1
|
Ruan G, Liu C, Song G, Qian J, Bao T, Zhao Y, Sun S, Wan D, Mi W, He M, Hu B, Bi Y. Sll1725, an ABC transporter in Synechocystis sp. PCC 6803 for the detoxification of cadmium ion stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 300:118389. [PMID: 40449051 DOI: 10.1016/j.ecoenv.2025.118389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 06/02/2025]
Abstract
Cadmium threatens eco-environmental security and human health, but the interaction between cadmium and microalgae cells remains unknown. This research examined the molecular detoxification mechanism of Synechocystis sp. to cadmium. The results indicated that cadmium stress significantly inhibited chlorophyll a content and maximum photochemical quantum yield (Fv/Fm), with EC50 of 0.50 mg L-1. The differentially expressed genes/proteins (DEGs/DEPs) were significantly enriched in pathways of two-component system, translation, nucleotide metabolism, ribosome, photosynthesis and chlorophyll synthesis. 1073 DEGs and 338 DEPs were identified, and 84 DEGs/DEPs with consistent expression trends were obtained. Foldchange of Sll1725 ranked fourth in DEGs/DEPs but its function was unexplored. Phylogenetic analysis and 3D structure identified Sll1725 as an ABC transporter and molecular simulation determined its cadmium-efflux function. Under 0.50 mg L-1 cadmium stress, Δsll1725 had lower growth and Fv/Fm values than the wild-type. Meanwhile, the intracellular cadmium in Δsll1725 was higher, indicating that Sll1725 mitigated cadmium toxicity by efflux. The duckweed with overexpressed sll1725 exhibited cadmium tolerance. It could be deduced that Sll1725, belonged to ABC transporters, which played an important detoxification mechanism. These mutants might possess the potential for bioremediation. This study provides a basis for applying algal genetic resources in cadmium pollution treatment.
Collapse
Affiliation(s)
- Gang Ruan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzi Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jing Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Carbon Neutral R&D Center, China Railway Hi-Tech Industry Corporation Limited, Beijing 100049, China
| | - Tao Bao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yafei Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaoqiang Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Lu X, Liu J, Xiao X, Xue J, Cheng D, Zhang L. The influence of 2,6-Di-tert-butyl-p-cresol stress on the microalga Phaeodactylum tricornutum and phycosphere bacteria community. World J Microbiol Biotechnol 2025; 41:150. [PMID: 40289175 DOI: 10.1007/s11274-025-04372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
The emerging contaminant 2, 6-di-tert-butyl-p-cresol (BHT) is a kind of synthetic phenolic antioxidant and can pose negative effects on the aquatic organism. However, the mechanism of phycosphere bacteria coordinating with microalgae in response to BHT stress remains poorly understood. Herein, the effect of BHT on the microalgae Phaeodactylum tricornutum was comprehensively analyzed. BHT exposure led to a dose-dependent inhibition of P. tricornutum growth and the photosynthetic pigment biosynthesis. BHT also led to an increase in the content of malondialdehyde, therefore microalgae responded to the oxidative stress by enhancing activities of antioxidant enzymes, including superoxide dismutase, catalase and peroxidase, to eliminate excess reactive oxygen species in the cells. Furthermore, transcriptome analysis revealed that genes related to photosynthesis, TCA cycle, oxidative phosphorylation, and indole-3-acetic acid (IAA) synthesis were up-regulated in response to BHT stress, which are crucial for the microalgae's adaptation to stresses. In addition, high-throughput Illumina MiSeq sequencing results demonstrated a significant increase in the relative abundance of bacteria affiliated with Halomonas, Marivita and Oceanicaulis. Microbiological assays demonstrated that Halomonas can thrive by using BHT as the sole energy source and exhibit a chemotactic response to IAA. Therefore, we conclude that the increased content of IAA secreted by microalgae in the phycosphere environment promoted the enrichment of BHT-tolerant bacterium Halomonas, thereby it is helpful for environmental pressures adaptability of P. tricornutum. Overall, this study provided a comprehensive understanding of the physiological and biochemical effects of BHT on microalgae, and we highlight the potential functional significance of IAA in establishing an interaction between microalgae and algae-associated bacteria in adverse environments.
Collapse
Affiliation(s)
- Xiao Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Jie Liu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Jianliang Xue
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Dongle Cheng
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| |
Collapse
|
3
|
Yang XY, Wei YX, Su YQ, Zhang ZW, Tang XY, Chen YE, Yuan M, Yuan S. The Strategies Microalgae Adopt to Counteract the Toxic Effect of Heavy Metals. Microorganisms 2025; 13:989. [PMID: 40431162 PMCID: PMC12114582 DOI: 10.3390/microorganisms13050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Besides biomass production, some microalgae have been used to treat wastewater contamination. However, in general, high concentrations of heavy metals significantly inhibit algal growth. We thus need to find ways to promote the resistance of microalgae to heavy metals, increase their growth rate under stress, and achieve coupling of heavy metal removal and biomass production simultaneously. In this review, mechanisms for removal of heavy metals by microalgae are proposed. Effects of exogenous chemical additives (dissolved organic matters, formaldehyde, sulphate, phosphate, nitric oxide donors, etc.) on algal biosorption to heavy metals are summarized. Genetic manipulation and microalgal strain selection strategies are also introduced, especially for the acid-tolerant strains with high biosorption efficiencies to Cr(VI) and Cd2+ at low pH conditions. Recent advances in (semi)continuous heavy-metal-bioremediation and biomass-production coupled system with immobilized microalgae, as well as challenges and solutions to the commercialization and industrialization of the coupled system were discussed.
Collapse
Affiliation(s)
- Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Yu-Xin Wei
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu 610066, China;
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| |
Collapse
|
4
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
5
|
Xu L, Wang Z, Zhang H, Sun A, Zhou G, Jiang R, Chen T, Wang Y, Li X. Chronic toxic effects of silver nanoparticles on Chlamydomonas reinhardtii: Photosynthesis, antioxidation and internalization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124428. [PMID: 39986144 DOI: 10.1016/j.jenvman.2025.124428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
So far, potential chronic risks of silver nanoparticles (AgNPs) on organisms remain largely unknown, especially molecular-level alterations at the environmentally relevant concentrations. In this study, Chlamydomonas reinhardtii (C. reinhardtii) is used as the model organism to investigate chronic toxic effects of 100 μg/L and 50 mg/L AgNPs for 120 d. Physiological studies showed that AgNPs attached on cell surface and internalized into algal cells, inducing the increase in cell permeability, the decline in cell size and granularity, the damage in photosynthetic systems, and the production of reactive oxygen species (ROS). The damage in photosynthetic systems was reflected in the decline in the photosynthetic activity (Fv/Fm), photosynthetic efficiency (Fv/F0), and fluorescence intensities of Peridinin-Chlorophyll Protein Complex and Allophycocyanin. C. reinhardtii attempted to increase the absorption (ABS/RC), dissipation (Dl0/RC) and trapping (TR0/RC) of light energy for adapting AgNPs stress. In addition, the accumulation of glutathione (GSH), ascorbate (ASC), and the irreversible cell apoptosis was observed in 50 mg/L AgNPs group. Transcriptomics showed that most of genes involved in photosynthetic systems (e.g. photo-oxidation, light harvesting, and chlorophyll synthesis) were down regulated, providing evidence for chloroplast as the main target of AgNPs toxicity. The up-regulation of some genes, involved in ASC and aldarate metabolism, and GSH metabolism, showed self-adaptive capacity of C. reinhardtii to eliminate ROS under long-term exposure to AgNPs. Phagocytosis and endocytosis were the main pathways of the internalization of AgNPs. This study provided valuable data for potential chronic risks of nanoparticles in aquatic environment.
Collapse
Affiliation(s)
- Limei Xu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zining Wang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hanyu Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Aoxue Sun
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Gaoxiang Zhou
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ruixue Jiang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiantian Chen
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
6
|
Chen Y, Zhang Z, Ma J, Pan K. Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106928. [PMID: 39729905 DOI: 10.1016/j.marenvres.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO2, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum. Our data indicate that elevated pCO2 had a minor effect on the growth and photochemistry and overall performance of P. tricornutum. However, seawater acidification significantly influenced cell size, surface roughness, and adhesion. Higher pCO2 levels led to increased Cu accumulation in P. tricornutum under low ambient Cu concentrations, while significantly reducing Cu accumulation. The smaller cell size and reduced negative charge on the cell surface may explain the decreased Cu accumulation and toxicity. In response to metal stress, P. tricornutum upregulated Cu efflux to mitigate the increased Cu stress in acidified seawater. The expression of the metal transporter gene CTR1 and the reductase gene FRE1 were significantly downregulated, while ATPase5-1B was upregulated in cells exposed to elevated Cu concentrations at 1200 μatm pCO2. Our study provides useful insights into the interactions between metals and diatoms in an increasingly acidified ocean.
Collapse
Affiliation(s)
- Yingya Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, SAR, China; SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Xu B, He Q, Sun D, Li X, Fan J, Yan X, Ruan R, Wang N, Cheng P. Inhibition mechanism of leukemia cells HL-60 by exopolysaccharides from Botryococcus braunii in response to high-concentration cobalt. Int J Biol Macromol 2025; 290:139092. [PMID: 39716694 DOI: 10.1016/j.ijbiomac.2024.139092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The influence of metal elements on the biomedical activity of microalgal exopolysaccharides (EPS) remains underexplored. This study examined the antitumor properties of Botryococcus braunii EPS under high cobalt conditions and the role of exogenous 3-indole acetic acid (IAA) in enhancing its activity. Results showed that IAA mitigated cobalt-induced inhibition of B. braunii growth and improved its antioxidant capacity. Notably, EPS obtained from B. braunii treated with IAA under high cobalt conditions (HC-IAA-EPS) exhibited a 98.06 % inhibition of human promyelocytic leukemia cells (HL-60), significantly higher than the control (83.86 %). HC-IAA-EPS induced mitochondrial damage in HL-60 cells, evidenced by a decrease in mitochondrial transmembrane potential (observed via fluorescence microscopy) and a 1.5-fold increase in reactive oxygen species (ROS) levels compared to the control, ultimately triggering endogenous apoptosis. Proteomic analysis revealed that HC-IAA-EPS caused significant changes in apoptosis and cell cycle-related protein changes in HL-60. Gene Ontology (GO) analysis indicated enrichment in pathways such as neutrophil degranulation, Toll-like receptor (TLR) signaling, and vesicle binding complexes. This study concludes that HC-IAA-EPS inhibits HL-60 cell proliferation by inducing mitochondrial dysfunction, reducing transmembrane potential, and increasing ROS production, providing valuable insights into the antitumor potential of microalgal EPS under metal stress conditions.
Collapse
Affiliation(s)
- Baoyu Xu
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qilin He
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Danni Sun
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Li
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
8
|
Thi Nhu Bui Q, Kim T, Kim HS, Ki JS. Defensive responses of most antioxidant genes in the freshwater dinoflagellate Palatinus apiculatus to cadmium stress and their implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117380. [PMID: 39622126 DOI: 10.1016/j.ecoenv.2024.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025]
Abstract
Photosynthetic dinoflagellates are one of the major microalgal taxa, playing essential roles in biogeochemical cycles and food webs in aquatic environments. Some freshwater dinoflagellates are known to be sensitive to environmental conditions, like water quality and contaminants; however, their molecular toxicological responses are insufficiently discovered. In the present study, we evaluated the physiological and transcriptomic responses of the freshwater dinoflagellate Palatinus apiculatus exposed to cadmium (Cd), focusing on stress-responsive genes. The cell number of P. apiculatus decreased significantly at Cd concentrations above 0.25 mg/L after 72 h, with an estimated EC50 value of 1.35 mg/L. In addition, we constructed 87,207 transcriptomic contigs from the P. apiculatus cells exposed to the Cd. Differential expression gene analysis showed that 21.0 % of total contigs were statistically significant, including 8647 up-regulated and 4195 down-regulated genes. Gene Ontology enrichment results revealed that genes responsive to stress and external stimuli were highly expressed in Cd-treated cells. Moreover, Cd significantly induced reactive oxygen species (ROS) production in P. apiculatus cells, and their patterns were similar to the expressions of certain antioxidant genes. Among the selected genes, GR expression levels were down-regulated, which may lead to the failure of cell defense against heavy metals. These results showed molecular defense pathways of the freshwater dinoflagellate P. apiculatus against the heavy metal that could be served as potential sensitive biomarkers for evaluating molecular toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
9
|
Wang J, Tian Q, Kang J, Zhou H, Yu X, Qiu G, Shen L. Mechanistic insight of fungal-microalgal pellets in photobioreactor for heavy-metal wastewater bioremediation. BIORESOURCE TECHNOLOGY 2025; 416:131794. [PMID: 39528032 DOI: 10.1016/j.biortech.2024.131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The high cost of harvesting microalgae limits their industrial application. Fungal-microalgal pellets can efficiently harvest microalgae and enhance heavy-metal adsorption. However, the molecular response mechanism of fungal-microalgal pellets under heavy-metal stress remains unclear. Fungal-microalgal pellets in a photobioreactor were used as a research object, and a 98 % harvesting efficiency could be achieved with adding exogenous carbon and nitrogen at pH 5.0-6.0 for 12 h of co-culture. Humic acid- and tryptophan-rich proteins in extracellular polymeric substances (EPS) participate in Cd(II) complexation. The Cd(II) response in fungal-microalgal pellets involves amino acids, glucose, lipids, energy metabolism, and antioxidant systems. The turning point was at 48 h. Proline, histidine, and glutamine synthesis and the adenosine-triphosphate (ATP) binding cassette (ABC) transport pathway play important roles in resistance to Cd(II) biotoxicity. This study provides a reference for the large-scale cultivation of fungal-microalgal symbiotic pellets and the practical application for industrial heavy-metal wastewater.
Collapse
Affiliation(s)
- Junjun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China; School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
10
|
Chan SS, Khoo KS, Abdullah R, Juan JC, Ng EP, Chin RJ, Ling TC. Harnessing microalgae for metal nanoparticles biogenesis using heavy metal ions from wastewater as a metal precursor: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:176989. [PMID: 39427915 DOI: 10.1016/j.scitotenv.2024.176989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Heavy metal contamination of water sources has long been a silent yet potent threat, endangering environmental and human health. Conventional wastewater treatments are costly due to high infrastructure expenses, energy consumption, and chemical usage. These treatments lead to secondary environmental pollution, such as producing toxic sludge, greenhouse gaseous emissions, and residual pollutants discharges. Therefore, more sustainable and cost-effective wastewater treatment alternatives are needed to overcome these challenges. Microalgae biosorption and bioaccumulation can bioremediate wastewater by effectively removing heavy metals and other contaminants, such as nitrate and phosphate. By utilizing sunlight and CO2 for growth, microalgae cultivation reduces the need for expensive chemicals and energy-intensive operations in wastewater treatment. Additionally, microalgae can potentially convert heavy metal ions from wastewater into metal nanoparticles, providing a dual benefit of bioremediation and resource recovery. The primary objectives of this review are to assess the effectiveness of microalgae in heavy metal bioremediation and nanoparticle synthesis while also identifying critical research gaps and future directions for optimizing this biotechnology. Heavy metal ions in wastewater can be used as a metal precursor, and metal nanoparticles can be synthesized from wastewater. A review methodology was carried out to assess the availability of literature for readers to identify the research trends and gaps. Mechanisms of microalgae for the biogenesis of metal nanoparticles, including activation, growth, and termination phases, were elucidated. Various chemical interactions between metal ions and functional groups of microalgae, including amine (-NH2), carboxyl (-COOH), phosphate (-PO4), and hydroxyl (-OH) groups were evaluated. Nonetheless, this review also identifies the current challenges and future research directions for optimizing microalgae biotechnology in heavy metal bioremediation and nanoparticle biogenesis.
Collapse
Affiliation(s)
- Sook Sin Chan
- Institut Sains Biologi, Fakulti Sains, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Rosazlin Abdullah
- Institut Sains Biologi, Fakulti Sains, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NanoCat), Institute of Postgraduate Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Ren Jie Chin
- Department of Civil Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, 43000 Kajang, Selangor, Malaysia
| | - Tau Chuan Ling
- Institut Sains Biologi, Fakulti Sains, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Passucci V, Thomas-Chemin O, Dib O, Assaf AA, Durand MJ, Dague E, Areco MM, Formosa-Dague C. Investigating the role of extracellular polymeric substances produced by Parachlorella kessleri in Zn(II) bioremediation using atomic force microscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125082. [PMID: 39374767 DOI: 10.1016/j.envpol.2024.125082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Microalgae, such as Parachlorella kessleri, have significant potential for environmental remediation, especially in removing heavy metals like zinc from water. This study investigates how P. kessleri, isolated from a polluted river in Argentina, can remediate zinc. Using atomic force microscopy (AFM), the research examined the interactions between Zn particles and cells grown with different nitrogen sources-nitrate or ammonium. The results showed that cells grown with nitrate produced extracellular polymeric substances (EPS), while those grown with ammonium did not. Raman spectroscopy revealed distinct metabolic responses based on the nitrogen source, with nitrate-grown cells showing altered profiles after zinc exposure. Zinc exposure also changed the surface roughness and nanomechanical properties of the cells, particularly in those producing EPS. AFM force spectroscopy experiments then confirmed strong Zn binding to EPS in nitrate-grown cells, while interactions were weaker in ammonium-grown cells that lacked EPS. Overall, our results elucidate the critical role of EPS in Zn removal by P. kessleri cells and show that Zn remediation is mediated by EPS adsorption. This study underscores the significance of regulating nitrogen sources to stimulate EPS production, offering insights that are essential for subsequent bioremediation applications.
Collapse
Affiliation(s)
- Victoria Passucci
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina
| | | | - Omar Dib
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Antony Ali Assaf
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Marie-José Durand
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Maria Mar Areco
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina.
| | | |
Collapse
|
12
|
Yang Z, Li A, Chen J, Dai Z, Su J, Deng C, Ye G, Cheng C, Tang Q, Zhang X, Xu Y, Chen X, Wu B, Zhang Z, Zheng X, Yang L, Xiao L. Machine learning phenotyping and GWAS reveal genetic basis of Cd tolerance and absorption in jute. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124918. [PMID: 39260553 DOI: 10.1016/j.envpol.2024.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Cadmium (Cd) is a dangerous environmental contaminant. Jute (Corchorus sp.) is an important natural fiber crop with strong absorption and excellent adaptability to metal-stressed environments, used in the phytoextraction of heavy metals. Understanding the genetic and molecular mechanisms underlying Cd tolerance and accumulation in plants is essential for efficient phytoremediation strategies and breeding novel Cd-tolerant cultivars. Here, machine learning (ML) and hyperspectral imaging (HSI) combining genome-wide association studies (GWAS) and RNA-seq reveal the genetic basis of Cd resistance and absorption in jute. ML needs a small number of plant phenotypes for training and can complete the plant phenotyping of large-scale populations with efficiency and accuracy greater than 90%. In particular, a candidate gene for Cd resistance (COS02g_02406) and a candidate gene (COS06g_03984) associated with Cd absorption are identified in isoflavonoid biosynthesis and ethylene response signaling pathways. COS02g_02406 may enable plants to cope with metal stress by regulating isoflavonoid biosynthesis involved in antioxidant defense and metal chelation. COS06g_03984 promotes the binding of Cd2+ to ETR/ERS, resulting in Cd absorption and tolerance. The results confirm the feasibility of high-throughput phenotyping for studying plant Cd tolerance by combining HSI and ML approaches, facilitating future molecular breeding.
Collapse
Affiliation(s)
- Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Alei Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Gaoao Ye
- Hangzhou Guang Xun Intelligent Technology Co., LTD, Guanli Technology, South Yongfu Road, Guali, Xiaoshan District, Hangzhou, Zhejiang, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Xiaojun Chen
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410125, China
| | - Bibao Wu
- Hunan Biological and Electromechanical Polytechnic, China
| | - Zhihai Zhang
- University of Illinois Urbana-Champaign Institute for Sustainability, Energy, and Environment (iSEE), Urbana, IL, 61801, USA
| | - Xuying Zheng
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W Gregory Dr, Urbana, IL, 61801, USA
| | - Lu Yang
- Hunan Hybrid Rice Research Center, 736 Yuanda 2nd Road, Furong District, Changsha, Hunan, 410125, China.
| | - Liang Xiao
- Hunan Engineering Laboratory of Miscanthus Ecological Applications, College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China; Department of Grassland Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Sahabudin E, Kubo S, Yuzir MAM, Othman N, Nadia Md Akhir F, Suzuki K, Yoneda K, Maeda Y, Suzuki I, Hara H, Iwamoto K. The cadmium tolerance and bioaccumulation mechanism of Tetratostichococcus sp. P1: insight from transcriptomics analysis. Bioengineered 2024; 15:2314888. [PMID: 38375815 PMCID: PMC11633185 DOI: 10.1080/21655979.2024.2314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 μM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.
Collapse
Affiliation(s)
- Eri Sahabudin
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Shohei Kubo
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Muhamad Ali Muhammad Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nor’azizi Othman
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Fazrena Nadia Md Akhir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Kengo Suzuki
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Euglena Co. Ltd, Minato‑ku, Japan
- Microalgae Production Control Technology Laboratory, Yokohama, Kanagawa, Japan
| | - Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Maeda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirofumi Hara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Koji Iwamoto
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Jean N, James A, Balliau T, Martino C, Ghersy J, Savar V, Laabir M, Caruana AMN. Warming and polymetallic stress induce proteomic and physiological shifts in the neurotoxic Alexandrium pacificum as possible response to global changes. MARINE POLLUTION BULLETIN 2024; 209:117221. [PMID: 39522120 DOI: 10.1016/j.marpolbul.2024.117221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Harmful Algal Blooms involving the dinoflagellate Alexandrium pacificum continue to increase in ecosystems suffering the climate warming and anthropogenic pressure. Changes in the total proteome and physiological traits of the Mediterranean A. pacificum SG C10-3 strain were measured in response to increasing temperature (24 °C, 27 °C, 30 °C) and trace metal contamination (Cu2+, Pb2+, Zn2+, Cd2+). Warming reduced the cell densities and maximal growth rate (μmax), but the strain persisted at 30 °C with more large cells. The polymetallic stress increased cell sizes, reduced cell growth at 24 °C-27 °C and it increased this at 30 °C. Toxin profiles showed a predominance of GTX4 (32-38 %), then C2 (11-34 %) or GTX6 (18-24 %) among the total Paralytic Shellfish Toxins, however these were modified under warming, showing increased contents in GTX1 (among the most toxic), GTX5, C1 and NeoSTX, while dc-NeoSTX and STX (among the most toxic) only appeared at 30 °C. Under polymetallic contamination, warming also increased contents in GTX5 and NeoSTX. In contrast, polymetallic stress, or warming had harmful effects on C2 contents. Proteins were more quantitatively produced by A. pacificum SG C10-3 under warming in accordance with the high levels of up-regulated proteins found in the total proteome in this condition. Polymetallic stress, only or combined with warming, led to low proteomic modifications (1 % or 4 %), whereas warming induced strong 52 % modified proteomic response, mainly based on up-regulated proteins involved in photosynthesis (light harvesting complex protein), carbohydrate metabolism (arylsulfatase) and translation (ribosomal proteins), and with the lesser down-regulated proteins principally associated with the lipid metabolism (type I polyketide synthase). Our results show that warming triggers a strong up-regulated A. pacificum SG C10-3 proteomic response, which, coupled to modified cell sizes and toxin profiles, could help it to withstand stress conditions. This could presage the success of A. pacificum in anthropized ecosystems submitted to global warming in which this dinoflagellate also might be more toxic.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France.
| | - Amandin James
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), UMR7232, Laboratoire de Biodiversité et Biotechnologie Microbienne (LBBM), UAR3579, Observatoire Océanologique, 66 650 Banyuls-sur-mer, France
| | - Thierry Balliau
- PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91 190 Gif-sur-Yvette, France
| | - Christian Martino
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Jérôme Ghersy
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Véronique Savar
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Mohamed Laabir
- Univ Montpellier, UMR Marbec, IRD, Ifremer, CNRS, Montpellier, France
| | - Amandine M N Caruana
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| |
Collapse
|
15
|
Zhou Y, Zhu Y, Wu F, Pan X, Li W, Han J. Transcriptomics revealed the key molecular mechanisms of ofloxacin-induced hormesis in Chlorella pyrenoidosa at environmentally relevant concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124887. [PMID: 39236839 DOI: 10.1016/j.envpol.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Emerging pollutants such as antibiotics have aroused great concern in recent years. However, the knowledge of low concentration-induced hormesis was not well understood. This study evaluated and quantified hormetic effects of ofloxacin on Chlorella pyrenoidosa. LogNormal model predicted the maximal non-effect concentration was 0.13 mg/L and 2.96 mg/L at 3 and 21 d, respectively. The sensitive alterations in chlorophyll fluorescence suggested PSII was the main target. Transcriptomics revealed ofloxacin inhibited genes related to photosynthetic system while the cyclic electron around PSI decreased the pH value in stroma side and stimulated photoprotection via up-regulating psbS. The stimulation in citrate cycle pathway met the urgent requirements of energy for DNA replication and repair. In addition, the negative feedback of G3P in glycolysis pathway inhibited Calvin cycle. The degradation products illustrated the occurrence of multiple detoxification mechanisms such as demethylation and ring-opening. The mobilization of cytochrome P450 generated the constant detoxication of ofloxacin while glutathione was consumptively involved in biological binding. This study provided new insights into the molecular mechanisms of antibiotic-induced hormesis in microalgae.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Feifan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| |
Collapse
|
16
|
Milano F, Giotta L, Lambreva MD. Perspectives on nanomaterial-empowered bioremediation of heavy metals by photosynthetic microorganisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109090. [PMID: 39243581 DOI: 10.1016/j.plaphy.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Environmental remediation of heavy metals (HMs) is a crucial aspect of sustainable development, safeguarding natural resources, biodiversity, and the delicate balance of ecosystems, all of which are critical for sustaining life on our planet. The bioremediation of HMs by unicellular phototrophs harnesses their intrinsic detoxification mechanisms, including biosorption, bioaccumulation, and biotransformation. These processes can be remarkably effective in mitigating HMs, particularly at lower contaminant concentrations, surpassing the efficacy of conventional physicochemical methods and offering greater sustainability and cost-effectiveness. Here, we explore the potential of various engineered nanomaterials to further enhance the capacity and efficiency of HM bioremediation based on photosynthetic microorganisms. The critical assessment of the interactions between nanomaterials and unicellular phototrophs emphasised the ability of tailored nanomaterials to sustain photosynthetic metabolism and the defence system of microorganisms, thereby enhancing their growth, biomass accumulation, and overall bioremediation capacity. Key factors that could shape future research efforts toward sustainable nanobioremediation of HM are discussed, and knowledge gaps in the field have been identified. This study sheds light on the potential of nanobioremediation by unicellular phototrophs as an efficient, scalable, and cost-effective solution for HM removal.
Collapse
Affiliation(s)
- Francesco Milano
- Institute of Sciences of Food Production, National Research Council (CNR), Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Maya D Lambreva
- Institute for Biological Systems, National Research Council (CNR), Strada Provinciale 35d, N. 9, 00010, Montelibretti, Rome, Italy.
| |
Collapse
|
17
|
Pagli C, Chamizo S, Migliore G, Rugnini L, De Giudici G, Braglia R, Canini A, Cantón Y. Isolation of biocrust cyanobacteria and evaluation of Cu, Pb, and Zn immobilisation potential for soil restoration and sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174020. [PMID: 38897475 DOI: 10.1016/j.scitotenv.2024.174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Soil contamination by heavy metals represents an important environmental and public health problem of global concern. Biocrust-forming cyanobacteria offer promise for heavy metal immobilisation in contaminated soils due to their unique characteristics, including their ability to grow in contaminated soils and produce exopolysaccharides (EPS). However, limited research has analysed the representativeness of cyanobacteria in metal-contaminated soils. Additionally, there is a lack of studies examining how cyanobacteria adaptation to specific environments can impact their metal-binding capacity. To address this research gap, we conducted a study analysing the bacterial communities of cyanobacteria-dominated biocrusts in a contaminated area from South Sardinia (Italy). Additionally, by using two distinct approaches, we isolated three Nostoc commune strains from cyanobacteria-dominated biocrust and we also evaluated their potential to immobilise heavy metals. The first isolation method involved acclimatizing biocrust samples in liquid medium while, in the second method, biocrust samples were directly seeded onto agar plates. The microbial community analysis revealed Cyanobacteria, Bacteroidota, Proteobacteria, and Actinobacteria as the predominant groups, with cyanobacteria representing between 13.3 % and 26.0 % of the total community. Despite belonging to the same species, these strains exhibited different growth rates (1.1-2.2 g L-1 of biomass) and capacities for EPS production (400-1786 mg L-1). The three strains demonstrated a notable ability for metal immobilisation, removing up to 88.9 % of Cu, 86.2 % of Pb, and 45.3 % of Zn from liquid medium. Cyanobacteria EPS production showed a strong correlation with the removal of Cu, indicating its role in facilitating metal immobilisation. Furthermore, differences in Pb immobilisation (40-86.2 %) suggest possible environmental adaptation mechanisms of the strains. This study highlights the promising application of N. commune strains for metal immobilisation in soils, offering a potential bioremediation tool to combat the adverse effects of soil contamination and promote environmental sustainability.
Collapse
Affiliation(s)
- Carlotta Pagli
- Department of Biology, University of Rome Tor Vergata, Italy; Department of Agronomy, University of Almería, Spain; PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, Italy.
| | - Sonia Chamizo
- Department of Agronomy, University of Almería, Spain; Department of Desertification and Geo-Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Almería, Spain
| | - Giada Migliore
- ENEA, Territorial and Production Systems Sustainability Department, Italy
| | - Lorenza Rugnini
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Italy
| | - Roberto Braglia
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Yolanda Cantón
- Department of Agronomy, University of Almería, Spain; Center for Research on Scientific Collections of the University of Almeria (CECOUAL), Spain
| |
Collapse
|
18
|
Ganguly A, Nag S, Bhowmick TK, Gayen K. Phycoremediation of As(III) and Cr(VI) by Desmodesmus subspicatus: Impact on growth and biomolecules (carbohydrate, protein, chlorophyll and lipid) - A dual mode investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48545-48560. [PMID: 39031311 DOI: 10.1007/s11356-024-34390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Microalgae are under research focus for the simultaneous production of biomolecules (e.g., carbohydrates, proteins, pigments and lipids) and bioremediation of toxic substances from wastewater. The current study explores the capability of indigenously isolated microalgae (Desmodesmus subspicatus) for the phycoremediation of As(III) and Cr(VI). Variation of biomolecules (carbohydrate, protein, lipid and chlorophyll) was investigated during phycoremediation. D. subspicatus survived up to the toxicity level of 10 mg/L for As(III) and 0.8 mg/L for Cr(VI). A 70% decline in carbohydrate accumulation was observed at 10 mg/L of As(III). An increased content of proteins (+ 28%) and lipids (+ 32%) within the cells was observed while growing in 0.5 and 0.2 mg/L of As(III) and Cr(VI) respectively. A decrease in carbohydrate accumulation was noted with increasing Cr(VI) concentration, and the lowest (- 44%) was recorded at 0.8 mg/L Cr(VI). D. subspicatus showed an excellent maximum removal efficiency for Cr(VI) and As(III) as 77% and 90% respectively.
Collapse
Affiliation(s)
- Anisha Ganguly
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Soma Nag
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India.
| |
Collapse
|
19
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
20
|
Kennedy V, Kaszecki E, Donaldson ME, Saville BJ. The impact of elevated sulfur and nitrogen levels on cadmium tolerance in Euglena species. Sci Rep 2024; 14:11734. [PMID: 38777815 PMCID: PMC11111685 DOI: 10.1038/s41598-024-61964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.
Collapse
Affiliation(s)
- Victoria Kennedy
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
21
|
Xie Z, Nie Y, Dong M, Nie M, Tang J. Integrated physio-biochemical and transcriptomic analysis reveals the joint toxicity mechanisms of two typical antidepressants fluoxetine and sertraline on Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171802. [PMID: 38508265 DOI: 10.1016/j.scitotenv.2024.171802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are of increasing concern worldwide due to their ubiquitous occurrence and detrimental effects on aquatic organisms. However, little is known regarding their effects on the dominant bloom-forming cyanobacterium, Microcystis aeruginosa. Here, we investigated the individual and joint effects of two typical SSRIs fluoxetine (FLX) and sertraline (SER) on M. aeruginosa at physio-biochemical and molecular levels. Results showed that FLX and SER had strong growth inhibitory effects on M. aeruginosa with the 96-h median effect concentrations (EC50s) of 362 and 225 μg/L, respectively. Besides, the mixtures showed an additive effect on microalgal growth. Meanwhile, both individual SSRIs and their mixtures can inhibit photosynthetic pigment synthesis, cause oxidative damage, destroy cell membrane, and promote microcystin-leucine-arginine (MC-LR) synthesis and release. Moreover, the mixtures enhanced the damage to photosynthesis, antioxidant system, and cell membrane and facilitated MC-LR synthesis and release compared to individuals. Furthermore, transcriptomic analysis revealed that the dysregulation of the key genes related to transport, photosystem, protein synthesis, and non-ribosomal peptide structures was the fundamental molecular mechanism underlying the physio-biochemical responses of M. aeruginosa. These findings provide a better understanding of the toxicity mechanisms of SSRIs to microalgae and their risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Zhengxin Xie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yunfan Nie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingyue Dong
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meng Nie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
22
|
Luo L, Jiang X, Du Y, Dzakpasu M, Yang C, Guo W, Ngo HH, Wang XC. Impact of organic matter molecular weight on hexavalent chromium enrichment in green microalgae. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134304. [PMID: 38615650 DOI: 10.1016/j.jhazmat.2024.134304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.
Collapse
Affiliation(s)
- Li Luo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
| | - Xu Jiang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Yifei Du
- Yellow River Institute of Eco-Environmental Research, Henan Province, No.6, Changchun Road, Zhengzhou 450003, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Chao Yang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| |
Collapse
|
23
|
Tang CC, Hu YR, Zhang M, Chen SL, He ZW, Li ZH, Tian Y, Wang XC. Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123951. [PMID: 38604305 DOI: 10.1016/j.envpol.2024.123951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Ya-Ru Hu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Min Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Sheng-Long Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
24
|
Wang J, Tian Q, Zhou H, Kang J, Yu X, Qiu G, Shen L. Physiological regulation of microalgae under cadmium stress and response mechanisms of time-series analysis using metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170278. [PMID: 38262539 DOI: 10.1016/j.scitotenv.2024.170278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The investigation of heavy metal wastewater treatment utilizing microalgae adsorption has been extensively demonstrated. However, the response mechanism based on metabolomics to analyze the time-series changes of microalgae under Cd stress has not been described in detail. In this study, SEM/TEM demonstrated that Cd accumulated on the cell surface of microalgae and was bioconcentrated in the cytoplasm, vesicles, and chloroplasts. Carbonyl/quinone/ketone/carboxyl groups (OCO), membrane polysaccharides (OH), and phospholipids (PO) were involved in the interaction of Cd ions, and the chlorophyll content underwent a process of decreasing in the early stage (1.62 mg/g at 48 h) and recovering to the normal level in the late stage, and the contents of MDA, GSH, and SOD were all increased (29.7 nmol/g, 0.23 mg/g, and 30.01 u/106 cells) and then gradually returned to the steady state. The results of EPS content and fluorescent labeling showed that Cd induced the overexpression and synthesis of extracellular polysaccharides and proteins, which is one of the defense mechanisms participating in the reduction of cellular damage by complexed Cd. Metabolomics results indicated that the malate synthesis pathway was activated after Cd-20 h, and the microalgal cells began to shift the metabolic pathway to storage lipid or polysaccharide biosynthesis. In the Calvin cycle, the expression of D-Sedoheptulose 7-phosphate in Cd-20 h_vs_ck and Cd-72 h_vs_Cd-20 h firstly declined and then increased, and the photosynthesis system was suppressed at the beginning, and then gradually returned to normal to maintain the successful development of the dark reaction. The results of time series analysis revealed that the response of microalgae to Cd was categorized into fast response and slow response to regulate cell adsorption and growth metabolism.
Collapse
Affiliation(s)
- Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
25
|
Qiu X, Wang J, Xin F, Wang Y, Liu Z, Wei J, Sun X, Li P, Cao X, Zheng X. Compensatory growth of Microcystis aeruginosa after copper stress and the characteristics of algal extracellular organic matter (EOM). CHEMOSPHERE 2024; 352:141422. [PMID: 38341000 DOI: 10.1016/j.chemosphere.2024.141422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Cyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress. This study investigated the changes in growth conditions, photosynthetic capacity, and EOM characteristics of M. aeruginosa under copper stress. In all copper treatments, M. aeruginosa experienced a growth inhibition stage followed by a growth compensation stage. Notably, although chlorophyll-a fluorescence parameters dropped to zero immediately following high-intensity copper stress (0.2 and 0.5 mg/L), they later recovered to levels exceeding those of the control, indicating that photosystem II was not destroyed by copper stress. Copper stress influenced the dissolved organic carbon (DOC) content, polysaccharides, proteins, excitation-emission matrix spectra, hydrophobicity, and molecular weight (MW) distribution of EOM, with the effects varying based on stress intensity and growth stage. Principal component analysis revealed a correlation between the chlorophyll-a fluorescence parameters and EOM characteristics. These results imply that copper may not be an ideal algicide. Further research is needed to explore the dynamic response of EOM characteristics to environmental stress.
Collapse
Affiliation(s)
- Xiaopeng Qiu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Jiaqi Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Fengdan Xin
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yangtao Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Zijun Liu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jinli Wei
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xin Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Pengfei Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xin Cao
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xing Zheng
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| |
Collapse
|
26
|
Huang J, Su B, Fei X, Che J, Yao T, Zhang R, Yi S. Enhanced microalgal biomass and lipid production with simultaneous effective removal of Cd using algae-bacteria-activated carbon consortium added with organic carbon source. CHEMOSPHERE 2024; 350:141088. [PMID: 38163470 DOI: 10.1016/j.chemosphere.2023.141088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Recently, using microalgae to remediate heavy metal polluted water has been attained a huge attention. However, heavy metals are generally toxic to microalgae and consequently decrease biomass accumulation. To address this issue, the feasibility of adding exogenous glucose, employing algae-bacteria system and algae-bacteria-activated carbon consortium to enhance microalgae growth were evaluated. The result showed that Cd2+ removal efficiency was negatively correlated with microalgal specific growth rate. The exogenous glucose alleviated the heavy metal toxicity to algal cells and thus increased the microalgae growth rate. Among the different treatments, the algae-bacteria-activated carbon combination had the highest biomass concentration (1.15 g L-1) and lipid yield (334.97 mg L-1), which were respectively 3.03 times of biomass (0.38 g L-1) and 4.92 times of lipid yield (68.08 mg L-1) in the single microalgae treatment system. Additionally, this algae-bacteria-activated carbon consortium remained a high Cd2+ removal efficiency (91.61%). In all, the present study developed an approach that had a great potential in simultaneous heavy metal wastewater treatment and microalgal lipid production.
Collapse
Affiliation(s)
- Jianke Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China.
| | - Bocheng Su
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xingyi Fei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Jiayi Che
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ting Yao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ruizeng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Sanjiong Yi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| |
Collapse
|
27
|
Wen J, Gao F, Liu H, Wang J, Xiong T, Yi H, Zhou Y, Yu Q, Zhao S, Tang X. Metallic nanoparticles synthesized by algae: Synthetic route, action mechanism, and the environmental catalytic applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:111742. [DOI: 10.1016/j.jece.2023.111742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
29
|
Çelekli A, Alkan E. Effect of lead ions on biochemical behavior of Cladophora glomerata in sterilized and non-sterilized media. PROTOPLASMA 2024; 261:77-87. [PMID: 37479817 DOI: 10.1007/s00709-023-01882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Freshwater ecosystems are under peril globally due to anthropogenic influences, most notably metals. The present study aimed to evaluate the morphological and biochemical responses of Cladophora glomerata obtained from a freshwater stream to various lead concentrations (0.0, 7.5, 15, 30, and 60 mg/L Pb2+) in sterilized and non-sterilized media. Pigments, proline, malondialdehyde (MDA), total phenolic compounds (TPC), hydrogen peroxide, and protein content of the green alga were determined in response to various growing conditions. Pb2+ stress had a detrimental effect not only on biochemical components of C. glomerata but also on the algal cell's shape and surface structure. High Pb2+ concentrations significantly decreased chlorophyll-a (from 1350 μg/g in non-sterilized and 1340 μg/g in sterilized media for the control group to 1067 μg/g in non-sterilized and 1049 μg/g in sterile media at 60 mg/L Pb2+) and protein contents (from 34.47 mg/g for the sterilized and 35.89 mg/g for non-sterilized of the control to 24.82 mg/g for the sterilized and 26.18 mg/g for the non-sterilized at 60 mg/L Pb2+) of algal biomass but increased the concentrations of stress compounds (e.g., MDA, proline, and TPC). Variation in the macroalgal biomass composition was also indicated by FTIR analysis based on interactions between amino, amide, and anionic surface groups on the algal biomass and Pb2+ ions. Morphological and biochemical responses of C. glomerata reveal that non-sterile conditions encouraged the proliferation of this macroalga under Pb2+ exposure.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Elif Alkan
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310, Gaziantep, Turkey
| |
Collapse
|
30
|
Zhou XR, Wang R, Tang CC, Varrone C, He ZW, Li ZH, Wang XC. Advances, challenges, and prospects in microalgal-bacterial symbiosis system treating heavy metal wastewater. CHEMOSPHERE 2023; 345:140448. [PMID: 37839742 DOI: 10.1016/j.chemosphere.2023.140448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Heavy metal (HM) pollution, particularly in its ionic form in water bodies, is a chronic issue threatening environmental security and human health. The microalgal-bacterial symbiosis (MABS) system, as the basis of water ecosystems, has the potential to treat HM wastewater in a sustainable manner, with the advantages of environmental friendliness and carbon sequestration. However, the differences between laboratory studies and engineering practices, including the complexity of pollutant compositions and extreme environmental conditions, limit the applications of the MABS system. Additionally, the biomass from the MABS system containing HMs requires further disposal or recycling. This review summarized the recent advances of the MABS system treating HM wastewater, including key mechanisms, influence factors related to HM removal, and the tolerance threshold values of the MABS system to HM toxicity. Furthermore, the challenges and prospects of the MABS system in treating actual HM wastewater are analyzed and discussed, and suggestions for biochar preparation from the MABS biomass containing HMs are provided. This review provides a reference point for the MABS system treating HM wastewater and the corresponding challenges faced by future engineering practices.
Collapse
Affiliation(s)
- Xing-Rui Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Rong Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Fredrik Bajers Vej 7H 9220, Aalborg Ø, Denmark
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
31
|
Park K, Kwak IS. Growth retardation and suppression of ubiquitin-dependent catabolic processes in the brackish water clam Corbicula japonica in response to salinity changes and bioaccumulation of toxic heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122554. [PMID: 37717895 DOI: 10.1016/j.envpol.2023.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The brackish water clam (Corbicula japonica) is constantly exposed to stressful salinity gradients and high levels of heavy metals in the freshwater-saltwater interface of estuary environments, which are introduced from upstream regions and land. To identify the key molecular pathways involved in the response to salinity changes and heavy metal bioaccumulation, we obtained the transcriptomes of C. japonica inhabiting different salinities and heavy metal distributions in Gwangyang Bay (Korea) using RNA sequencing. Among a total of 404,486 assembled unigenes, 5534 differentially expressed genes were identified in C. japonica inhabiting different conditions, 1549 of which were significantly upregulated and 1355 were significantly downregulated. Correlation analyses revealed distinct gene expression patterns between the low and high conditions of salinity and heavy metal bioaccumulation. Functional annotation revealed significant downregulation of genes involved in "ubiquitin-dependent protein catabolic process," "tricarboxylic acid cycle," and "intracellular protein transport" in C. japonica from the high condition compared to the low condition. Transcription and translation pathways were significantly enriched in the high condition. Additionally, upon comparison of the low and high conditions by qRT-PCR and proteasome enzyme activity analyses, our findings demonstrated that environmental stress could suppress the ubiquitin-proteasome complex (UPC). Additionally, transcriptomic changes under high salinity stress conditions may be related to an increase in cellular protection by defense enzymes, which leads to more energy being required and a disruption of energy homeostasis. Ultimately, this could cause growth retardation in the clam C. japonica. In summary, this study provides the first evidence of UPC suppression induced by a combination of high salinity and heavy metal bioaccumulation stress in C. japonica, which could compromise the survival and growth of estuarine bivalves.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
32
|
Lin B, Tan B, Liu X, Li M, Peng H, Zhang Q, Chen J, Shen H, He Q. Elucidating the roles of Cr(VI)-Cu(II) Co-pollution in the stress of aniline degradation stress: Insights into metabolic pathways and functional genes. BIORESOURCE TECHNOLOGY 2023; 387:129613. [PMID: 37544539 DOI: 10.1016/j.biortech.2023.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In order to examine the impact of Cu(II)-Cr(VI) co-pollution in printing and dyeing wastewater on the aniline biodegradation system (ABS), loading experiments were conducted on ABS at varying concentrations of Cu(II)-Cr(VI). The synergistic stress imposed by Cu(II)-Cr(VI) accelerated the deterioration of the systems, with only the C2-3 (2 mg/L Cr(VI)-3 mg/L Cu(II)) sustaining stable operation for 42 days. However, its nitrogen removal performance remained significantly impaired, resulting in a total nitrogen (TN) removal rate below 40%. High-throughput sequencing analysis revealed a stronger correlation between Cr(VI) and microbial diversity compared to Cu(II). Metagenomic sequencing results demonstrated that Cu(II) emerged as the dominant factor influencing the distribution of dominant bacteria in C2-3, as well as its contribution to contaminant degradation. The complex co-pollution systems hindered aniline degradation and nitrogen metabolism through the combined bio-toxicity of heavy metals and aniline, thereby disrupting the transport chain within the systems matrix.
Collapse
Affiliation(s)
- Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd, Wuhan 430056, China
| | - Xiangyu Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China
| | - Haojin Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China.
| | - Jiajing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
33
|
Tarbajova V, Kolackova M, Chaloupsky P, Dobesova M, Capal P, Pilat Z, Samek O, Zemanek P, Svec P, Sterbova DS, Vaculovicova M, Richtera L, Pérez-de-Mora A, Adam V, Huska D. Physiological and transcriptome profiling of Chlorella sorokiniana: A study on azo dye wastewater decolorization. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132450. [PMID: 37708651 DOI: 10.1016/j.jhazmat.2023.132450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.
Collapse
Affiliation(s)
- Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Alfredo Pérez-de-Mora
- Department of Soil and Groundwater, TAUW GmbH, Landsbergerstr. 404, 81241 Munich, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
34
|
Thabet J, Elleuch J, Martínez F, Abdelkafi S, Hernández LE, Fendri I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. CHEMOSPHERE 2023; 338:139391. [PMID: 37414298 DOI: 10.1016/j.chemosphere.2023.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mercury (Hg) is a global pollutant that affects numerous marine aquatic ecosystems. We isolated Chlorococcum dorsiventrale Ch-UB5 microalga from coastal areas of Tunisia suffering from metal pollution and analyzed its tolerance to Hg. This strain accumulated substantial amounts of Hg and was able to remove up to 95% of added metal after 24 and 72 h in axenic cultures. Mercury led to lesser biomass growth, higher cell aggregation, significant inhibition of photochemical activity, and appearance of oxidative stress and altered redox enzymatic activities, with proliferation of starch granules and neutral lipids vesicles. Such changes matched the biomolecular profile observed using Fourier Transformed Infrared spectroscopy, with remarkable spectral changes corresponding to lipids, proteins and carbohydrates. C. dorsiventrale accumulated the chloroplastic heat shock protein HSP70B and the autophagy-related ATG8 protein, probably to counteract the toxic effects of Hg. However, long-term treatments (72 h) usually resulted in poorer physiological and metabolic responses, associated with acute stress. C. dorsiventrale has potential use for Hg phycoremediation in marine ecosystems, with the ability to accumulating energetic reserves that could be used for biofuel production, supporting the notion of using of C. dorsiventrale for sustainable green chemistry in parallel to metal removal.
Collapse
Affiliation(s)
- Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
35
|
Tibon J, Gomez-Delgado AI, Agüera A, Strohmeier T, Silva MS, Lundebye AK, Larsen MM, Sloth JJ, Amlund H, Sele V. Arsenic speciation in low-trophic marine food chain - An arsenic exposure study on microalgae (Diacronema lutheri) and blue mussels (Mytilus edulis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122176. [PMID: 37437757 DOI: 10.1016/j.envpol.2023.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Microalgae and blue mussels are known to accumulate undesirable substances from the environment, including arsenic (As). Microalgae can biotransform inorganic As (iAs) to organoarsenic species, which can be transferred to blue mussels. Knowledge on As uptake, biotransformation, and trophic transfer is important with regards to feed and food safety since As species have varying toxicities. In the current work, experiments were conducted in two parts: (1) exposure of the microalgae Diacronema lutheri to 5 and 10 μg/L As(V) in seawater for 4 days, and (2) dietary As exposure where blue mussels (Mytilus edulis L.) were fed with D. lutheri exposed to 5 and 10 μg/L As(V), or by aquatic exposure to 5 μg/L As(V) in seawater, for a total of 25 days. The results showed that D. lutheri can take up As from seawater and transform it to methylated As species and arsenosugars (AsSug). However, exposure to 10 μg/L As(V) resulted in accumulation of iAs in D. lutheri and lower production of methylated As species, which may suggest that detoxification mechanisms were overwhelmed. Blue mussels exposed to As via the diet and seawater showed no accumulation of As. Use of linear mixed models revealed that the blue mussels were gradually losing As instead, which may be due to As concentration differences in the mussels' natural environment and the experimental setup. Both D. lutheri and blue mussels contained notable proportions of simple methylated As species and AsSug. Arsenobetaine (AB) was not detected in D. lutheri but present in minor fraction in mussels. The findings suggest that low-trophic marine organisms mainly contain methylated As species and AsSug. The use of low-trophic marine organisms as feed ingredients requires further studies since AsSug are regarded as potentially toxic, which may introduce new risks to feed and food safety.
Collapse
Affiliation(s)
- Jojo Tibon
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Ana I Gomez-Delgado
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Antonio Agüera
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Tore Strohmeier
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Marta S Silva
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | | | - Martin M Larsen
- Aarhus University, Institute of Ecoscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Jens J Sloth
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Heidi Amlund
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway.
| |
Collapse
|
36
|
Cruces E, Barrios AC, Cahue YP, Januszewski B, Sepulveda P, Cubillos V, Perreault F. Toxicity mechanisms of graphene oxide and cadmium in Microcystis aeruginosa: evaluation of photosynthetic and oxidative responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106703. [PMID: 37748231 DOI: 10.1016/j.aquatox.2023.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The potential ecotoxicological hazard of gaphene oxide (GO) is not fully clarified for photoautotrophic organisms, especially when the interactions of GO with other environmental toxicants are considered. The objective of the current study was to better understand the mechanisms of toxicity of GO in the cyanobacteria Microcystis aeruginosa, and to identify its interactions with cadmium (Cd). The individual and combined contribution of both pollutants in cyanobacteria were evaluated after 96 hours of exposure to GO and/or Cd, using photosynthetic pigments, photosynthetic parameters, cellular indicators of peroxidative damage, viability, and intracellular ROS formation as indicators of toxicity. Interactions between GO and Cd were evaluated using Toxic Units based on the EC50 of each parameter evaluated. The results of this study indicate that single concentrations ≥ 5 µg mL-1 of GO and ≥ 0.1 µg mL-1 of Cd induced a decrease in cell biomass and a change in the photosynthetic parameters associated with primary productivity in M. aeruginosa. In the combined experiments, higher GO ratios (≥ 9.1 µg mL-1) in terms of Toxic Units decreased photochemical processes and cellular metabolism, increased oxidative stress, and ultimately affected the size of M. aeruginosa. Finally, the relationship between GO concentration, Cd concentration, and the adsorption capacity of GO with respect to the co-pollutant must be taken into account when assessing the environmental risk of GO in aquatic environments.
Collapse
Affiliation(s)
- Edgardo Cruces
- Centro de Investigaciones Costeras Universidad de Atacama, Avenida Copayapu 485, Copiapo, Chile
| | - Ana C Barrios
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Yaritza P Cahue
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Brielle Januszewski
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Pamela Sepulveda
- Centro de Nanotecnología Aplicada (CNAP), Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Victor Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile,Valdivia, Chile; Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile,Valdivia, Chile
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005; Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada.
| |
Collapse
|
37
|
García-Balboa C, Martínez-Alesón P, López-Rodas V, Costas EC, Díaz MF. An exploratory study on the possibilities of microalgal biotechnology to obtain the essential 6Li isotope as fusion fuel. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:141. [PMID: 37735438 PMCID: PMC10515020 DOI: 10.1186/s13068-023-02394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Future energy supply needs to overcome two challenges: environmental impact and dependence on geopolitically unstable countries. A very promising alternative is based on lithium, an element for batteries, and whose isotope 6Li will be essential in nuclear fusion. The objective of this research has been to determine if it is possible to achieve isotopic fractionation of lithium through a process mediated by microalgae. For this purpose, Chlamydomonas reinhardtii was selected and grown in presence of 5 mg/L of lithium. Results revealed that this specie survives at the selected lithium concentration, discriminates isotopes and preferentially capture 6Li (6δ = 10.029 ± 3.307) through a process independent of the cellular growth. Concomitate recovered up 0.206 mg/L of lithium along a process of 21 days. The result of this study lets to affirm that Chlamydomonas reinhardtii might be used to obtain lithium enriched in the lighter isotope.
Collapse
Affiliation(s)
- Camino García-Balboa
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Paloma Martínez-Alesón
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Victoria López-Rodas
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Eduardo Costas Costas
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Marta Fernández Díaz
- Spanish Research Centre for Energy, Environment and Technology (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
38
|
Liu XY, Hong Y, Liang M, Zhai QY. Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. BIORESOURCE TECHNOLOGY 2023:129382. [PMID: 37352991 DOI: 10.1016/j.biortech.2023.129382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The remediation effects of living Chlorella sp. HL on zinc and manganese in swine wastewater was investigated, and the responses of algal cells and the mechanism were explored. In the wastewater with Zn(II) concentration of 1.85 mg/L and Mn(II) of 1 or 6 mg/L, the highest removal of Zn(II) by Chlorella reached 86.72% and 97.16%, respectively, and the Mn(II) removal were 42.74% and 30.33%, respectively. The antioxidant system of cells was activated by a significant increase in superoxide dismutase and catalase enzyme activities and a significant decrease in malondialdehyde in the mixed system compared to the single system. The presence of Mn(II) could positively regulate the differentially expressed genes related to catalytic activity and metabolic processes between the single Zn system and the mixed systems, reducing the stress of Zn(II) on Chlorella and more favorable to chlorophyll synthesis. The heavy metal-containing microalgal biomass obtained has the potential as feed additives.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Man Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yu Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
39
|
Wang X, Dai Z, Zhao H, Hu L, Dahlgren RA, Xu J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121548. [PMID: 37011779 DOI: 10.1016/j.envpol.2023.121548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory. Given the stressful soil environment resulting from extremely high heavy metal concentrations and low nutrients, beta diversity of protist increased, but that of bacteria decreased, at high versus low pollution sites. Additionally, the bacteria community showed low functional diversity and redundancy at the highly polluted sites. We further identified indicative genus and "generalists" in response to heavy metal pollution. Predatory protists in Cercozoa were the most sensitive protist taxa with respect to heavy metal pollution, whereas photosynthetic protists showed a tolerance for metal pollution and nutrient deficiency. The complexity of ecological networks increased, but the communication among the modules disappeared with increasing metal pollution levels. Subnetworks of tolerant bacteria displaying functional versatility (Blastococcus, Agromyces and Opitutus) and photosynthetic protists (microalgae) became more complex with increasing metal pollution levels, indicating their potential for use in bioremediation and restoration of abandoned industrial sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Nagar N, Saxena H, Pathak A, Mishra A, Poluri KM. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. CHEMOSPHERE 2023; 332:138877. [PMID: 37164191 DOI: 10.1016/j.chemosphere.2023.138877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
41
|
Chakravorty M, Nanda M, Bisht B, Sharma R, Kumar S, Mishra A, Vlaskin MS, Chauhan PK, Kumar V. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106555. [PMID: 37196506 DOI: 10.1016/j.aquatox.2023.106555] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
The proficiency of microalgae to resist heavy metals has potential to be beneficial in resolving various environmental challenges. Global situations such as the need for cost-effective and ecological ways of remediation of contaminated water and for the development of bioenergy sources could employ microalgae. In a medium with the presence of heavy metals, microalgae utilize different mechanisms to uptake the metal and further detoxify it. Biosorption and the next process of bioaccumulation are two such major steps and they also include the assistance of different transporters at different stages of heavy metal tolerance. This capability has also proved to be efficient in eradicating many heavy metals like Chromium, Copper, Lead, Arsenic, Mercury, Nickel and Cadmium from the environment they are present in. This indicates the possibility of the application of microalgae as a biological way of remediating contaminated water. Heavy metal resistance quality also allows various microalgal species to contribute in the generation of biofuels like biodiesel and biohydrogen. Many research works have also explored the capacity of microalgae in nanotechnology for the formation of nanoparticles due to its relevant characteristics. Various studies have also revealed that biochar deduced from microalgae or a combination of biochar and microalgae can have wide applications specially in deprivation of heavy metals from an environment. This review focuses on the strategies adopted by microalgae, various transporters involved in the process of tolerating heavy metals and the applications where microalgae can participate owing to its ability to resist metals.
Collapse
Affiliation(s)
- Manami Chakravorty
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Bhawna Bisht
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Rohit Sharma
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Sanjay Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russian Federation
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, HP, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
42
|
Tao Y, He M, Chen B, Ruan G, Xu P, Xia Y, Song G, Bi Y, Hu B. Evaluation of Cd 2+ stress on Synechocystis sp. PCC6803 based on single-cell elemental accumulation and algal toxicological response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106499. [PMID: 36965429 DOI: 10.1016/j.aquatox.2023.106499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
With the development of single cell analysis techniques, the concept of precision toxicology has been proposed in recent years. Due to the heterogeneity of cells, we need to perform toxicological assessments on individual cells. Microalgae, one kind of important primary producers, play as a major pathway by which heavy metals enter the food chain and thus accumulate/transfer to higher trophic levels. Herein, the biosorption of Cd (Ex-Cd) and bioaccumulation of Cd (In-Cd) for Synechocystis sp. PCC 6803 were investigated by online 3D droplet microfluidic device combined with inductively coupled plasma mass spectrometry detection. Meanwhile, the algal toxicological responses of the algae cell to Cd2+ exposure under different concentration (50, 100, and 150 μg L - 1) and time (15 min, 24, 48 and 96 h) were studied. Combining single-cell analysis with toxicological indicators, the toxicity mechanism of Cd2+to algal was discussed. The single cell analysis results revealed heterogeneity in cellular uptake of Cd2+. The proportion of Cd-containing cells and Cd content in single algal cells all reached the maximum at 24 h. The uptake of Cd2+ occurred within 15 min under all tested exposure concentrations and a large part of Cd2+ were adsorbed on the algal cells surface. The Pearson correlation analysis showed that cell density, chlorophyll a and carotenoids were significantly negatively correlated with Cd accumulation, whereas ROS level and SOD activity were significantly positively correlated with Cd accumulation. It suggested that Cd2+accumulated intracellular would show toxic effects on the algal cells and oxidative stress is the main mechanism of Cd toxicity to algal cells. This work promotes our understanding of the toxicological responses of microalgae under Cd stress at single cells level.
Collapse
Affiliation(s)
- Yao Tao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gang Ruan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yixue Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaofei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
43
|
Song X, Kong F, Liu BF, Song Q, Ren NQ, Ren HY. Thallium-mediated NO signaling induced lipid accumulation in microalgae and its role in heavy metal bioremediation. WATER RESEARCH 2023; 239:120027. [PMID: 37167853 DOI: 10.1016/j.watres.2023.120027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Thallium (Tl+) is a trace metal with extreme toxicity and is highly soluble in water, posing a great risk to ecological and human safety. This work aimed to investigate the role played by Tl+ in regulating lipid accumulation in microalgae and the removal efficiency of Tl+. The effect of Tl+ on the cell growth, lipid production and Tl+ removal efficiency of Parachlorella kessleri R-3 was studied. Low concentrations of Tl+ had no significant effect on the biomass of microalgae. When the Tl+ concentration exceeded 5 μg L-1, the biomass of microalgae showed significant decrease. The highest lipid content of 63.65% and lipid productivity of 334.55 mg L-1 d-1 were obtained in microalgae treated with 10 and 5 μg L-1 Tl+, respectively. Microalgae can efficiently remove Tl+ and the Tl+ removal efficiency can reach 100% at Tl+ concentrations of 0-25 μg L-1. The maximum nitric oxide (NO) level of 470.48 fluorescence intensity (1 × 106 cells)-1 and glutathione (GSH) content of 343.51 nmol g-1 (fresh alga) were obtained under 5 μg L-1 Tl+ stress conditions. Furthermore, the exogenous donor sodium nitroprusside (SNP) supplemented with NO was induced in microalgae to obtain a high lipid content (59.99%), lipid productivity (397.99 mg L-1 d-1) and GSH content (430.22 nmol g-1 (fresh alga)). The corresponding analysis results indicated that NO could participate in the signal transduction pathway through modulation of reactive oxygen species (ROS) signaling to activate the antioxidant system by increasing the GSH content to eliminate oxidative damage induced by Tl+ stress. In addition, NO regulation of ROS signaling may enhance transcription factors associated with lipid synthesis, which stimulates the expression of genes related to lipid synthesis, leading to increased lipid biosynthesis in microalgae. Moreover, it was found that the change in Tl+ had little effect on the fatty acid components and biodiesel properties. This study showed that Tl+ stress can promote lipid accumulation in microalgae for biodiesel production and simultaneously effectively remove Tl+, which provided evidence that NO was involved in signal transduction and antioxidant defense, and improved the understanding of the interrelation between NO and ROS to regulate lipid accumulation in microalgae.
Collapse
Affiliation(s)
- Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
44
|
Quevedo-Ospina C, Arroyave C, Peñuela-Vásquez M, Villegas A. Effect of mercury in the influx and efflux of nutrients in the microalga Desmodesmus armatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106496. [PMID: 36941145 DOI: 10.1016/j.aquatox.2023.106496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities such as mining and the metallurgical industry are the main sources of mercury contamination. Mercury is one of the most serious environmental problems in the world. This study aimed to investigate, using experimental kinetic data, the effect of different inorganic mercury (Hg2+) concentrations on the response of microalga Desmodesmus armatus stress. Cell growth, nutrients uptake and mercury ions from the extracellular medium, and oxygen production were determined. A Compartment Structured Model allowed elucidating the phenomena of transmembrane transport, including influx and efflux of nutrients, metal ions and bioadsorption of metal ions on the cell wall, which are difficult to determine experimentally. This model was able to explain two tolerance mechanisms against mercury, the first one was the adsorption of Hg2+ions onto the cell wall and the second was the efflux of mercury ions. The model predicted a competition between internalization and adsorption with a maximum tolerable concentration of 5.29 mg/L of HgCl2. The kinetic data and the model showed that mercury causes physiological changes in the cell, which allow the microalga to adapt to these new conditions to counteract the toxic effects. For this reason, D. armatus can be considered as a Hg-tolerant microalga. This tolerance capacity is associated with the activation of the efflux as a detoxification mechanism that facilitates the maintenance of the osmotic balance for all the modeled chemical species. Furthermore, the accumulation of mercury in the cell membrane suggests the presence of thiol groups associated with its internalization, leading to the conclusion that metabolically active tolerance mechanisms are dominant over passive ones.
Collapse
Affiliation(s)
- Catalina Quevedo-Ospina
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Catalina Arroyave
- GRINBIO Research Group, Department of Environmental Engineering, Universidad de Medellín UdeM, Carrera 87 #30-65, Medellín 050026, Colombia
| | - Mariana Peñuela-Vásquez
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Adriana Villegas
- TERMOMEC Research Group, Faculty of Engineering, Universidad Cooperativa de Colombia UCC, Medellín 050012, Colombia
| |
Collapse
|
45
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
46
|
Shi Z, Guo M, Du H, Yang K, Liu X, Xu H. Investigation of cytotoxic cadmium in aquatic green algae by synchrotron radiation-based Fourier transform infrared spectroscopy: Role of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161870. [PMID: 36731571 DOI: 10.1016/j.scitotenv.2023.161870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal Cd can cause severe toxicity on aquatic algae, but there are few studies on the cytotoxicity of heavy metal on algae based on synchrotron radiation technology. In this study, synchrotron radiation-based Fourier transform infrared spectromicroscopy (SR-FTIR) was used to characterize in vivo the toxic effects of Cd on Cosmarium sp. cells, emphasizing the influence of dissolved organic matter (DOM) on Cd toxicity. Results showed that, in the absence of DOM, obvious growth inhibition, cell volume reduction, and photosynthesis disruption could be observed with increasing Cd concentrations (0-500 μg/L). Based on the SR-FTIR imaging and functional group quantification, it was shown that the biosynthesis of biomolecules such as proteins, lipids, and carbohydrates was inhibited in algal cells. However, the addition of DOM caused significant heterogeneities in biomacromolecule biosynthesis that an increased biosynthesis of carbohydrates and structural lipids but an inhibited biosynthesis of proteins and storage lipids were observed. Furthermore, the correlation analysis and principal component analysis showed a good correlation between v(C-OH)/Amide II and biochemical parameters, indicating that changes of carbohydrates could be used as the biomarker to indicate the cytotoxicity of heavy metals to algal cells. These findings provide insight into the mechanisms of heavy metal cytotoxicity to aquatic algae and systematic cytotoxicity assessment under various aquatic conditions.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China.
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keli Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Xin Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Huacheng Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
47
|
Zhang B, Tang Y, Yu F, Peng Z, Yao S, Deng X, Long H, Wang X, Huang K. Translatomics and physiological analyses of the detoxification mechanism of green alga Chlamydomonas reinhardtii to cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130990. [PMID: 36860060 DOI: 10.1016/j.jhazmat.2023.130990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is one of the most toxic pollutants found in aquatic ecosystems. Although gene expression in algae exposed to Cd has been studied at the transcriptional level, little is known about Cd impacts at the translational level. Ribosome profiling is a novel translatomics method that can directly monitor RNA translation in vivo. Here, we analyzed the translatome of the green alga Chlamydomonas reinhardtii following treatment with Cd to identify the cellular and physiological responses to Cd stress. Interestingly, we found that the cell morphology and cell wall structure were altered, and starch and high-electron-density particles accumulated in the cytoplasm. Several ATP-binding cassette transporters that responded to Cd exposure were identified. Redox homeostasis was adjusted to adapt to Cd toxicity, and GDP-L-galactose phosphorylase (VTC2), glutathione peroxidase (GPX5), and ascorbate were found to play important roles in maintaining reactive oxygen species homeostasis. Moreover, we found that the key enzyme of flavonoid metabolism, i.e., hydroxyisoflavone reductase (IFR1), is also involved in the detoxification of Cd. Thus, in this study, translatome and physiological analyses provided a complete picture of the molecular mechanisms of green algae cell responses to Cd.
Collapse
Affiliation(s)
- Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Fei Yu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Zhao Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Sheng Yao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| |
Collapse
|
48
|
Pan X, Yue Z, She Z, He X, Wang S, Chuai X, Wang J. Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province. Microorganisms 2023; 11:microorganisms11040979. [PMID: 37110402 PMCID: PMC10142529 DOI: 10.3390/microorganisms11040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The stratified acidic pit lake formed by the confluence of acid mine drainage has a unique ecological niche and is a model system for extreme microbial studies. Eukaryotes are a component of the AMD community, with the main members including microalgae, fungi, and a small number of protozoa. In this study, we analyzed the structural traits and interactions of eukaryotes (primarily fungi and microalgae) in acidic pit lakes subjected to environmental gradients. Based on the findings, microalgae and fungi were found to dominate different water layers. Specifically, Chlorophyta showed dominance in the well-lit aerobic surface layer, whereas Basidiomycota was more abundant in the dark anoxic lower layer. Co-occurrence network analysis showed that reciprocal relationships between fungi and microalgae were prevalent in extremely acidic environments. Highly connected taxa within this network were Chlamydomonadaceae, Sporidiobolaceae, Filobasidiaceae, and unclassified Eukaryotes. Redundancy analysis (RDA) and random forest models revealed that Chlorophyta and Basidiomycota responded strongly to environmental gradients. Further analysis indicated that eukaryotic community structure was mainly determined by nutrient and metal concentrations. This study investigates the potential symbiosis between fungi and microalgae in the acidic pit lake, providing valuable insights for future eukaryotic biodiversity studies on AMD remediation.
Collapse
Affiliation(s)
- Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Xiao He
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| |
Collapse
|
49
|
Kan C, Zhao Y, Sun KM, Tang X, Zhao Y. The inhibition and recovery mechanisms of the diatom Phaeodactylum tricornutum in response to high light stress - A study combining physiological and transcriptional analysis. JOURNAL OF PHYCOLOGY 2023; 59:418-431. [PMID: 36798977 DOI: 10.1111/jpy.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
By combining physiological/biochemical and transcriptional analysis, the inhibition and recovery mechanisms of Phaeodactylum tricornutum in response to extreme high light stress (1300 μmol photons · m-2 · s-1 ) were elucidated. The population growth was inhibited in the first 24 h and started to recover from 48 h. At 24 h, photoinhibition was exhibited as the changes of PSII photosynthetic parameters and decrease in cellular pigments, corresponding to the downregulation of genes encoding light-harvesting complex and pigments synthesis. Changes in those photosynthetic parameters and genes were kept until 96 h, indicating that the decrease of light absorption abilities might be one strategy for photoacclimation. In the meanwhile, we observed elevated cellular ROS levels, dead cells proportions, and upregulation of genes encoding antioxidant materials and proteasome pathway at 24 h. Those stress-related parameters and genes recovered to the controls at 96 h, indicating a stable intracellular environment after photoacclimation. Finally, genes involving carbon metabolisms were upregulated from 24 to 96 h, which ensured the energy supply for keeping high base and nucleotide excision repair abilities, leading to the recovery of cell cycle progression. We concluded that P. tricornutum could overcome photoinhibition by decreasing light-harvesting abilities, enhancing carbon metabolisms, activating anti-oxidative functions, and elevating repair abilities. The parameters of light harvesting, carbon metabolisms, and repair processes were responsible for the recovery phase, which could be considered long-term adaptive strategies for diatoms under high light stress.
Collapse
Affiliation(s)
- Chengxiang Kan
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
| | - Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
| | - Kai-Ming Sun
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
50
|
Bui QTN, Ki JS. Two novel superoxide dismutase genes (CuZnSOD and MnSOD) in the toxic marine dinoflagellate Alexandrium pacificum and their differential responses to metal stressors. CHEMOSPHERE 2023; 313:137532. [PMID: 36509186 DOI: 10.1016/j.chemosphere.2022.137532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Superoxide dismutase (SOD) is an important antioxidant enzyme that is involved in the first line of defense against reactive oxygen species (ROS) within cells. Herein, we determined two novel CuZnSOD and MnSOD genes from the toxic marine dinoflagellate Alexandrium pacificum (designated as ApCuZnSOD and ApMnSOD) and characterized their structural features and phylogenetic affiliations. In addition, we examined the relative gene expression and ROS levels following exposure to heavy metals. ApCuZnSOD encoded 358 amino acids (aa) with two CuZnSOD-conserved domains. ApMnSOD encoded 203 aa that contained a mitochondrial-targeting signal and a MnSOD signature motif but missed an N-terminal domain. Phylogenetic trees showed that ApCuZnSOD clustered with other dinoflagellates, whereas ApMnSOD formed a clade with green algae and plants. Based on the 72-h median effective concentration (EC50), A. pacificum showed toxic responses in the order of Cu, Ni, Cr, Zn, Cd, and Pb. SOD expression levels dramatically increased after 6 h of Pb (≥6.5 times) and 48 h of Cu treatment (≥3.9 times). These results are consistent with the significant increase in ROS production in the A. pacificum exposed to Pb and Cu. These suggest that the two ApSODs are involved in the antioxidant defense system but respond differentially to individual metals.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|