1
|
Ngu MS, Vanselow DJ, Zaino CR, Lin AY, Copper JE, Beaton MJ, Orsini L, Colbourne JK, Cheng KC, Ang KC. A web-based histology atlas for the freshwater sentinel species Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177930. [PMID: 39671929 PMCID: PMC11736674 DOI: 10.1016/j.scitotenv.2024.177930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Daphnia are keystone species of freshwater habitats used as model organisms in ecology and evolutionary biology. Their small size, wide geographic distribution, and sensitivity to chemicals make them useful as environmental sentinels in regulatory toxicology and chemical risk assessment. Biomolecular (-omic) assessments of responses to chemical toxicity, which reveal detailed molecular signatures, become more powerful when correlated with other phenotypic outcomes (such as behavioral, physiological, or histopathological) for comparative validation and regulatory relevance. However, the lack of histopathology or tissue phenotype characterization of this species presently limits our ability to assess cellular mechanisms of toxicity. Here, we address the central concept that interpreting aberrant tissue phenotypes requires a basic understanding of species normal microanatomy. We introduce the female and male DaphniaHistology Reference Atlas (DaHRA) for the baseline knowledge of Daphnia magna microanatomy. We also include developmental stages of female D. magna in the atlas. This interactive web-based resource of adult D. magna features overlaid vectorized demarcation of anatomical structures whose labels comply with an anatomical ontology created for this atlas. We demonstrate the potential utility of DaHRA for toxicological investigations by presenting aberrant phenotypes of acetaminophen-exposed D. magna. We envision DaHRA to facilitate the future integration of molecular and phenotypic data from the scientific community as we seek to understand how genes, chemicals, and environment interactions determine organismal phenotype.
Collapse
Affiliation(s)
- Mee S Ngu
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Daniel J Vanselow
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Carolyn R Zaino
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Alex Y Lin
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | - Jean E Copper
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA
| | | | - Luisa Orsini
- Centre for Environmental Research and Justice, The University of Birmingham, Birmingham, UK
| | - John K Colbourne
- Centre for Environmental Research and Justice, The University of Birmingham, Birmingham, UK
| | - Keith C Cheng
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA; Institute for Computational and Data Sciences, Pennsylvania State University, State College, PA, USA; Molecular and Precision Medicine Program, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Khai C Ang
- Department of Pathology, Pennsylvania State University College of Medicine, PA, USA; Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, PA, USA.
| |
Collapse
|
2
|
Zhao Y, Duan C, Xiao Y, Gong W, Wang Y, Zhang H, Ku P, Nie X. Water acidification aggravates lithium-induced toxicity represented by energy supply, oxidative stress, and cell fate in Daphnia magna neonates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177143. [PMID: 39490820 DOI: 10.1016/j.scitotenv.2024.177143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Lithium is extensively utilized in industrial energy production, particularly in lithium-ion batteries, and in pharmaceuticals for the treating clinical mood disorders. Consequently, lithium is frequently detected in various environmental matrices. It has been reported to cause a range of toxic effects on aquatic organisms including oxidative stress, neurological disorders, and reproductive suppression. Water acidification is a global issue with numerous negative impacts on aquatic organisms. It can alter the physio-chemical properties and bioavailability of metal ions. The acidic leaching process during lithium battery treatment and global water acidification both suggest that lithium contamination often occurs in acidic environments. In the present study, Daphnia magna neonates were exposed to four treatments (control, lithium alone, low pH, and combined) to investigate whether an acidic environment exacerbates the toxic effects of lithium on aquatic organisms and to explore potential toxic action mechanisms. The results indicated that low pH posed a significant threat to the growth and reproduction of D. magna. When exposed to both lithium and low pH, there was increased lithium accumulation and an energy trade-off response, leading to increased energy allocation to reproduction and reduced energy for growth. Lithium exposure stimulated D. magna activity, while low pH inhibited it, suggesting that an imbalance in energy consumption and supply. Combined exposure to lithium and low pH resulted in severe oxidative stress due to mitochondrial dysfunction, under-utilization of energy substances, and increased ionic homeostasis disturbances. Consequently, the exposed organism altered apoptosis and autophagy processes to maintain homeostasis. The present study demonstrated that lithium and water acidification posed a population-level threat to D. magna, and their combined exposure significantly largely exacerbated the toxic effects.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China; Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Peijia Ku
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Ghosh M, Dey P, Das A, Giri A, Nath S, Giri S. Evaluation of arsenic induced genotoxicity and its impact on life processes of Daphnia magna. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503804. [PMID: 39326934 DOI: 10.1016/j.mrgentox.2024.503804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024]
Abstract
Heavy metals like arsenic is ubiquitously present in the environment. Geologic and anthropogenic activities are the root cause behind high concentration of arsenic in natural water bodies demanding strict monitoring of water quality prior to human consumption and utilization. In the present study, we have employed Daphnia magna for studying the biological effects of environmentally relevant high concentration of arsenic in water. In acute toxicity study, the LC50 value for 24hr exposure was found to be 2.504 mg/L, which gradually decreased with increase in time period (24hr- 96hr) to 2.011 mg/ L at 96hr. Sub-chronic toxicity was evaluated over 12 days using sub-lethal concentrations (5 %, 10 %, 15 %, and 20 % of the 24-hr LC50). Survivability in Daphnia showed a decreasing trend from 96 % to 91 % with increase in arsenic concentrations from 5 % of LC50 24 hr value to 20 % of LC 50 24hr value respectively. Alongside decreased survivability, there was a significant reduction in body size, with organisms exposed to the highest concentration of arsenic measuring 0.87±0.01 mm compared to 1.51±0.10 mm in the control group. Reproductive potential declined concentration dependently with exposure, with the highest reduction observed at 20 % of LC50 24hr value, where offspring numbers decreased to 7±1 from 23±5 in the control. Heart rate decreased in concentration and time-dependent manners, with the lowest rates observed at the highest arsenic concentration (279±16 bpm after 24hr and 277±27 bpm after 48hr). Comet assay and micronucleus assay conducted after 48 hrs of exposure revealed concentration-dependent genotoxic effects in Daphnia magna. Our results indicate negative impact on physiology and reproduction of Daphnia magna at environmentally existent concentration of arsenic. Also Daphnia magna could serve as a sensitive test system for investigating arsenic contamination in water bodies.
Collapse
Affiliation(s)
- Malaya Ghosh
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Pubali Dey
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Aparajita Das
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Anirudha Giri
- Laboratory of Environmental and Human Toxicology, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Satabdi Nath
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India
| | - Sarbani Giri
- Laboratory of Molecular and Cell Biology, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, India.
| |
Collapse
|
4
|
Do T, Vaculciakova S, Kluska K, Peris-Díaz MD, Priborsky J, Guran R, Krężel A, Adam V, Zitka O. Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment. CHEMOSPHERE 2024; 364:142988. [PMID: 39103097 PMCID: PMC11422181 DOI: 10.1016/j.chemosphere.2024.142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jan Priborsky
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Adra HJ, Ryu HB, Jo AH, Lee JH, Choi SJ, Kim YR. Ligand-based magnetic extraction and safety assessment of zinc oxide nanoparticles in food products. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133235. [PMID: 38141311 DOI: 10.1016/j.jhazmat.2023.133235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
Zinc oxide (ZnO) is a zinc supplement widely used in health products and is approved by the FDA as Generally Regarded as Safe (GRAS). However, concerns have arisen regarding the potential health effects of nanoscale ZnO, as its reactivity differs from that of its bulk form. This has led to the need for an efficient method to extract ZnO from food products without altering its physicochemical properties, where conventional methods have proven to be inadequate. This study introduces an innovative approach using starch magnetic particles (SMPs) functionalized with a 12-amino acid peptide modified with five lysines (ZBP), that has specific affinity to ZnO. ZBP@SMPs effectively and rapidly extract intact ZnO from food products, achieving recovery efficiencies ranging from 60% to 90%, all while maintaining its morphology and crystallinity. The diameter of ZnO particles recovered from six commercial food products ranged from 25 to 500 nm, with 33% falling below 100 nm, highlighting the need for a size-dependent toxicity study. However, cytotoxicity assessment on human intestinal Caco-2 cells shows all ZnO samples affects cell proliferation and membrane integrity in a dose-dependent manner due to partial dissolution. This study contributes to understanding the safety of ZnO-containing food products and highlights potential health implications associated with their consumption.
Collapse
Affiliation(s)
- Hazzel Joy Adra
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyo-Bin Ryu
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ah-Hyun Jo
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun-Hee Lee
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jin Choi
- Department of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, South Korea
| | - Young-Rok Kim
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Sanpradit P, Niyomdecha S, Masae M, Peerakietkhajorn S. Thermal stress-stimulated ZnO toxicity inhibits reproduction of freshwater crustacean Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123171. [PMID: 38128714 DOI: 10.1016/j.envpol.2023.123171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Elevated temperatures due to climate change pose a variety of environmental risks to the freshwater ecosystem. At the same time, zinc oxide (ZnO) has become widely used and has entered the freshwater environment. As thermal stress may potentially impact the physicochemical properties of ZnO, its toxicity to freshwater organisms in the face of global warming is poorly understood. The potential effects on reproductive performances, including oogenesis, are of particular concern. In this study, we investigate the reproductive performances and related mRNA abundance of the zooplankton Daphnia magna under conditions of ZnO exposure and heat stress. The results revealed that ZnO and elevated temperature delayed maturity and juvenile production of D. magna. Histological observations indicated that oogenesis was inhibited, and the number and size of oocytes were reduced in the condition of ZnO exposure under heat stress. Eventual offspring in the same treatment exhibited decreased numbers, size, and quality. Congenital juvenile anomalies were increased, such as deformed eye, and impaired antenna and tail spine. Moreover, both ZnO and elevated temperature treatments inhibited expression levels of reproduction-related genes (vtg, EcR and VMO1) and induced the dmrt93b gene involved in the production of male offspring. Furthermore, we found that D. magna tried to cope with ZnO and thermal stress by upregulating hsp90, HIF-1α and HIF-1β. ZnO and heat stress inhibited the reproductive capacity of D. magna, produced deleterious effects on reproduction-associated physiological pathways, and damaged reproductive outcomes.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Seree Niyomdecha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Murnee Masae
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
7
|
Sun A, Wang WX. Reducing Gut Dissolution of Zinc Oxide Nanoparticles by Secondary Microplastics with Consequent Impacts on Barnacle Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1484-1494. [PMID: 38198516 DOI: 10.1021/acs.est.3c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The environmental impact of sunscreen is a growing concern, yet the combined effects of its components on marine animals are poorly understood. In this study, we investigated the combined effects of sunscreen-extracted zinc oxide nanoparticles (nZnO) and microplastics (MPs) on the development of barnacle larvae, focusing on the different roles played by primary microplastics (PMPs) and secondary microplastics (SMPs) generated through the phototransformation of PMPs. Our findings revealed that a lower concentration of nZnO (50 μg/L) enhanced molting and eye development in barnacle larvae, while a higher concentration (500 μg/L) inhibited larval growth. Co-exposure to PMPs had no significant effect on larval development, whereas SMPs mitigated the impact of nZnO by restricting the in vivo transformation to ionic Zn. Accumulated SMPs reduced gut dissolution of nZnO by up to 40%, lowering gut acidity by 85% and buffering the in vivo dissolution of nZnO. We further identified a rough-surfaced Si-5 fragment in SMPs that damaged larval guts, resulting in decreased acidity. Another Si-32 resisted phototransformation and had no discernible effects. Our study presented compelling evidence of the impacts of SMPs on the bioeffect of nZnO, highlighting the complex interactions between sunscreen components and their combined effects on marine organisms.
Collapse
Affiliation(s)
- Anqi Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Sanpradit P, Byeon E, Lee JS, Peerakietkhajorn S. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109720. [PMID: 37586582 DOI: 10.1016/j.cbpc.2023.109720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
The world has faced climate change that affects hydrology and thermal systems in the aquatic environment resulting in temperature changes, which directly affect the aquatic ecosystem. Elevated water temperature influences the physico-chemical properties of chemicals in freshwater ecosystems leading to disturbing living organisms. Owing to the industrial revolution, the mass production of zinc oxide (ZnO) has been led to contaminated environments, and therefore, the toxicological effects of ZnO become more concerning under climate change scenarios. A comprehensive understanding of its toxicity influenced by main factors driven by climate change is indispensable. This review summarized the detrimental effects of ZnO with a single ZnO exposure and combined it with key climate change-associated factors in many aspects (i.e., oxidative stress, energy reserves, behavior and life history traits). Moreover, this review tried to point out ZnO kinetic behavior and corresponding mechanisms which pose a problem of observed detrimental effects correlated with the alteration of elevated temperature.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
9
|
Yang C, Wen J, Xue Z, Yin X, Li Y, Yuan L. The accumulation and toxicity of ZIF-8 nanoparticles in Corbicula fluminea. J Environ Sci (China) 2023; 127:91-101. [PMID: 36522115 DOI: 10.1016/j.jes.2022.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are promising new materials that have been intensively studied and possibly applied to various environmental remediation. However, little is known about the fate and risk of MOFs to living organisms in the water environment. Here, the toxic effects of ZIF-8 nanoparticles (NPs) on benthic organisms were confirmed by sub-chronic toxicity experiments (7 and 14 days) using Corbicula fluminea as the model organism. With exposure doses ranging from 0 to 50 mg/L, ZIF-8 NPs induced oxidative stress behaviors similar to the hormesis effect in the tissues of C. fluminea. The oxidative stress induced by ZIF-8 NPs and the released Zn2+ was the crucial cause of the toxic effects. Besides, we also found that the ZIF-8 NPs and dissolved Zn2+ may result in different mechanisms of toxicity and accumulation depending on the dosages. The Zn2+ release rate of ZIF-8 NPs was high at low dosages, leading to a higher proportion of Zn2+ taken up by C. fluminea than the particulate ZIF-8. Conversely, at high dosages, C. fluminea mainly ingested the ZIF-8 NPs and resulted in increased mortality. The results have important implications for understanding the fate and biological effects of ZIF-8 in natural aquatic environments.
Collapse
Affiliation(s)
- Cuilian Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Zhuangzhuang Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiyan Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yangfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Li Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
10
|
Sanpradit P, Peerakietkhajorn S. Disturbances in growth, oxidative stress, energy reserves and the expressions of related genes in Daphnia magna after exposure to ZnO under thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161682. [PMID: 36682557 DOI: 10.1016/j.scitotenv.2023.161682] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
The toxicological effects of metal contamination are influenced by the ambient temperature. Therefore, global warming affects the toxicity of metal contamination in aquatic ecosystems. ZnO is widely used as a catalyst in many industries, and causes contamination in aquatic ecosystems. Here, we investigated the effects of ZnO concentration under elevated temperature by observing growth, oxidative stress, energy reserves and related gene expression in exposed Daphnia magna. Body length and growth rate increased in neonates exposed to ZnO for 2 days but decreased at 9 and 21 days under elevated temperature. ZnO concentration and elevated temperature induced oxidative stress in mature D. magna by reducing superoxide dismutase (SOD) activity and increasing malondialdehyde (MDA) levels. In contrast, juveniles were unaffected. Carbohydrate, protein and caloric contents were reduced throughout development in D. magna treated with ZnO and elevated temperature in all exposure periods (2, 9 and 21 days). However, lipid content also decreased in mature D. magna treated with ZnO cultured under elevated temperature, while that of juveniles showed an increase in lipid content. Therefore, energy was perhaps allocated to physiological processes for detoxification and homeostasis. Moreover, expression patterns of genes related to physiological processes changed under elevated temperature and ZnO exposure. Taken together, our results highlight that the combination of temperature and ZnO concentration induced toxicity in D. magna. This conclusion was confirmed by the Integrated Biological Response (IBR) index. This study shows that changes in biological levels of organization could be used to monitor environmental change using D. magna as a bioindicator.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
11
|
Boyd A, Luu I, Mehta D, Myers SP, Stewart CB, Shivakumar KR, Snihur KN, Alessi DS, Rodriguez Gallo MC, Veilleux H, Wiltse ME, Borch T, Uhrig RG, Blewett TA. Persisting Effects in Daphnia magna Following an Acute Exposure to Flowback and Produced Waters from the Montney Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2380-2392. [PMID: 36724135 DOI: 10.1021/acs.est.2c07441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydraulic fracturing extracts oil and gas through the injection of water and proppants into subterranean formations. These injected fluids mix with the host rock formation and return to the surface as a complex wastewater containing salts, metals, and organic compounds, termed flowback and produced water (FPW). Previous research indicates that FPW is toxic to Daphnia magna (D. magna), impairing reproduction, molting, and maturation time; however, recovery from FPW has not been extensively studied. Species unable to recover have drastic impacts on populations on the ecological scale; thus, this study sought to understand if recovery from an acute 48 h FPW exposure was possible in the freshwater invertebrate, D. magna by using a combination of physiological and molecular analyses. FPW (0.75%) reduced reproduction by 30% and survivorship to 32% compared to controls. System-level quantitative proteomic analyses demonstrate extensive perturbation of metabolism and protein transport in both 0.25 and 0.75% FPW treatments after a 48 h FPW exposure. Collectively, our data indicate that D. magna are unable to recover from acute 48 h exposures to ≥0.25% FPW, as evidence of toxicity persists for at least 19 days post-exposure. This study highlights the importance of considering persisting effects following FPW remediation when modeling potential spill scenarios.
Collapse
Affiliation(s)
- Aaron Boyd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Ivy Luu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Sunil P Myers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Connor B Stewart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Karthik R Shivakumar
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Katherine N Snihur
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | | | - Heather Veilleux
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Marin E Wiltse
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
12
|
Yan Z, Liu C, Liu Y, Tan X, Li X, Shi Y, Ding C. The interaction of ZnO nanoparticles, Cr(VI), and microorganisms triggers a novel ROS scavenging strategy to inhibit microbial Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130375. [PMID: 36444067 DOI: 10.1016/j.jhazmat.2022.130375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) contaminated water usually contains other contaminants like engineered nanomaterials (ENMs). During the process of microbial treatment, the inevitable interaction of Cr(VI), ENMs, and microorganisms probably determines the efficiency of Cr(VI) biotransformation, however, the corresponding information remains elusive. This study investigated the interaction of ZnO nanoparticles (NPs), Cr(VI), and Pannonibacter phragmitetus BB (hereafter BB), which changed the process of microbial Cr(VI) reduction. ZnO NPs inhibited Cr(VI) reduction, but had no effect on bacterial viability. In particular, Cr(VI) induced BB to produce organic acids and to drive Zn2+ dissolution from ZnO NPs inside and outside of cells. The dissolved Zn2+ not only promoted Cr(VI) reduction to Cr(V)/Cr(IV) by strengthening sugar metabolism and inducing increase in NAD(P)H production, but also hindered Cr(V)/Cr(IV) transformation to Cr(III) through down-regulating Cr(VI) reductase genes. A novel bacterial driven ROS scavenging mechanism leading to the inhibition of Cr(VI) reduction was elucidated. Specifically, the accumulated Cr(VI) and Cr(V)/Cr(IV) formed a redox dynamic equilibrium, which triggered the disproportionation of superoxide radicals mimicking superoxide dismutase through the flip-flop of Cr(VI) and Cr(V)/Cr(IV) in bacterial cells. This study provided a realistic insight into design the applicability of biological remediation technology for Cr(VI) contaminant and evaluating environmental risks of ENMs.
Collapse
Affiliation(s)
- Zhiyan Yan
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Chenrui Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiaoqian Tan
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Xinyue Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083 Changsha, China.
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
13
|
Charazińska S, Lochyński P, Markiewicz M, Stolte S, Burszta-Adamiak E. Treatment of electropolishing industrial wastewater and its impact on the immobilisation of Daphnia magna. ENVIRONMENTAL RESEARCH 2022; 212:113438. [PMID: 35569535 DOI: 10.1016/j.envres.2022.113438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The amount of industrial pollution entering the environment and its impact on living organisms is an ongoing concern. At the same time, due to an increasing awareness, new methods of wastewater treatment are being explored that are not only effective but also environmentally acceptable. Meeting environmental standards for permitted concentrations is a necessity, but investigating the effects of wastewater on living organisms is also an important issue. In this paper, the influence of metal ions (Fe(III), Cr(III), Ni(II), Cu(II)) in industrial wastewater from electropolishing of stainless steel on Daphnia magna has been investigated. Daphnids have been exposed to wastewater both before and after treatment (Ca(OH)2 precipitation, sorption with peat). Immobilisation in a 48-h acute toxicity test and EC50 has been determined. In the case of studied industrial wastewater, the organic content (expressed as total organic carbon) of the effluent has a positive impact in terms of the survival of D. magna and increases the range of heavy metal concentrations tolerated by them. The application of a two-stage process with Ca(OH)2 neutralisation followed by sorption with peat allows for the removal of almost 100% of metal ions from the wastewater. The reduction obtained ensured a limited impact on D. magna and a decrease in immobilisation to less than 10%. Proper execution of the wastewater treatment process ensures a reduction of its negative impact on living organisms.
Collapse
Affiliation(s)
- Sylwia Charazińska
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, pl. Grunwaldzki 24 50-375, Wroclaw, Poland
| | - Paweł Lochyński
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, pl. Grunwaldzki 24 50-375, Wroclaw, Poland
| | - Marta Markiewicz
- Technical University of Dresden, Institute of Water Chemistry, 01069, Dresden, Germany
| | - Stefan Stolte
- Technical University of Dresden, Institute of Water Chemistry, 01069, Dresden, Germany
| | - Ewa Burszta-Adamiak
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, pl. Grunwaldzki 24 50-375, Wroclaw, Poland.
| |
Collapse
|
14
|
Vineeth Kumar CM, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KSU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. ENVIRONMENTAL RESEARCH 2022; 212:113202. [PMID: 35398077 DOI: 10.1016/j.envres.2022.113202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.
Collapse
Affiliation(s)
- C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, 695018, Kerala, India
| | - Asha Embrandiri
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Amhara, Ethiopia
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - P Sowmiya
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
15
|
Mawed SA, Marini C, Alagawany M, Farag MR, Reda RM, El-Saadony MT, Elhady WM, Magi GE, Di Cerbo A, El-Nagar WG. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants (Basel) 2022; 11:1567. [PMID: 36009286 PMCID: PMC9404823 DOI: 10.3390/antiox11081567] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, the core mechanisms that control gametogenesis are largely multiple, complex, successive, and orchestrated by intrinsic and extrinsic factors. However, age, health status, and hormonal activity are important factors for good fertility; other intangible intracellular molecular mechanisms that manage oocyte development are still unclear. The present study was designed to elucidate the ultrastructure changes in the ovary in response to its exposure to zinc oxide nanoparticles (ZnO-NPs) and to explore the role of autophagy and apoptosis during egg maturation and ovulation on the fertility of female zebrafish. In our study, ZnO-NPs could induce cytotoxicity in the maturing oocyte by activating autophagy and apoptosis in a caspase-dependent manner and could induce oxidative stress by generating reactive oxygen species (ROS) that elevated the mutated ovarian tP53 protein. Simultaneously, necroptosis developed, mimicking the features of apoptosis and necrosis. Collectively, ZnO-NPs created a suitable necrotic environment that led to follicular developmental retardation that altered oocyte ovulation and reduced fecundity of female zebrafish.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha M. Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gian E. Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Wafaa G. El-Nagar
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
16
|
Santos-Rasera JR, Monteiro RTR, de Carvalho HWP. Investigation of acute toxicity, accumulation, and depuration of ZnO nanoparticles in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153307. [PMID: 35065106 DOI: 10.1016/j.scitotenv.2022.153307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Size is a key factor controlling the rate of dissolution of nanoparticles, such property can be explored for producing controlled release fertilizers. Hence, one can expect the increasing discharge of nanoparticles closer to water streams in the near future. In this study, we employed the model fresh water organism Daphnia magna to investigate the uptake, acute toxicity and depuration of ZnO nanoparticles. The present study shows that the median lethal concentration (LC50) depended on particle size and the presence of surfactant. The LC50 for positive control ZnSO4 (2.15 mg L-1), 20 nm ZnO (1.68 mg L-1), and 40 nm ZnO (1.71 mg L-1) were statistically the same. However, the addition of surfactant increased the LC50 of 40 nm and 60 nm to 2.93 and 3.24 mg L-1, respectively. The 300 nm ZnO was the least toxic nanoparticle presenting LC50 of 6.35 mg L-1. X-ray fluorescence chemical imaging revealed that Zn accumulated along the digestive system regardless the particle size. Finally, contrary to what have been reported by several papers, the present study did not detect any depuration of ZnO nanoparticles in the next 24 h past the exposure assays. Thus, the ability of organisms to expel ingested nanomaterials might be dependent on specific physical-chemical features of such nanomaterials.
Collapse
Affiliation(s)
- Joyce Ribeiro Santos-Rasera
- Laboratory of Nuclear Instrumentation (LIN), Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo 13416000, Brazil
| | - Regina Teresa Rosim Monteiro
- Laboratory of Ecotoxicology, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo 13416000, Brazil
| | - Hudson Wallace Pereira de Carvalho
- Laboratory of Nuclear Instrumentation (LIN), Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo 13416000, Brazil.
| |
Collapse
|
17
|
Sun Y, Liu Q, Huang J, Li D, Huang Y, Lyu K, Yang Z. Food abundance mediates the harmful effects of ZnO nanoparticles on development and early reproductive performance of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113475. [PMID: 35364508 DOI: 10.1016/j.ecoenv.2022.113475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Most aquatic ecosystems are at risk of being polluted by new environmental pollutant nanoparticles. As the main food source of zooplankton, the biomass of algae always fluctuates. Cladocerans, an important part of zooplankton, are usually be simultaneously exposed to different abundance of algae and nanoparticles in aquatic environment. To evaluate the combined effects of food abundance and ZnO nanoparticles concentration on the development and early reproductive performance of cladocerans, we exposed Daphnia magna, a common and representative model organism in cladocerans, to the combinations of different abundances of Chlorella pyrenoidosa and different concentrations of ZnO nanoparticles, recorded the key life-history traits, and used multiple models to fit the data. Results showed that high level of ZnO nanoparticles and low abundance Chlorella had an interactively negative effect on the life history of D. magna. When D. magna was exposed to ZnO nanoparticles, some life history traits, such as survival time, body length at maturation, and offspring per female, increased exponentially with the increase of food abundance, and then reached a theoretical maximum value, whereas some other life history traits, such as time to maturation and time to first brood, showed an opposite trend. However, higher Chlorella abundance reduced the negative effect of ZnO nanoparticles on D. magna, but the negative effect could not be eliminated with the increase of food abundance. Below Chlorella 0.30 mg C L-1, food plays a decisive role, while at or above this threshold, ZnO nanoparticles play a decisive role. Therefore, the effect of different ZnO nanoparticles concentrations can be fully reflected only when food is sufficient, and the negative effects of food shortages may mask the toxic effects of ZnO nanoparticles on D. magna. The findings indicated that the effects of food abundance should be considered in evaluating the realistic impact of pollutants on zooplankton.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Da Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
18
|
Du J, Qv W, Niu Y, Yuan S, Zhang L, Yang H, Zhang Y. Co-exposures of acid rain and ZnO nanoparticles accelerate decomposition of aquatic leaf litter. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128141. [PMID: 34968844 DOI: 10.1016/j.jhazmat.2021.128141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The pattern of acid rain is dependent on the ratio of SO42- and NO3-, which change may affect the dissolution activity of dull heavy metals in the aquatic environment and further complicate the ongoing challenge of ecosystem stability and increase risks. In this study, we assessed the combined effects of acid rain (SO42-: NO3- was 2:1, 1:1, and 1:2) and ZnO nanoparticles (30 ng L-1) on plant litter decomposition through a microcosm experiment. The highest dissolution of ZnO nanoparticles was achieved when the SO42-: NO3- ratio was 1:2, and there were no significant differences among other treatments. The fungal biomass showed significant decreases under acute exposures but tended to be adaptive during chronic exposures. The co-exposure significantly stimulated the activities of leucine-aminopeptidase, glycine-aminopeptidase, polyphenol oxidase, and cellobiohydrolase. Besides, the fungal diversity and the relative abundance of some functional genera (e.g. Anguillospora) were enhanced when the SO42-: NO3- ratio was 1:2 and 2:1. In conclusion, the decomposition rate of plant litter was increased by 123-204% by co-exposures. Collectively, the findings underline the importance of considering environmental context to assess nanoparticle toxicity.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China.
| | - Wenrui Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yulong Niu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shuaikang Yuan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lingyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Huilian Yang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
19
|
Qi Q, Li Q, Li J, Mo J, Tian Y, Guo J. Transcriptomic analysis and transgenerational effects of ZnO nanoparticles on Daphnia magna: Endocrine-disrupting potential and energy metabolism. CHEMOSPHERE 2022; 290:133362. [PMID: 34933032 DOI: 10.1016/j.chemosphere.2021.133362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The widespread application of zinc oxide nanoparticles (ZnO NPs) has raised concerns over the adverse effects on aquatic species. In this study, transcriptomic analysis was applied to evaluate the chronic toxicity of ZnO NPs on the freshwater invertebrate Daphnia magna and the intergenerational effects were then further investigated. Parent daphnia (F0) were exposed to ZnO NPs at 3, 60, and 300 μg L-1 for 21 days. ZnO NPs significantly inhibited the reproduction (first pregnancy and spawning time, total number of offspring) and growth (molting frequency and body length) of F0. Here, differentially expressed genes (DEGs) involved in lysosomal and phagosome, energy metabolism and endocrine disruption pathways were significantly downregulated. Furthermore, disruption on the transport and catabolic processes probably resulted in the particle accumulation. The inhibited pathways related to energy metabolism may partially account for the body length, molting and reproductive restriction. The suppression of growth and reproduction may attribute to the down-regulation of insulin secretion and ovarian steroidogenesis pathways, respectively. Partial recovery of growth and reproductive inhibition in F1 - F3 descended from the F0 generation exposure did not support constant transgenerational effects. This study unravels the molecular mechanisms and transgenerational consequences of the toxicity of nanoparticles on Daphnia.
Collapse
Affiliation(s)
- Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jing Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
20
|
Liu Y, Chen M, Ma Y, Guo R, Yan Z, Chen J. Reproductive stimulation and energy allocation variation of BDE-47 and its derivatives on Daphnia magna. CHEMOSPHERE 2022; 288:132492. [PMID: 34626654 DOI: 10.1016/j.chemosphere.2021.132492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
As endocrine disrupting chemical, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is widely distributed in water environment with a high detection rate. 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 6-methoxy-2,2',4,4'-tetrabromodiphenyl ether (6-MeO-BDE-47) are two main derivatives of BDE-47. To explore the aquatic risk of BDE-47 and its derivatives, the effects of them and their ternary mixture on the reproduction, growth, energy allocation, and neurological and antioxidant responses of Daphnia magna were monitoring during different exposure periods, i.e., daphnids exposed to compounds for 21 days or pre-exposed to compounds for 14 days and then recovered 7 days in clean water. In general, in 21-day test, reproductive parameters of exposed daphnids were significantly stimulated, and the growth and enzymatic activities of super oxidase dimutase (SOD), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) were significantly depressed by the single- or mixture compounds. In (14 + 7)-day test, the levels of body length, number of living offspring per female and the enzyme activities recovered to some degree. However, after 7 days of recovery in pollution free medium, the reproductive parameters and enzymatic activities of D. magna were unable to restore control values. These results showed that D. magna has a tendency that the energy allocated to reproduction was greater than that to grow after exposure. The energy distribution of D. magna occurred autonomously after being exposed, which can make it better adapt to environmental changes. Moreover, based on the behavioral and enzymology indicators of D. magna, the spider chart's application in the characteristic analysis of function indicators of D. magna implied that SOD, GPx and AChE could become sensitive biomarkers for different exposure periods. Those findings enable us to better understand BDE-47 and metabolites, and are conducive to better take measures to solve the pressure it brings.
Collapse
Affiliation(s)
- Yanhua Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Meilin Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunfeng Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruixin Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqiu Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Wang T, Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2237-2263. [PMID: 35923327 PMCID: PMC9282172 DOI: 10.1039/d2en00052k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
MNPs may undergo different environmental transformations in aquatic systems, consequently changing their mobility, bioavailability and toxicity to freshwater invertebrates.
Collapse
Affiliation(s)
- Ting Wang
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| |
Collapse
|
22
|
Gutierrez MF, Ale A, Andrade V, Bacchetta C, Rossi A, Cazenave J. Metallic, metal oxide, and metalloid nanoparticles toxic effects on freshwater microcrustaceans: An update and basis for the use of new test species. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2505-2526. [PMID: 34470080 DOI: 10.1002/wer.1637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
In this article, we performed a literature review on the metallic, metal oxide, and metalloid nanoparticles (NP) effects on freshwater microcrustaceans, specifically focusing on (i) the main factors influencing the NP toxicity and (ii) their main ecotoxicological effects. Also, given that most studies are currently developed on the standard test species Daphnia magna Straus, we analyzed (iii) the potential differences in the biological responses between D. magna and other freshwater microcrustacean, and (iv) the ecological implications of considering only D. magna as surrogate of other microcrustaceans. We found that NP effects on microcrustaceans depended on their intrinsic properties as well as the exposure conditions. Among the general responses to different NP, we identified body burial, feeding inhibition, biochemical effects, metabolic changes, and reproductive and behavioral alterations. The differences in the biological responses between D. magna and other freshwater microcrustacean rely on the morphology (size and shape), ecological traits (feeding mechanisms, life cycles), and intrinsic sensitivities. Thus, we strongly recommend the use of microcrustaceans species with different morphological, physiological, and ecological characteristics in future ecotoxicity tests with NP to provide relevant information with regulation purposes regarding the discharge of NP into aquatic environments. PRACTITIONER POINTS: Nanoparticles effects depend on intrinsic and external factors. Nanoparticles affect the morphology, physiology, and behavior. Effects on Daphnia differ from other microcrustaceans. The use of more diverse test species is suggested.
Collapse
Affiliation(s)
- María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Victoria Andrade
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Andrea Rossi
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Facultad de Humanidades y Ciencias (FHUC-UNL), Santa Fe, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Facultad de Humanidades y Ciencias (FHUC-UNL), Santa Fe, Argentina
| |
Collapse
|
23
|
Paul V, Krishnakumar S, Gowd GS, Nair SV, Koyakutty M, Paul-Prasanth B. Sex-Dependent Bioaccumulation of Nano Zinc Oxide and Its Adverse Effects on Sexual Behavior and Reproduction in Japanese Medaka. ACS APPLIED BIO MATERIALS 2021; 4:7408-7421. [DOI: 10.1021/acsabm.1c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vinod Paul
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | | | | | - Shantikumar V. Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Bindhu Paul-Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
24
|
Maršík P, Zunová T, Vaněk T, Podlipná R. Metazachlor effect on poplar - Pioneer plant species for riparian buffers. CHEMOSPHERE 2021; 274:129711. [PMID: 33524867 DOI: 10.1016/j.chemosphere.2021.129711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Metazachlor belongs to one of the most used herbicides throughout the world. In order to prevent the contamination of water bodies by such herbicides, the riparian buffers are constructed. The selection of appropriate plant species for this purpose is necessary. In our project, we studied the possibility of grey poplar to uptake and biotransform metazachlor, along with the phytotoxic effect of metazachlor and its metabolites. We used two different models - suspension cultures and poplar regenerants cultivated in vitro. Our results show that the herbicide metazachlor is readily metabolized by both suspension cultures and regenerants to 16 detectable metabolites. The detailed scheme of biotransformation pathway in poplar tissue is presented for the first time. The profile of detected metabolites was approximately the same in poplar cell cultures and regenerants, but the ratio and amounts of particular compounds was significantly different. Generally, the highest concentration (peak area/mg of DW) of all metabolites was present in the roots; the only exception was lactate conjugate (deCl-MZCl-Lact), which accumulated in the cultivation media. Although the plants were not visibly affected by metazachlor or its metabolites, they showed changes in activity of antioxidant enzymes and increased content of phenolic substances, the indicators of stress.
Collapse
Affiliation(s)
- P Maršík
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Praha, 6 - Lysolaje, Czech Republic
| | - T Zunová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Praha, 6 - Lysolaje, Czech Republic
| | - T Vaněk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Praha, 6 - Lysolaje, Czech Republic
| | - R Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Praha, 6 - Lysolaje, Czech Republic.
| |
Collapse
|
25
|
Maternal Responses and Adaptive Changes to Environmental Stress via Chronic Nanomaterial Exposure: Differences in Inter and Transgenerational Interclonal Broods of Daphnia magna. Int J Mol Sci 2020; 22:ijms22010015. [PMID: 33374973 PMCID: PMC7792578 DOI: 10.3390/ijms22010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
There is increasing recognition that environmental nano-biological interactions in model species, and the resulting effects on progeny, are of paramount importance for nanomaterial (NM) risk assessment. In this work, Daphnia magna F0 mothers were exposed to a range of silver and titanium dioxide NMs. The key biological life history traits (survival, growth and reproduction) of the F1 intergenerations, at the first (F1B1), third (F1B3) and fifth (F1B5) broods, were investigated. Furthermore, the F1 germlines of each of the three broods were investigated over 3 more generations (up to 25 days each) in continuous or removed-from NM exposure, to identify how the length of maternal exposure affects the resulting clonal broods. Our results show how daphnids respond to NM-induced stress, and how the maternal effects show trade-offs between growth, reproduction and survivorship. The F1B1 (and following germline) had the shortest F0 maternal exposure times to the NMs, and thus were the most sensitive showing reduced size and reproductive output. The F1B3 generation had a sub-chronic maternal exposure, whereas the F1B5 generation suffered chronic maternal exposure where (in most cases) the most compensatory adaptive effects were displayed in response to the prolonged NM exposure, including enhanced neonate output and reduced gene expression. Transgenerational responses of multiple germlines showed a direct link with maternal exposure time to 'sub-lethal' effect concentrations of NMs (identified from standard OECDs acute toxicity tests which chronically presented as lethal) including increased survival and production of males in the F1B3 and G1B5 germlines. This information may help to fine-tune environmental risk assessments of NMs and prediction of their impacts on environmental ecology.
Collapse
|
26
|
Dai H, Sun T, Han T, Guo Z, Wang X, Chen Y. Aggregation behavior of zinc oxide nanoparticles and their biotoxicity to Daphnia magna: Influence of humic acid and sodium alginate. ENVIRONMENTAL RESEARCH 2020; 191:110086. [PMID: 32846168 DOI: 10.1016/j.envres.2020.110086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The widespread applications of zinc oxide nanoparticles (ZnO NPs) have raised increasing concerns due to their adverse environmental effects. The ubiquitous natural organic matter in natural aqueous environments can interact with ZnO NPs, thereby affecting their aggregation, sedimentation and biotoxicity. Here, we systematically investigated the effects of humic acid (HA) and sodium alginate (SA) on the aggregation behavior of ZnO NPs and their biotoxicity to Daphnia magna. High concentrations (9.0 mg/L) of HA and SA accelerated the aggregation of ZnO NPs with maximum aggregation rates (ΔD/Δt) of 22.1 and 19.2 nm/min, respectively. Both HA and SA led to 31.2% and 30.1% decrease of ZnO NPs concentration compared with the control experiment. The results calculated by Derjaguin-Landau-Verwey-Overbeek theoretical formula were consistent with these of aggregation and sedimentation of ZnO NPs. Furthermore, excitation-emission-matrix fluorescence spectroscopy verified that the carboxylic groups of HA and SA have high complexation capacity with ZnO NPs. Daphnia magna was used to evaluate the biotoxicity of ZnO NPs, and the toxicity of ZnO NPs to Daphnia magna was alleviated as the HA concentration increased from 0 to 1.2 mg/L. Toxicity mitigation experiments confirmed that photocatalytic generation of reactive oxygen species was more toxic to Daphnia magna than dissolved Zn2+ in acute and chronic toxicity tests. Moreover, the attacks of active oxygen free radical damaged the antioxidant system of Daphnia magna. The information obtained will help us to improve the understanding of the impacts of ZnO NPs on freshwater ecosystems.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Tongshuai Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China.
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China.
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
27
|
Du J, Zhang Y, Qv M, Yin Y, Zhang W, Zhang J, Zhang H. Different phototoxicities of ZnO nanoparticle on stream functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138340. [PMID: 32298904 DOI: 10.1016/j.scitotenv.2020.138340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
To explore the chronic phototoxicity of ZnO nanoparticles (NPs) on stream ecosystems, a microcosm experiment was conducted on Populus nigra L. leaf decomposition with ZnO NPs under different light components (visible and ultraviolet (UV) light) with a natural photoperiod. Light components significantly affected the transformation dynamic of ZnO NPs. After chronic exposure (day 15 to 30), ZnO NPs under light irradiation caused significant decrease in the microbial biomass, but significant increase in the fungal biomass. Compared to visible light, UV light led to lower microbial biomass and metabolic activity but higher antioxidant activity when ZnO NP concentrations were 10 and 20 mg L-1, eventually causing significant reductions in decomposition rates. Pleosporales sp., Montagnulaceae sp., and Volutella citronella responded sensitively to ZnO NPs. However, higher decomposition efficiency of leaf nitrogen was achieved under UV light when ZnO NPs concentrations were 10 mg L-1, suggesting that microbial nitrogen-related enzymes and ZnO nanoparticle photocatalytic properties contribute to leaf degradation. In conclusion, the results of this study provide compelling evidence that light components strongly affect ZnO NPs transformation, which impacts microbial communities with consequences for ecological processes in stream ecosystems.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingxiang Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuting Yin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Wenfang Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jin Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hongzhong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
28
|
Sanpradit P, Buapet P, Kongseng S, Peerakietkhajorn S. Temperature and concentration of ZnO particles affect life history traits and oxidative stress in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105517. [PMID: 32485496 DOI: 10.1016/j.aquatox.2020.105517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Temperature affects physiological processes in organisms and the toxicity of chemicals. The widespread industrial use of ZnO causes contamination in aquatic ecosystems. This study aimed to investigate the chronic toxicity of ZnO at different temperatures using Daphnia magna as a model organism. The chronic toxicity of five different concentrations of ZnO was assessed at 23 °C and 28 °C. The results showed that higher concentrations of ZnO inhibited growth, production of first clutch eggs and juvenile accumulation at both 23 °C and 28 °C. Growth rate, numbers of first clutch eggs and juvenile accumulation were lower at 28 °C than at 23 °C. We also observed the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) activity. At higher concentrations of ZnO, oxidative stress was induced leading to increase MDA level and decrease SOD activity at 28 °C. These findings indicated that high temperature and high concentration of ZnO inhibited the activity of enzymatic proteins. Nonetheless, among all treatments, the accumulation of zinc in D. magna was not significantly different. Our results suggested that both ZnO and higher temperature induced oxidative stress in D. magna. As a result, MDA concentration increased, SOD activity changed and the growth and reproduction of D. magna was adversely affected.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pimchanok Buapet
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supunsa Kongseng
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Saranya Peerakietkhajorn
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
29
|
Du J, Zhang Y, Yin Y, Zhang J, Ma H, Li K, Wan N. Do environmental concentrations of zinc oxide nanoparticle pose ecotoxicological risk to aquatic fungi associated with leaf litter decomposition? WATER RESEARCH 2020; 178:115840. [PMID: 32339863 DOI: 10.1016/j.watres.2020.115840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/20/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicological risk of ZnO nanoparticles at environmental levels is a key knowledge gap for predicting how freshwater ecosystems will respond to nanoparticle pollution. A microcosm experiment was conducted to explore the chronic effects of ZnO nanoparticle at environmental concentrations (30, 300, 3000 ng L-1) on aquatic fungi associated with the decomposing process of poplar leaf litter (45 days). ZnO nanoparticles led to 9-33% increases in fungal biomass after acute exposure (5 days), but 33-50% decreases after chronic exposure (45 days), indicating that the hormetic effect of ZnO nanoparticles at the environmental level may occur during acute exposure. Besides, ZnO nanoparticles had negative effects on microbial enzyme activity, especially on day 10, when the activities of N-acetylglucosaminidase, glycine-aminopeptidase, aryl-sulfatase, polyphenol oxidase, and peroxidase were significantly inhibited. After chronic exposure, the fungal community structure was significantly impacted by ZnO nanoparticles at 300 ng L-1 due to the reduced proportion of Anguillospora, which eventually caused a significant decrease in litter decomposition rate. Therefore, ZnO nanoparticles may pose ecotoxicological effects on aquatic fungi even at a very low concentration and eventually negatively affect freshwater functioning.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, National Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, Zhengzhou, China.
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuting Yin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jin Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ke Li
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ning Wan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
30
|
Zhang C, De Meester L, Stoks R. Effects of thermal evolution on the stoichiometric responses to nano-ZnO under warming are not general: insights from experimental evolution. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:175-184. [PMID: 31940103 DOI: 10.1007/s10646-020-02165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
A key challenge for ecological risk assessment of contaminants under global warming is to predict effects at higher levels of biological organisation. One approach to reach this goal is to study how contaminants and warming cause changes in body stoichiometry as these may potentially cascade through food webs. Furthermore, though contaminants typically interact with warming, how rapid adaptation to higher temperatures affects these interactions is poorly studied. Here, we examined the effects of an important contaminant (ZnO nanoparticles, nZnO) and mild warming (4 °C) on body stoichiometry (C, N, P and their ratios) of an aquatic keystone species, the water flea Daphnia magna. To evaluate whether thermal evolution impacts the effects of nZnO at higher temperatures, we compared two sets of clones from a thermal selection experiment where Daphnia were kept in outdoor mesocosms at ambient or ambient +4 °C temperatures for 2 years. Exposure to nZnO decreased key body stoichiometric ratios (C:N, C:P and a trend for N:P) while warming increased the body C:N ratio. The stoichiometric changes to nZnO and warming were mostly independent and could be partly explained by changes in the macromolecules sugars and fat. Exposure to nZnO decreased C-rich sugars contributing to a reduced %C. Warming reduced body %C due to decreased C-rich sugars and fat levels, yet warming decreased body N% even more resulting in a higher C:N ratio. The stoichiometric responses to nZnO at the higher temperature did not differ between the two sets of clones, indicating experimental thermal evolution did not change the effects of nZnO under warming. Studying the stoichiometric responses to nZnO and warming of this keystone species may provide novel insights on the toxic effects of contaminants under warming. Moreover, understanding the influence of thermal evolution on the toxicity of contaminants is important for ecological risk assessment especially in a warming world.
Collapse
Affiliation(s)
- Chao Zhang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China.
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, 3000, Belgium.
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, 3000, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
31
|
|
32
|
Zhu Y, Wu J, Chen M, Liu X, Xiong Y, Wang Y, Feng T, Kang S, Wang X. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. CHEMOSPHERE 2019; 237:124403. [PMID: 31356996 DOI: 10.1016/j.chemosphere.2019.124403] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The contact between metal oxide nanoparticles (NPs) and human is more and more close with their wide applications. The inputs of metal oxide NPs to the environment are also growing every year, which causes potential environmental and human health risks. They are toxic to animals, microorganisms and plants at high concentrations, and they show different mechanisms of toxicity to different species. In addition, under complex environmental conditions, their toxic effects are often unpredictable. We have integrated the recent studies on the biotoxicity of metal oxide NPs from 2015-present, and clarified their toxic mechanism, as well as the toxic harm. It lays a foundation for further studying the toxicity and ecological risk of metal oxide NPs.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Jianhua Wu
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xianli Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China.
| | - Yijie Xiong
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Yanyan Wang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Tao Feng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430080, PR China
| | - Shuang Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
33
|
Wang Y, Qin S, Li Y, Wu G, Sun Y, Zhang L, Huang Y, Lyu K, Chen Y, Yang Z. Combined effects of ZnO nanoparticles and toxic Microcystis on life-history traits of Daphnia magna. CHEMOSPHERE 2019; 233:482-492. [PMID: 31181495 DOI: 10.1016/j.chemosphere.2019.05.269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Rise in cyanobacterial blooms and massive discharge of nanoparticles (NPs) in aquatic ecosystems cause zooplankton to be exposed in toxic food and NPs simultaneously, which may impact on zooplankton interactively. Therefore, the present study focused on assessing the combined effects of different ZnO NPs levels (0, 0.10, 0.15, 0.20 mg L-1) and different proportions of toxic Microcystis (0%, 10%, 20%, 30%) in the food on a model zooplankton, Daphnia magna. The results showed that both toxic Microcystis and ZnO NPs significantly delayed the development of D. magna to maturation, but there was no significant interaction between the two factors on the times to maturation except the body length at maturation. Both ZnO NPs and toxic Microcystis also significantly decreased the number of neonates in the first brood, total offspring, and number of broods per female, and there was a significant interaction between ZnO NPs and food composition on the reproductive performance of D. magna. Specifically, presence of toxic Microcystis reduced the gap among the effects of different ZnO NPs concentrations on the reproductive performance of D. magna. When the ZnO NPs concentration was at 0.15 mg L-1, the gap of the reproductive performance among different proportions of toxic Microcystis also tended to be narrow. Similar phenomenon also occurred in mortality. Such results suggested that low concentration of ZnO NPs and toxic Microcystis can mutually attenuate their harmful effects on D. magna, which has significantly implications in appropriately assessing the ecotoxicological effects of emerging pollutants in a complex food conditions.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yurou Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Guangjin Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
34
|
Sun J, Zhou Q, Hu X. Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:269-279. [PMID: 31100591 DOI: 10.1016/j.ecoenv.2019.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
With the broad application of nanoparticles, nanotoxicology has attracted substantial attention in environmental science. However, the methods for detecting few and targeted genes or proteins, even single omics approaches, may miss other responses, including the major responses induced by nanoparticles. To determine the actual toxicological mechanisms of zebrafish brains induced by graphene oxide (GO, a popular carbon-based nanomaterial applied in various fields) at nonlethal concentrations, multi-omics and regular analyses were combined. The biomolecule responses were remarkable, although GO was not obviously observed in brain tissues. The trends for gene and protein changes were the same and accounted for 3.53% and 5.36% of all changes in the genome and proteome, respectively, suggesting a limitation of single omics analysis. Transcriptomics and proteomics analyses indicated that GO affected the functions or pathways of the troponin complex, actin cytoskeleton, monosaccharide transmembrane transporter activity, oxidoreductase activity and focal adhesion. Both metabolomics and proteomics revealed mitochondrial dysfunction and disruption of the citric acid cycle. The integrated analysis of omics, transmission electron microscopy and immunostaining confirmed that GO induced energy disruptions and mitochondrial damage by downregulating tubulin. The combination of multi-omics and regular analyses provides insights into the actual and highly influential mechanisms underlying nanotoxicity.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
35
|
Tokarský J, Mamulová Kutláková K, Podlipná R, Vaněk T. Phytotoxicity of ZnO/kaolinite nanocomposite-is anchoring the right way to lower environmental risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22069-22081. [PMID: 31147998 DOI: 10.1007/s11356-019-05529-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
The importance of studies on photoactive zinc oxide nanoparticles (ZnO NPs) increases with increasing environmental pollution. Since the ZnO NPs (and NPs in general) also pose an environmental risk, and since an understanding of the risk is still not sufficient, it is important to prevent their spread into the environment. Anchoring on phyllosilicate particles of micrometric size is considered to be a useful way to address this problem, however, so far mainly on the basis of leaching tests in pure water. In the present study, the phytotoxicity of kaolinite/ZnO NP (10, 30, and 50 wt.%) nanocomposites in concentrations 10, 100, and 1000 mg/dm3 tested on white mustard (Sinapis alba) seedlings was found to be higher (relative lengths of roots are ~ 1.4 times lower) compared with seedlings treated with pristine ZnO NPs. The amount of Zn accumulated from the nanocomposites in white mustard tissues was ~ 2 times higher than can be expected based on the ZnO content in the nanocomposites compared with the ZnO content (100 wt.%) in pristine ZnO NPs. For the false fox-sedge (Carex otrubae) plants, the amount of Zn accumulated in roots and leaves was ~ 2.25 times higher and ~ 2.85 times higher, respectively, compared with that of the pristine ZnO NPs (with respect to the ZnO content). Increased phytotoxicity of the nanocomposites and higher uptake of Zn by plants from the nanocomposites in comparison with pristine ZnO NPs suggest that the immobilization of ZnO NPs on the kaolinite does not reduce the environmental risk.
Collapse
Affiliation(s)
- Jonáš Tokarský
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
- IT4 Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Kateřina Mamulová Kutláková
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Czech Republic
| | - Radka Podlipná
- Institute of Experimental Botany AS CR, Rozvojová 313, 165 02, Prague, Czech Republic.
| | - Tomáš Vaněk
- Institute of Experimental Botany AS CR, Rozvojová 313, 165 02, Prague, Czech Republic
| |
Collapse
|
36
|
Hu G, Cao J. Metal-containing nanoparticles derived from concealed metal deposits: An important source of toxic nanoparticles in aquatic environments. CHEMOSPHERE 2019; 224:726-733. [PMID: 30851524 DOI: 10.1016/j.chemosphere.2019.02.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The potential environmental risks of engineered nanoparticles in aquatic environment have attracted considerable attention, but naturally produced nanoparticles have relatively been ignored, such as ore-related nanoparticles. To obtain more information about the natural ore-related nanoparticles, deep groundwater and well water samples were respectively collected in or around four major metal deposits in Inner Mongolia, China. These water samples were tested with high resolution transmission electron microscopy (TEM) and abundant metal-containing nanoparticles were found. Major ore-forming elements of corresponding metal deposits, such as Fe, Pb, Zn and Cu, and even associated elements, such as As, Sb, Sn and Cr, significantly contributed to the chemical compositions of these detected nanoparticles. Through comparison analyses, these metal-containing nanoparticles were shown to be originally from deep concealed metal deposits. They were the products of faulting and oxidation of ore minerals, and were transported long distances by water flow. Notably, these ore-related nanoparticles happened to have similar components with those nanoparticles of high environmental risks. Coupled with the analytical results of Atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS), it is recommended that the concentration limits of metal-containing nanoparticles should be considered in the safety assessment of drinking water. This is the first time, so far as we know, that naturally produced ore-related nanoparticles in the aquatic environment were listed as a kind of material with environmental risks. Considering the wide distribution of concealed metal deposits, more attention on related studies was urgently required for establishing specialized risk assessment and monitoring system.
Collapse
Affiliation(s)
- Guai Hu
- School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resource Exploration, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianjin Cao
- School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resource Exploration, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
37
|
Melegari SP, Fuzinatto CF, Gonçalves RA, Oscar BV, Vicentini DS, Matias WG. Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials? CHEMOSPHERE 2019; 224:237-246. [PMID: 30822730 DOI: 10.1016/j.chemosphere.2019.02.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Among nanomaterials, zinc oxide (ZnO) is notable for its excellent biocidal properties. In particular, it can be incorporated in mortars to prevent biofouling. However, the morphology of these nanomaterials (NMs) and their impact on the action against biofouling are still unknown. This study aimed to assess how the morphology and surface modification can affect the ecotoxicology of ZnO NMs. The morphologies evaluated were nanoparticles (NPs) and nanorods (NRs), and the ZnO NMs were tested pure and with surface modification through amine functionalization (@AF). The toxic effects of these NMs were evaluated by acute and chronic ecotoxicity tests with the well-established model microcrustacean Daphnia magna. The ZnO NMs were characterized by transmission electron microscopy, X-ray diffraction and infrared spectroscopy. The EC5048h to D. magna indicated higher acute toxicity of ZnO@AF NRs compared to all tested NMs. Regarding the chronic test with D. magna, high toxic effects on reproduction and longevity were observed with ZnO@AF NRs and effects on growth were observed with ZnO NRs. In general, all tested ZnO NMs presented high toxicity when compared to the positive control, and the NRs presented higher toxicity than NPs in all tested parameters, regardless of the form tested (pure or with surface modification). Additionally, the pathways of ecotoxicity of the tested ZnO NMs was found to be related to combined factors of Zn ion release, effective diameter of particles and NM internalization in the organism.
Collapse
Affiliation(s)
- Silvia Pedroso Melegari
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil; Center for Marine Studies, Federal University of Paraná - UFPR, Campus Pontal do Paraná, Beira-mar Avenue, 83255-976, Pontal do Paraná, PR, Brazil
| | - Cristiane Funghetto Fuzinatto
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil; UFFS - Universidade Federal da Fronteira Sul - UFFS, Campus Erechim, CEP: 99700-970, Erechim, RS, Brazil
| | - Renata Amanda Gonçalves
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Bianca Vicente Oscar
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Denice Schulz Vicentini
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | - William Gerson Matias
- Department of Sanitation and Environmental Engineering, Federal University of Santa Catarina - UFSC, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
38
|
Liu Y, Yan Z, Zhang L, Deng Z, Yuan J, Zhang S, Chen J, Guo R. Food up-take and reproduction performance of Daphnia magna under the exposure of Bisphenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:47-54. [PMID: 30522006 DOI: 10.1016/j.ecoenv.2018.11.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 05/04/2023]
Abstract
Because the application of Bisphenol A (BPA) was restricted, many substitutes, such as Bisphenol F (BPF) and Bisphenol S (BPS), were developed as BPA substitutes. Therefore, environmental impacts of BPA and its substitutes on aquatic organisms should be concerned, especially their combined toxicity. In this study, the impacts of BPA, BPF, BPS and their mixture on the feeding behavior, reproduction and physiological function of daphnids were synthetically evaluated, involving the duration and mode of exposure. In short-term exposure tests, feeding rates of D. magna decreased after exposure to BPA, BPF, BPS and their mixture, while the inhibition reversed into stimulation in the recovery period. It may benefit from overcompensation of D. magna. In long-term exposure tests, the inhibition effect on the reproduction and growth of the exposed D. magna was difficult to recover, and only some experimental groups have a certain recovery. In conclusion, environmental risk of BPA, BPF, BPS and their mixture on the behavior of D. magna increased with prolonged exposure time. Moreover, relative activities of trypsin, amylase (AMS), acetylcholinesterase (AChE), carbonic anhydrase (CA), glutathione peroxidase (GPx) and super oxidase dimutase (SOD) of the exposed daphnids decreased in most treatment groups, indicating the disorder of digestive, nervous and antioxidative system of D. magna. Interestingly, inhibition of enzymes activities decreased with the increase of the exposure time, which implied the tolerance may be occurred.
Collapse
Affiliation(s)
- Yanhua Liu
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengyu Yan
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Zhang
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhujiangcai Deng
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jiafu Yuan
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Jianqiu Chen
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Ruixin Guo
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
39
|
Joo SH, Aggarwal S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:62-74. [PMID: 30071367 DOI: 10.1016/j.jenvman.2018.07.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/19/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Since their advent a few decades ago, engineered nanoparticles (ENPs) have been extensively used in consumer products and industrial applications and their use is expected to continue at the rate of thousands of tons per year in the next decade. The widespread use of ENPs poses a potential risk of large scale environmental proliferation of ENPs which can impact and endanger environmental health and safety. Recent studies have shown that microbial biofilms can serve as an important biotic component for partitioning and perhaps storage of ENPs released into aqueous systems. Considering that biofilms can be one of the major sinks for ENPs in the environment, and that the field of biofilms itself is only three to four decades old, there is a recent and growing body of literature investigating the ENP-biofilm interactions. While looking at biofilms, it is imperative to consider the interactions of ENPs with the planktonic microbial cells inhabiting the bulk systems in the vicinity of surface-attached biofilms. In this review article, we attempt to establish the state of current knowledge regarding the interactions of ENPs with bacterial cells and biofilms, identifying key governing factors and interaction mechanisms, as well as prominent knowledge gaps. Since the context of ENP-biofilm interactions can be multifarious-ranging from ecological systems to water and wastewater treatment to dental/medically relevant biofilms- and includes devising novel strategies for biofilm control, we believe this review will serve an interdisciplinary audience. Finally, the article also touches upon the future directions that the research in the ENP-microbial cells/biofilm interactions could take. Continued research in this area is important to not only enhance our scientific knowledge and arsenal for biofilm control, but to also support environmental health while reaping the benefits of the 'nanomaterial revolution'.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Srijan Aggarwal
- Department of Civil and Environmental Engineering, University of Alaska Fairbanks, 1760 Tanana Loop, Duckering Building, Fairbanks, AK 99775, USA
| |
Collapse
|
40
|
Du J, Qv M, Zhang Y, Yin X, Wan N, Zhang B, Zhang H. The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems. CHEMOSPHERE 2018; 208:698-706. [PMID: 29894971 DOI: 10.1016/j.chemosphere.2018.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
With the development of nanotechnology, nanomaterials have been widely applied in anti-bacterial coating, electronic device, and personal care products. NanoZnO is one of the most used materials and its ecotoxicity has been extensively studied. To explore the potential phototoxicity of nanoZnO induced by visible light, we conducted a long-term experiment on litter decomposition of Typha angustifolia leaves with assessment of fungal multifaceted natures. After 158 d exposure, the decomposition rate of leaf litter was decreased by nanoZnO but no additional effect by visible light. However, visible light enhanced the inhibitory effect of nanoZnO on fungal sporulation rate due to light-induced dissolution of nanoZnO. On the contrary, enzymes such as β-glucosidase, cellobiohydrolase, and leucine-aminopeptidase were significantly increased by the interaction of nanoZnO and visible light, which led to high efficiency of leaf carbon decomposition. Furthermore, different treatments and exposure time separated fungal community associated with litter decomposition. Therefore, the study provided the evidence of the contribution of visible light to nanoparticle phototoxicity at the ecosystem level.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Mingxiang Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaoyun Yin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ning Wan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Baozhong Zhang
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Hongzhong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
41
|
Bhuvaneshwari M, Iswarya V, Vishnu S, Chandrasekaran N, Mukherjee A. Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia). ENVIRONMENTAL RESEARCH 2018; 164:395-404. [PMID: 29571129 DOI: 10.1016/j.envres.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The rapid increase in production and usage of ZnO particles in recent years has instigated the concerns regarding their plausible effects on the environment. Current study explores the trophic transfer potential of ZnO particles of different sizes (50, 100 nm and bulk particles) from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia) and the contribution of ZnO(ions) (effect of dissolved Zn ions that remain in test medium after separation NPs) to the overall toxicity of ZnO(total) (impact of both particle and dissolved Zn ions). Toxicity and uptake of ZnO(total) and ZnO(ions) in algae were found to be dependent on the concentration and particle size. Feeding of Zn accumulated algae (517 ± 28, 354.7 ± 61 and 291 ± 20 µg/g dry wt.) post-exposure to 61 µM of ZnO(total) of 50, 100 nm and bulk ZnO particles caused a significant decrease in the survival (15-20%) of daphnia. A significant amount of Zn accumulation was observed in daphnia even after the 48 h depuration period. Biomagnification factor was found to be nearly 1 for all the sizes of ZnO particles tested. For 50 nm ZnO, the BMF was higher when compared to other two sizes, reaching the mean value of 1.06 ± 0.01 at 61 µM. Further analysis revealed that the dietary uptake of different sizes of ZnO particles caused ultra-structural damages and degradation of internal organs in daphnia.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - V Iswarya
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - S Vishnu
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
42
|
Gonçalves RA, de Oliveira Franco Rossetto AL, Nogueira DJ, Vicentini DS, Matias WG. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:32-40. [PMID: 29428564 DOI: 10.1016/j.aquatox.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Zinc oxide nanomaterials (ZnO NM) have been used in a large number of applications due to their interesting physicochemical properties. However, the increasing use of ZnO NM has led to concerns regarding their environmental impacts. In this study, the acute and chronic toxicity of ZnO nanorods (NR) bare (ZnONR) and amine-functionalized (ZnONR@AF) toward the freshwater microcrustacean Daphnia magna was evaluated. The ZnO NR were characterized by transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the zeta potential and hydrodynamic diameter (HD). The acute EC50(48h) values for D. magna revealed that the ZnONR@AF were more toxic than the ZnONR. The generation of reactive oxygen species (ROS) was observed in both NM. Regarding the chronic toxicity, the ZnONR@AF were again found to be more toxic than the ZnONR toward D. magna. An effect on longevity was observed for ZnONR, while ZnONR@AF affected the reproduction, growth and longevity. In the multigenerational recovery test, we observed that maternal exposure can affect the offspring even when these organisms are not directly exposed to the ZnO NR.
Collapse
Affiliation(s)
- Renata Amanda Gonçalves
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Ana Letícia de Oliveira Franco Rossetto
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Diego José Nogueira
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Denice Schulz Vicentini
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil
| | - William Gerson Matias
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
43
|
Bacchetta R, Santo N, Valenti I, Maggioni D, Longhi M, Tremolada P. Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? Nanotoxicology 2018; 12:201-223. [DOI: 10.1080/17435390.2018.1430258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Renato Bacchetta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Nadia Santo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Irene Valenti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Mariangela Longhi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Paolo Tremolada
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Hu X, Sun A, Kang W, Zhou Q. Strategies and knowledge gaps for improving nanomaterial biocompatibility. ENVIRONMENT INTERNATIONAL 2017; 102:177-189. [PMID: 28318601 DOI: 10.1016/j.envint.2017.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
With rapid development of nanotechnology and nanomaterials, nanosafety has attracted wide attention in all fields related to nanotechnology. As well known, a grand challenge in nanomaterial applications is their biocompatibility. It is urgent to explore effective strategies to control the unintentional effects. Although many novel methods for the synthesis of biocompatible and biodegradable nanomaterials are reported, the control strategy of nanotoxicity remains in its infancy. It is urgent to review the archived strategies for improving nanomaterial biocompatibility to clarify what we have done and where we should be. In this review, the achievements and challenges in nanomaterial structure/surface modifications and size/shape controls were analyzed. Moreover, the chemical and biological strategies to make nanomaterial more biocompatible and biodegradable were compared. Finally, the concerns that have not been studied well were prospected, involving unintended releases, life-cycle, occupational exposure and methodology.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Anqi Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|