1
|
Mustafa AN, Khedre AM, El-Masry SM. Microplastics accumulation in leaf litter: Field evidence for microplastic ingestion and transfer through prey-predatory relationships. CHEMOSPHERE 2025; 376:144295. [PMID: 40081029 DOI: 10.1016/j.chemosphere.2025.144295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Microplastics (MP) contamination of the terrestrial environment is a global concern. The contamination level of MPs in leaf litter and soil fauna that feed on it has not been reported. Moreover, the interspecific relationships among field soil fauna at different trophic levels and their effects on MP loads remain unclear. Thus, we selected a model food chain including a prey-isopod and predatory-spider relationship to evaluate the role of this relationship in the MPs body burden. The results showed that MP concentrations in the fallen leaf litter ranged from 5340 ± 336.15 particles/kg to 10920 ± 432.43 particles/kg dry weight during different seasons of the monitoring year. However, we found MP particles ranged from 1.17 ± 0.25 to 10.11 ± 1.02 particles/ind in isopods and 2.25 ± 0.35 to 4.25 ± 0.35 particles/ind in spiders. All extracted MPs were colored and blue was the most prevalent one. Fiber-shaped polyester (≤500 μm) and (501-1000 μm) were the most common MPs size in tested fauna and leaf litter, respectively. Our findings indicate that MP ingestion by isopods pose a significant risk for higher trophic levels in the terrestrial food chain. Magnification of MPs was observed in the predatory spider with MP concentration increasing from 46.45 ± 16.68 particles/gm wet weight in isopod to 147.51 ± 54.4 particles/gm wet weight in spider, annually. Furthermore, the results indicate that these soil invertebrates may represent a source of MPs to other organisms in the environment.
Collapse
Affiliation(s)
- Asmaa N Mustafa
- Group of Invertebrates Ecology and Pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Sohag, Egypt.
| | - Azza M Khedre
- Group of Invertebrates Ecology and Pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Sohag, Egypt.
| | - Safa M El-Masry
- Group of Invertebrates Ecology and Pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Sohag, Egypt.
| |
Collapse
|
2
|
Aransiola SA, Victor-Ekwebelem MO, Daza BX, Oladoye PO, Alli YA, Bamisaye A, Aransiola AB, Oni SO, Maddela NR. Micro- and nano-plastics pollution in the marine environment: Progresses, drawbacks and future guidelines. CHEMOSPHERE 2025; 374:144211. [PMID: 39977960 DOI: 10.1016/j.chemosphere.2025.144211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Marine pollution by micro/nanoplastics (M/NPs) has emerged as a critical global issue, with widespread ecological and economic consequences. Numerous studies have investigated M/NPs pollution in marine environments, but there remains a need to assess progress, identify challenges, and propose future strategies. This review provides updated insights into marine M/NPs, including their sources, detection methods, global data from diverse marine ecosystems, and the challenges in mitigating pollution. The review reveals that the ocean harbors approximately 5.25 trillion plastic debris pieces, with a total of 50-75 trillion plastic and microplastic particles, with deep-sea regions containing up to 4 billion plastic microfibers per square kilometer. Human activities, including industrial practices and aquaculture, are major contributors to M/NPs pollution, which threatens 17% of marine species and incurs an economic loss of 6-9 billion USD. M/NPs are found across various marine habitats, including shorelines, sea floors, water columns, biota, and floating debris. Analyzing nanoplastics is particularly challenging due to their heterogeneous aggregation with other contaminants and their much lower concentrations than natural particles. Key drawbacks in addressing M/NPs pollution include inadequate funding, insufficient regulations, and a lack of policy frameworks on the prevalence, distribution, and sources of M/NPs. There is an increasing focus on utilizing innovative technologies such as artificial intelligence (AI) to monitor, assess risks, and predict the spread of M/NPs. Therefore, urgent global cooperation, involving all stakeholders and the general public, is essential. Additionally, integrating scientific and engineering methods, along with AI technologies, is crucial for monitoring and controlling M/NPs pollution and developing sustainable solutions.
Collapse
Affiliation(s)
- Sesan Abiodun Aransiola
- Department of Microbiology, Faculty of Science, University of Abuja, P.M.B. 117, Abuja, Nigeria.
| | | | - Bryan Xavier Daza
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí.Portoviejo, 130105, Ecuador
| | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA.
| | - Yakubu Adekunle Alli
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Oyo State, Nigeria
| | - Adejoke Blessing Aransiola
- Department of Surveying and Geoinformatics, Faculty of Environmental Science, University of Abuja, PMB. 117, Abuja, Nigeria
| | | | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí.Portoviejo, 130105, Ecuador
| |
Collapse
|
3
|
Gabetti A, Nocita A, Maganza A, Mossotto C, Anselmi S, Bentivoglio T, Esposito G, Bozzetta E, Elia AC, Renzi M, Prearo M, Barceló D, Pastorino P. Unveiling microplastic pollution: Evaluating the role of Sinotaia quadrata (Caenogastropoda, Viviparidae) as a monitoring tool in freshwater ecosystems. ENVIRONMENTAL RESEARCH 2025; 276:121513. [PMID: 40174742 DOI: 10.1016/j.envres.2025.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Freshwater species play a key role in monitoring microplastics (MPs) pollution, providing insights into its distribution, accumulation, and potential ecological and human health risks in aquatic ecosystems. This study evaluates the invasive snail Sinotaia quadrata as a potential tool for monitoring MPs pollution in freshwater ecosystems heavily impacted by human activities. Specifically, we examined whether the characteristics of MPs (i.e., shape, color, and chemical composition) found in water and sediment were reflected in those accumulated by S. quadrata, and whether MPs accumulation varied across different snail size classes. MPs were detected in all environmental matrices and snail samples, with fragments and filaments as the dominant shapes, blue, white, and black as the most common colors, and polypropylene, polyethylene, and polyethylene terephthalate as the primary polymers. A significant difference in MPs concentration per gram was found across snail size classes, with smaller snails accumulating more MPs than larger individuals, likely due to higher feeding rates during growth. A positive correlation was observed between snail shell length and weight, while MPs concentration per gram showed significant negative correlations with both parameters. These findings suggest that S. quadrata accumulates MPs from the environment, reflecting local contamination levels. While S. quadrata is an invasive species, this study demonstrates its potential utility in MPs monitoring, particularly in the context of eradication efforts. This approach integrates pollution assessment with invasive species management, offering a broader perspective on the role of biological invasions in environmental monitoring.
Collapse
Affiliation(s)
- Alice Gabetti
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, 10154, Turin, Italy; Regional Reference Centre for the Biodiversity of Aquatic Environments (BioAqua), 10051, Avigliana, Italy
| | - Annamaria Nocita
- The University Museum System, University of Florence, 50121, Florence, Italy
| | - Alessandra Maganza
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, 10154, Turin, Italy; Regional Reference Centre for the Biodiversity of Aquatic Environments (BioAqua), 10051, Avigliana, Italy; Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Camilla Mossotto
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, 10154, Turin, Italy; Regional Reference Centre for the Biodiversity of Aquatic Environments (BioAqua), 10051, Avigliana, Italy; Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | | | | | - Giuseppe Esposito
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, 10154, Turin, Italy; Regional Reference Centre for the Biodiversity of Aquatic Environments (BioAqua), 10051, Avigliana, Italy
| | - Elena Bozzetta
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, 10154, Turin, Italy
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, 10154, Turin, Italy; Regional Reference Centre for the Biodiversity of Aquatic Environments (BioAqua), 10051, Avigliana, Italy
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piedmont, Liguria and the Aosta Valley, 10154, Turin, Italy; Regional Reference Centre for the Biodiversity of Aquatic Environments (BioAqua), 10051, Avigliana, Italy.
| |
Collapse
|
4
|
Pasalari M, Esmaeili HR, Keshavarzi B, Busquets R, Abbasi S, Momeni M. Microplastic footprints in sharks and rays: First assessment of microplastic pollution in two cartilaginous fishes, hardnose shark and whitespotted whipray. MARINE POLLUTION BULLETIN 2025; 212:117350. [PMID: 39731785 DOI: 10.1016/j.marpolbul.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 12/30/2024]
Abstract
Microplastic (MP) pollution is an emerging environmental problem worldwide and has caused widespread concern both in terrestrial and aquatic ecosystems due to their potential impacts on the human health, and health of aquatic organisms and the environment. Little is known about the exposure of top marine predators to MP contamination (debris 0.1μm - <5mm, also called MPs). For the first time, MPs have been characterized in carnivore demersal elasmobranch specimens of hardnose shark Carcharhinus macloti, and the whitespotted whipray Maculabatis gerrardi. The specimens were from the Persian Gulf and Sea of Oman, and MPs were extracted from their intestines, gills, and skin. MPs were found in every sampled tissue examined: this is higher pollution than previously reported for elasmobranch. The total MPs for these organs were 12.6 MPs/g body mass of sharks, and 17.8 MPs/g in the whiprays on average. The most common MPs found were fibres (59%), and filaments (35%); pointing towards fishing gears and limited wastewater treatment. Fragments, films, and foams were <2.1 %; a less abundant problem. The most abundant MPs sampled were ∼0.5 mm ≤ L< 1 mm (when the limit of detection was 0.1 mm), and blue was the most common MP color hinting intake due to visual confusion. Polycarbonate and nylon were the most abundant polymers in the MPs recovered. The overall findings show that C. macloti and M. gerrardi are vulnerable to plastic and it reflects the critical state of their habitat.
Collapse
Affiliation(s)
- Marzieh Pasalari
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz 71454, Iran
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz 71454, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Rosa Busquets
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St, Bloomsbury, London WC1E 6BT, United Kingdom
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Mohammad Momeni
- Persian Gulf and Oman Sea Ecological research center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| |
Collapse
|
5
|
El-Masry SM, Khedre AM, Mustafa AN. Seasonal variations and risk assessment of microplastic contamination in agricultural soil and associated macroinvertebrates in Egypt. Sci Rep 2025; 15:6590. [PMID: 39994349 PMCID: PMC11850816 DOI: 10.1038/s41598-025-88715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Contamination by microplastics (MPs) has the potential to rank among the world's most significant environmental issues. Despite the fact that MP contamination is a global problem, little is known about the time variation of MPs in agricultural soil and its faunal communities which represent a key role to risk assessment. This study represents a first field investigation regarding the MP concentrations in agricultural ecosystem in Egypt. Our study investigates the seasonal fluctuations of MPs in soil and its common fauna in a citrus orchard (Citrus sinensis) in Egypt's Sohag Governorate. Moreover, this work aimed to identify how feeding strategies and body size of the selected fauna affect the no. of MPs ingested. The greatest mean concentration of MPs in soil was observed in summer (664 ± 90.20 items/kg) dry weight. However the lowest was recorded in autumn (354 ± 70.92 items/kg). Aporrectodea caliginosa (earthworms) was more contaminated with MPs (6.84 ± 2.5 item/individual annually) than Anisolabis maritima (earwigs) (2.06 ± 0.86 item/individual annually). When comparing between taxa without considering the size of the organisms, earwigs showed higher MPs concentrations (ranged from 117.93 ± 5.23 to 244.38 ± 4.57 items/gm wet weight) than the earthworms (ranged from 25.62 ± 2.43 to 51.66 ± 4.05 items/gm wet weight). Our results found that blue and red colors were the predominant colors in the soil and the selected fauna. Also, polyester fibers (PES) were the most popular type of microplastics, followed by fractions of polyethylene (PE) and polypropylene (PP). Interestingly, the reduction in the MP particles in the present taxa was observed compared to those in the soil. Pollution load index (PLI) value varied across seasons, with the lowest recorded in autumn due to reduced MPs abundance. The Hazard (H) index indicates a moderate risk (level III) due to high polyester abundance and a low hazard score (4) across all seasons. Our results represent a starting point for further studies on the impact of MPs on soil organisms in various agricultural soils.
Collapse
Affiliation(s)
- Safa M El-Masry
- Group of Invertebrates ecology and pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Azza M Khedre
- Group of Invertebrates ecology and pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Asmaa N Mustafa
- Group of Invertebrates ecology and pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
6
|
Wu B, Yu H, Lei P, He J, Yi J, Wu W, Wang H, Yang Q, Zeng G, Sun D. Microplastics in aquatic ecosystems: Detection, source tracing, and sustainable management strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117883. [PMID: 39965319 DOI: 10.1016/j.ecoenv.2025.117883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Microplastics (MPs) are emerging contaminants characterized by persistence, cross-media transport, and complex pollutant interactions, posing serious ecotoxicological risks to ecosystems and human health. Effective MPs management requires multi-faced, long-term, strategies involving targeted sampling, quantitative detection, and comprehensive risk assessments, all of which entail significant resource investment. Despite advancements in remediation technologies, a holistic governance framework integrating these innovations remains underdeveloped. This review synthesizes current knowledge on MPs, elaborating on their diverse morphologies, degradation pathways, and their role as vectors for toxic substances. State-of-the-art extraction techniques are evaluated in this article, including micropore adsorption using nanocomposites, alongside the incorporation of advanced analytical tools such as spectroscopic methods, electron microscopy, and bioinformatics to augment environmental forensics. This review also underscores the necessity of formulating robust global policies to regulate MPs pollution and discusses the potential of biodegradation and thermal degradation as sustainable solutions for MPs removal. By promoting an interdisciplinary approach, this review advocates for a coordinated global response, integrating environmental science, policy frameworks, and waste management strategies to mitigate the escalating impact of MPs on ecosystems and human well-being.
Collapse
Affiliation(s)
- Baihui Wu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiaxuan He
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Wei Wu
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Kushwaha M, Shankar S, Goel D, Singh S, Rahul J, Rachna K, Singh J. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. MARINE POLLUTION BULLETIN 2024; 209:117109. [PMID: 39413476 DOI: 10.1016/j.marpolbul.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Over the past few years, microplastics (MPs) pollution in the marine environment has emerged as a significant environmental concern. Poor management practices lead to millions of tons of plastic waste entering oceans annually, primarily from land-based sources like mismanaged waste, urban runoff, and industrial activities. MPs pollution in marine environments poses a significant threat to ecosystems and human health, as it adsorbs pollutants, heavy metals, and leaches additives such as plasticizers and flame retardants, thus contributing to chemical pollution. The review article provides a comprehensive overview of MPs pollution, its sources, and impacts on marine environments, including human health, detection techniques, and strategies for mitigating microplastic contamination in marine environments. The paper provides current information on microplastic pollution in marine environments, offering insights for researchers, policymakers, and the public, as well as promoting sustainable practices to protect the environment.
Collapse
Affiliation(s)
- Manzari Kushwaha
- Department of Applied Chemistry, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shiv Shankar
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India.
| | - Divya Goel
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shailja Singh
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow - 226025, India
| | - Jitin Rahul
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Km Rachna
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Jaspal Singh
- Department of Environmental Science, Bareilly College, Bareilly- 243001, Uttar Pradesh, India
| |
Collapse
|
8
|
Xu Z, Huang L, Xu P, Lim L, Cheong KL, Wang Y, Tan K. Microplastic pollution in commercially important edible marine bivalves: A comprehensive review. Food Chem X 2024; 23:101647. [PMID: 39113739 PMCID: PMC11305219 DOI: 10.1016/j.fochx.2024.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microplastics have become major pollutants in the marine environment and can accumulate in high concentrations, especially in the gut of marine organisms. Unlike other seafood, bivalves are consumed whole, along with their digestive systems, resulting in the transfer of microplastics to humans. Therefore, there is an urgent need to review the status of microplastic pollution in marine bivalves. In this context, this article provides a comprehensive review of the status of microplastic pollution in marine bivalves and the impact of microplastics on the physiology and immunology of marine bivalves. In general, marine bivalves can accumulate high levels of microplastics in a tissue-specific manner. Although microplastic pollution does not cause mortality in bivalves, it can adversely affects bivalves' immunity, byssus production, and reproduction, potentially affecting bivalve populations. This article provides important information that will aid establishing management measures and determining the direction of future research.
Collapse
Affiliation(s)
- Zhixiong Xu
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Leiheng Huang
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Peng Xu
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| |
Collapse
|
9
|
Sezer M, Topkaya E, Aksan S, Veli S, Arslan A. Optimizing microplastic treatment in the effluent of biological nutrient removal processes using electrocoagulation: Taguchi experimental design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122413. [PMID: 39236617 DOI: 10.1016/j.jenvman.2024.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microplastics (MPs) have become one of the most critical environmental pollution problems in recent years. Due to the growing abundance of MPs in aquatic environments, extensive research has been conducted and continues to be ongoing to develop effective treatment methods. In this study, the removal of MPs in the effluent of biological wastewater treatment plant (WWTP) was investigated by electrocoagulation (EC) process with aluminum electrodes. Using Taguchi design, the importance of process variables such as pH, current density, and reaction time were evaluated by Analysis of Variance (ANOVA). Statistically, according to F and p values, the most effective parameter for microplastic (MP) removal was current density, followed by pH and reaction time. The R2 value of the created model was found to be above 98%. According to Taguchi results, the optimum process conditions were determined as pH 9, current density 1.905 mA/cm2, and reaction time 15 min and 99% MP removal efficiency was obtained. Under these optimum conditions, the process cost was calculated as 0.049 $/m3 wastewater, considering energy and electrode consumption. As a result of visual analyses, fiber, film, pellet, amorphous, and undefined forms were dominant in WWTP effluent, while only fiber structures were observed after treatment with EC. In this study, it was concluded that the EC process is an alternative treatment method that can be integrated into wastewater treatment plant effluent to achieve MP removal at very low cost and high efficiency. In addition, as a result of this study, it was observed that the EC process can also be used in MP removal by applying it to real wastewater.
Collapse
Affiliation(s)
- Mesut Sezer
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey.
| | - Eylem Topkaya
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| | - Serdar Aksan
- Department of Biology, Kocaeli University, 41000, Kocaeli, Turkey
| | - Sevil Veli
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| | - Ayla Arslan
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| |
Collapse
|
10
|
Wang MH, Chen CF, Lim YC, Albarico FPJB, Tsai WP, Chen CW, Dong CD. Microplastics and phthalate esters contamination in top oceanic predators: A study on multiple shark species in the Pacific Ocean. MARINE POLLUTION BULLETIN 2024; 206:116769. [PMID: 39059223 DOI: 10.1016/j.marpolbul.2024.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Marine organisms, especially top predators such as sharks, are susceptible to environmental pollutants like microplastics (MPs) and phthalate esters (PAEs), leading to ecosystem risks. Research on contamination in these apex species is, however, still limited. This study investigated MPs and PAEs in multiple shark species (Isurus oxyrinchus, Alopias superciliosus, Alopias pelagicus, Carcharhinus brevipinna, and Sphyrna zygaena) off Taiwan's eastern coast. Gastric tissue analyses revealed ubiquitous microplastics (2-31 particles), which positively correlated with body lengths and weights for Isurus oxyrinchus. Blue, fiber-shaped (1-2 mm), and rayon-based MPs are likely associated with textile fiber pollution. The PAEs concentration mean was 7035 ± 6829 ng/g, ww, having DEHP and DiNP as primary compounds. This study highlights pervasive contamination in Pacific Ocean sharks, emphasizing anthropogenic impact on top oceanic predators and providing essential insights for food safety and MP accumulation.
Collapse
Affiliation(s)
- Ming-Huang Wang
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Wen-Pei Tsai
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
11
|
Prikler B, Bordós G, Kriszt B, Micsinai A, Szabó I, Nyírő-Fekete B, Palotai Z, Kaszab E, Szoboszlay S, Csenki Z. Detection of microplastics in zebrafish housing systems: Can microplastic background contamination affect the final results of microplastic-related toxicological tests? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107020. [PMID: 39002427 DOI: 10.1016/j.aquatox.2024.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Concentrations of microplastics (MPs) were determined in three commonly used zebrafish housing systems to see if their levels could affect the final results of laboratory microplastic-related toxicology tests. MPs have received notable attention in the last few years, and their toxicology tests have also come to the fore. Zebrafish (Danio rerio), kept in fish housing systems, are widely used as models for MPs studies. Most of these systems contain a significant number of parts made of different polymers. As usage and amortization can erode these parts, MPs might appear in the keeping water or the fish body, which may represent a background load and possibly influence the results of microplastic-related toxicological tests. To take representative water samples from systems, two in-situ filtration techniques, a newly developed peristaltic pump-, and a jet pump-driven method were applied. The collected MP particles were analyzed with a Fourier-transform infrared microscope (detection limit 50 μm), and their possible origin was also investigated. The newly developed technique was more sufficient for sampling as it had a higher MPs recovery, especially in the smaller size range. Polyester, polyethylene and polypropylene were the most frequently detected polymers in the examined fish housing systems, the highest detected concentration was 0.31±0.12 particles/liter (0.22±0.16 μg/liter). These values are negligible compared to the literature data reporting enormously high applied MPs concentrations (104 - 2.21 × 108 particles/liter) during toxicology tests. The results also show that some detected MPs did not originate from the systems, their origin was presumed to be external.
Collapse
Affiliation(s)
- Bence Prikler
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary; Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Gábor Bordós
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Adrienn Micsinai
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | | | - Zoltán Palotai
- Eurofins Analytical Services Hungary Ltd., Budapest 1045, Hungary
| | - Edit Kaszab
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary.
| | - Sándor Szoboszlay
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| |
Collapse
|
12
|
Ju T, Zhang X, Jin D, Ji X, Wu P. A review of microplastics on anammox: Influences and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121801. [PMID: 39013314 DOI: 10.1016/j.jenvman.2024.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Microplastics (MPs) are prevalent in diverse environmental settings, posing a threat to plants and animals in the water and soil and even human health, and eventually converged in wastewater treatment plants (WWTPs), threatening the stable operation of anaerobic ammonium oxidation (anammox). Consequently, a comprehensive summary of their impacts on anammox and the underlying mechanisms must be provided. This article reviews the sources and removal efficiency of MPs in WWTPs, as well as the influencing factors and mechanisms on anammox systems. Numerous studies have demonstrated that MPs in the environment can enter WWTPs via domestic wastewater, rainwater, and industrial wastewater discharges. More than 90% of these MPs are found to accumulate in the sludge following their passage through the treatment units of the WWTPs, affecting the characteristics of the sludge and the efficiency of the microorganisms treating the wastewater. The key parameters of MPs, encompassing concentration, particle size, and type, exert a notable influence on the nitrogen removal efficiency, physicochemical characteristics of sludge, and microbial community structure in anammox systems. It is noteworthy that extracellular polymer secretion (EPS) and reactive oxygen stress (ROS) are important impact mechanisms by which MPs exposure affects anammox systems. In addition, the influence of MPs exposure on the microbial community structure of anammox cells represents a crucial mechanism that demands attention. Future research endeavors will delve into additional crucial parameters of MPs, such as shape and aging, to investigate their effects and mechanisms on anammox. Furthermore, the effective mitigation strategies will also be developed. The paper provides a fresh insight to reveal the influences of MPs exposure on the anammox process and its influence mechanisms, and lays the groundwork for further exploration into the influence of MPs on anammox and potential mitigation strategies.
Collapse
Affiliation(s)
- Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
13
|
Giarratano E, Trovant B, Hernández-Moresino RD. Asian clam Corbicula fluminea as potential biomonitor of microplastics and metal(oid)s in a Patagonian River. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106548. [PMID: 38733740 DOI: 10.1016/j.marenvres.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
This study summarizes the concentration in dry weight (dw) of several metal(oid)s (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn), as well as the abundance and characteristics of microplastics (MP) in wet weight (ww) of the soft tissues of clam Corbicula fluminea from Chubut River (Patagonia, Argentina). The contents of essential elements were in the following decreasing order: Zn > Mn > Cu > Ni; meanwhile, non-essential elements Cd, Cr and Pb were below the detection limit (<0.5 μg/g dw). A high mean concentration of As (6.1 ± 0.3 μg/g dw) was found, surpassing the maximum allowable limit established by the Argentine Food Code for bivalve molluscs. The number of MP ranged from 0.07 to 1.27 items/ind. and from 0.2 to 2.9 items/g ww. Fibers were the most common shape, mainly transparent. The size of MP ranged from 42 to 1917 μm, accounting for 62 % of MP between 50 and 450 μm. The dominant polymer was PET based on the results of Raman spectroscopy. Based on the widespread distribution of MP in the environment and the wide range of effects on organisms, it is necessary to develop long-term monitoring programs for MP contamination in different environmental matrices. Understanding the bioaccumulation of MP in bivalves is crucial to assess the potential risk to human health through consumption and to the ecosystem. We propose that the widespread Asian clam could serve as a useful biomonitor for MP and As pollution in freshwater and estuarine environments such as the Chubut River.
Collapse
Affiliation(s)
- Erica Giarratano
- Centro para el estudio de Sistemas Marinos (CESIMAR - CONICET), Boulevard Brown 2915, U9120ACP Puerto Madryn, Chubut, Argentina.
| | - Berenice Trovant
- Instituto de Diversidad y Evolución Austral (IDEAus - CONICET), Boulevard Brown 2915, U9120ACP Puerto Madryn, Chubut, Argentina.
| | - Rodrigo D Hernández-Moresino
- Centro para el estudio de Sistemas Marinos (CESIMAR - CONICET), Boulevard Brown 2915, U9120ACP Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
14
|
Tong D, Yu Y, Lu L, Zhou W, Yu Y, Zhang X, Tian D, Liu G, Shi W. Microplastics weaken the exoskeletal mechanical properties of Pacific whiteleg shrimp Litopenaeus vannamei. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133771. [PMID: 38364581 DOI: 10.1016/j.jhazmat.2024.133771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The ubiquitous presence of microplastics (MPs) in aquatic environments poses a significant threat to crustaceans. Although exoskeleton quality is critical for crustacean survival, the impact of MPs on crustacean exoskeletons remains elusive. Our study represents a pioneering effort to characterize the effects of MPs exposure on crustacean exoskeletons. In this study, the mechanical properties of whiteleg shrimp Litopenaeus vannamei exoskeletons were analyzed after exposure to environmentally realistic levels of MPs. Nanoindentation data demonstrated that MPs exposure significantly increased the hardness and modulus of both the carapace and abdominal segments of L. vannamei. Moreover, fractures and embedded MPs were detected on the exoskeleton surface using SEM-EDS analysis. Further analysis demonstrated that the degree of chitin acetylation (DA) in the shrimp exoskeleton, as indicated by FTIR peaks, was reduced by MPs exposure. In addition, exposure to MPs significantly inhibited the muscle Ca2+-ATPase activity and hemolymph calcium levels. Transcriptome and metabolome analyses revealed that the expression levels of genes encoding key enzymes and metabolites in the chitin biosynthetic pathway were significantly affected by MPs exposure. In conclusion, MPs at environmentally relevant concentrations may affect the exoskeletal mechanical properties of L. vannamei through a comprehensive mechanism involving the disruption of the crystalline structure of chitin, assimilation into the exoskeleton, and dysregulation of exoskeleton biosynthesis-related pathways.
Collapse
Affiliation(s)
- Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
15
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. CHEMOSPHERE 2024; 353:141557. [PMID: 38417495 DOI: 10.1016/j.chemosphere.2024.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Microplastics (MPs) are a serious threat in freshwater environments. The ecological risk and abundance level of MPs in abiotic and biotic compartments of the Nile River haven't been systematically reported. Thus, these issues were highlighted in the present study during different seasons of the sampling year. The results showed that MP concentrations in the river ranged from 2.24 ± 0.6 to 3.76 ± 1.1 particles/L, 298 ± 63 to 520 ± 80 particles/kg dry weight, and 0.081 ± 0.051 to 4.95 ± 2.6 particles/individual in surface water, sediment, and different species of aquatic insects, respectively. All the extracted MPs are colored blue, red, and black. Fiber-shaped polyesters (<500-1500 μm) were the most common MPs in all the river compartments. MPs' dominance was observed during the summer in comparison with that in the other seasons. Environmental risk indicators indicate the high ecological risk of MPs, which are widely distributed in the Nile River. In conclusion, MP consumption by aquatic insects may not only be related to levels of environmental contamination, since other variables, such as taxon size, weight, and particular feeding behavior, may also be significant. Additionally, the presence of MPs in insects (at lower trophic levels) creates the potential for predation-based inter-trophic level transmission. Thus, higher trophic-level investigations of various feeding groups should be carried out to identify any possible harm that MPs cause to various aquatic organisms.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| |
Collapse
|
16
|
Theobald B, Risani R, Donaldson L, Bridson JH, Kingsbury JM, Pantos O, Weaver L, Lear G, Pochon X, Zaiko A, Smith DA, Anderson R, Davy B, Davy S, Doake F, Masterton H, Audrezet F, Maday SDM, Wallbank JA, Barbier M, Greene AF, Parker K, Harris J, Northcott GL, Abbel R. An investigation into the stability and degradation of plastics in aquatic environments using a large-scale field-deployment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170301. [PMID: 38272094 DOI: 10.1016/j.scitotenv.2024.170301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.
Collapse
Affiliation(s)
| | | | | | - James H Bridson
- Scion, Rotorua 3010, New Zealand; University of Canterbury, Christchurch 8140, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Gavin Lear
- University of Auckland, Auckland 1010, New Zealand
| | - Xavier Pochon
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | - Ben Davy
- Scion, Rotorua 3010, New Zealand
| | | | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - François Audrezet
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Santucci L, Fernández-Severini MD, Rimondino GN, Colombo CV, Prieto G, Forero-López AD, Carol ES. Assessment of meso- and microplastics distribution in coastal sediments and waters at the middle estuary of the Rio De La Plata, Argentina (SW Atlantic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170026. [PMID: 38218486 DOI: 10.1016/j.scitotenv.2024.170026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Estuarine coastal water and sediments collected from multiple locations within the middle Río de la Plata (RDLP) estuary were analyzed in order to identify the presence of microplastics (MPs, <5 mm) and mesoplastics (MePs, 5-25 mm) in one of the most significant estuaries in the Southwestern Atlantic. The present study represents one of the first researches to survey MPs and MePs contamination in key stations at RDLP estuary. Average concentrations of 14.17 ± 5.50 MPs/L and 10.00 MePs/L were detected in water samples, while 547.83 ± 620.06 MPs/kg (dry weight) and 74.23 ± 47.29 MePs/kg d.w. were recorded in sediments. The greatest abundances were observed in the more anthropized areas, near urban settlements. Fibers were the most conspicuous plastic items in water and sediments, followed by fragments. On the other hand, surface sediments, and 50 cm and 100 cm-depth sediments also presented MPs and MePs indicating they could serve as a stratigraphic indicator for recently formed sediments. The main polymer type identified were acrylic fibers, followed by polypropylene (PP) and polyethylene terephthalate (PET). Besides, SEM-EDX detected the presence of Si, Fe, Ti, Al and Cl onto the plastics' surface. These elements may serve as additives to enhance the plastics' properties, such as in the case of Ti, or they could originate from the environment, like biogenic Si or Fe, and Al possibly as a component of the suspended particles or sediments adhered to the micro or meso plastics. Finally, the results of the present study showed that MPs and MePs are commonly found in waters and also tend to be trapped in sediments of the RDLP estuary supporting the assertion that these areas play a substantial role in influencing the transport, dispersion, and buildup of MPs in estuarine regions.
Collapse
Affiliation(s)
- L Santucci
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina.
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Bahía Blanca, Argentina (IFISUR), Universidad Nacional del Sur, CONICET, Bahía Blanca, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - E S Carol
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Chen R, Zhao X, Wu X, Wang J, Wang X, Liang W. Research progress on occurrence characteristics and source analysis of microfibers in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115834. [PMID: 38061148 DOI: 10.1016/j.marpolbul.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Synthetic microfiber pollution is a growing concern in the marine environment. However, critical issues associated with microfiber origins in marine environments have not been resolved. Herein, the potential sources of marine microfibers are systematically reviewed. The obtained results indicate that surface runoffs are primary contributors that transport land-based microfibers to oceans, and the breakdown of larger fiber plastic waste due to weathering processes is also a notable secondary source of marine microfibers. Additionally, there are three main approaches for marine microplastic source apportionment, namely, anthropogenic source classification, statistical analysis, and numerical simulations based on the Lagrangian particle tracking method. These methods establish the connections between characteristics, transport pathways and sources of microplastics, which provides new insights to further conduct microfiber source apportionment. This study helps to better understand sources analysis and transport pathways of microfibers into oceans and presents a scientific basis to further control microfiber pollution in marine environments.
Collapse
Affiliation(s)
- Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China.
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| |
Collapse
|
19
|
Tan Y, Dai J, Xiao S, Tang Z, Zhang J, Wu S, Wu X, Deng Y. Occurrence of microplastic pollution in rivers globally: Driving factors of distribution and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:165979. [PMID: 37543313 DOI: 10.1016/j.scitotenv.2023.165979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Microplastics, as global emerging pollutants, have received significant attention worldwide due to their ubiquitous presence in the rivers. However, there is still a lack of clarity on the occurrence, driving factors, and ecological risks of microplastics in rivers worldwide. In this study, a global microplastic dataset based on 862 water samples and 445 sediment samples obtained from 63 articles was constructed, which revealed the temporal and spatial distribution of abundance and morphological characteristics of microplastics in rivers across the globe. In global rivers, the abundance of MPs in both water and sediment spans across 10 and 4 orders of magnitude, respectively. The MP comprehensive diversity index based on the physical morphological characteristics of MPs indicated a significant positive correlation between the pollution sources of MPs in different environmental media. Based on the data was aligned to the full-scale MPs, a novel framework was provided to evaluate the ecological risk of MPs and the interaction effects between the influencing factors driving the distribution characteristics of MPs in rivers around the world. The results obtained demonstrated a wide variation in the key driving factors affecting the distribution of microplastics in different environmental media (water and sediment) in rivers globally. The diversity indices of the morphological characteristics of MPs in densely populated areas of lower-middle income countries in Asia were significantly higher, implying that the sources of microplastics in these regions are more complex and extensive. More than half of the rivers are exposed to potential ecological risks of MPs; however, microplastics may pose only immediate risks to aquatic species in Burigang River, Bangladesh. This can provide valuable insights for formulating more effective scientific strategies for the management of MP pollution in rivers.
Collapse
Affiliation(s)
- Yanping Tan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangyu Dai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Shuwen Xiao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhiqiang Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shiqiang Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Xiufeng Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yu Deng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China.
| |
Collapse
|
20
|
Boopathi S, Haridevamuthu B, Mendonca E, Gandhi A, Priya PS, Alkahtani S, Al-Johani NS, Arokiyaraj S, Guru A, Arockiaraj J, Malafaia G. Combined effects of a high-fat diet and polyethylene microplastic exposure induce impaired lipid metabolism and locomotor behavior in larvae and adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165988. [PMID: 37549705 DOI: 10.1016/j.scitotenv.2023.165988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Microplastics (MP), tiny plastic particles, can be ingested by fish through their habitat or contaminated food sources. When combined with a high-fat diet (HFD), MP exposure may lead to increased MP accumulation in fish and negative impacts on their health. However, the underlying mechanisms of how MP and HFD interact to promote fat accumulation in fish remain poorly understood. In this study, we aimed to evaluate the combined effect of HFD and polyethylene MP (PE-MP) in the zebrafish model (Danio rerio) and decipher its molecular mechanisms. Adult zebrafish exposed to the combined HFD and PE-MP showed elevated lipid accumulation, total cholesterol, triglycerides, and abnormal swimming behavior compared to HFD-fed fish. Histological and gene expression analysis revealed severe hepatic inflammation and injury, resembling nonalcoholic fatty liver disease (NAFLD) in the HFD + PE-MP exposed zebrafish. Moreover, HFD and PE-MP exposure upregulated genes related to lipogenesis (SREBP1, FAS, and C/EBPα) and inflammation (tnfα, il1β, and il-6) in the liver. These findings underscore the interactive effect of environmental pollutants and fish diet, emphasizing the importance of improving fish culture practices to safeguard fish health and human consumers from microplastic contamination through the food chain. This research sheds light on the complex interactions between microplastics and diet, providing valuable insights into the potential risks of microplastic pollution in aquatic ecosystems and the implications for human health. Understanding the underlying molecular mechanisms will contribute to international research efforts to mitigate the adverse effects of microplastics on both environmental and public health.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Edrea Mendonca
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Akash Gandhi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S Al-Johani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
21
|
Wu X, Zhang X, Chen X, Ye A, Cao J, Hu X, Zhou W. The effects of polylactic acid bioplastic exposure on midgut microbiota and metabolite profiles in silkworm (Bombyx mori): An integrated multi-omics analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122210. [PMID: 37454715 DOI: 10.1016/j.envpol.2023.122210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Polylactic acid (PLA) is a highly common biodegradable plastic and a potential threat to health and the environment. However, limited data are available on the effects of PLA exposure in the silkworm (Bombyx mori), a model organism used in toxicity studies. In this study, silkworms with or without PLA exposure (P1: 1 mg/L, P5: 5 mg/L, P25: 25 mg/L, and P0: 0 mg/L) for the entire 5th instar period were used to investigate the impact of PLA exposure on midgut morphology, larvae growth, and survival. Mitochondrial damage was observed in the P5 and P25 groups. The weights of the P25 posterior silk gland (5th day in the 5th instar), mature larvae and pupae were all significantly lower than those of the controls (P < 0.05). Dead worm cocoon rates and larva-pupa to 5th instar larvae ratios showed a positive and negative dose-dependent manner with respect to PLA concentrations, respectively. Additionally, reactive oxygen species levels and superoxide dismutase activity of the P25 midgut were significantly higher and lower when compared with controls, respectively (P < 0.05). The molecular mechanisms underlying the effects of PLA and associated physiological responses were also investigated. In the midgut metabolome, 127 significantly different metabolites (variable importance projection >1 and P < 0.05) were identified between the P0 and P25 groups and were mainly enriched for amino acid metabolism and energy supply pathways. The 16 S rDNA data showed that PLA altered microbial richness and structural composition. Microbiota, classified into 34 genera and 63 species, were significantly altered after 25 mg/L PLA exposure (P < 0.05). Spearman's correlation results showed that Bifidobacterium catenulatum and Schaalia odontolytica played potentially vital roles during exposure, as they demonstrated stronger correlations with the significantly different metabolites than other bacterial species. In sum, PLA induced toxic effects on silkworms, especially on energy- and protein-relevant metabolism, but at high concentrations (25 mg/L). This prospective mechanistic investigation on the effects of PLA on larval toxicity provides novel insight regarding the ecological risks of biodegradable plastics in the environment.
Collapse
Affiliation(s)
- Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
22
|
Hassan YAM, Badrey AEA, Osman AGM, Mahdy A. Occurrence and distribution of meso- and macroplastics in the water, sediment, and fauna of the Nile River, Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1130. [PMID: 37653356 PMCID: PMC10471642 DOI: 10.1007/s10661-023-11696-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
The present study described the most recent findings concerning the abundance and distribution of plastic in water, sediment, and fauna in the Nile River of Upper Egypt as an interesting research point. The findings revealed that plastics were abundant in the water, sediments, fish, and crayfish throughout the sites. The Nagaa Hammadi site has the highest abundance of meso- and macroplastics in its water and sediment. African catfish had the highest abundance of meso- and macroplastics compared to the other species, while Nile tilapia had no meso- or macroplastics in its alimentary canal or gills in all sites. The Edfu site has the highest abundance of mesoplastics in the alimentary canals of African catfish, while the Nagaa Hammadi site has the highest abundance of mesoplastics in the gills, and macroplastics appeared only in the alimentary canal of African catfish from the El-wasta site. Only mesoplastics were found in the crayfish's alimentary canal, with the Nagaa Hammadi site having the highest abundance. No macroplastics were detected in the crayfish's gills or alimentary canal. Additionally, this work lets us understand how plastics behave in freshwater environments, and it is a step toward decision-makers taking appropriate measures to reduce their risk.
Collapse
Affiliation(s)
- Yasmine A M Hassan
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt.
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Aldoushy Mahdy
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| |
Collapse
|
23
|
Gabriel AD, Amparado RF, Lubguban AA, Bacosa HP. Riverine Microplastic Pollution: Insights from Cagayan de Oro River, Philippines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6132. [PMID: 37372718 DOI: 10.3390/ijerph20126132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Rivers are vital water sources for humans and homes for aquatic organisms. Conversely, they are well known as the route of plastics into the ocean. Despite being the world's number one emitter of riverine plastics into the ocean, microplastics (MPs), or plastic particles less than 5 mm, in the Philippines' rivers are relatively unexplored. Water samples were collected from six sampling stations along the river channel of the Cagayan de Oro River, one of the largest rivers in Northern Mindanao, Philippines. The extracted microplastics' abundance, distribution, and characteristics were analyzed using a stereomicroscope and Fourier transform infrared spectroscopy (FTIR). The results showed a mean concentration of 300 items/m3 of MPs dominated by blue-colored (59%), fiber (63%), 0.3-0.5 mm (44%), and polyacetylene (48%) particles. The highest concentration of microplastics was recorded near the mouth of the river, and the lowest was in the middle area. The findings indicated a significant difference in MP concentration at the sampling stations. This study is the first assessment of microplastic in a river in Mindanao. The results of this study will aid in formulating mitigation strategies for reducing riverine plastic emissions.
Collapse
Affiliation(s)
- Aiza D Gabriel
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| | - Ruben F Amparado
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
- Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| | - Arnold A Lubguban
- Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
- Environmental Pollution and Innovation Laboratory, Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| | - Hernando P Bacosa
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
- Environmental Pollution and Innovation Laboratory, Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| |
Collapse
|
24
|
Qiu Y, Zhou S, Zhang C, Qin W, Lv C. A framework for systematic microplastic ecological risk assessment at a national scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121631. [PMID: 37058862 DOI: 10.1016/j.envpol.2023.121631] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Microplastic pollution is widespread in terrestrial and aquatic environments; however, a systematic assessment of the ecological risks of microplastics is lacking. This study collected research studies on microplastics in soil, aquatic and sediment environments, and screened 128 articles including 3459 sites to assess the ecological risks posed by microplastics in China following a literature quality assessment. We developed a systematic ecological risk assessment framework for microplastics in terms of spatial characterization, biotoxicity and anthropogenic impacts. The results of the pollution load index indicated that 74% and 47% of the soil and aquatic environments studied, respectively, faced a medium or higher level of pollution. Comparing predicted no effect concentrations (PNEC) and measured environmental concentrations (MECs), revealed that soil (97.70%) and aquatic (50.77%) environmental studies were at serious ecological risk from microplastics. The results of the pressure-state-response model showed that the microplastic pollution in Pearl River Delta was in a high-risk state. In addition, we found that ultraviolet radiation and rainfall exacerbate soil microplastic pollution, and higher river runoff may carry large amounts of microplastic from the source. The framework developed in this study will help assess the ecological risks of microplastics in the region to promote the mitigation of plastic pollution.
Collapse
Affiliation(s)
- Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Wendong Qin
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Chengxiang Lv
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| |
Collapse
|
25
|
Deng L, Xi H, Wan C, Fu L, Wang Y, Wu C. Is the petrochemical industry an overlooked critical source of environmental microplastics? JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131199. [PMID: 36933504 DOI: 10.1016/j.jhazmat.2023.131199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been verified to be harmful to organisms. The petrochemical industry is a possible contributor, for it is the primary plastic producer but is not focused on. In this background, MPs in the influent, effluent, activated sludge, and expatriate sludge of a typical petrochemical wastewater treatment plant (PWWTP) were identified by the laser infrared imaging spectrometer (LDIR). It revealed that the abundances of MPs in the influent and effluent were as high as 10310 and 1280 items/L with a removal efficiency of 87.6%. The removed MPs accumulated in the sludge, and the MP abundances in activated and expatriate sludge reached 4328 and 10767 items/g, respectively. It is estimated that 1440,000 billion MPs might be released into the environment by the petrochemical industry in 2021 globally. For the specific PWWTP, 25 types of MPs were identified, among which Polypropylene (PP), Polyethylene (PE), and Silicone resin were dominant. All of the detected MPs were smaller than 350 µm, and those smaller than 100 µm prevailed. As for the shape, the fragment was dominant. The study confirmed the critical status of the petrochemical industry in releasing MPs for the first time.
Collapse
Affiliation(s)
- Liyan Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
26
|
Berlino M, Sarà G, Mangano MC. Functional Trait-Based Evidence of Microplastic Effects on Aquatic Species. BIOLOGY 2023; 12:811. [PMID: 37372096 PMCID: PMC10294819 DOI: 10.3390/biology12060811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Microplastics represent an ever-increasing threat to aquatic organisms. We merged data from two global scale meta-analyses investigating the effect of microplastics on benthic organisms' and fishes' functional traits. Results were compared, allowing differences related to vertebrate and invertebrate habitat, life stage, trophic level, and experimental design to be explored. Functional traits of aquatic organisms were negatively affected. Metabolism, growth, and reproduction of benthic organisms were impacted, and fish behaviour was significantly affected. Responses differed by trophic level, suggesting negative effects on trophic interactions and energy transfer through the trophic web. The experimental design was found to have the most significant impact on results. As microplastics impact an organism's performance, this causes indirect repercussions further up the ecological hierarchy on the ecosystem's stability and functioning, and its associated goods and services are at risk. Standardized methods to generate salient targets and indicators are urgently needed to better inform policy makers and guide mitigation plans.
Collapse
Affiliation(s)
- M. Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - G. Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - M. C. Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
| |
Collapse
|
27
|
Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. CHEMOSPHERE 2023; 325:138367. [PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Hafiz Muhammad Umer Aslam
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
28
|
Polt L, Motyl L, Fischer EK. Abundance and Distribution of Microplastics in Invertebrate and Fish Species and Sediment Samples along the German Wadden Sea Coastline. Animals (Basel) 2023; 13:ani13101698. [PMID: 37238129 DOI: 10.3390/ani13101698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Monitoring strategies are becoming increasingly important as microplastic contamination increases. To find potentially suitable organisms and sites for biota monitoring in the German Wadden Sea, we collected invertebrates (n = 1585), fish (n = 310), and sediment cores (n = 12) at 10 sites along the coast of Lower Saxony between 2018 and 2020. For sample processing of biota, the soft tissue was digested and the sediment samples additionally underwent a subsequent density separation step. Microplastic particles were identified using Nile red and fluorescence microscopy, followed by polymer composition analysis of a subset of particles via µRaman spectroscopy. All investigated species, sediment cores, and sites contained microplastics, predominantly in the morphology class of fragments. Microplastics were found in 92% of Arenicola marina, 94% of Littorina littorea, 85% of Mytilus edulis, and 79% of Platichthys flesus, ranging from 0 to 248.1 items/g. Sediment core samples contained MPs ranging from 0 to 8128 part/kg dry weight of sediment. In total, eight polymers were identified, predominantly consisting of polyethylene, polyvinylchloride, and polyethylene terephthalate. Considering the sampling, processing, and results, the species Mytilus edulis and Platichthys flesus are suitable species for future microplastic monitoring in biota.
Collapse
Affiliation(s)
- Laura Polt
- Microplastic Research at CEN (MRC, Center for Earth System Research and Sustainability), Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| | - Larissa Motyl
- Microplastic Research at CEN (MRC, Center for Earth System Research and Sustainability), Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| | - Elke Kerstin Fischer
- Microplastic Research at CEN (MRC, Center for Earth System Research and Sustainability), Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| |
Collapse
|
29
|
Shahsavaripour M, Abbasi S, Mirzaee M, Amiri H. Human occupational exposure to microplastics: A cross-sectional study in a plastic products manufacturing plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163576. [PMID: 37086995 DOI: 10.1016/j.scitotenv.2023.163576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Microplastics are ubiquitous in the natural environment, and their potential impact on health is a key issue of concern. Investigating exposure routes in humans and other living organisms is among the major challenges of microplastics. This study aims to examine the exposure level of plastic factory staff to microplastic particles before and after work shifts through body receptors (hand and facial skin, saliva and hair) in Sirjan, southeast of Iran. Moreover, the effect of face masks, gloves, cosmetics (e.g: face powder cream, lipstick and eye makeup products) and appearance on the exposure level is investigated. In total, 19 individuals are selected during six working days. Then, the collected samples are transferred to the laboratory for filtration, extraction, identification and counting of microplastic particles. Moreover, 4802 microplastic particles (100-5000 μm in size) in strand, polyhedral and spherical shapes and color spectra of white/transparent, black, blue/green, red and purple are observed. The nature of most of the observed samples is fiber with a size ≥1000 μm. Analyzing the selected samples using micro-Raman spectroscopy indicate polyester and nylon are the main identified fibers. Hair and saliva samples have the highest and lowest number of microplastics, respectively. Using gloves and sunscreen among all the participants, wearing a scarf and hair size among women and having a beard and mustache among men could have an effective role in the exposure level to microplastics. Results of this study could reveal the exposure route to microplastic particles in the human body and highlight the importance of providing higher protection to reduce exposure.
Collapse
Affiliation(s)
- Maryam Shahsavaripour
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz 714545, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
30
|
Dalvand M, Hamidian AH. Occurrence and distribution of microplastics in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160740. [PMID: 36496018 DOI: 10.1016/j.scitotenv.2022.160740] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Presence of microplastic particles has been reported in all over the world, even in remote areas with no human activities. Wetlands are important transitional areas between terrestrial and aquatic systems. However, microplastic pollution in wetlands is less studied than other aquatic ecosystems. In this review, documented researches about microplastic occurrence and distribution in different components of wetland systems (except constructed wetlands) were investigated. In this regard, all available articles from different science databases with the keywords microplastic, wetland and lagoon in title were examined and results were proposed by text, table and diagram, after standardization of data express units. Based on results, wetland ecosystems are prone to microplastic pollution. Based on particle properties, PE/PP and fiber/fragment were the most dominant reported chemical composition and particle shapes, respectively.
Collapse
Affiliation(s)
- Mahdieh Dalvand
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj 31587-77878, Iran.
| |
Collapse
|
31
|
Qaiser N, Sidra S, Javid A, Iqbal A, Amjad M, Azmat H, Arooj F, Farooq K, Nimra A, Ali Z. Microplastics abundance in abiotic and biotic components along aquatic food chain in two freshwater ecosystems of Pakistan. CHEMOSPHERE 2023; 313:137177. [PMID: 36372336 DOI: 10.1016/j.chemosphere.2022.137177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/07/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Contaminants of global concern, microplastics (MPs) have been lately reported to be found almost everywhere. Yet there is limited evidence to suggest if these tiny particles can bioaccumulate and biomagnify along the food chain. The current study was conducted to quantify MPs load in two fresh water bodies i.e. River Ravi (Pakistan) and a fish rearing pond fed with ground water to trace MPs along the food chain including biotic and abiotic components. Samples were taken from air, water, sediments, planktons, fish and avian specimen from both water bodies. Higher MPs were found in all samples taken from river Ravi ranging from 3.0 ± 1.58 MPs items in water to 15.20 ± 3.35 MP items in air as compared to 2.8 ± 1.79 MPs in water to 11.20 ± 1.89 air-borne MP items in fish rearing ponds respectively. The mean value of MP items in the GIT of all species was higher (5.05 ± 2.25) as compared to the respiratory tract (1.57 ± 1.3) suggesting ingestion as main mode of exposure. However, this mode of exposure needs to be further investigated along with other exposure routes. Presence of MPs at all trophic levels under investigation indicates some degree of bioaccumulation of these pollutants in the ecosystems.
Collapse
Affiliation(s)
- Namra Qaiser
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, 54600, Lahore, Pakistan.
| | - Safdar Sidra
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, 54600, Lahore, Pakistan.
| | - Arshad Javid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, 54600, Lahore, Pakistan.
| | - Asia Iqbal
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, 54600, Lahore, Pakistan.
| | - Maria Amjad
- Department of Pharmacy, University of Lahore, Pakistan.
| | - Hamda Azmat
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, 54600, Lahore, Pakistan.
| | - Fariha Arooj
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54600, Lahore, Pakistan.
| | - Komal Farooq
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, 54600, Lahore, Pakistan.
| | - Afzal Nimra
- Faculty of Sciences, University of Central Punjab, Pakistan.
| | - Zulfiqar Ali
- Environmental Health and Wildlife, Institute of Zoology, University of the Punjab, 54600, Lahore, Pakistan.
| |
Collapse
|
32
|
Nguyen MK, Hadi M, Lin C, Nguyen HL, Thai VB, Hoang HG, Vo DVN, Tran HT. Microplastics in sewage sludge: Distribution, toxicity, identification methods, and engineered technologies. CHEMOSPHERE 2022; 308:136455. [PMID: 36116626 DOI: 10.1016/j.chemosphere.2022.136455] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution is becoming a global challenge due to its long-term accumulation in the environment, causing adverse effects on human health and the ecosystem. Sludge discharged from wastewater treatment plants (WWTPs) plays a critical role as a carrier and primary source of environmental microplastic contamination. A significantly average microplastic variation between 1000 and 301,400 particles kg-1 has been reported in the sludge samples. In recent years, advanced technologies have been successfully applied to address this issue, including adsorption, advanced oxidation processes (AOPs), and membrane bioreactors (MBRs). Adsorption technologies are essential to utilizing novel adsorbents (e.g., biochar, graphene, zeolites) for effectively removing MPs. Especially, the removal efficiency of polymer microspheres from an aqueous solution by Mg/Zn modified magnetic biochars (Mg/Zn-MBC) was obtained at more than 95%. Also, advanced oxidation processes (AOPs) are widely applied to degrade microplastic contaminants, in which photocatalytic by semiconductors (e.g., TiO2 and ZnO) is a highly suitable approach to promote the degradation reactions owing to strongly hydroxyl radicals (OH*). Biological degradation-aided microorganisms (e.g., bacterial and fungal strains) have been reported to be suitable for removing microplastics. Yet, it was affected by biotic and abiotic factors of the environmental conditions (e.g., pH, light, temperature, moisture, bio-surfactants, microorganisms, enzymes) as well as their polymer characteristics, i.e., molecular weight, functional groups, and crystallinity. Notably, membrane bioreactors (MBRs) showed the highest efficiency in removing up to 99% microplastic particles and minimizing their contamination in sewage sludge. Further, MBRs illustrate the suitability for treating high-strength compounds, e.g., polymer debris and microplastic fibers from complex industrial wastewater. Finally, this study provided a comprehensive understanding of potential adverse risks, transportation pathways, and removal mechanisms of microplastic, which full-filled the knowledge gaps in this field.
Collapse
Affiliation(s)
- Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Ho Chi Minh City, 700000, Viet Nam
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Vu-Binh Thai
- Institute for Environment and Resource, Vietnam National University Ho Chi Minh City, Ho Chi Minh, 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
33
|
Zhang T, Liu X, Gu X, Li D, Yin J, Jiang Q, Zhang W. Changes in life-history traits, antioxidant defense, energy metabolism and molecular outcomes in the cladoceran Daphnia pulex after exposure to polystyrene microplastics. CHEMOSPHERE 2022; 308:136066. [PMID: 35987273 DOI: 10.1016/j.chemosphere.2022.136066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitous plastic pollution is a threat to the organisms' survival and ecosystem functions, especially in aquatic environments. Although there is increasing concern about the toxicity of microplastics, knowledge about the effects of microplastics of diverse sizes and adverse impacts on freshwater organisms is still limited. In the present study, the alteration in life-history traits, antioxidant defense and energy metabolism of the model freshwater zooplankton Daphnia pulex were assessed after chronic exposure to gradient concentrations (0.5, 1, 2 and 4 mg/L) of 500-nm polystyrene microplastics (PS-MPs). Changes in protein abundance were analyzed using proteomics after exposure to 1 mg/L of PS-MPs for 14 days. The results showed that ingested PS-MPs accumulated in the digestive tract of D. pulex. 2 and 4 mg/L of PS-MPs inhibited the survival function and 4 mg/L of PS-MPs reduced the body length of D. pulex after 14 or 21 days of exposure. The exposure did not decrease the fecundity of D. pulex. After 14 days of exposure, PS-MPs changed the antioxidant capacity in a dose-dependent way and all concentrations of PS-MPs induced lipid oxidative damage. Exposure to 500-nm PS-MPs for 14 days decreased glucose and fructose contents and disturbed the lipid transport and utilization in D. pulex. Meanwhile, PS-MPs activated DNA repair and transcription regulation but inhibited lipid metabolism and response to unfolded or misfolded proteins. These results indicated that chronic exposure to 500-nm PS-MPs negatively affected D. pulex and showed similar toxic mechanisms to smaller nano-sized microplastics. Exposure to 500-nm PS-MPs resulted in restricted resources such as inhibited antioxidant capacity or energy metabolisms and D. pulex showed a potential trade-off among life-history traits to maintain fecundity at the cost of self-maintenance. The present study offers perspectives for understanding the differences in ecological effects caused by microplastics of different sizes.
Collapse
Affiliation(s)
- Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Xiaowei Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Daming Li
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiawen Yin
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China.
| | - Wenyi Zhang
- Institute of Animal Genetic Resource, Nanjing Normal University, 1 Wenyuan Street, Nanjing, 210046, China.
| |
Collapse
|
34
|
Liu Y, Hao R, Shi X, Zhang S, Sun B, Zhao S, Huotari J. Application of a microplastic trap to the determination of the factors controlling the lakebed deposition of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156883. [PMID: 35752243 DOI: 10.1016/j.scitotenv.2022.156883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) in aquatic environments are hard to degrade, easy to transport, and potentially hazardous to biota. Previous studies of MPs in lakes have shown that their deposition is a significant process controlling both their lateral dispersal from a source, and their concentration within the water column. However, the lakebed depositional rates of MPs have predominantly been determined using laboratory experiments and/or through model simulations that may not fully reflect field conditions. In this paper, lacustrine depositional rates in Lake Ulansuhai were documented using an MP trap that allowed for the assessment and quantification of the depositional rates of MPs of differing size, density, and shape at three sampling sites over five different time periods. The results showed that the downward flux for all types of MPs near the lakebed was correlated with wind speed. Higher wind speeds led to the resuspension of greater amounts of MPs in the lakebed sediments and the transport of greater amounts of MPs from the lake inlet to the lake interior and outlet along the hydrologic flow directions. Consequently, higher wind speeds increased the abundance of MPs at the sediment-water interface and intensified the vertical mixing of MPs in the lake water, resulting in a higher depositional flux of MPs. Particles of differing size, shape, and density exhibited different depositional rates. In general, fragmentary, larger size, and higher density MPs were more likely to be deposited. Thus, size and shape have a strong effect on the migration and deposition of HDMPs in Lake Ulansuhai.
Collapse
Affiliation(s)
- Yu Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Ruonan Hao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Sheng Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Biao Sun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jussi Huotari
- Lammi Biological Station, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Lammi FI-16900, Finland
| |
Collapse
|
35
|
Mohammadi A, Dobaradaran S, Schmidt TC, Malakootian M, Spitz J. Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75134-75160. [PMID: 36127528 DOI: 10.1007/s11356-022-23085-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Migration of emerging contaminants (ECs) from pipes into water is a global concern due to potential human health effects. Nevertheless, a review of migration ECs from pipes into water distribution systems is presently lacking. This paper reviews, the reported occurrence migration of ECs from pipes into water distribution systems in the world. Furthermore, the results related to ECs migration from pipes into water distribution systems, their probable sources, and their hazards are discussed. The present manuscript considered the existing reports on migration of five main categories of ECs including microplastics (MPs), bisphenol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) from distribution network into tap water. A focus on tap water in published literature suggests that pipes type used had an important role on levels of ECs migration in water during transport and storage of water. For comparison, tap drinking water in contact with polymer pipes had the highest mean concentrations of reviewed contaminants. Polyvinyl chloride (PVC), polyamide (PA), polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were the most frequently detected types of microplastics (MPs) in tap water. Based on the risk assessment analysis of ECs, levels of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were above 1, indicating a potential non-carcinogenic health risk to consumers. Finally, there are still scientific gaps on occurrence and migration of ECs from pipes used in distribution systems, and this needs more in-depth studies to evaluate their exposure hazards on human health.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU) Universitätsstraße 5, 45141, Essen, Germany
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
36
|
Bai CL, Xu TT, Guo Y, Li HT. A rapid method for extracting microplastics from oily food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3529-3538. [PMID: 36018227 DOI: 10.1039/d2ay00792d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The increasing evidence of microplastic (MP) contamination influence on aquatic organisms has been extensively reported globally. However, the discussions of extracting MPs from oily food samples are limited, highlighting the pressing need for effective and standardized analytical methods to extract MPs from oily food. Previous methods, such as using acid, alkali or oxidizing solutions as digestion reagents, usually take a long time to digest oily food, increasing the possibility of procedural contamination of MPs in food over time. The objective of this study was to develop a rapid, efficient, economical and simple analytical method to extract MPs from oily food samples. This innovative protocol combines the use of 4 : 1 HNO3 : H2O2 as a digestion reagent to accelerate the digestion within 1 h at 50 °C and hexane as a washing solution to remove the oil adsorbed on the surface of MPs and membranes. Four common types of MPs, namely, polyethylene terephthalate, polyethylene, polystyrene and polypropylene of different sizes were added to oily flours to demonstrate this method. The mean recovery of MPs was 95% ± 2% (range: 93-98%), and no significant changes in color, particle size, surface area and spectrum features were found for all recovered polymers except for PS with minor changes in color and surface. The method was confirmed to be effective on rice, noodles, bean products and various meat samples. All in all, the present method can facilitate the observation and identification of characteristics of MPs, providing an innovative combination method for quantitative and qualitative analyses of MPs in oily food samples.
Collapse
Affiliation(s)
- Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Ting-Ting Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Huan-Ting Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
37
|
Ding J, Sun C, Li J, Shi H, Xu X, Ju P, Jiang F, Li F. Microplastics in global bivalve mollusks: A call for protocol standardization. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129490. [PMID: 35792432 DOI: 10.1016/j.jhazmat.2022.129490] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
A growing body of evidence shows that microplastic pollution is ubiquitous in bivalve mollusks globally and is of particular concern due to its potential impact on human health. However, non-standardized sampling, processing, and analytical techniques increased the difficulty of direct comparisons among existing studies. Based on 61 peer-reviewed papers, we summarized the current knowledge of microplastics in bivalve mollusks globally and provided an in-depth analysis of factors affecting the outcome of microplastic data, with the main focus on the effects of different species and methodologies. We found no significant differences in microplastic abundance among genera from the same family but significant differences among bivalve families, indicating habitats play an important role in microplastic ingestion by bivalve mollusks. This also provided foundational knowledge for using epifaunal and infaunal bivalves to monitor microplastic pollution in water and sediment, respectively. Recommendations for microplastic monitoring protocol in bivalve mollusks were proposed according to the results of this review, covering (i) a sample size of at least 50 bivalves in the study area, (ii) the use of 10 % KOH as the digestion solution, and (iii) the pore size of a filter membrane of < 5 µm. Acknowledging the need for a standard procedure, more efforts towards protocol standardization used in long-term and large-scale microplastic monitoring programs in bivalve mollusks are needed.
Collapse
Affiliation(s)
- Jinfeng Ding
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China; Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingxi Li
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Peng Ju
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Fenghua Jiang
- Key Laboratory of Marine Eco-environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
38
|
Pappoe C, Palm LMND, Denutsui D, Boateng CM, Danso-Abbeam H, Serfor-Armah Y. Occurrence of microplastics in gastrointestinal tract of fish from the Gulf of Guinea, Ghana. MARINE POLLUTION BULLETIN 2022; 182:113955. [PMID: 35878475 DOI: 10.1016/j.marpolbul.2022.113955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades, there has been a growing concern about microplastics pollution in global aquatic habitats and its potential impact on human health. This study was carried out to determine the presence of microplastics in fish of economic importance in Ghana. Microplastics were found to be abundant in all investigated samples, with 68 % of the fishes contaminated with microplastics and a total of 133 plastic items identified in the fish. The presence of fibers, black coloured particles, and microplastics in the size range of 0.5-1.0 mm was the most abundant in the samples examined. Three polymers specifically, polyethylene, polyvinyl acetate, and polyamide were identified in the study. The presence of microplastics in the fishes investigated may pose severe ecological and health concerns, and hence comprehensive policies targeted at preventing plastic pollution of Ghana's maritime environment is warranted.
Collapse
Affiliation(s)
| | - Linda Maud N-D Palm
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Dzifa Denutsui
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Charles Mario Boateng
- Department of Marine and Fisheries Sciences, University of Ghana, P. O. Box LG 99, Accra, Ghana
| | - Harriet Danso-Abbeam
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana.
| | - Yaw Serfor-Armah
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana
| |
Collapse
|
39
|
Tang Y, Han Y, Zhang W, Yu Y, Huang L, Zhou W, Shi W, Tian D, Liu G. Bisphenol A and microplastics weaken the antimicrobial ability of blood clams by disrupting humoral immune responses and suppressing hemocyte chemotactic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119497. [PMID: 35594997 DOI: 10.1016/j.envpol.2022.119497] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Robust antimicrobial capability is crucial for marine organisms survival in complex ocean environments. Although the detrimental impacts of emergent pollutants on cellular immune response of marine bivalve mollusks were increasingly documented, the effects of bisphenol A (BPA) and microplastics (MPs) on humoral immune response and hemocyte chemotactic activity remain unclear. Therefore, in this study, the toxicities of BPA and MPs, alone or in combination, to the antimicrobial ability, humoral immune response, and hemocyte chemotactic activity were investigated in the blood clam Tegillarca granosa. Our data demonstrated that exposure of blood clams to BPA, MPs, and BPA-MPs for 2 weeks lead to significant reductions in their survival rates upon pathogenic bacterial challenge, indicating evident impairment of antimicrobial ability. Compared to control, the plasma of pollutant-incubated blood clams exhibited significantly less antimicrobial activity against the growth of V. harveyi, suggesting significant reduction in humoral immune effectors including defensin, lysozyme (LZM), and lectin. Moreover, hemocytes migration across the polycarbonate membrane to the serum containing chamber was markedly arrested by 2-week exposure to BPA, MPs, and BPA-MPs, suggesting a hampered chemotactic activity. In addition, the intracellular contents of ROS and protein carbonyl in hemocytes were markedly induced whereas the expression levels of key genes from the MAPK and actin cytoskeleton regulation pathways were significantly suppressed upon exposure. In this study, it was also found that BPA-MP coexposure was significantly more toxic than single exposures. In summary, our findings revealed that exposure to the pollutants tested possibly impair the antimicrobial ability of blood clam through (1) reducing the inhibitory effect of plasma on bacterial growth, the contents of humoral immune effectors, and the chemotactic activity of hemocytes, (2) interrupting IL-17 activation of MAPK signal pathway, (3) inducing intracellular ROS, elevating protein carbonylation levels, and disrupting actin cytoskeleton regulation in hemocytes.
Collapse
Affiliation(s)
- Yu Tang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weixia Zhang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yihan Yu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lin Huang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
40
|
Xi B, Wang B, Chen M, Lee X, Zhang X, Wang S, Yu Z, Wu P. Environmental behaviors and degradation methods of microplastics in different environmental media. CHEMOSPHERE 2022; 299:134354. [PMID: 35306053 DOI: 10.1016/j.chemosphere.2022.134354] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Microplastics, as a group of emerging contaminants, are widely present in environmental media and have the potential to endanger the ecological environment and human health. Due to the inconsistencies and difficulties inherent in the analysis of microplastic particles, global monitoring data on the distribution of microplastics in the environment are still far from sufficient. The fate and migration of microplastics in the environment are also uncertain. Therefore, there have been increasing reviews on the distribution, biological effects, migration, and health risks of microplastics. However, reports focusing on the degradation of microplastics are still rare. Understanding and commanding the environmental behavior of microplastics are of great significance to explore the treatment of microplastic pollution. Although some preliminary studies on microplastics have been carried out, there is still an urgent need to conduct a comprehensive study on environmental behaviors and degradation methods of microplastics in different environmental media. This article summarizes the recent advances on microplastics, basically includes the distribution and ecological impact of microplastics in soil and water environments, then elaborates the migration behavior and influencing factors of microplastics, and focuses on the research progress of microplastics degradation methods. On this basis, the problems existing in the current research and the future development directions have been proposed. This review could provide a more systematic reference for the development and research of microplastics in the future.
Collapse
Affiliation(s)
- Binbin Xi
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Panfeng Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
41
|
Ly NH, Kim MK, Lee H, Lee C, Son SJ, Zoh KD, Vasseghian Y, Joo SW. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:865-888. [PMID: 35757049 PMCID: PMC9206222 DOI: 10.1007/s40097-022-00506-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 06/07/2023]
Abstract
Micro(nano)plastic (MNP) pollutants have not only impacted human health directly, but are also associated with numerous chemical contaminants that increase toxicity in the natural environment. Most recent research about increasing plastic pollutants in natural environments have focused on the toxic effects of MNPs in water, the atmosphere, and soil. The methodologies of MNP identification have been extensively developed for actual applications, but they still require further study, including on-site detection. This review article provides a comprehensive update on the facile detection of MNPs by Raman spectroscopy, which aims at early diagnosis of potential risks and human health impacts. In particular, Raman imaging and nanostructure-enhanced Raman scattering have emerged as effective analytical technologies for identifying MNPs in an environment. Here, the authors give an update on the latest advances in plasmonic nanostructured materials-assisted SERS substrates utilized for the detection of MNP particles present in environmental samples. Moreover, this work describes different plasmonic materials-including pure noble metal nanostructured materials and hybrid nanomaterials-that have been used to fabricate and develop SERS platforms to obtain the identifying MNP particles at low concentrations. Plasmonic nanostructure-enhanced materials consisting of pure noble metals and hybrid nanomaterials can significantly enhance the surface-enhanced Raman scattering (SERS) spectra signals of pollutant analytes due to their localized hot spots. This concise topical review also provides updates on recent developments and trends in MNP detection by means of SERS using a variety of unique materials, along with three-dimensional (3D) SERS substrates, nanopipettes, and microfluidic chips. A novel material-assisted spectral Raman technique and its effective application are also introduced for selective monitoring and trace detection of MNPs in indoor and outdoor environments. Graphical abstract
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120 Republic of Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyewon Lee
- Department of Chemical and Biological Engineering, Seokyeong University, Seoul, 02713 Republic of Korea
| | - Cheolmin Lee
- Department of Chemical and Biological Engineering, Seokyeong University, Seoul, 02713 Republic of Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120 Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 Republic of Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 Republic of Korea
| |
Collapse
|
42
|
F M Santana M, Kroon FJ, van Herwerden L, Vamvounis G, Motti CA. An assessment workflow to recover microplastics from complex biological matrices. MARINE POLLUTION BULLETIN 2022; 179:113676. [PMID: 35500374 DOI: 10.1016/j.marpolbul.2022.113676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
A criteria-guided workflow was applied to assess the effectiveness of microplastic separation methods on complex marine biological matrices. Efficacy of four methods (nitric acid, HNO3, and potassium hydroxide, KOH, digestions, and sodium chloride, NaCl, and potassium iodide, KI, density flotations) was evaluated on four taxa (hard coral, sponge, sea squirt, sea cucumber) using five microplastics (polyethylene, polystyrene, polyethylene terephthalate, PET, polyvinylchloride, rayon). Matrix clarification was only unacceptably low for KOH. PET discoloured regardless of reagent. Rayon threads unravelled into monofilaments after exposure to all reagents, with discolouration also occurring with HNO3. Recovery rates were overall high, except for dense microplastics treated with NaCl and only KI yielded high rayon recovery efficiency. All polymers were accurately assigned, with subtle spectral changes observed. These results demonstrate specific limitations to separation methods applied to different biological matrices and microplastics and highlight the need to assess their suitability to provide estimates of microplastic contamination.
Collapse
Affiliation(s)
- Marina F M Santana
- College of Science and Engineering, James Cook University (JCU), Townsville, Queensland 4811, Australia; Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia.
| | - Frederieke J Kroon
- Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Lynne van Herwerden
- College of Science and Engineering, James Cook University (JCU), Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University (JCU), Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
43
|
Abbasi S, Turner A. Sources, concentrations, distributions, fluxes and fate of microplastics in a hypersaline lake: Maharloo, south-west Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153721. [PMID: 35149068 DOI: 10.1016/j.scitotenv.2022.153721] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Hypersaline lakes support unique ecosystems and biogeochemistries but are often subject to anthropogenic pressures from pollution, water abstraction-diversion and climate change. Less understood, however, are the inputs, distributions and impacts of microplastics (MPs) in hypersaline environments. In this study, MPs are determined in water and sediment cores of Maharloo Lake, south-west Iran, and in the anthropogenically-impacted rivers that recharge the lake. MP concentrations in river water ranged from 0.05 MP L-1 in the headwaters to about 2 MP L-1 downstream of industrial effluents, with intermediate (but elevated) concentrations observed in the lake. The maximum surface concentration in lake sediment cores was about 860 MP kg-1, and concentrations displayed a progressive reduction with increasing depth down to 50 cm that are qualitatively consistent with temporal changes in plastic production. The size distribution of MPs was skewed towards the finest fraction (< 100 μm) and the most abundant polymer types were polyethylene terephthalate, polyethylene and nylon. Flux calculations using river water data and published atmospheric deposition data for the region reveal that the atmosphere is, by at least an order of magnitude, the more important source. MPs added to the lake appear to be maintained in suspension by high density water but are subsequently deposited to sediments by encapsulation and nucleation as salts precipitate. In addition, it is proposed that direct atmospheric deposition to sediment takes place on areas that seasonally dry out and are subsequently inundated. The impacts of MPs on hypersaline ecosystems and biomass resources are unknown but warrant investigation.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland.
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK
| |
Collapse
|
44
|
Zhao M, Cao Y, Chen T, Li H, Tong Y, Fan W, Xie Y, Tao Y, Zhou J. Characteristics and source-pathway of microplastics in freshwater system of China: A review. CHEMOSPHERE 2022; 297:134192. [PMID: 35257703 DOI: 10.1016/j.chemosphere.2022.134192] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
China plays a key role in global plastic production, consumption and disposal, which arouses growing concern about microplastics (MPs) contamination in Chinese freshwater systems. However, few reviews have discussed the characteristics of MP pollution in whole freshwater systems at a national scale. In this review, we summarized the characteristics, sources and transport pathways of MPs in Chinese freshwater systems including surface water and sediment. Results showed that current research mainly focused on the middle and lower reaches of the Yangtze River and its tributaries, as well as lakes and reservoirs along the Yangtze River. Large-scale reservoirs, rivers and lakes located in densely populated areas usually showed higher abundances of MPs. The majority of MPs in Chinese surface water and sediment mainly consisted of polyethylene and polypropylene, and the most common morphologies were fibers and fragments. To identify the sources and pathways, we introduced the source-sink-pathway model, and found that sewage system, farmland and aquaculture area were the three most prevalent sinks in freshwater systems in China. The source-sink-pathway model will help to further identify the migration of MPs from sources to freshwater systems.
Collapse
Affiliation(s)
- Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| | - Tiantian Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yifei Tong
- Wuhan Ecologic Environmental Carbon Technology Co., Ltd, Wuhan, 430073, China
| | - Wenbo Fan
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yuwei Xie
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Ye Tao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| |
Collapse
|
45
|
Liu S, Pan YF, Li HX, Lin L, Hou R, Yuan Z, Huang P, Cai MG, Xu XR. Microplastic pollution in the surface seawater in Zhongsha Atoll, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153604. [PMID: 35114230 DOI: 10.1016/j.scitotenv.2022.153604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of microplastics in the marine environment has attracted extensive attention. So far, no information is known regarding the temporal and spatial variations of microplastics in Zhongsha Atoll. This study, for the first time, comprehensively investigated the occurrence and distribution of microplastics in the surface seawater in Zhongsha Atoll based on two ocean cruises. The abundances of microplastics measured in the surface seawater of Zhongsha Atoll were in the ranges of not detected (ND) to 67 items/m3, and ND to 160 items/m3 in 2019 and 2020, respectively. All microplastics detected in Zhongsha Atoll were fibers, most of which were transparent and less than 2 mm. Polyethylene terephthalate was the dominating composition of microplastics. These results suggested that sewage, surface runoff, atmospheric deposition by neighboring land, and fishing activities may be the primary pollution sources. This study provides critical information on microplastic pollution in Zhongsha Atoll for the first time, calling for more research in the management of marine plastic debris in the future.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhen Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ming-Gang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
46
|
Cen C, Zhang K, Fu J, Wu X, Wu J, Zheng Y, Zhang Y. Odor-producing response pattern by four typical freshwater algae under stress: Acute microplastic exposure as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153350. [PMID: 35077797 DOI: 10.1016/j.scitotenv.2022.153350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Algae-induced odor problems in water have been repeatedly occurred concerns for drinking water quality. However, present researches mostly focus on the odor-producing pattern of algae in normal growth, and there is scarce discussion on those under stress. Microplastics (MPs) pollution have been global concern for their negative ecological impacts and frequently co-occurs with odor-producing algal bloom in freshwaters. Thus, this study aimed to elucidate the effects and mechanisms of MPs as an environmental stress on algal odorant production for good illustration of odor-producing response pattern under stress. Variation in MP size (polystyrene microspheres; 100 nm, 1000 nm and 10 μm) had significant effects on odorant formation (β-cycloidal, 2-methylisopropanol, 2,4-heptandienal and 2,4-decadienal) by four freshwater algae (Microcystis aeruginosa, Pseudanabaena sp., Cyclotella meneghiniana and Melosira varians). The size ratio of MPs over cells (SRMC) was proposed to categorize the size-ratio dependent effects on the algal odorant production. Interestingly, when SRMC was in the range of 0.1-1, there were always promoting effects; when SRMC < 0.1 or SRMC > 1, there exhibited inhibiting effects, and the inhibiting effects of SRMC < 0.1 were far more severe than those of SRMC > 1. The promotion on odorant production in the SRMC range of 0.1-1 was mainly attributed to the increase in cellular yield, which was related to the increased odorant precursors derived from the oxidation products of reactive oxygen species (ROS). Alternatively, the inhibition of odorant production caused by MPs with SRMC < 0.1 was the results of simultaneously inhibiting cellular density and cellular yield, which might be attributed to the cellular internalization of MPs, inducing the extensive toxic effects. This study illustrated the possibilities of MPs in impairing the esthetics of the source water and provided guidance for the future algal odor issues under stress.
Collapse
Affiliation(s)
- Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaogang Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yingying Zheng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
47
|
Niu L, Hu J, Li Y, Wang C, Zhang W, Hu Q, Wang L, Zhang H. Effects of long-term exposure to silver nanoparticles on the structure and function of microplastic biofilms in eutrophic water. ENVIRONMENTAL RESEARCH 2022; 207:112182. [PMID: 34648762 DOI: 10.1016/j.envres.2021.112182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are frequently detected in natural aquatic systems proximate to populated areas, such as urban rivers and lakes, and can be rapidly colonized by microbial communities. Microplastics and silver nanoparticles (AgNPs) share similar pathways into natural waters and tend to form heteroaggregations. However, very little is known about the long-term impacts on the structure and function of microplastic biofilms when chronically exposed to silver nanoparticles. Thus, the present study assessed the accumulation property of AgNPs on polymethyl methacrylate (PMMA) microplastics via adsorption tests and studied the chronic effects of AgNPs on the structure and function of microplastic biofilms via 30-day microcosmic experiments in eutrophic water. The adsorption tests showed that the biofilms-colonized PMMA microplastics presented the highest adsorption of 0.98 mg/g in the 1 mg/L AgNPs microcosms. After the 30-day exposure, lactic dehydrogenase release and reactive oxygen species generation of PMMA biofilms increased by 33.23% and 23.98% compared to the MPs-control group with no-AgNPs, indicating that the number of dead cells colonizing microplastics significantly increased. Network analysis suggested that the stabilization of the bacterial community declined with the long-term exposure to AgNPs through the reduction of the modularity and average path length of the network. Compared to the MPs-control group, long-term exposure to AgNPs caused cumulatively inhibitory effects on the nitrogen removal and the N2O emissions in eutrophic water. The isotopomer analysis revealed that the contribution rate of NO2- reduction to N2O emissions was gradually increasing with the AgNPs exposure. Real-time PCR analysis showed that denitrification genes were less sensitive to AgNPs than the nitrification genes, with gene nosZ performed the most negligible response. Overall, our results revealed that long-term exposure to AgNPs could alter biogeochemical cycling involved by microplastic biofilms and cumulatively reduce the self-recovery of the eutrophic ecosystem.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaxin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
48
|
Zhu J, Zhang Y, Xu Y, Wang L, Wu Q, Zhang Z, Li L. Effects of microplastics on the accumulation and neurotoxicity of methylmercury in zebrafish larvae. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105615. [PMID: 35364423 DOI: 10.1016/j.marenvres.2022.105615] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and methylmercury (MeHg) have attracted increasing attention due to ubiquitous occurrence and toxicity. This study aimed to investigate whether MPs could absorb MeHg and thus modify its bioconcentration and neurotoxicity in the zebrafish larvae (Danio rerio). The pseudo-second-order model (R2 = 0.989) was found to be suitable for describing the adsorption kinetics of MeHg onto MPs. Compared with Freundlich and Temkin models, the Langmuir isotherm model provided a better fit with the experimental data exhibiting a maximum monolayer adsorption capacity of 54.945 mg/g. These results suggested that adsorption occurs mainly by a chemical process dominated by monolayer adsorption. MPs adsorbed MeHg to form MPs/MeHg complex, which was ingested by zebrafish larvae, and promoted accumulation of MeHg. Thus, the presence of MPs aggravated the reduction of locomotor activity induced by MeHg, and downregulation of neurotransmitters related genes, such as ache, gfap and scl1A3b. Metabolome analysis also revealed disrupted glutathione (GSH) metabolism upon exposure of MeHg alone and in combination with MPs, as reflected by the increased in the ratio of GSH and oxidized glutathione. These effects were also confirmed by upregulation of oxidative stress-related genes, such as sod, sod mt and gpx4a. Collectively, these results indicated that MPs could act as a carrier of MeHg and enhance its accumulation in zebrafish, thereby disrupting locomotor activity by excessive oxidative stress. This study provides a scientific basis for improving health risk assessment of environmental pollutants, particularly those potentially able to adsorb to MPs by virtue of their chemical nature.
Collapse
Affiliation(s)
- Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Yawen Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
49
|
Zhang Z, Gao SH, Luo G, Kang Y, Zhang L, Pan Y, Zhou X, Fan L, Liang B, Wang A. The contamination of microplastics in China's aquatic environment: Occurrence, detection and implications for ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118737. [PMID: 34954308 DOI: 10.1016/j.envpol.2021.118737] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 05/26/2023]
Abstract
The widespread occurrence of microplastics in aquatic ecosystems that resulted in environmental contamination has attracted worldwide attention. Microplastics pose a potential threat to the growth and health of aquatic organisms, thereby affecting the function of the ecosystems. As one of the top ten countries producing and consuming plastic products globally, China's aquatic ecosystems have been profoundly affected by microplastics. In this review, we have summarized the microplastics contamination in three typical water environments (marine environment, freshwater environment, and wastewater treatment plants) in China, elaborated on the adverse impacts of microplastics on the ecological environment, and evaluated the potential ecological risks exposed to the ecosystem. In addition, the progress of microplastics extraction methods, as the important basis of microplastics related research, in aquatic ecosystems was introduced, especially the difference between the extraction of microplastics from wastewater and sludge samples. At present, most of the research on microplastics focuses on "one point", such as a certain river or wastewater treatment plant. Research on the mitigation and transfer of microplastics among different connected water environments is still lacking. Also, the microscale ecotoxicity caused by microplastics is poorly understood. In the end, we proposed suggestions and perspectives for future research regarding microplastics in the aquatic ecosystems in China.
Collapse
Affiliation(s)
- Ziqi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yusheng Pan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lu Fan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
50
|
Agharokh A, S Taleshi M, Bibak M, Rasta M, Torabi Jafroudi H, Rubio Armesto B. Assessing the relationship between the abundance of microplastics in sediments, surface waters, and fish in the Iran southern shores. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18546-18558. [PMID: 34689299 DOI: 10.1007/s11356-021-17128-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to investigate the microplastic (MP) pollution in sediments, surface waters, and four fish species in the northern coast of the Persian Gulf. Sampling was conducted in seven important regions during December 2019. The abundance of MPs was respectively 190 ± 35.5 items/kg dry weight for sediments, 9.28 ± 2.1 items/km2 for surface waters, and 0.33 ± 0.05 items/individual for fish. There was no correlation between MP abundance in surface water, sediment, and fish samples. Except for Cynoglossus arel, abundance of isolated MPs did not show significant relationships with body weight, body length, and gastrointestinal tract weight (P > 0.05). MPs were ranged from 0.3 to 5 mm in size and were prevailed by fiber in shape; black, red, and blue in color; and polypropylene and polyethylene in polymer. This study may help in increasing our knowledge regarding MP pollution in marine water systems and biota.
Collapse
Affiliation(s)
- Ali Agharokh
- Research Center for Persian Gulf, University of Persian Gulf, Bushehr, Iran
| | - Mojtaba S Taleshi
- Department of Marine Chemistry, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mehdi Bibak
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran.
| | - Majid Rasta
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Hor Torabi Jafroudi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Belén Rubio Armesto
- Centro de Investigacións Mariñas (CIM-UVIGO), Universidade de Vigo, Vigo, Spain
| |
Collapse
|