the ability to remove both DBP and MBP in vitro, suggesting its potential as a detoxifying agent against these compounds. This study aimed to investigate the protective effects of RS20D on DBP or MBP-induced male reproductive toxicity in adolescent rats. Oral administration of RS20D significantly mitigated the histological damage to the testes caused by MBP or DBP, restored sperm concentration, morphological abnormalities, and the proliferation index in MBP-exposed rats, and partially reversed spermatogenic damage in DBP-exposed rats. Furthermore, RS20D restored serum levels of estradiol (E2) and testosterone, and superoxide dismutase (SOD) activity in DBP-exposed rats, significantly increased testosterone levels in MBP-exposed rats, and restored copper (Cu) concentrations in the testes after exposure to DBP or MBP. Additionally, RS20D effectively modulated the intestinal microbiota in DBP-exposed rats and partially ameliorated dysbiosis induced by MBP, which may be associated with the alleviation of reproductive toxic effects induced by DBP or MBP. In conclusion, this study demonstrates that RS20D administration can alleviate male reproductive toxicity and gut dysbacteriosis induced by DBP or MBP exposure, providing a dietary strategy for the bioremediation of PAEs and their metabolites.
Collapse
Affiliation(s)
- Yuan-Ting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xing-Jie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shu-Liang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| | - Jing-Hui Lai
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jian-Long Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Kai-di Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Ai-Ping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shu-Juan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xiao-Lin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li-Kou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
8
|
Mo L, Fang L, Yao W, Nie J, Dai J, Liang Y, Qin L. LC-QTOF/MS-based non-targeted metabolomics to explore the toxic effects of di(2-ethylhexyl) phthalate (DEHP) on Brassica chinensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170817. [PMID: 38340818 DOI: 10.1016/j.scitotenv.2024.170817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known to pose health risks to humans upon exposure. Recognizing the toxic nature of DEHP, our study aimed to elucidate the response mechanisms in Brassica chinensis L. (Shanghai Qing) when subjected to varying concentrations of DEHP (2 mg kg-1, 20 mg kg-1, and 50 mg kg-1), particularly under tissue stress. The findings underscored the substantial impact of DEHP treatment on the growth of Brassica chinensis L., with increased DEHP concentration leading to a notable decrease in chlorophyll levels and alterations in the content of antioxidant enzyme activities, particularly superoxide dismutase (SOD) and peroxidase (POD). Moreover, elevated DEHP concentrations correlated with increased malondialdehyde (MDA) levels. Our analysis detected a total of 507 metabolites in Brassica chinensis L., with 331 in shoots and 176 in roots, following DEHP exposure. There was a significant difference in the number of metabolites in shoots and roots, with 79 and 64 identified, respectively (VIP > 1, p < 0.05). Metabolic pathway enrichment in Brassica chinensis L. shoots revealed significant perturbations in valine, leucine, and isoleucine biosynthesis and degradation, aminoacyl-tRNA, and glucosinolate biosynthesis. In the roots of Brassica chinensis L., varying DEHP levels exerted a substantial impact on the biosynthesis of zeatin, ubiquinone terpenoids, propane, piperidine, and pyridine alkaloids, as well as glutathione metabolic pathways. Notably, DEHP's influence was more pronounced in the roots than in the shoots, with higher DEHP concentrations affecting a greater number of metabolic pathways. This experimental study provides valuable insights into the molecular mechanisms underlying DEHP-induced stress in Brassica chinensis L., with potential implications for human health and food safety.
Collapse
Affiliation(s)
- Lingyun Mo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China.
| | - Liusen Fang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Weihao Yao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Junfeng Dai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - YanPeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
9
|
Covello C, Di Vincenzo F, Cammarota G, Pizzoferrato M. Micro(nano)plastics and Their Potential Impact on Human Gut Health: A Narrative Review. Curr Issues Mol Biol 2024; 46:2658-2677. [PMID: 38534784 PMCID: PMC10968954 DOI: 10.3390/cimb46030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.
Collapse
Affiliation(s)
- Carlo Covello
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Federica Di Vincenzo
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
10
|
Cheng X, Chen J, Guo X, Cao H, Zhang C, Hu G, Zhuang Y. Disrupting the gut microbiota/metabolites axis by Di-(2-ethylhexyl) phthalate drives intestinal inflammation via AhR/NF-κB pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123232. [PMID: 38171427 DOI: 10.1016/j.envpol.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jinyan Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
11
|
Ye C, Chen Z, Lin W, Dong Z, Han J, Zhang J, Ma X, Yu J, Sun X, Li Y, Zheng J. Triphenyl phosphate exposure impairs colorectal health by altering host immunity and colorectal microbiota. CHEMOSPHERE 2024; 349:140905. [PMID: 38065263 DOI: 10.1016/j.chemosphere.2023.140905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Colorectal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD) have become one of the most common public health concerns worldwide due to the increasing incidence. Environmental factors are one of the important causes of colorectal diseases, as they can affect the intestinal barrier function, immune response and microbiota, causing intestinal inflammation and tumorigenesis. Triphenyl phosphate (TPHP), a widely used organophosphorus flame retardant that can leach and accumulate in various environmental media and biota, can enter the human intestine through drinking water and food. However, the effects of TPHP on colorectal health have not been well understood. In this study, we investigated the adverse influence of TPHP exposure on colorectal cells (in vitro assay) and C57BL/6 mice (in vivo assay), and further explored the potential mechanism underlying the association between TPHP and colorectal disease. We found that TPHP exposure inhibited cell viability, increased apoptosis and caused G1/S cycle arrest of colorectal cells. Moreover, TPHP exposure damaged colorectal tissue structure, changed immune-related gene expression in the colorectal transcriptome, and disrupted the composition of colorectal microbiota. Importantly, we found that TPHP exposure upregulated chemokine CXCL10, which was involved in colorectal diseases. Our study revealed that exposure to TPHP had significant impacts on colorectal health, which may possibly stem from alterations in host immunity and the structure of the colorectal microbial community.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhao Lin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zepeng Dong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Xueqian Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
12
|
Wang L, Dou Z, Ma C, Jia X, Wang H, Bao W, Wang L, Qu J, Zhang Y. Remediation of di(2-ethylhexyl) phthalate (DEHP) contaminated black soil by freeze-thaw aging biochar. J Environ Sci (China) 2024; 135:681-692. [PMID: 37778838 DOI: 10.1016/j.jes.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 10/03/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a complex structure with high toxicity, is a common organic pollutant. This study investigated the effects of fresh biochar (FBC), and freeze-thaw cycled aged biochar (FTC-BC) on DEHP-contaminated soils using a pot experiment. The specific surface area of FBC increased from 145.20 to 303.50 m2/g, and oxygen-containing functional groups increased from 1.26 to 1.48 mol/g after freeze-thaw cycles, greatly enhancing the adsorption of DEHP by biochar in the soil. The comprehensive radar chart evaluation showed that FBC and FTC-BC reduced DEHP growth stress and improved the soil properties. Compared with FBC, FTC-BC performed better in protecting the normal growth of pakchoi and improving soil properties. In addition, the application of biochar increased the diversity and abundance of bacteria in the DEHP-contaminated soil and changed the composition of the soil bacterial community. The partial least squares path model (PLS-PM) showed that adding biochar as a soil remediation agent significantly positively impacted soil nutrients and indirectly reduced the DEHP levels in soil and plants by increasing soil microbial diversity. Compared with FBC, FTC-BC creates a more satisfactory living environment for microorganisms and has a better effect on the degradation of DEHP in the soil. This study provides a theoretical basis for future biochar remediation of DEHP-contaminated soils in cold high-latitude regions.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Dou
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chaoran Ma
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongye Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenjing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Kiran NS, Yashaswini C, Chatterjee A. Noxious ramifications of cosmetic pollutants on gastrointestinal microbiome: A pathway to neurological disorders. Life Sci 2024; 336:122311. [PMID: 38043908 DOI: 10.1016/j.lfs.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
On exposure to cosmetic pollutants, gastrointestinal dysbiosis, which is characterised by a disturbance in the gut microbiota, has come into focus as a possible contributor to the occurrence of neurotoxic consequences. It is normal practice to use personal care products that include parabens, phthalates, sulphates, triclosans/triclocarbans and micro/nano plastics. These substances have been found in a variety of bodily fluids and tissues, demonstrating their systemic dispersion. Being exposed to these cosmetic pollutants has been linked in recent research to neurotoxicity, including cognitive decline and neurodevelopmental problems. A vital part of sustaining gut health and general well-being is the gut flora. Increased intestinal permeability, persistent inflammation, and impaired metabolism may result from disruption of the gut microbial environment, which may in turn contribute to neurotoxicity. The link between gastrointestinal dysbiosis and the neurotoxic effects brought on by cosmetic pollutants may be explained by a number of processes, primarily the gut-brain axis. For the purpose of creating preventative and therapeutic measures, it is crucial to comprehend the intricate interactions involving cosmetic pollutants, gastrointestinal dysbiosis, and neurotoxicity. This review provides an in-depth understanding of the various hazardous cosmetic pollutants and its potential role in the occurrence of neurological disorders via gastrointestinal dysbiosis, providing insights into various described and hypothetical mechanisms regarding the complex toxic effects of these industrial pollutants.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India.
| |
Collapse
|
14
|
Lu Z, Huang Q, Chen F, Li E, Lin H, Qin X. Oyster Peptide-Zinc Complex Ameliorates Di-(2-ethylhexyl) Phthalate-Induced Testis Injury in Male Mice and Improving Gut Microbiota. Foods 2023; 13:93. [PMID: 38201121 PMCID: PMC10778688 DOI: 10.3390/foods13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which can cause damage to male reproductive organs, especially the atrophy of the testis. Meanwhile, DEHP can also lead to a decrease in testicular zinc content, but the role of zinc remains unclear. This study aims to prepare oyster peptide-zinc complex (OPZC) to alleviate DEHP-induced reproductive damage in mice. OPZC was successfully obtained through electron microscopy, X-ray diffraction, and thermogravimetric analysis, with stable structure and high water-solubility. Low dose oyster peptide-zinc complex (OPZCL) significantly reduced the reproductive damage caused by DEHP in mice. Further research had shown that OPZCL restored the content of serum hormones and the activity of oxidative stress kinases to normal, while also normalizing testicular zinc and selenium levels. In addition, it also recovered the disorder of gut microbiota, reduced the proportion of Bacteroides, increased the abundance of Ligilactobacillus, and restored the proportion of Acidobacteriota, Chloroflexi, and Proteobacteria. Therefore, OPZCL can relieve the reproductive damage caused by DEHP in mice by restoring testicular zinc homeostasis and the composition of intestinal microbiota, indicating that OPZCL has a potential protective effect on male reproductive health.
Collapse
Affiliation(s)
- Zhen Lu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qianqian Huang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
| | - Fujia Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Haisheng Lin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.)
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
| |
Collapse
|
15
|
Goyal SP, Saravanan C. An insight into the critical role of gut microbiota in triggering the phthalate-induced toxicity and its mitigation using probiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166889. [PMID: 37683852 DOI: 10.1016/j.scitotenv.2023.166889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Exposure to phthalates, a major food safety concern, has been implicated in various chronic human disorders. As dietary exposure serves as a primary exposure route for phthalate exposure, understanding the detrimental impact on the gastrointestinal tract and resident gut microbiota is indispensable for better managing public health risks. Various reports have explored the intricate interplay between phthalate exposure, gut microbiota dysbiosis and host pathophysiology. For instance, oral exposure of dibutyl phthalate (DBP) or di-(2-ethylhexyl) phthalate (DEHP) affected the Firmicutes/Bacteroidetes ratio and abundance of Akkermansia and Prevotella, ensuing impaired lipid metabolism and reproductive toxicity. In some cases, DEHP exposure altered the levels of gut microbial metabolites, namely short-chain fatty acids, branched-chain amino acids or p-cresol, resulting in cholesterol imbalance or neurodevelopmental disorders. Conversely, supplementation of gut-modulating probiotics like Lactococcus or Lactobacillus sp. averted the phthalate-induced hepatic or testicular toxicity through host gene regulation, gut microbial modulation or elimination of DEHP or DBP in faeces. Overall, the current review revealed the critical role of the gut microbiota in initiating or exacerbating phthalate-induced toxicity, which could be averted or mitigated by probiotics supplementation. Future studies should focus on identifying high-efficiency probiotic strains that could help reduce the exposure of phthalates in animals and humans.
Collapse
Affiliation(s)
- Shivani Popli Goyal
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Chakkaravarthi Saravanan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India.
| |
Collapse
|
16
|
Luo R, Zhang T, Wang L, Feng Y. Emissions and mitigation potential of endocrine disruptors during outdoor exercise: Fate, transport, and implications for human health. ENVIRONMENTAL RESEARCH 2023; 236:116575. [PMID: 37487926 DOI: 10.1016/j.envres.2023.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The endocrine system is responsible for secreting and controlling hormones crucial in regulating key body activities. However, endocrine disruptors or endocrine-disrupting chemicals (EDCs) can harm human health and well-being by interfering with this complex process. This report seeks to assess the present state of understanding about endocrine disruptors in China, including their origins, impacts, and obstacles, and to provide actionable recommendations for reducing exposure and mitigating negative effects. Strong negative correlations between ANOE and rural ecological compensation (REC) and a negative correlation between ANOE and forest coverage (FC) were found in this analysis of the relationships between agricultural nitrous oxide emissions (ANOE), agricultural methane emissions (AME), and land use and land cover variables (LUPC). Just as LUPC is significantly inversely related to FC, AME is positively related. The team uses a gradient-boosted model (GBM) with a Gaussian loss function and fine-tunes the model's parameters to achieve optimal performance and reliable prediction results. With a relative relevance score of 90.36 for ANOE and 67.64 for AME, the analysis shows that LUPC is the most important factor in influencing emission levels. This study aims to increase knowledge of endocrine disruptors' potential advantages and disadvantages in outdoor exercise. The study aims to aid in preventing and managing many diseases and disorders caused by hormonal imbalances or disruptions by examining the origins, effects, and potential mitigation of these substances during outdoor activity. Safe and healthful outdoor exercise is promoted by the study's efforts to discover and implement effective and sustainable solutions to decrease emissions and exposure to endocrine disruptors. This comprehensive study aims to promote a healthier and more sustainable environment for individuals engaging in outdoor exercise by synthesizing current knowledge, providing practical recommendations, and emphasizing the importance of awareness and action.
Collapse
Affiliation(s)
- Rui Luo
- Chengdu Sport University, Tiyuan Road, Chengdu, Sichuan Province, 610041, China; College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China.
| | - Tao Zhang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Li Wang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Yong Feng
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| |
Collapse
|
17
|
Cox A, Bomstein Z, Jayaraman A, Allred C. The intestinal microbiota as mediators between dietary contaminants and host health. Exp Biol Med (Maywood) 2023; 248:2131-2150. [PMID: 37997859 PMCID: PMC10800128 DOI: 10.1177/15353702231208486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The gut microbiota sit at an important interface between the host and the environment, and are exposed to a multitude of nutritive and non-nutritive substances. These microbiota are critical to maintaining host health, but their supportive roles may be compromised in response to endogenous compounds. Numerous non-nutritive substances are introduced through contaminated foods, with three common groups of contaminants being bisphenols, phthalates, and mycotoxins. The former contaminants are commonly introduced through food and/or beverages packaged in plastic, while mycotoxins contaminate various crops used to feed livestock and humans alike. Each group of contaminants have been shown to shift microbial communities following exposure; however, specific patterns in microbial responses have yet to be identified, and little is known about the capacity of the microbiota to metabolize these contaminants. This review characterizes the state of existing research related to gut microbial responses to and biotransformation of bisphenols, phthalates, and mycotoxins. Collectively, we highlight the need to identify consistent, contaminant-specific responses in microbial shifts, whether these community alterations are a result of contaminant effects on the host or microbiota directly, and to identify the extent of contaminant biotransformation by microbiota, including if these transformations occur in physiologically relevant contexts.
Collapse
Affiliation(s)
- Amon Cox
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zach Bomstein
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Clinton Allred
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
18
|
Xiong D, Chen Y, Zhu S, Liu L, Zhao L, Zeng C, Li Y, Wang H, Tu L, Zou K, Hou X, Yang L, Zhu L, Bai T. Exploring the relationship between urinary phthalate metabolites and Crohn's disease via oxidative stress, and the potential moderating role of gut microbiota: A conditional mediation model. Free Radic Biol Med 2023; 208:468-477. [PMID: 37690673 DOI: 10.1016/j.freeradbiomed.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE Interactions between phthalic acid esters (PAEs) exposure and Crohn's disease (CD) were unknown. This study aims to examine the association between exposure to PAEs and CD activity and to explore the roles of oxidative stress and microbiota. METHODS A cross-sectional study with 127 CD patients was conducted. The disease activity was evaluated based on symptoms (Harvey-Bradshaw index, HBI), endoscopy findings (Simple Endoscopic Score for CD, SES-CD), and computed tomography enterography (CTE-scores). Ten urinary PAEs metabolites (mPAEs), two urinary oxidative stress biomarkers, including 8-hydroxydeoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α), as well as 16S rRNA sequencing of stool samples were determined. Multiple linear regression models and Hayes's PROCESS macro for SPSS were used to evaluate the interplays between urinary PAEs metabolites, CD activities, oxidative stress, and microbiota diversity. RESULTS There were positive associations between most mPAEs and HBI. Oxidative stress mediated 20.69-89.29% of the indirect associations between low molecular weight (LMW) mPAEs and HBI, while the majority of the high molecular weight (HMW) mPAEs were directly associated with HBI. In addition, microbiota diversity moderated the indirect associations of LMW mPAEs on HBI. CONCLUSIONS PAEs exposure was related to CD activity, and the association could be mediated by oxidative stress and reversed or alleviated by rich gut microbiota.
Collapse
Affiliation(s)
- Danping Xiong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youli Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siran Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Liu
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education of the People's Republic of China, Wuhan, China
| | - Lei Zhao
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education of the People's Republic of China, Wuhan, China
| | - Cui Zeng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaifang Zou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangle Yang
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education of the People's Republic of China, Wuhan, China.
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Wang J, Qin Y, Jiang J, Shan H, Zhao C, Li S. The Effect of Theaflavins on the Gut Microbiome and Metabolites in Diabetic Mice. Foods 2023; 12:3865. [PMID: 37893758 PMCID: PMC10606624 DOI: 10.3390/foods12203865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
With the development of diabetes, the gut microbiome falls into a state of dysbiosis, further affecting its progression. Theaflavins (TFs), a type of tea polyphenol derivative, show anti-diabetic properties, but their effect on the gut microbiome in diabetic mice is unclear. It is unknown whether the improvement of TFs on hyperglycemia and hyperlipidemia in diabetic mice is related to gut microbiota. Therefore, in this study, different concentrations of TFs were intragastrically administered to mice with diabetes induced by a high-fat-diet to investigate their effects on blood glucose, blood lipid, and the gut microbiome in diabetic mice, and the plausible mechanism underlying improvement in diabetes was explored from the perspective of the gut microbiome. The results showed that the TFs intervention significantly improved the hyperglycemia and hyperlipidemia of diabetic mice and affected the structure of the gut microbiome by promoting the growth of bacteria positively related to diabetes and inhibiting those negatively related to diabetes. The changes in short-chain fatty acids in mice with diabetes and functional prediction analysis suggested that TFs may affect carbohydrate metabolism and lipid metabolism by regulating the gut microbiome. These findings emphasize the ability of TFs to shape the diversity and structure of the gut microbiome in mice with diabetes induced by a high-fat diet combined with streptozotocin and have practical implications for the development of functional foods with TFs.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Yixin Qin
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Jingjing Jiang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Hongyan Shan
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Luo S, Zhen Z, Teng T, Wu W, Yang G, Yang C, Li H, Huang F, Wei T, Lin Z, Zhang D. New mechanisms of biochar-assisted vermicomposting by recognizing different active di-(2-ethylhexyl) phthalate (DEHP) degraders across pedosphere, charosphere and intestinal sphere. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131990. [PMID: 37418964 DOI: 10.1016/j.jhazmat.2023.131990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Biochar-assisted vermicomposting can significantly accelerate soil DEHP degradation, but little information is known about the underlying mechanisms as different microspheres exist in soil ecosystem. In this study, we identified the active DEHP degraders in biochar-assisted vermicomposting by DNA stable isotope probing (DNA-SIP) and surprisingly found their different compositions in pedosphere, charosphere and intestinal sphere. Thirteen bacterial lineages (Laceyella, Microvirga, Sphingomonas, Ensifer, Skermanella, Lysobacter, Archangium, Intrasporangiaceae, Pseudarthrobacter, Blastococcus, Streptomyces, Nocardioides and Gemmatimonadetes) were responsible for in situ DEHP degradation in pedosphere, whereas their abundance significantly changed in biochar or earthworm treatments. Instead, some other active DEHP degraders were identified in charosphere (Serratia marcescens and Micromonospora) and intestinal sphere (Clostridiaceae, Oceanobacillus, Acidobacteria, Serratia marcescens and Acinetobacter) with high abundance. In biochar-assisted vermicomposting, the majority of active DEHP degraders were found in charosphere, followed by intestinal sphere and pedosphere. Our findings for the first time unraveled the spatial distribution of active DEHP degraders in different microspheres in soil matrices, explained by DEHP dynamic adsorption on biochar and desorption in earthworm gut. Our work highlighted that charosphere and intestinal sphere exhibited more contribution to the accelerated DEHP biodegradation than pedosphere, providing novel insight into the mechanisms of biochar and earthworm in improving contaminant degradation.
Collapse
Affiliation(s)
- Shuwen Luo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Tingting Teng
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
21
|
Chai X, Wen L, Song Y, He X, Yue J, Wu J, Chen X, Cai Z, Qi Z. DEHP exposure elevated cardiovascular risk in obese mice by disturbing the arachidonic acid metabolism of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162615. [PMID: 36878288 DOI: 10.1016/j.scitotenv.2023.162615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) are one of the significant classes of emerging contaminants that are increasingly detected in environmental and human samples. Nevertheless, the current toxicity studies rarely report how PAEs affect the cardiovascular system, especially in obese individuals. In this study, diet-induced obese mice and corresponding normal mice were exposed to di(2-ethylhexyl) phthalate (DEHP) by oral gavage at environmentally relevant concentrations and key characteristics of cardiovascular risk were examined. The 16S rRNA and high-resolution mass spectrometry were used to investigate the alterations in the gut microbial profile and metabolic homeostasis. The results indicated that the cardiovascular system of fat individuals was more susceptible to DEHP exposure than mice in the lean group. 16S rRNA-based profiling and correlation analysis collectively suggested DEHP-induced gut microbial remodeling in fed a high-fat diet mice, represented by the abundance of the genus Faecalibaculum. Using metagenomic approaches, Faecalibaculum rodentium was identified as the top-ranked candidate bacterium. Additionally, metabolomics data revealed that DEHP exposure altered the gut metabolic homeostasis of arachidonic acid (AA), which is associated with adverse cardiovascular events. Finally, cultures of Faecalibaculum rodentium were treated with AA in vitro to verify the role of Faecalibaculum rodentium in altering AA metabolism. Our findings provide novel insights into DEHP exposure induced cardiovascular damage in obese individuals and suggest that AA could be used as a potential modulator of gut microbiota to prevent related diseases.
Collapse
Affiliation(s)
- Xuyang Chai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Luyao Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaochong He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jingxian Yue
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xin Chen
- Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, Guangdong, China
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
22
|
Hong Y, Ning X, Liang YY, Li XL, Cui Y, Wu W, Cai Y, Zhao S, Zhu M, Zhong TX, Wang H, Xu DX, Xu T, Zhao LL. Colonic mechanism of serum NAD + depletion induced by DEHP during pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162188. [PMID: 36781136 DOI: 10.1016/j.scitotenv.2023.162188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride products such as feed piping, packing bag, and medical consumable. Our previous studies have demonstrated that DEHP exposure reduced the concentration of nicotinamide adenine dinucleotide (NAD+) in pregnant mice serum, which cuts off the source of NAD+ to placenta and results fetal growth restriction. However, the mechanism of serum NAD+ depletion by DEHP remains elusive. This study investigated the intestinal mechanism of NAD+ shortage-induced by DEHP in pregnant mice. The transcriptome results implicated that the mRNA level of oxidative response genes Cyp1a1, Gsto2, Trpv1 and Trpv3 were upregulated in colon. These changes induced intestinal inflammation. Transmission Electron Microscopy results displayed that DEHP destroyed the tight junctions and cell polarity of colonic epithelial cells. These dysfunctions diminished the expression of NAD+ precursor transporters SLC12A8, SLC5A8, SLC7A5, and the NAD+ biosynthetic key enzymes NAMPT, NMNAT1-3, and TDO2 in colonic epithelial cells. Analysis of the gut microbiota showed that DEHP led to the dysbiosis of gut microbiota, reducing the relative abundance of Prevotella copri which possesses the VB3 biosynthetic pathway. Therefore, maternal DEHP exposure during pregnancy decreased the transportation of NAD+ precursors from enteric cavity to colonic epithelial cells, and inhibited the synthesis of NAD+ in colonic epithelial cells. Meanwhile, DEHP reduced the NAD+ precursors provided by gut microbiota. Eventually, serum NAD+ content was lowered. Taken together, our findings provide a new insight for understanding the intestinal mechanisms by which DEHP affects serum NAD+ levels.
Collapse
Affiliation(s)
- Yun Hong
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xia Ning
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Yue-Yue Liang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xiao-Lu Li
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Ya Cui
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Wei Wu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Yang Cai
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Shuai Zhao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Meng Zhu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Tian-Xiao Zhong
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Tao Xu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China.
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
23
|
Ma N, Ma D, Liu X, Zhao L, Ma L, Ma D, Dong S. Bisphenol P exposure in C57BL/6 mice caused gut microbiota dysbiosis and induced intestinal barrier disruption via LPS/TLR4/NF-κB signaling pathway. ENVIRONMENT INTERNATIONAL 2023; 175:107949. [PMID: 37126915 DOI: 10.1016/j.envint.2023.107949] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Despite being one of the most world's widely used and mass-produced compounds, bisphenol A (BPA) has a wide range of toxic effects. Bisphenol P (BPP), an alternative to BPA, has been detected in many foods. The effects of BPP dietary exposure on gut microbiota and the intestinal barrier were unclear. We designed three batches of animal experiments: The first studied mice were exposed to BPP (30 µg/kg BW/day) for nine weeks and found that they gained weight and developed dysbiosis of the gut microbiota. The second, using typical human exposure levels (L, 0.3 µg/kg BW/day BPP) and higher concentrations (M, 30 µg/kg BW/day BPP; H, 3000 µg/kg BW/day BPP), caused gut microbiota dysbiosis in mice, activated the Lipopolysaccharide (LPS) /TLR4/NF-κB signaling pathway, triggered an inflammatory response, increased intestinal permeability, and promoted bacterial translocation leading to intestinal barrier disruption. The third treatment used a combination of antibiotics and alleviated intestinal inflammation and injury. This study demonstrated the mechanism of injury and concentration effects of intestinal damage caused by BPP exposure, providing reference data for BPP use and control and yielding new insights for human disease prevention.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Diao Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Xia Liu
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Lining Zhao
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Lei Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Dan Ma
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Sijun Dong
- College of Life Science, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
24
|
The association of phthalate metabolites with childhood waist circumference and abdominal obesity. Eur J Pediatr 2023; 182:803-812. [PMID: 36482090 DOI: 10.1007/s00431-022-04751-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
UNLABELLED The association between phthalates exposure and childhood abdominal obesity is still unclear. This study aimed to assess phthalates (PAEs) exposure level and explore the association between PAEs metabolites exposure and the risk of abdominal obesity in Chinese students aged 7-10 years. A total of 798 students aged 7-10 years were selected from the baseline survey of the cohort of Childhood Blood Pressure and Environmental Factors (CBPEF), which was established in Xiamen City, Fujian province, East China, from August to November in 2018. Urine samples were collected from these students to analyze the concentrations of seven PAEs metabolites using the method of high-performance liquid chromatography-tandem triple quadrupole mass spectrometry. Waist circumference was used to define abdominal obesity. The logistic regression model was used to analyze the association of urinary creatinine-adjusted PAEs metabolites with childhood abdominal obesity risk. The prevalence of childhood abdominal obesity is 12.0% (96/798). Apart from mono(2-ethylhexyl) phthalate (62.5% for boys and 47.0% for girls), the detection rate of the others PAEs metabolites ranged from 82.6 to 100%. Boys had higher concentrations of PAEs metabolites than girls (P < 0.05), except for monoethyl phthalate. Compared with the Q1 group of PAEs metabolites, the risk of childhood abdominal obesity increased to 429% (OR = 5.29; 95% CI: 2.09, 13.39) and 273% (OR = 3.73; 95% CI: 1.57, 8.86) for the Q4 group of monoethyl phthalate and monoisobutyl phthalate, respectively. CONCLUSION The detection rate of PAEs metabolites is common, and the exposure level of PAEs metabolites was associated with the risk of abdominal obesity in Chinese students aged 7-10 years. WHAT IS KNOWN • The prevalence of childhood abdominal obesity had increased sharply from 4.9% in 1993 to 17.5% in 2014 in China. More than 80% of the Chinese children and adolescents have measurable level of several PAEs metabolites in the urine. Previous studies with limited sample had explored the association between DEHP metabolites exposure and childhood abdominal obesity risk, however, the association were inconsistent. WHAT IS NEW • The detection rate of PAEs metabolites is common among Chinese children aged 7-10 years. Boys had higher concentrations of PAEs metabolites than girls (P < 0.05), except for monoethyl phthalate. Compared with the Q1 group of PAEs metabolites, the risk of childhood abdominal obesity increased to 429% and 273% for the Q4 group of monoethyl phthalate and monoisobutyl phthalate, respectively.
Collapse
|
25
|
Chang X, Shen Y, Yun L, Wang X, Feng J, Yang G, Meng X, Zhang J, Su X. The antipsychotic drug olanzapine altered lipid metabolism in the common carp (Cyprinus carpio L.): Insight from the gut microbiota-SCFAs-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159054. [PMID: 36170916 DOI: 10.1016/j.scitotenv.2022.159054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Olanzapine (OLA) is a common drug used to treat schizophrenia and has recently come under increasing scrutiny as an emerging contaminant. However, its impact on lipid metabolism in fish and its mechanisms of action are not well understood. In this study, common carp were exposed to 0, 10, 100, and 250 μM OLA for 60 days. The results indicated that OLA exposure increased weight gain, total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG) and decreased high-density lipoprotein (HDL). In addition, lipids accumulated in the liver of the common carp. To explore the underlying mechanisms of action, gut microbiota, short-chain fatty acids (SCFAs), liver transcripts, and genes related to lipid metabolism were measured. It was discovered that OLA exposure altered the common carp gut microbiota composition and increased the abundance of SCFA-producing bacteria. Correspondingly, this study showed that OLA exposure increased the levels of SCFAs, which are highly relevant to the development of lipid accumulation. Transcriptome sequencing results indicated that OLA exposure could change lipid metabolism signalling pathways, including steroid biosynthesis, the PPAR signalling pathway, asglycerophospholipid metabolism, glycerolipid metabolism, and fatty acid metabolic pathways of the common carp. Additionally, OLA exposure interrupted lipid metabolism by means of significant upregulation of lipid synthesis-related genes, including pparγ, srebp1, and fas. OLA exposure also resulted in significant lipolysis-related gene downregulation, including cpt, lpl, hsl, and pparα. The results of this study indicated that contamination of aquatic environments with OLA alters lipid metabolism in common carp. In addition, the underlying mechanism might be due in part to the modulation of the gut microbiota-SCFA-PPAR signalling pathway.
Collapse
Affiliation(s)
- Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yihao Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lili Yun
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Junchang Feng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xi Su
- Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453007, PR China.
| |
Collapse
|
26
|
Bashir ST, Chiu K, Zheng E, Martinez A, Chiu J, Raj K, Stasiak S, Lai NZE, Arcanjo RB, Flaws JA, Nowak RA. Subchronic exposure to environmentally relevant concentrations of di-(2-ethylhexyl) phthalate differentially affects the colon and ileum in adult female mice. CHEMOSPHERE 2022; 309:136680. [PMID: 36209858 DOI: 10.1016/j.chemosphere.2022.136680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a large-molecular-weight phthalate added to plastics to impart versatile properties. DEHP can be found in medical equipment and devices, food containers, building materials, and children's toys. Although DEHP exposure occurs most commonly by ingesting contaminated foods in the majority of the population, its effects on the gastrointestinal tract have not been well studied. Therefore, we analyzed the effects of subchronic exposure to DEHP on the ileum and colon morphology, gene expression, and immune microenvironment. Adult C57BL/6 female mice were orally dosed with corn oil (control, n = 7) or DEHP (0.02, 0.2, or 30 mg/kg, n = 7/treatment dose) for 30-34 days. Mice were euthanized during diestrus, and colon and ileum tissues were collected for RT-qPCR and immunohistochemistry. Subchronic DEHP exposure in the ileum altered the expression of several immune-mediating factors (Muc1, Lyz1, Cldn1) and cell viability factors (Bcl2 and Aifm1). Similarly, DEHP exposure in the colon impacted the gene expression of factors involved in mediating immune responses (Muc3a, Zo2, Ocln, Il6, and Il17a); and also altered the expression of cell viability factors (Ki67, Bcl2, Cdk4, and Aifm1) as well as a specialized epithelial cell marker (Vil1). Immunohistochemical analysis of the ileum showed DEHP increased expression of VIL1, CLDN1, and TNF and decreased number of T-cells in the villi. Histological analysis of the colon showed DEHP altered morphology and reduced cell proliferation. Moreover, in the colon, DEHP increased the expression of MUC2, MUC1, VIL1, CLDN1, and TNF. DEHP also increased the number of T-cells and Type 2 immune cells in the colon. These data suggest that subchronic DEHP exposure differentially affects the ileum and colon and alters colonic morphology and the intestinal immune microenvironment. These results have important implications for understanding the effects of DEHP on the gastrointestinal system.
Collapse
Affiliation(s)
- Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, College of Liberal Arts & Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Karen Chiu
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Eileen Zheng
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Angel Martinez
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Justin Chiu
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Kishori Raj
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Sandra Stasiak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Nastasia Zhen Ee Lai
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Rachel B Arcanjo
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Romana A Nowak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
27
|
Naveen KV, Saravanakumar K, Zhang X, Sathiyaseelan A, Wang MH. Impact of environmental phthalate on human health and their bioremediation strategies using fungal cell factory- A review. ENVIRONMENTAL RESEARCH 2022; 214:113781. [PMID: 35780847 DOI: 10.1016/j.envres.2022.113781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are utilized as plasticizers in plastic products to enhance their durability, transparency, and elasticity. However, phthalates are not covalently bonded to the polymer matrix of the phthalate-containing products and can be gradually released into the environment through biogeochemical processes. Hence, phthalates are now pervasive in our environment, including our food. Reports suggested that phthalates exposure to the mammalian systems is linked to various health consequences. It has become vital to develop highly efficient strategies to reduce phthalates from the environment. In this context, the utilization of fungi for phthalate bioremediation (mycoremediation) is advantageous due to their highly effective enzyme secretory system. Extracellular and intracellular enzymes of fungi are believed to break down the phthalates by ester hydrolysis to produce phthalic acid and alcohol, and subsequent digestion of the benzene rings of phthalic acid and their metabolites. The present review scrutinizes and highlights the knowledge gap in phthalate prevalence, exposure to mammals, and associated human health challenges. Furthermore, discusses the role of fungi and their secretory enzymes in the biodegradation of phthalates and gives a perspective to better describe and tackle this continuous threat.
Collapse
Affiliation(s)
- Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
28
|
Doroftei B, Ilie OD, Dabuleanu AM, Hutanu D, Vaduva CC. A Retrospective Narrative Mini-Review Regarding the Seminal Microbiota in Infertile Male. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1067. [PMID: 36013533 PMCID: PMC9414835 DOI: 10.3390/medicina58081067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Background: Infertility is a global burden that affects both sexes with the male component remaining as an explored yet crucial research field that might offer novel evidence. Material and Methods: The present narrative mini-review aims to summarize all existing literature regarding the composition of the seminal microflora in infertile men. We performed searches in PubMed/Medline, ISI Web of Knowledge, Scopus, and ScienceDirect between 2018 and 2022 using a combination of keywords. Results: A total of n = 33 studies met the eligibility criteria and were further considered. From this, n = 14 were conducted on human patients, n = 3 on zebrafish (Danio rerio), n = 5 on rats, and n = 11 on mice. In twenty-five out of thirty-three papers, the authors sequenced the 16S rRNA; situations occurred where researchers focused on standard laboratory protocols. Lactobacillus and Bifidobacterium are widely recognized as putative beneficial lactic bacteria. These two entities are capable of restoring the host's eubiosis to some extent, blocking pathogens' proliferation and endotoxins, and even alleviating specific patterns encountered in disease(s) (e.g., obesity, type 1 diabetes) due to prolonged exposure to toxicants in adults or from a developmental stage. Over the years, distinct approaches have been perfected, such as the transfer of feces between two species or conventional rudimentary products with proven efficiency. Conclusions: The seminal microflora is decisive and able to modulate psychological and physiological responses. Each individual possesses a personalized microbial profile further shaped by exogenous factors, regardless of sex and species.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", University Street, No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology "Cuza Voda", Cuza Voda Street, No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
| | - Ana-Maria Dabuleanu
- Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", University Street, No. 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology "Cuza Voda", Cuza Voda Street, No. 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Parvan Avenue, No. 4, 300115 Timisoara, Romania
| | - Constantin-Cristian Vaduva
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy, Petru Rares Street, No. 2, 200349 Craiova, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital Filantropia, Filantropia Street, No. 1, 200143 Craiova, Romania
- Department of Infertility and IVF, HitMed Medical Center, Stefan cel Mare Street, No. 23-23A, 200130 Craiova, Romania
| |
Collapse
|
29
|
Chen Q, Kong Q, Tian P, He Y, Zhao J, Zhang H, Wang G, Chen W. Lactic acid bacteria alleviate di-(2-ethylhexyl) phthalate-induced liver and testis toxicity via their bio-binding capacity, antioxidant capacity and regulation of the gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119197. [PMID: 35378196 DOI: 10.1016/j.envpol.2022.119197] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticiser that, if absorbed into the human body, can cause various adverse effects including reproductive toxicity, liver toxicity and gut microbiota dysbiosis. So far, some studies have proved that the toxicity of DEHP can be reduced by using antioxidants. However, these candidates all show potential side effects and cannot prevent the accumulation of DEHP in the body, making them unable to be used as a daily dietary supplement to relieve the toxic effects of DEHP. Lactic acid bacteria (LAB) have antioxidant capacity and the ability to adsorb harmful substances. Herein, we investigated the protective effects of five strains of LAB, selected based on our in vitro assessments on antioxidant capacities or bio-binding capacities, against the adverse effects of DEHP exposure in rats. Our results showed that LAB strains with outstanding DEHP/MEHP binding capacities, Lactococcus lactis subsp. lactis CCFM1018 and Lactobacillus plantarum CCFM1019, possess the ability to facilitate the elimination of DEHP and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) with the faeces, decrease DEHP and MEHP level in serum further. Meanwhile, DEHP-induced liver and testicular injuries were effectively alleviated by CCFM1018 and CCFM1019. In addition, CCFM1018 effectively alleviated the DEHP-induced oxidative stress with its strong antioxidant ability. Furthermore, both CCFM1018 and CCFM1019 modulated the gut microbiota, which in turn increased the concentrations of faecal propionate and butyrate and regulated the pathways related to host metabolism. Correlation analysis indicate that DEHP/MEHP bio-binding capacity of LAB plays a crucial role in protecting the body from DEHP exposure, and its antioxidant capacity and the ability to alleviate the gut microbiota dysbiosis are also involved in the alleviation of damage. Thus, LAB with powerful bio-binding capacity of DEHP and MEHP can be considered as a potential therapeutic dietary strategy against DEHP exposure.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Qingmin Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
30
|
Mundula T, Russo E, Curini L, Giudici F, Piccioni A, Franceschi F, Amedei A. Chronic systemic low-grade inflammation and modern lifestyle: the dark role of gut microbiota on related diseases with a focus on pandemic COVID-19. Curr Med Chem 2022; 29:5370-5396. [PMID: 35524667 DOI: 10.2174/0929867329666220430131018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Inflammation is a physiological, beneficial and auto-limiting response of the host to alarming stimuli. Conversely, a chronic systemic low-grade inflammation (CSLGI), known as a long-time persisting condition, causes organs and host tissues' damage, representing a major risk for chronic diseases. Currently, a worldwide a high incidence of inflammatory chronic diseases is observed, often linked to the lifestyle-related changes occurred in the last decade's society. The mains lifestyle-related factors are a proinflammatory diet, psychological stress, tobacco smoking, alcohol abuse, physical inactivity, and finally indoor living and working with its related consequences such as indoor pollution, artificial light exposure and low vitamin D production. Recent scientific evidences found that gut microbiota (GM) has a main role in shaping the host's health, particularly as CSLGI mediator. As a matter of facts, based on the last discoveries regarding the remarkable GM activity, in this manuscript we focused on the elements of actual lifestyle that influence the composition and function of intestinal microbial community, in order to elicit the CSLGI and its correlated pathologies. In this scenario, we provide a broad review of the interplay between modern lifestyle, GM and CSLGI with a special focus on the COVID symptoms and emerging long-COVID syndrome.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Piccioni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
31
|
Mousavi SE, Delgado-Saborit JM, Adivi A, Pauwels S, Godderis L. Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151654. [PMID: 34785217 DOI: 10.1016/j.scitotenv.2021.151654] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 05/25/2023]
Abstract
A rich body of literature indicates that environmental factors interact with the human microbiome and influence its composition and functions contributing to the pathogenesis of diseases in distal sites of the body. This systematic review examines the scientific evidence on the effect of environmental toxicants, air pollutants and endocrine disruptors (EDCs), on compositional and diversity of human microbiota. Articles from PubMed, Embase, WoS and Google Scholar where included if they focused on human populations or the SHIME® model, and assessed the effects of air pollutants and EDCs on human microbiome. Non-human studies, not written in English and not displaying original research were excluded. The Newcastle-Ottawa Scale was used to assess the quality of individual studies. Results were extracted and presented in tables. 31 studies were selected, including 24 related to air pollutants, 5 related to EDCs, and 2 related to EDC using the SHIME® model. 19 studies focussed on the respiratory system (19), gut (8), skin (2), vaginal (1) and mammary (1) microbiomes. No sufficient number of studies are available to observe a consistent trend for most of the microbiota, except for streptococcus and veillionellales for which 9 out of 10, and 3 out of 4 studies suggest an increase of abundance with exposure to air pollution. A limitation of the evidence reviewed is the scarcity of existing studies assessing microbiomes from individual systems. Growing evidence suggests that exposure to environmental contaminants could change the diversity and abundance of resident microbiota, e.g. in the upper and lower respiratory, gastrointestinal, and female reproductive system. Microbial dysbiosis might lead to colonization of pathogens and outgrowth of pathobionts facilitating infectious diseases. It also might prime metabolic dysfunctions disrupting the production of beneficial metabolites. Further studies should elucidate the role of environmental pollutants in the development of dysbiosis and dysregulation of microbiota-related immunological processes.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran
| | - Juana Maria Delgado-Saborit
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Sara Pauwels
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium; IDEWE, External Service for Prevention and Protection at work, Interleuvenlaan 58, 3001 Heverlee, Belgium.
| |
Collapse
|
32
|
Gruber ES, Stadlbauer V, Pichler V, Resch-Fauster K, Todorovic A, Meisel TC, Trawoeger S, Hollóczki O, Turner SD, Wadsak W, Vethaak AD, Kenner L. To Waste or Not to Waste: Questioning Potential Health Risks of Micro- and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity. EXPOSURE AND HEALTH 2022; 15:33-51. [PMID: 36873245 PMCID: PMC9971145 DOI: 10.1007/s12403-022-00470-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 05/27/2023]
Abstract
Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.
Collapse
Affiliation(s)
- Elisabeth S. Gruber
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Andrea Todorovic
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Styria, Austria
| | - Thomas C. Meisel
- General and Analytical Chemistry, Montanuniversitaet Leoben, Styria, Austria
| | - Sibylle Trawoeger
- Division of Systematic Theology and its Didactics, Faculty of Catholic Theology, University of Wuerzburg, Wuerzburg, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP UK
- Central European Institute of Technology, Masaryk University, 602 00 Brno, Czech Republic
| | - Wolfgang Wadsak
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Unit of Marine and Coastal Systems, Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
| | - Lukas Kenner
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Laboratory Animal Pathology, Department of Pathology Medical, University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
33
|
Ortiz P, Torres-Sánchez A, López-Moreno A, Cerk K, Ruiz-Moreno Á, Monteoliva-Sánchez M, Ampatzoglou A, Aguilera M, Gruszecka-Kosowska A. Impact of Cumulative Environmental and Dietary Xenobiotics on Human Microbiota: Risk Assessment for One Health. J Xenobiot 2022; 12:56-63. [PMID: 35323221 PMCID: PMC8949313 DOI: 10.3390/jox12010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Chemical risk assessment in the context of the risk analysis framework was initially designed to evaluate the impact of hazardous substances or xenobiotics on human health. As the need of multiple stressors assessment was revealed to be more reliable regarding the occurrence and severity of the adverse effects in the exposed organisms, the cumulative risk assessment started to be the recommended approach. As toxicant mixtures and their "cocktail effects" are considered to be main hazards, the most important exposure for these xenobiotics would be of dietary and environmental origin. In fact, even a more holistic prism should currently be considered. In this sense, the definition of One Health refers to simultaneous actions for improving human, animal, and environmental health through transdisciplinary cooperation. Global policies necessitate going beyond the classical risk assessment for guaranteeing human health through actions and implementation of the One Health approach. In this context, a new perspective is proposed for the integration of microbiome biomarkers and next generation probiotics potentially impacting and modulating not only human health, but plant, animal health, and the environment.
Collapse
Affiliation(s)
- Pilar Ortiz
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- IBS (Instituto de Investigación Biosanitaria ibs.), 18012 Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- IBS (Instituto de Investigación Biosanitaria ibs.), 18012 Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
34
|
Balaguer-Trias J, Deepika D, Schuhmacher M, Kumar V. Impact of Contaminants on Microbiota: Linking the Gut-Brain Axis with Neurotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031368. [PMID: 35162390 PMCID: PMC8835190 DOI: 10.3390/ijerph19031368] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Over the last years, research has focused on microbiota to establish a missing link between neuronal health and intestine imbalance. Many studies have considered microbiota as critical regulators of the gut–brain axis. The crosstalk between microbiota and the central nervous system is mainly explained through three different pathways: the neural, endocrine, and immune pathways, intricately interconnected with each other. In day-to-day life, human beings are exposed to a wide variety of contaminants that affect our intestinal microbiota and alter the bidirectional communication between the gut and brain, causing neuronal disorders. The interplay between xenobiotics, microbiota and neurotoxicity is still not fully explored, especially for susceptible populations such as pregnant women, neonates, and developing children. Precisely, early exposure to contaminants can trigger neurodevelopmental toxicity and long-term diseases. There is growing but limited research on the specific mechanisms of the microbiota–gut–brain axis (MGBA), making it challenging to understand the effect of environmental pollutants. In this review, we discuss the biological interplay between microbiota–gut–brain and analyse the role of endocrine-disrupting chemicals: Bisphenol A (BPA), Chlorpyrifos (CPF), Diethylhexyl phthalate (DEHP), and Per- and polyfluoroalkyl substances (PFAS) in MGBA perturbations and subsequent neurotoxicity. The complexity of the MGBA and the changing nature of the gut microbiota pose significant challenges for future research. However, emerging in-silico models able to analyse and interpret meta-omics data are a promising option for understanding the processes in this axis and can help prevent neurotoxicity.
Collapse
Affiliation(s)
- Jordina Balaguer-Trias
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Deepika Deepika
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Vikas Kumar
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
- IISPV (Pere Virgili Institute for Health Research), Sant Joan University Hospital, Universitat Rovira i Virgili, 43204 Reus, Spain
- Correspondence: ; Tel.: +34977558576
| |
Collapse
|
35
|
Zhang T, Zhou X, Zhang X, Ren X, Wu J, Wang Z, Wang S, Wang Z. Gut microbiota may contribute to the postnatal male reproductive abnormalities induced by prenatal dibutyl phthalate exposure. CHEMOSPHERE 2022; 287:132046. [PMID: 34474386 DOI: 10.1016/j.chemosphere.2021.132046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/13/2023]
Abstract
Phthalate is an environmental endocrine disruptor that causes direct and intergenerational male reproductive damage. However, its mechanisms require further investigation. The role of gut microbiota in male reproductive function has been gradually revealed in the past. To explore the intergenerational testicular injury and the influence on offspring gut microbiota of the widely used phthalate dibutyl phthalate (DBP), we conducted a prenatal DBP exposure experiment with microbiota sequencing. We finally explained the gestational DBP exposure-induced gut dysbacteriosis, which is one of the mechanisms of testicular injury in the offspring. The occurrence of seminiferous atrophy and spermatogenic cells apoptosis showed a slight increase. Our study partially supported the results of previous research works on the characteristics of gut dysbacteriosis, which featured the increased relative abundance of Bacteroidetes, Prevotella and P. copri. Focusing on the role of gut microbiota in reproductive function is important. Future studies need to investigate the relationship between environmental pollution and human health.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Jiajin Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Zhongyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China; The First People's Hospital of Xuzhou City, China.
| |
Collapse
|
36
|
Subacute Exposure to an Environmentally Relevant Dose of Di-(2-ethylhexyl) Phthalate during Gestation Alters the Cecal Microbiome, but Not Pregnancy Outcomes in Mice. TOXICS 2021; 9:toxics9090215. [PMID: 34564366 PMCID: PMC8470982 DOI: 10.3390/toxics9090215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a plasticizer commonly found in polyvinyl chloride, medical equipment, and food packaging. DEHP has been shown to target the reproductive system and alter the gut microbiome in humans and experimental animals. However, very little is known about the impact of DEHP-induced microbiome changes and its effects during pregnancy. Thus, the objective of this study was to investigate the effects of DEHP exposure during pregnancy on the cecal microbiome and pregnancy outcomes. Specifically, this study tested the hypothesis that subacute exposure to DEHP during pregnancy alters the cecal microbiome in pregnant mice, leading to changes in birth outcomes. To test this hypothesis, pregnant dams were orally exposed to corn oil vehicle or 20 µg/kg/day DEHP for 10 days and euthanized 21 days after their last dose. Cecal contents were collected for 16S Illumina and shotgun metagenomic sequencing. Fertility studies were also conducted to examine whether DEHP exposure impacted birth outcomes. Subacute exposure to environmentally relevant doses of DEHP in pregnant dams significantly increased alpha diversity and significantly altered beta diversity. Furthermore, DEHP exposure during pregnancy significantly increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Deferribacteres compared with controls. The affected taxonomic families included Deferribacteraceae, Lachnospiraceae, and Mucisprillum. In addition to changes in the gut microbiota, DEHP exposure significantly altered 14 functional pathways compared with the control. Finally, DEHP exposure did not significantly impact the fertility and birth outcomes compared with the control. Collectively, these data indicate that DEHP exposure during pregnancy shifts the cecal microbiome, but the shifts do not impact fertility and birth outcomes.
Collapse
|
37
|
Chen Q, Wang B, Wang S, Qian X, Li X, Zhao J, Zhang H, Chen W, Wang G. Modulation of the Gut Microbiota Structure with Probiotics and Isoflavone Alleviates Metabolic Disorder in Ovariectomized Mice. Nutrients 2021; 13:1793. [PMID: 34070274 PMCID: PMC8225012 DOI: 10.3390/nu13061793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The decrease in ovarian hormone secretion that occurs during menopause results in an increase in body weight and adipose tissue mass. Probiotics and soy isoflavones (SIFs) could affect the gut microbiota and exert anti-obesity effects. The objective of this study was to investigate the effects of probiotics and a diet containing SIF (SIF diet) on ovariectomized mice with menopausal obesity, including the gut microbiome. The results demonstrate that Bifidobacterium longum 15M1 can reverse menopausal obesity, whilst the combination of Lactobacillus plantarum 30M5 and a SIF diet was more effective in alleviating menopausal lipid metabolism disorder than either components alone. Probiotics and SIFs play different anti-obesity roles in menopausal mice. Furthermore, 30M5 alters the metabolites of the gut microbiota that increase the circulating estrogen level, upregulates the expression of estrogen receptor α in abdominal adipose tissue and improves the production of short-chain fatty acids (SCFAs). A SIF diet can significantly alter the structure of the fecal bacterial community and enrich the pathways related to SCFAs production. Moreover, 30M5 and a SIF diet acted synergistically to effectively resolve abnormal serum lipid levels in ovariectomized mice, and these effects appear to be associated with regulation of the diversity and structure of the intestinal microbiota to enhance SCFAs production and promote estrogen circulation.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (B.W.); (S.W.); (X.Q.); (X.L.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
38
|
Lison D, Ambroise J, Leinardi R, Ibouraadaten S, Yakoub Y, Deumer G, Haufroid V, Paquot A, Muccioli GG, van den Brûle S. Systemic effects and impact on the gut microbiota upon subacute oral exposure to silver acetate in rats. Arch Toxicol 2021; 95:1251-1266. [PMID: 33779765 DOI: 10.1007/s00204-021-02998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
CONTEXT The addition of silver (Ag) to food items, and its migration from food packaging and appliances results in a dietary exposure in humans, estimated to 70-90 µg Ag/day. In view of the well-known bactericidal activity of Ag ions, concerns arise about a possible impact of dietary Ag on the gut microbiota (GM), which is a master determinant of human health and diseases. Repeated oral administration of Ag acetate (AgAc) can also cause systemic toxicity in rats with reported NOAELs of 4 mg AgAc/b.w./d for impaired fertility and 0.4 mg AgAc/b.w./d for developmental toxicity. OBJECTIVE The objective of this study was to investigate whether oral exposure to AgAc can induce GM alterations at doses causing reproductive toxicity in rats. METHODS Male and female Wistar rats were exposed during 10 weeks to AgAc incorporated into food (0, 0.4, 4 or 40 mg/kg b.w./d), and we analyzed the composition of the GM (α- and β-diversity). We documented bacterial function by measuring short-chain fatty acid (SCFA) production in cecal content. Ferroxidase activity, a biomarker of systemic Ag toxicity, was measured in serum. RESULTS AND CONCLUSIONS From 4 mg/kg b.w./d onwards, we recorded systemic toxicity, as indicated by the reduction of serum ferroxidase activity, as well as serum Cu and Se concentrations. This systemic toxic response to AgAc might contribute to explain reprotoxic manifestations. We observed a dose-dependent modification of the GM composition in male rats exposed to AgAc. No impact of AgAc exposure on the production of bacterial SCFA was recorded. The limited GM changes recorded in this study do not appear related to a reprotoxicity outcome.
Collapse
Affiliation(s)
- Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Gladys Deumer
- Laboratory of Analytical Biochemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.,Laboratory of Analytical Biochemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Sybille van den Brûle
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
39
|
Akbar S, Huang J, Zhou Q, Gu L, Sun Y, Zhang L, Lyu K, Yang Z. Elevated temperature and toxic Microcystis reduce Daphnia fitness and modulate gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116409. [PMID: 33418289 DOI: 10.1016/j.envpol.2020.116409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 05/24/2023]
Abstract
The gut microbiota has been increasingly recognized to regulate host fitness, which in turn is dependent on stability of community structure and composition. Many biotic and abiotic factors have been demonstrated to shape gut microbiota of cladocerans. However, the interactive effects of these variables on cladocerans fitness due to alteration of gut microbiota and their linkage with life history parameters are poorly understood. Here, we investigated the responses of Daphnia magna gut microbiota to the combined effects of toxic Microcystis aeruginosa and high temperature and its associations with fitness. We found that under good food regime, the temperature has no effect on the composition of the gut microbiota, whereas under high proportion of toxic M. aeruginosa and high temperature conditions, D. magna lost their symbionts. High proportion of toxic M. aeruginosa and high temperature had synergistically negative effects on D. magna performance due to altered gut microbiota. The high abundance of symbiotic Comamonadaceae and good food increased D. magna fitness. The present study illustrates that understanding life history strategies in response to multiple stressors related to changes in the gut microbiota diversity and composition requires integrated approaches that incorporate multiple linked traits and tether them to one another.
Collapse
Affiliation(s)
- Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qiming Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
40
|
Yan X, He M, Zheng J, Zhu T, Zou Z, Tang B, Yu Y, Mai B. Tris (1,3-dichloro-2-propyl) phosphate exposure disrupts the gut microbiome and its associated metabolites in mice. ENVIRONMENT INTERNATIONAL 2021; 146:106256. [PMID: 33232877 DOI: 10.1016/j.envint.2020.106256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in environmental media and biological samples. However, knowledge of its adverse health consequences is limited, and its impacts on the human gut microbiota, which play a key role in health and disease, remain unexplored. OBJECTIVES To better evaluate the potential risk of TDCIPP exposure in human health, we investigated the effects of TDCIPP on gut microbiome and gut metabolites in C57BL/6 mice. METHODS We applied an integrated analytical approach by combing 16S rRNA gene sequencing, metagenomic sequencing and 1H NMR metabolomics analysis in fecal samples collected from mouse with TDCIPP exposure as well as those from controls. RESULTS Both 16S rRNA sequencing and metagenome sequencing showed that TDCIPP exposure significantly changed the gut microbiome, with a remarkable increased Firmicutes at the expense of Bacteroidetes after exposure. Perturbed gut metabolic profiles in the treated group were also observed and closely related with altered gut microbiome. Gene functional annotation analysis further suggested perturbed gut metabolites could be directly caused by altered gut microbiome. CONCLUSION TDCIPP exposure has great influence on the gut ecosystem as reflected by perturbation of microbiome community structure, microbial species, gut microbe associated gene expression and gut metabolites, which may contribute to the progression of certain uncharacterized gut microbiota related host diseases. Our findings provide novel insights into adverse effects of TDCIPP exposure on human health.
Collapse
Affiliation(s)
- Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Mian He
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Ting Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhongjie Zou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
41
|
Aguilera M, Gálvez-Ontiveros Y, Rivas A. Endobolome, a New Concept for Determining the Influence of Microbiota Disrupting Chemicals (MDC) in Relation to Specific Endocrine Pathogenesis. Front Microbiol 2020; 11:578007. [PMID: 33329442 PMCID: PMC7733930 DOI: 10.3389/fmicb.2020.578007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous steroid hormones and Endocrine Disrupting Chemicals (EDC) interact with gut microbiota through different pathways. We suggest the use of the term "endobolome" when referring to the group of gut microbiota genes and pathways involved in the metabolism of steroid hormones and EDC. States of dysbiosis and reduced diversity of the gut microbiota may impact and modify the endobolome resulting at long-term in the development of certain pathophysiological conditions. The endobolome might play a central role in the gut microbiota as seen by the amount of potentially endobolome-mediated diseases and thereby it can be considered an useful diagnostic tool and therapeutic target for future functional research strategies that envisage the use of next generation of probiotics. In addition, we propose that EDC and other xenobiotics that alter the gut microbial composition and its metabolic capacities should be categorized into a subgroup termed "microbiota disrupting chemicals" (MDC). This will help to distinguish the role of contaminants from other microbiota natural modifiers such as those contained or released from diet, environment, physical activity and stress. These MDC might have the ability to promote specific changes in the microbiota that can ultimately result in common intestinal and chronic or long-term systemic diseases in the host. The risk of developing certain disorders associated with gut microbiota changes should be established by determining both the effects of the MDC on gut microbiota and the impact of microbiota changes on chemicals metabolism and host susceptibility. In any case, further animal controlled experiments, clinical trials and large epidemiological studies are required in order to establish the concatenated impact of the MDC-microbiota-host health axis.
Collapse
Affiliation(s)
- Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
42
|
Wang G, Sun S, Wu X, Yang S, Wu Y, Zhao J, Zhang H, Chen W. Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110590. [PMID: 32283409 DOI: 10.1016/j.ecoenv.2020.110590] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/26/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a recently identified and persistent organic pollutant that becomes enriched in living organisms via bioaccumulation and the food chain. PFOS can induce various disorders, including liver toxicity, neurotoxicity and metabolic dysregulation. Most recent studies have shown a close association of the gut microbiota with the occurrence of diseases. However, few studies have explored the effects of PFOS on the gut environment, including the intestinal flora and barrier. In this study, we evaluated the effects of PFOS in C57BL/6J male mice and explored the relationship between tissue damage and the gut environment. Mice were orally exposed to PFOS for 16 days. Liver damage was assessed by examining the inflammatory reaction in the liver and serum liver enzyme concentrations. Metabolic function was assessed by the hepatic cholesterol level and the serum concentrations of glucose, high-density lipoprotein cholesterol, total cholesterol and triglycerides. Intestinal environmental disorders were assessed by evaluating the gut microbiota, SCFAs production, inflammatory reactions and intestinal tight junction protein expression. Our results indicated that PFOS affected inflammatory reactions in the liver and colon and promoted the development of metabolic disorders (especially of cholesterol and glucose metabolism). Moreover, PFOS dysregulated various populations in the gut microbiota (e.g., Firmicutes, Bacteroides, Proteobacteria, Gammaproteobacteria, Clostridiales, Enterobacteriales, Lactobacillales, Erysipelotrichaceae, Rikenellaceae, Ruminococcaceae and Blautia) and induced a loss of gut barrier integrity by reducing short-chain fatty acids (SCFAs) production and intestinal tight junction protein expression. A Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis mainly identified metabolic pathways (e.g., the adipocytokine signalling pathway), endocrine system pathways (e.g., steroid hormone biosynthesis, flavonoid biosynthesis), the latter of which is widely considered to be associated with metabolism. Overall, our results suggest that PFOS damages various aspects of the gut environment, including the microbiota, SCFAs and barrier function, and thereby exacerbates the toxicity associated with liver, gut and metabolic disorders.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaobing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shurong Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yanmin Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|