1
|
Poinsignon L, Lefrère B, Ben Azzouz A, Chissey A, Colombel J, Djelidi R, Ferecatu I, Fournier T, Beaudeux JL, Lespes G, Zerrad-Saadi A. Exposure of the human placental primary cells to nanoplastics induces cytotoxic effects, an inflammatory response and endocrine disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137713. [PMID: 40037196 DOI: 10.1016/j.jhazmat.2025.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Humans are inevitably exposed to micro- and nanoplastics (MP/NP). These particles are able to cross the biological barriers and enter the bloodstream with levels close to 1.6 µg mL-1; MP/NP have been detected in placentas and meconium of newborns. However, the consequences of this exposure on the integrity, development and functions of the human placenta are not documented. In this study, trophoblasts purified from human placentas at term were exposed for 48 h, to two different sizes of polystyrene nanoparticles (PS-NP) of 20 nm (PS-NP20) and 100 nm (PS-NP100), at environmental and supra-environmental concentrations (0.01-100 µg mL-1). Cell viability, oxidative stress, mitochondrial dynamics, lysosomal degradation processes, autophagy, inflammation/oxidative responses and consequences for placental endocrine and angiogenic functions were assessed. PS-NP size determines their internalization rate and their behavior in trophoblasts. Indeed, PS-NP20 are more rapidly translocated, and accumulated in lysosomes as shown by confocal and TEM imaging. They induce higher cytotoxicity than PS-NP100, as early as 1 µg mL-1 (p < 0.05). In addition, they induce a pro-inflammatory cytokines response: IL-1ß is induced from 0.01 µg mL-1 for the both nanoparticle sizes; IL-6, and TNF-α are overexpressed at 100 µg mL-1 only for PS-NP20 (p < 0.05). For the first time, we report that PS-NP disrupt endocrine function, as observed by a decreased hCG release at concentrations found in human blood. This work, provides an in-depth in vitro assessment of the effects of PS-NP on the human placenta.
Collapse
Affiliation(s)
- Léa Poinsignon
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Bertrand Lefrère
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Amani Ben Azzouz
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Audrey Chissey
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Juliette Colombel
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Raja Djelidi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Ioana Ferecatu
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Thierry Fournier
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Jean-Louis Beaudeux
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Gaëtane Lespes
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Amal Zerrad-Saadi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France.
| |
Collapse
|
2
|
Man S, Liu X, Presser V, Dong S, Li Z, Qiu L, Zhao Z, Wang H, Yan Q. Degradation of microplastics by electrocoagulation technology: Combination oxidation and flocculation effects. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138379. [PMID: 40273854 DOI: 10.1016/j.jhazmat.2025.138379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Electrocoagulation (EC) technology features a promising prospect for coping with the formidable microplastics (MPs) pollution challenge, albeit the underlying abatement mechanism still needs to be further clarified. Accordingly, in this work, we evaluated the removal performance by EC for four typical MPs, including polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP), and polyethylene (PE). The Fourier transform infrared spectroscopies of MPs confirmed the presence of electrochemical oxidation during EC process, owing to its hydroxyl radical generation ability as demonstrated by the detected fluorescence spectroscopies and electron paramagnetic resonance results, which has been rarely reported in other works. Specifically, 21.2 ± 0.8 %, 10.8 ± 1.8 %, 15.6 ± 1.6 %, and 7.6 ± 1.4 % abatement efficiency for PVC, PS, PP, and PE, respectively, originated from the oxidation effect, and these values for flocculation effect were 77.2 ± 0.8 %, 74.0 ± 1.6 %, 70.8 ± 1.2 %, and 69.2 ± 1.2 %, successively. Many factors influence these differences, especially the MPs' hydrophilicity, as it facilitates the mass transfer efficiency between MPs (like PVC and PP) and the generated flocs or radicals. To lay a foundation for practical application, we also optimized the operation parameters, demonstrating the wise choice of pH 7 to maintain a balance between the oxidation and flocculation effect. Therefore, we believe our work provides a good reference for promoting MPs abatement efficiency and elucidating the corresponding mechanism, especially the contribution of the oxidation part by EC.
Collapse
Affiliation(s)
- Shuaishuai Man
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Changzhou Cheff Environmental Protection Technology Co.Ltd, Changzhou 213000, PR China; WELLE Environmental Group Co., Ltd, Changzhou 213000, PR China
| | - Xinyu Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Department of Materials Science and Engineering, Saarland University, Saarbrücken 66123, Germany; saarene - Saarland Center for Energy Materials and Sustainability, Saarland University, Campus D4 2, Saarbrücken 66123, Germany
| | - Shaohan Dong
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Ziyang Li
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Liwei Qiu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Changzhou Cheff Environmental Protection Technology Co.Ltd, Changzhou 213000, PR China
| | - Zhenzhen Zhao
- WELLE Environmental Group Co., Ltd, Changzhou 213000, PR China
| | - Han Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Qun Yan
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Chen Z, Yin X, Geng YQ, Gao R, Zhang Y, Ma Y, Mu X, Chen X, Li F, He J. Subchronic Exposure to Polystyrene Nanoplastics Disrupts Placental Development and Calcium Homeostasis: Insights from In Vivo and In Vitro Models. ACS NANO 2025; 19:13825-13841. [PMID: 40171975 DOI: 10.1021/acsnano.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nanoplastics have recently emerged as persistent pollutants of global concern that pose substantial risks to human health. However, the long-term adverse effects of nanoplastics on the female reproductive system remain unclear. Polystyrene nanoplastics (PS-NPs; 50 nm diameter) were selected as representative nanosized plastic particles to investigate the potential effects of subchronic prenatal and gestational exposure via drinking water on placental development in ICR (CD-1) mice. Maternal exposure to 10 mg/L PS-NPs induced an increase in fetal resorption rate and significantly increased fetal weight. Further observation of the placental morphology showed that PS-NPs exposure led to an aberrant placental structure and damaged the trophoblast cells. At the cellular level, PS-NPs exposure promoted the proliferation, migration, and invasion of HTR-8/SVneo cells. Mechanistically, transcriptomic and proteomic analyses revealed that PS-NPs triggered placental calcium disturbances and upregulated the Stam2 expression in mice. STAM2 induced by PS-NPs mediates the disruption of trophoblastic calcium homeostasis and regulates cell functions by disturbing the lysosomal degradation of the calcium channel protein IP3R3 and promoting intracellular calcium inflow by increasing the level of TRPV6 in HTR-8/SVneo cells. Therefore, our results indicated that trophoblastic calcium dyshomeostasis is the main mechanism by which subchronic PS-NPs exposure induces abnormal placental development. These findings reveal a link between subchronic PS-NPs exposure and placental damage and elucidate the underlying molecular mechanism, providing evidence for environmental triggers of adverse pregnancy and highlighting the risk of plastic products to pregnant women.
Collapse
Affiliation(s)
- Zhuxiu Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xin Yin
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yan-Qing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yidan Ma
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, P. R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
4
|
Zhang Y, Hales BF, Robaire B. Exposure to polystyrene nanoplastics induces lysosomal enlargement and lipid droplet accumulation in KGN human ovarian granulosa cells. Arch Toxicol 2025; 99:1445-1454. [PMID: 39900702 DOI: 10.1007/s00204-025-03969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Given the ubiquitous presence of plastic products in daily life, human exposure to nanoplastics (NPs) is inevitable. Previous studies have suggested that exposure to polystyrene nanoplastics (PSNPs) may contribute to reproductive disorders; however, the underlying mechanism remains elusive. The goal of this study was to investigate the impact of PSNPs on KGN human ovarian granulosa cells. KGN cells were exposed to varying concentrations of PSNPs (0-400 μg/mL) for 48 h; alterations in cell survival and morphology were assessed to elucidate potential toxic effects. PSNPs were shown to enter KGN cells. Exposure to PSNPs did not induce significant changes in cytotoxicity, Calcein intensity, or active mitochondria levels in KGN cells. However, PSNP exposure did induce a dose-dependent increase in cytoplasmic vacuoles and an increase in total lysosome area and in the numbers of lipid droplets in KGN cells. Our findings provide compelling evidence that PSNPs can penetrate cell cytoplasm and induce toxicity, resulting in an elevation in the numbers of lysosomes and lipid droplets. This may represent one mechanism by which PSNPs exert damage on the reproductive system.
Collapse
Affiliation(s)
- Yunbo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
5
|
Urrutia-Pereira M, Camargos PA, Solé D. Microplastics: the hidden danger. J Pediatr (Rio J) 2025; 101 Suppl 1:S10-S17. [PMID: 39551086 PMCID: PMC11962546 DOI: 10.1016/j.jped.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVE To assess the impact of microplastics/nanoplastics (MiP/NP) on human health. DATA SOURCE The authors conducted a narrative review of articles published in English, Portuguese, French and Spanish in the last decade in the following databases: PubMed, Google Scholar, EMBASE and SciELO. The keywords used in this search were: microplastics OR nanoplastics OR marine litter OR toxicology OR additives AND human health OR children OR adults. DATA SYNTHESIS MiP is a group of emerging contaminants that have attracted increasing scientific interest and attention from society in the last decade due to their ubiquitous detection in all environments. Humans can be mainly exposed to MiP and NP orally, by inhalation, by dermal contact, as well as through systemic routes and cannot be neglected, especially in young children. The possible toxic effects in different systems are due to plastic particles, often combined with leachable additives and adsorbed contaminants. CONCLUSIONS Unless the plastics value chain is transformed in the next two decades, the risks to species, marine ecosystems, climate, health, economies and communities will become unmanageable. However, alongside these risks lie unique opportunities to lead the transition to a more sustainable world.
Collapse
Affiliation(s)
| | - Paulo Augusto Camargos
- Universidade Federal de Minas Gerais (UFMG), Departamento de Pediatria, Belo Horizonte, MG, Brazil
| | - Dirceu Solé
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Departamento de Pediatria, Disciplina de Alergia, Imunologia Clínica e Reumatologia, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
7
|
Nacka-Aleksić M, Vilotić A, Pirković A, Živanović M, Ljujić B, Jovanović Krivokuća M. Nano-scale dangers: Unravelling the impact of nanoplastics on human trophoblast invasion. Chem Biol Interact 2025; 405:111317. [PMID: 39580066 DOI: 10.1016/j.cbi.2024.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Utilizing HTR-8/SVneo cells for in vitro modeling of human trophoblast invasion, we examined how different concentrations of 40 nm and 200 nm carboxylated polystyrene particles affect early-pregnancy trophoblast phenotype and function. We focused on migration and invasion, as critical processes in placental development. Our findings revealed disruptions in extravillous trophoblast mesenchymal phenotype and invasive behavior, following acute exposure to a higher concentration of the smaller sized particles. Specifically, differential uptake of the particles by trophoblast cells was observed, as well as cytotoxicity and concentration-dependent DNA damage after 72 h of exposure. In addition, a 24 h exposure to 100 μg/ml of 40 nm particles correlated with downregulated protein expression of α5 and α1 integrin subunits, N-cadherin, matrix metalloproteinase-2 and macrophage migration inhibitory factor, alongside upregulated protein expression of the epithelial marker E-cadherin. These changes likely contributed to the diminished migration of HTR-8/SVneo cells and the invasive potential of HTR-8/SVneo spheroids. Understanding these interactions is paramount for assessing the broader implications of nanoplastics on reproductive outcomes and maternal-fetal well-being and informing public health measures.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia.
| | - Aleksandra Vilotić
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia
| | - Andrea Pirković
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia
| | - Marko Živanović
- University of Kragujevac, Institute of Information Technologies, Laboratory for Bioengineering, Kragujevac, Serbia
| | - Biljana Ljujić
- University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Kragujevac, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for Application of Nuclear Energy (INEP), Department for Biology of Reproduction, Belgrade, Serbia
| |
Collapse
|
8
|
Han M, Liang J, Wang K, Si Q, Zhu C, Zhao Y, Khan NAK, Abdullah ALB, Shau-Hwai AT, Li YM, Zhou Z, Jiang C, Liao J, Tay YJ, Qin W, Jiang Q. Integrin A5B1-mediated endocytosis of polystyrene nanoplastics: Implications for human lung disease and therapeutic targets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176017. [PMID: 39236815 DOI: 10.1016/j.scitotenv.2024.176017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5β1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5β1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5β1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.
Collapse
Affiliation(s)
- Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu 211100, China
| | - Chenxi Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yunlong Zhao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | | | | | | | - Yi Ming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, China
| | - Zihan Zhou
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chunqi Jiang
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Jiayuan Liao
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210017, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
9
|
de Sousa AKA, Pires KSN, Cavalcante IH, Cavalcante ICL, Santos JD, Queiroz MIC, Leite ACR, Crispim AC, da Rocha Junior ER, Aquino TM, Weingrill RB, Urschitz J, Ospina-Prieto S, Borbely AU. Polystyrene microplastics exposition on human placental explants induces time-dependent cytotoxicity, oxidative stress and metabolic alterations. Front Endocrinol (Lausanne) 2024; 15:1481014. [PMID: 39634179 PMCID: PMC11614646 DOI: 10.3389/fendo.2024.1481014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Microplastics (MPs) are environmental pollutants that pose potential risks to living organisms. MPs have been shown to accumulate in human organs, including the placenta. In this study, we investigated the biochemical impact of 5 μm polystyrene microplastics (PS-MPs) on term placental chorionic villi explants, focusing on cytotoxicity, oxidative stress, metabolic changes, and the potential for MPs to cross the placental barrier. Methods Term placental chorionic explants were cultured for 24 hours with varying concentrations of PS-MPs, with MTT assays used to determine the appropriate concentration for further analysis. Cytotoxicity was assessed using the lactate dehydrogenase (LDH) release assay over a period of up to 72 hours. Reactive oxygen species formation and antioxidant activity were evaluated using biochemical assays. Metabolomic profiling was performed using proton nuclear magnetic resonance (1H NMR). Results Placental explants exposed to 100 μg/mL of PS-MPs showed a significant increase in cytotoxicity over time (p < 0.01). Levels of mitochondrial and total superoxide anion (p < 0.01 and p < 0.05, respectively) and hydrogen peroxide (p < 0.001) were significantly elevated. PS-MP exposure resulted in a reduction in total sulfhydryl content (p < 0.05) and the activities of antioxidant enzymes superoxide dismutase (p < 0.01) and catalase (p < 0.05), while glutathione peroxidase activity increased (p < 0.05), and the oxidized/reduced glutathione ratio decreased (p < 0.05). Markers of oxidative damage, such as malondialdehyde and carbonylated proteins, also increased significantly (p < 0.001 and p < 0.01, respectively), confirming oxidative stress. Metabolomic analysis revealed significant differences between control and PS-MP-exposed groups, with reduced levels of alanine, formate, glutaric acid, and maltotriose after PS-MP exposure. Discussion This study demonstrates that high concentrations of PS-MPs induce time-dependent cytotoxicity, oxidative stress, and alterations in the TCA cycle, as well as in folate, amino acid, and energy metabolism. These findings highlight the need for further research to clarify the full impact of MP contamination on pregnancy and its implications for future generations.
Collapse
Affiliation(s)
| | - Keyla Silva Nobre Pires
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Isadora Hart Cavalcante
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | | | - Julia Domingues Santos
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | | | - Ana Catarina Rezende Leite
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Alessandre Carmo Crispim
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Edmilson Rodrigues da Rocha Junior
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Thiago Mendonça Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Brazil
| | - Rodrigo Barbano Weingrill
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Stephanie Ospina-Prieto
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Alexandre Urban Borbely
- Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| |
Collapse
|
10
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
11
|
Casella C, Ballaz SJ. Genotoxic and neurotoxic potential of intracellular nanoplastics: A review. J Appl Toxicol 2024; 44:1657-1678. [PMID: 38494651 DOI: 10.1002/jat.4598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Plastic waste comprises polymers of different chemicals that disintegrate into nanoplastic particles (NPLs) of 1-100-nm size, thereby littering the environment and posing a threat to wildlife and human health. Research on NPL contamination has up to now focused on the ecotoxicology effects of the pollution rather than the health risks. This review aimed to speculate about the possible properties of carcinogenic and neurotoxic NPL as pollutants. Given their low-dimensional size and high surface size ratio, NPLs can easily penetrate biological membranes to cause functional and structural damage in cells. Once inside the cell, NPLs can interrupt the autophagy flux of cellular debris, alter proteostasis, provoke mitochondrial dysfunctions, and induce endoplasmic reticulum stress. Harmful metabolic and biological processes induced by NPLs include oxidative stress (OS), ROS generation, and pro-inflammatory reactions. Depending on the cell cycle status, NPLs may direct DNA damage, tumorigenesis, and lately carcinogenesis in tissues with high self-renewal capabilities like epithelia. In cells able to live the longest like neurons, NPLs could trigger neurodegeneration by promoting toxic proteinaceous aggregates, OS, and chronic inflammation. NPL genotoxicity and neurotoxicity are discussed based on the gathered evidence, when available, within the context of the intracellular uptake of these newcomer nanoparticles. In summary, this review explains how the risk evaluation of NPL pollution for human health may benefit from accurately monitoring NPL toxicokinetics and toxicodynamics at the intracellular resolution level.
Collapse
Affiliation(s)
- Claudio Casella
- Department Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
12
|
Tastet V, Le Vée M, Verger A, Brandhonneur N, Bruyère A, Fardel O. Lack of effects of polystyrene micro- and nanoplastics on activity and expression of human drug transporters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104563. [PMID: 39260711 DOI: 10.1016/j.etap.2024.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Micro- and nanoplastics (MPs/NPs) constitute emerging and widely-distributed environmental contaminants to which humans are highly exposed. They possibly represent a threat for human health. In order to identify cellular/molecular targets for these plastic particles, we have analysed the effects of exposure to manufactured polystyrene (PS) MPs and NPs on in vitro activity and expression of human membrane drug transporters, known to interact with chemical pollutants. PS MPs and NPs, used at various concentrations (1, 10 or 100 µg/mL), failed to inhibit efflux activities of the ATP-binding cassette (ABC) transporters P-glycoprotein, MRPs and BCRP in ABC transporter-expressing cells. Furthermore, PS particles did not impair the transport of P-glycoprotein or BCRP substrates across intestinal Caco-2 cell monolayers. Uptake activities of solute carriers (SLCs) such as OCT1 and OCT2 (handling organic cations) or OATP1B1, OATP1B3, OATP2B1, OAT1 and OAT3 (handling organic anions) were additionally not altered by PS MPs/NPs in HEK-293 cells overexpressing these SLCs. mRNA expression of ABC transporters and of the SLCs OCT1 and OATP2B1 in Caco-2 cells and human hepatic HepaRG cells were finally not impaired by a 48-h exposure to MPs/NPs. Altogether, these data indicate that human drug transporters are unlikely to be direct and univocal targets for synthetic PS MPs/NPs.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Alexis Verger
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes 35000, France
| | - Nolwenn Brandhonneur
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes 35000, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 35000, France.
| |
Collapse
|
13
|
Wang J, Xie LG, Wu XF, Zhao ZG, Yang HY, Sun HM. Identification and quantification of micro-nano-plastics in polypropylene-bottled injections. Heliyon 2024; 10:e35101. [PMID: 39170535 PMCID: PMC11336449 DOI: 10.1016/j.heliyon.2024.e35101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Micro-nano-plastic (MNP) particles (p) in the environment can enter the human body and pose a potential threat to human health. However, it is unknown whether these substances are present in polypropylene (PP) plastic-bottled injections, which are used as high-frequency intravenous infusions to treat diseases. Therefore, the objective of this study was to identify and quantify insoluble MNP particles in 16 batches of injectable formulations within the validity period. Primarily, ethylene-propylene copolymer or P(E-P) micro-plastic (MP) particles (2-10 μm, 216 p/mL) were identified by micro-Raman spectroscopy, and nano-particles (<50 nm, 2.1 × 104 p/mL) similar to PP containing only carbon were detected by scanning electron microscopy-energy-dispersive X-ray spectroscopy (photoelectron). Furthermore, P(E-P) MP particles (1 × 103 to 1 × 105 ng/L) from the injections were enriched on the GF-B filter, and PP or P(E-P) nano-plastic (NP) particles (1 × 103 to 4 × 104 ng/L) enriched on the alumina film were detected by pyrolysis-gas chromatography/mass spectrometry. Finally, the total insoluble particles in injections were 6 × 104 to 1 × 107 p/mL (0.02-100 μm). Our findings are the first to identify and quantify MNPs in PP-bottled injections. Considering that they can enter the blood circulation, so whether cause disease remains to be investigated.
Collapse
Affiliation(s)
- Jie Wang
- National Institutes for Food and Drug Control, Beijing, 100260, PR China
| | - Lan-Gui Xie
- National Institutes for Food and Drug Control, Beijing, 100260, PR China
| | - Xian-Fu Wu
- National Institutes for Food and Drug Control, Beijing, 100260, PR China
| | - Zong-Ge Zhao
- National Institutes for Food and Drug Control, Beijing, 100260, PR China
| | - Hui-Ying Yang
- National Institutes for Food and Drug Control, Beijing, 100260, PR China
| | - Hui-Min Sun
- National Institutes for Food and Drug Control, Beijing, 100260, PR China
| |
Collapse
|
14
|
Wan D, Liu Y, Chang Q, Liu Z, Wang Q, Niu R, Gao B, Guan Q, Xia Y. Micro/Nanoplastic Exposure on Placental Health and Adverse Pregnancy Risks: Novel Assessment System Based upon Targeted Risk Assessment Environmental Chemicals Strategy. TOXICS 2024; 12:553. [PMID: 39195655 PMCID: PMC11359514 DOI: 10.3390/toxics12080553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Micro/nanoplastics (MNPs), as emerging pollutants, have been detected in both the maternal and fetal sides of the placenta in pregnant women, and their reproductive toxicity has been demonstrated in in vivo and in vitro experimental models. The Targeted Risk Assessment of Environmental Chemicals (TRAEC) strategy has been innovatively devised to facilitate valid risk assessment, encompassing a comprehensive evaluation of reliability, correlation, outcome fitness, and integrity across four dimensions based on the included published evidence and our own findings. This study serves as an application case of TRAEC, with 40 items of research evidence on the toxicity of MNPs to the placenta, which were rigorously screened and incorporated into the final scoring system. The final score for this TRAEC case study is 5.63, suggesting a moderate-to-low risk of reproductive toxicity associated with MNPs in the placenta, which may potentially increase with decreasing particle size. It is essential to emphasize that the findings also report original data from assays indicating that exposure to high-dose groups (100 μg/mL, 200 μg/mL) of 50 nm and 200 nm polystyrene nanoplastics (PS-NPs) induces HTR8/SVneo cell cycle arrest and cell apoptosis, which lead to reproductive toxicity in the placenta by disrupting mitochondrial function. Overall, this study employed the TRAEC strategy to provide comprehensive insight into the potential reproductive health effects of ubiquitous MNPs.
Collapse
Affiliation(s)
- Danyang Wan
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China;
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yujie Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qianjing Chang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qing Wang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Niu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Beibei Gao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China;
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China;
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (Y.L.); (Q.C.); (Z.L.); (Q.W.); (R.N.); (B.G.)
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Wang M, Wu Y, Li G, Xiong Y, Zhang Y, Zhang M. The hidden threat: Unraveling the impact of microplastics on reproductive health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173177. [PMID: 38750730 DOI: 10.1016/j.scitotenv.2024.173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Microplastics, with intricate physical and chemical characteristics, infiltrate the food chain and extensively impact ecosystems. Despite acknowledging the link between environmental pollution and declining fertility, the specific mechanisms affecting reproductive health remain to be elucidated. This review emphasizes the global correlation between microplastics and subfertility, focusing on entry pathways and impacts on ecosystems. Research suggests that microplastics disrupt the neuroendocrine system, influencing sex hormone synthesis through the hypothalamic-pituitary-gonadal (HPG) axis. In the reproductive system, microplastics interfere with the blood-testis barrier, impairing spermatogenesis in males, and causing placental dysfunction, ovarian atrophy, endometrial hyperplasia, and fibrosis in females. Moreover, microplastics potentially affect offspring's lipid metabolism and reproductive functions. However, complex microplastic compositions and detection method limitations impede research progress. Mitigation strategies for reproductive effects, combined with addressing microplastic pollution through sustainable practices, are imperative. This review underscores the urgency of global initiatives and collaborative research to safeguard reproductive health amid escalating microplastic contamination.
Collapse
Affiliation(s)
- Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ying Wu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Guigui Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Hubei Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health, Wuhan 430071, Hubei, PR China; Wuhan Clinical Research Center for Reproductive Health and Optimal Birth, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
16
|
Peng Y, He Q. Reproductive toxicity and related mechanisms of micro(nano)plastics in terrestrial mammals: Review of current evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116505. [PMID: 38810287 DOI: 10.1016/j.ecoenv.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Micro(nano)plastics (MNPs) have been detected in various ecological environments and are widely used due to their stable properties, raising widespread concern about their potential human reproductive toxicity. Currently, infertility affects approximately 10-30% of couples of reproductive age globally. MNPs, as environmental pollutants, have been shown to exhibit reproductive toxicity through intrinsic mechanisms or as carriers of other hazardous substances. Numerous studies have established that MNPs of varying sizes and types can penetrate biological barriers, and enter tissues and even organelles of organisms through four main routes: dietary ingestion, inhalation, dermal contact, and medical interventions. However, historical research on the toxic effects of MNPs on reproduction mainly focused on lower and aquatic species. We conducted an inclusive review of studies involving terrestrial mammals, revealing that MNPs can induce reproductive toxicity via various mechanisms such as oxidative stress, inflammation, fibrosis, apoptosis, autophagy, disruption of intestinal flora, endocrine disruption, endoplasmic reticulum stress, and DNA damage. In terrestrial mammals, reproductive toxicity predominantly manifests as disruption in the blood-testis barrier (BTB), impaired spermatogenesis, sperm malformation, sperm DNA damage, reduced sperm fertilizing capacity, compromised oocyte maturation, impaired follicular growth, granulosa cell apoptosis, diminished ovarian reserve function, uterine and ovarian fibrosis, and endocrine disruption, among other effects. Furthermore, MNPs can traverse the maternal-fetal interface, potentially impacting offspring reproductive health. To gain a comprehensive understanding of the potential reproductive toxicity and underlying mechanisms of MNPs with different sizes, polymer types, shapes, and carried toxins, as well as to explore effective protective interventions for mitigating reproductive damage, further in-depth animal studies, clinical trials, and large-scale epidemiological studies are urgently required.
Collapse
Affiliation(s)
- Yangyang Peng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| | - Qi He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| |
Collapse
|
17
|
Lv J, He Q, Yan Z, Xie Y, Wu Y, Li A, Zhang Y, Li J, Huang Z. Inhibitory Impact of Prenatal Exposure to Nano-Polystyrene Particles on the MAP2K6/p38 MAPK Axis Inducing Embryonic Developmental Abnormalities in Mice. TOXICS 2024; 12:370. [PMID: 38787149 PMCID: PMC11125576 DOI: 10.3390/toxics12050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Nanoplastics, created by the fragmentation of larger plastic debris, are a serious pollutant posing substantial environmental and health risks. Here, we developed a polystyrene nanoparticle (PS-NP) exposure model during mice pregnancy to explore their effects on embryonic development. We found that exposure to 30 nm PS-NPs during pregnancy resulted in reduced mice placental weight and abnormal embryonic development. Subsequently, our transcriptomic dissection unveiled differential expression in 102 genes under PS-NP exposure and the p38 MAPK pathway emerged as being significantly altered in KEGG pathway mapping. Our findings also included a reduction in the thickness of the trophoblastic layer in the placenta, diminished cell invasion capabilities, and an over-abundance of immature red cells in the blood vessels of the mice. In addition, we validated our findings through the human trophoblastic cell line, HTR-8/SVneo (HTR). PS-NPs induced a drop in the vitality and migration capacities of HTR cells and suppressed the p38 MAPK signaling pathway. This research highlights the embryotoxic effects of nanoplastics on mice, while the verification results from the HTR cells suggest that there could also be certain impacts on the human trophoblast layer, indicating a need for further exploration in this area.
Collapse
Affiliation(s)
- Junyi Lv
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Qing He
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Zixiang Yan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yuan Xie
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yao Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Anqi Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China;
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; (J.L.); (Q.H.); (Z.Y.); (Y.X.); (A.L.); (J.L.)
| |
Collapse
|
18
|
Hunt K, Davies A, Fraser A, Burden C, Howell A, Buckley K, Harding S, Bakhbakhi D. Exposure to microplastics and human reproductive outcomes: A systematic review. BJOG 2024; 131:675-683. [PMID: 38287142 DOI: 10.1111/1471-0528.17756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Microplastics, produced through degradation of environmental plastic pollution, have been detected in human tissues including placenta and fetal meconium. Cell culture and animal studies have demonstrated potential reproductive toxicity of these particles; however, their association with adverse fertility or pregnancy outcomes in humans is not known. OBJECTIVES To synthesise evidence for the presence of microplastics in human reproductive tissue and their associations with environmental exposures and reproductive outcomes. SEARCH STRATEGY MEDLINE, Embase, Emcare, CINAHL, ClinicalTrials.gov and ICTRP were searched from inception to 03/02/2023. SELECTION CRITERIA Studies of human participants, assessing presence of microplastics in reproductive tissues, environmental exposures to microplastics, and fertility- or pregnancy-related outcomes. DATA COLLECTION AND ANALYSIS Two independent reviewers selected studies and extracted data on study characteristics, microplastics detected, environmental exposures and reproductive outcomes. Narrative synthesis was performed due to methodological heterogeneity. MAIN RESULTS Of 1094 citations, seven studies were included, covering 96 participants. Microplastics composed of 16 different polymer types were detected in both placental and meconium samples. Two studies reported associations between lifestyle factors (daily water intake, use of scrub cleanser or toothpaste, bottled water and takeaway food) and placental microplastics. One study reported associations between meconium microplastics and reduced microbiota diversity. One reported placental microplastic levels correlated with reduced birthweights and 1-minute Apgar scores. CONCLUSIONS There is a need for high-quality observational studies to assess the effects of microplastics on human reproductive health.
Collapse
Affiliation(s)
- Kathryn Hunt
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
| | - Anna Davies
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Abigail Fraser
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christy Burden
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Amy Howell
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kirsten Buckley
- Library and Knowledge Service, North Bristol NHS Trust, Bristol, UK
| | - Sam Harding
- Research and Development, North Bristol NHS Trust, Bristol, UK
| | - Danya Bakhbakhi
- Department of Obstetrics and Gynaecology, North Bristol NHS Trust, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Wan S, Wang X, Chen W, Wang M, Zhao J, Xu Z, Wang R, Mi C, Zheng Z, Zhang H. Exposure to high dose of polystyrene nanoplastics causes trophoblast cell apoptosis and induces miscarriage. Part Fibre Toxicol 2024; 21:13. [PMID: 38454452 PMCID: PMC10921758 DOI: 10.1186/s12989-024-00574-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.
Collapse
Affiliation(s)
- Shukun Wan
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, 610041, Chengdu, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, 610041, Chengdu, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Zhaodian Zheng
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, 518033, Shenzhen, China.
| |
Collapse
|
20
|
Wan S, Wang X, Chen W, Xu Z, Zhao J, Huang W, Wang M, Zhang H. Polystyrene Nanoplastics Activate Autophagy and Suppress Trophoblast Cell Migration/Invasion and Migrasome Formation to Induce Miscarriage. ACS NANO 2024; 18:3733-3751. [PMID: 38252510 DOI: 10.1021/acsnano.3c11734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoplastics (NPs), as emerging pollutants, have attracted global attention. Nevertheless, the adverse effects of NPs on female reproductive health, especially unexplained miscarriage, are poorly understood. Defects of trophoblast cell migration and invasion are associated with miscarriage. Migrasomes were identified as cellular organelles with largely unidentified functions. Whether NPs might affect migration, invasion, and migrasome formation and induce miscarriage has been completely unexplored. In this study, we selected polystyrene nanoplastics (PS-NPs, 50 nm) as a model of plastic particles and treated human trophoblast cells and pregnant mice with PS-NPs at doses near the actual environmental exposure doses of plastic particles in humans. We found that exposure to PS-NPs induced a pregnant mouse miscarriage. PS-NPs suppressed ROCK1-mediated migration/invasion and migrasome formation. SOX2 was identified as the transcription factor of ROCK1. PS-NPs activated autophagy and promoted the autophagy degradation of SOX2, thus suppressing SOX2-mediated ROCK1 transcription. Supplementing with murine SOX2 or ROCK1 could efficiently rescue migration/invasion and migrasome formation and alleviate miscarriage. Analysis of the protein levels of SOX2, ROCK1, TSPAN4, NDST1, P62, and LC-3BII/I in PS-NP-exposed trophoblast cells, villous tissues of unexplained miscarriage patients, and placental tissues of PS-NP-exposed mice gave consistent results. Collectively, this study revealed the reproductive toxicity of nanoplastics and their potential regulatory mechanism, indicating that NP exposure is a risk factor for female reproductive health.
Collapse
Affiliation(s)
- Shukun Wan
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
21
|
Zurub RE, Cariaco Y, Wade MG, Bainbridge SA. Microplastics exposure: implications for human fertility, pregnancy and child health. Front Endocrinol (Lausanne) 2024; 14:1330396. [PMID: 38239985 PMCID: PMC10794604 DOI: 10.3389/fendo.2023.1330396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Plastics found in our everyday environment are becoming an increasing concern for individual and population-level health, and the extent of exposure and potential toxic effects of these contaminants on numerous human organ systems are becoming clear. Microplastics (MPs), tiny plastic particles, appear to have many of the same biological effects as their plastic precursors and have the compounded effect of potential accumulation in different organs. Recently, microplastic accumulation was observed in the human placenta, raising important questions related to the biological effects of these contaminants on the health of pregnancies and offspring. These concerns are particularly heightened considering the developmental origins of health and disease (DOHaD) framework, which postulates that in utero exposure can programme the lifelong health of the offspring. The current review examines the state of knowledge on this topic and highlights important avenues for future investigation.
Collapse
Affiliation(s)
- Rewa E. Zurub
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael G. Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
He Y, Yin R. The reproductive and transgenerational toxicity of microplastics and nanoplastics: A threat to mammalian fertility in both sexes. J Appl Toxicol 2024; 44:66-85. [PMID: 37382358 DOI: 10.1002/jat.4510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are extensively distributed in the environment. However, a comprehensive review and in-depth discussion on the effects of MPs and NPs to reproductive capacity and transgenerational toxicity on mammals, especially on humans, is lacked. It is suggested that microplastics and nanoplastics could accumulate in mammalian reproductive organs and exert toxic effects on the reproductive system for both sexes. For males, the damage of microplastics consists of abnormal testicular and sperm structure, decreased sperm vitality, and endocrine disruption, which were caused by oxidative stress, inflammation, apoptosis of testicular cells, autophagy, abnormal cytoskeleton, and abnormal hypothalamic-pituitary-testicular axis. For females, the damage of microplastics includes abnormal ovary and uterus structure and endocrine disruption, which were caused by oxidative stress, inflammation, granulosa cell apoptosis, hypothalamic-pituitary-ovary axis abnormalities, and tissue fibrosis. For transgenerational toxicity, premature mortality existed in the rodent offspring after maternal exposure to microplastics. Among the surviving offspring, metabolic disorders, reproductive dysfunction, immune, neurodevelopmental, and cognitive disorders were detected, and these events directly correlated with transgenerational translocation of MPs and NPs. Studies on human-derived cells or organoids demonstrated that transgenerational toxicity studies for both sexes are yet in the phase of exploring suitable experimental models, and more detailed research on the threat of MPs and NPs to human fertility is still urgently needed. Further studies will help assess the MPs and NPs threat to public fertility and reproductive health risks.
Collapse
Affiliation(s)
- Yuchong He
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
- The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ruocheng Yin
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
23
|
Adams S, Stapleton PA. Nanoparticles at the maternal-fetal interface. Mol Cell Endocrinol 2023; 578:112067. [PMID: 37689342 PMCID: PMC10591848 DOI: 10.1016/j.mce.2023.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The increasing production of intentional and unintentional nanoparticles (NPs) has led to their accumulation in the environment as air and ground pollution. The heterogeneity of these particles primarily relies on the NP physicochemical properties (i.e., chemical composition, size, shape, surface chemistry, etc.). Pregnancy represents a vulnerable life stage for both the woman and the developing fetus. The ubiquitous nature of these NPs creates a concern for developmental fetal exposures. At the maternal-fetal interface lies the placenta, a temporary endocrine organ that facilitates nutrient and waste exchange as well as communication between maternal and fetal tissues. Recent evidence in human and animal models identifies that gestational exposure to NPs results in placental translocation leading to local effects and endocrine disruption. Currently, the mechanisms underlying placental translocation and cellular uptake of NPs in the placenta are poorly understood. The purpose of this review is to assess the current understanding of the physiochemical factors influencing NP translocation, cellular uptake, and endocrine disruption at the maternal-fetal interface within the available literature.
Collapse
Affiliation(s)
- S Adams
- Department of Pharmacology and Toxicology, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, USA; Environmental Occupational and Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
24
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
Qiu W, Ye J, Su Y, Zhang X, Pang X, Liao J, Wang R, Zhao C, Zhang H, Hu L, Tang Z, Su R. Co-exposure to environmentally relevant concentrations of cadmium and polystyrene nanoplastics induced oxidative stress, ferroptosis and excessive mitophagy in mice kidney. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121947. [PMID: 37270049 DOI: 10.1016/j.envpol.2023.121947] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Nanoplastics (NPs) are defined as a group of emerging pollutants. However, the adverse effect of NPs and/or heavy metals on mammals is still largely unclear. Therefore, we performed a 35-day chronic toxicity experiment with mice to observe the impacts of exposure to Cadmium (Cd) and/or polystyrene nanoplastics (PSNPs). This study revealed that combined exposure to Cd and PSNPs added to the mice's growth toxicity and kidney damage. Moreover, Cd and PSNPs co-exposure obviously increased the MDA level and expressions of 4-HNE and 8-OHDG while decreasing the activity of antioxidase in kidneys via inhibiting the Nrf2 pathway and its downstream genes and proteins expression. More importantly, the results suggested for the first time that Cd and PSNPs co-exposure synergistically increased iron concentration in kidneys, and induced ferroptosis through regulating expression levels of SLC7A11, GPX4, PTGS2, HMGB1, FTH1 and FTL. Simultaneously, Cd and PSNPs co-exposure further increased the expression levels of Pink, Parkin, ATG5, Beclin1, and LC3 while significantly reducing the P62 expression level. In brief, this study found that combined exposure to Cd and PSNPs synergistically caused oxidative stress, ferroptosis and excessive mitophagy ultimately aggravating kidney damage in mice, which provided new insight into the combined toxic effect between heavy metals and PSNPs on mammals.
Collapse
Affiliation(s)
- Wenyue Qiu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jiali Ye
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongmei Wang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Cuiyan Zhao
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Hui Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
Urrutia-Pereira M, Guidos-Fogelbach G, Chong-Neto HJ, Solé D. Microplastics exposure and immunologic response. Allergol Immunopathol (Madr) 2023; 51:57-65. [PMID: 37695231 DOI: 10.15586/aei.v51i5.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To assess the impact of microplastics (MPs) on human health. DATA SOURCE The authors conducted a non-systematic review of articles published in English, Portuguese, French, and Spanish in the last decade in the following databases: PubMed, Google Scholar, EMBASE, and SciELO. The keywords used were: microplastics OR nanoplastics OR marine litter OR toxicology OR additives AND human health OR children OR adults. DATA SUMMARY MPs are a group of emerging contaminants that have attracted scientific interest and societal attention in the last decade due to their ubiquitous detection in all environments. Humans can primarily be exposed to MPs and nanoplastics via oral and inhalation routes, but dermal contact cannot be overlooked, especially in young children. The possible toxic effects of plastic particles are due to their potential toxicity, often combined with that of leachable additives and adsorbed contaminants. CONCLUSIONS Unless the plastic value chain is transformed over the next two decades, the risks to species, marine ecosystems, climate, health, economy, and communities will be unmanageable. However, along with these risks are the unique opportunities to help transition to a more sustainable world.
Collapse
Affiliation(s)
| | | | - Herberto José Chong-Neto
- Department of Pediatrics, Divison of Allergy and Pneumology, Federal University of Paraná, Curitiba, Paraná, Brazil;
| | - Dirceu Solé
- Department of Pediatrics, Division of Allergy, Clinical Immunology and Rheumatology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Jaafarzadeh Haghighi Fard N, Mohammadi MJ, Jahedi F. Effects of nano and microplastics on the reproduction system: In vitro and in vivo studies review. Food Chem Toxicol 2023:113938. [PMID: 37429406 DOI: 10.1016/j.fct.2023.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs), as their name suggest, are tiny plastic particles. The negative impact of MPs as an emerging pollutant on humans is not hidden from anyone. Recent research on how this pollutant affects the reproductive system and how it enters the blood, placenta, and semen has attracted the attention of scientists. This review study deals with the reproductive toxicity of MPs particles in terrestrial animals, aquatic animals, soil fauna, human cells, and human placenta. In vitro and in vivo animal studies showed that MPs can lead to reduced fertility in men, reduced ovarian capacity, apoptosis of granulosa cells, or even reduced sperm motility. They cause oxidative stress and cell apoptosis and inflammatory effects. The results of these animal studies show that MPs may have similar effects on the human reproductive system. However, not much research has been done on human reproductive toxicity by MPs. Therefore, special attention should be paid to the toxicity of the reproductive system by MPs. The purpose of this comprehensive study is to express the importance of the impact of MPs on the reproductive system. These results provide new insight into the potential dangers of MPs.
Collapse
Affiliation(s)
- Neamatollah Jaafarzadeh Haghighi Fard
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Faezeh Jahedi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
28
|
Zeng L, Zhou C, Xu W, Huang Y, Wang W, Ma Z, Huang J, Li J, Hu L, Xue Y, Luo T, Zheng L. The ovarian-related effects of polystyrene nanoplastics on human ovarian granulosa cells and female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114941. [PMID: 37087970 DOI: 10.1016/j.ecoenv.2023.114941] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Nanoplastics (NPs) have recently emerged in the context of global plastic pollution. They may be more toxic than macroplastics litter and microplastic fragments due to its abundances, tiny sizes, and cellular accessibility. The female reproductive toxicity of NPs has been widely documented for aquatic animals, but their effects and underlying mechanisms remain poorly understood in mammals. This study aimed to explore the effects of NPs on female reproduction using human ovarian granulosa cells (GCs) and female mice. The accumulation of polystyrene NPs (PS-NPs) in human granulosa-like tumor cells (KGN cells) and the ovaries of female Balb/c mice were evaluated by exposure to fluorescent PS-NPs. Proliferation and apoptosis, reactive oxygen species (ROS), and Hippo signaling pathway-related factors were analyzed in KGN cells. In addition, fertility rate, litter size, ovarian weight and microstructure, follicle development, serum level of anti-Mullerian hormone, and apoptosis in ovaries were examined in female mice. Here, the PS-NPs can penetrate the KGN cells and accumulate in the ovaries. In vitro, 100 μg/ml PS-NPs inhibited proliferation, induced apoptosis, accumulated ROS, activated three key regulators of the Hippo signaling pathway (MST1, LATS1, and YAP1), and downregulated the mRNA levels of CTGF and Cyr61 in KGN cells. Furthermore, salidroside, an antioxidative compound extracted from Rhodiola rosea, alleviated the damage of PS-NPs to KGN and inhibited the activation of the Hippo signal pathway. In vivo, exposure to 1 mg/day PS-NPs resulted in decreased fertility, abnormal ovarian function, and increased ovarian apoptosis in female mice. Overall, our data suggest that PS-NPs cause granulosa cell apoptosis and affect ovarian functions, leading to reduced fertility in female mice, by inducing oxidative stress and dysregulating the Hippo pathway.
Collapse
Affiliation(s)
- Lianjie Zeng
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chong Zhou
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenqing Xu
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yupei Huang
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wencan Wang
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangqiang Ma
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jian Huang
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jia Li
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liaoliao Hu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yue Xue
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tao Luo
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Liping Zheng
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
29
|
Sun Z, Wen Y, Zhang F, Fu Z, Yuan Y, Kuang H, Kuang X, Huang J, Zheng L, Zhang D. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114796. [PMID: 36948006 DOI: 10.1016/j.ecoenv.2023.114796] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Plastic particle pollution poses an emerging threat to ecological and human health. Laboratory animal studies have illustrated that nano-sized plastics can accumulate in the testis and cause testosterone deficiency and spermatogenic impairment. In this study, TM3 mouse Leydig cells were in vitro exposed to polystyrene nanoparticles (PS-NPs, size 20 nm) at dosages of 50, 100 and 150 μg/mL to investigate their cytotoxicity. Our results demonstrated that PS-NPs can be internalized into TM3 Leydig cells and led to a concentration-dependent decline in cell viability. Furthermore, PS-NPs stimulation amplified ROS generation and initiated cellular oxidative stress and apoptosis. Moreover, PS-NPs treatment affected the mitochondrial DNA copy number and collapsed the mitochondrial membrane potential, accompanied by a disrupted energy metabolism. The cells exposed to PS-NPs also displayed a down-regulated expression of steroidogenesis-related genes StAR, P450scc and 17β-HSD, along with a decrease in testosterone secretion. In addition, treatment with PS-NPs destructed plasma membrane integrity, as presented by increase in lactate dehydrogenase release and depolarization of cell membrane potential. In summary, these data indicated that exposure to PS-NPs in vitro produced cytotoxic effect on Leydig cells by inducing oxidative injury, mitochondrial impairment, apoptosis, and cytomembrane destruction. Our results provide new insights into male reproductive toxicity caused by NPs.
Collapse
Affiliation(s)
- Zhangbei Sun
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yiqian Wen
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Fan Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Zhendong Fu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yangyang Yuan
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Haibin Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Xiaodong Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Jian Huang
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Liping Zheng
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| |
Collapse
|
30
|
Yuan S, Zhang H, Yuan S. Understanding the transformations of nanoplastic onto phospholipid bilayers: Mechanism, microscopic interaction and cytotoxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160388. [PMID: 36414060 DOI: 10.1016/j.scitotenv.2022.160388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous nanoplastics are now considered emergent pollutants in environments. Bioaccumulation of nanoplastics is an important indicator of their hazard. In this work, molecular dynamics were used to study the uptake of five nanoplastics (polyvinyl chloride (PVC), polystyrene (PS), polylactic acid (PLA), polypropylene (PP), and polyethylene terephthalate (PET)) onto DPPC (dipalmitoylphosphatidylcholine) bilayers. Results suggest that nanoplastics became compact after they were deposited in the human body. For PET, PLA, and PS nanoplastics, a free energy barrier of 4-22 kcal mol-1 needed to be overcome to transfer these polymers from the interface region to the center of the DPPC bilayer. Besides, the free energy difference of PVC and PP from the bulk H2O to the surface of DPPC was -18.67 kcal mol-1 and -25.94 kcal mol-1, respectively. After uptake, the interaction between nanoplastics and lipid bilayer was dominated by the van der Waals rather than electrostatic interaction. Furthermore, the cytotoxicity of nanoplastics was also evaluated and it is reflected in their ability to decrease the thickness of the lipid bilayer. Overall, this work provides implications for understanding the bioaccumulation and toxicity of nanoplastic at the molecular level.
Collapse
Affiliation(s)
- Shideng Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China.
| |
Collapse
|
31
|
Prado Y, Aravena C, Aravena D, Eltit F, Gatica S, Riedel CA, Simon F. Small Plastics, Big Inflammatory Problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:101-127. [PMID: 37093424 DOI: 10.1007/978-3-031-26163-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The immune system is the first defense against potentially dangerous chemicals, infections, and damaged cells. Interactions between immune cells and inflammatory mediators increase the coordinated activation of cross-talking signaling pathways, resulting in an acute response necessary to restore homeostasis but potentially detrimental if uncontrolled and prolonged. Plastic production exceeds million tons per year, becoming a global concern due to the stability of its constituent polymers, low density, which allows them to spread easily, and small size, which prevents proper removal by wastewater treatment plants, promoting environmental accumulation and increasing health threats. The interaction between plastic particles and the immune system is still being investigated, owing to growing evidence of increased risk not only for dietary intake due to its presence in food packaging, drinking water, and even fruits and vegetables, but also to emerging evidence of new intake pathways such as respiratory and cutaneous. We discuss in depth the impact of small plastic particles on the immune response across the body, with a focus on the nervous system and peripheral organs and tissues such as the gastrointestinal, respiratory, lymphatic, cardiovascular, and reproductive systems, as well as the involvement in increased susceptibility to worsening concomitant diseases and future perspectives in the exploration of potential therapeutics.
Collapse
Affiliation(s)
- Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A Riedel
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
32
|
Dellisanti W, Leung MML, Lam KWK, Wang Y, Hu M, Lo HS, Fang JKH. A short review on the recent method development for extraction and identification of microplastics in mussels and fish, two major groups of seafood. MARINE POLLUTION BULLETIN 2023; 186:114221. [PMID: 36495608 DOI: 10.1016/j.marpolbul.2022.114221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of microplastics in the marine environment poses potential health risks to humans through seafood consumption. Relevant data are available but the diverse analytical approaches adopted to characterise microplastics have hampered data comparison among studies. Here, the techniques for extraction and identification of microplastics are summarised among studies of marine mussels and fish, two major groups of seafood. Among the reviewed papers published in 2018-2021, the most common practice to extract microplastics was through tissue digestion in alkaline chemicals (46 % for mussels, 56 % for fish) and oxidative chemicals (28 % for mussels, 12 % for fish). High-density solutions such as sodium chloride could be used to isolate microplastics from other undigested residues by flotation. Polymer analysis of microplastics was mainly carried out with Fourier-transform infrared (FTIR) spectroscopy (58 % for both mussels and fish) and Raman spectroscopy (14 % for mussels, 8 % for fish). Among these methods, we recommend alkaline digestion for microplastic extraction, and the automated mapping approach of FTIR or Raman spectroscopy for microplastic identification. Overall, this study highlights the need for a standard protocol for characterising microplastics in seafood samples.
Collapse
Affiliation(s)
- Walter Dellisanti
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Matthew Ming-Lok Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Ocean Park Conservation Foundation Hong Kong, Hong Kong SAR, China
| | - Karen Wing-Kei Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - James Kar Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|