1
|
Li T, Chen X, Weng R, Manga M, Cheng S. Reintegrating human excreta into the agriculture of rural China: Ecological risks and application strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137683. [PMID: 40007365 DOI: 10.1016/j.jhazmat.2025.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Treating and valorizing human excreta in rural China is challenging because of its high hazardous element content. Moreover, studies on the concentrations and ecological risks of human excreta in different regions are limited. To address this gap, we conducted a cross-sectional study using data from rural China. We assessed the concentrations of six heavy metals-Cd, Cr, Cu, Hg, Pb, Zn-and the metalloid As in the samples and evaluated their contamination levels and potential ecological risks. An improved model for the safe use of human excreta was developed based on the input-output equilibrium of hazardous elements in soils, which allowed for the calculation of safe application limits for each province. The results showed that the Zn concentrations were consistently high, but Cd was the most concerning contaminant. In most provinces, the use of human excreta was found to pose potential ecological risks, with Cd and Hg identified as the primary risk factors. The safe limit for human excreta in each province ranged from 39.77 to 212.02 t∙hm⁻2 over a 100-year control period. These results can guide human excreta usage strategies and provide theoretical support and a reference for the safe application of human excreta in China and other low- and middle-income countries.
Collapse
Affiliation(s)
- Tianxin Li
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xi Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Weng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Scientific Research Academy of Guangxi Environmental Protection, Guangxi 530022, China
| | - Musa Manga
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs P. R. China, 100125, China.
| |
Collapse
|
2
|
Zeng K, Liu L, Zheng N, Yu Y, Xu S, Yao H. Iron at the helm: Steering arsenic speciation through redox processes in soils. ENVIRONMENTAL RESEARCH 2025; 274:121327. [PMID: 40058542 DOI: 10.1016/j.envres.2025.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The toxicity and bioavailability of arsenic (As) in soils are largely determined by its speciation. Iron (Fe) is widely present in soils with a strong affinity for As, and therefore the environmental behaviors of As and Fe oxides (including oxides, hydrates and hydrated oxides) are closely correlated with each other. The redox fluctuations of Fe driven by changes in the environment can significantly affect As speciation and its fate in soils. The interaction between Fe and As has garnered widespread attention, and the adsorption mechanisms of As by Fe oxides have also been well-documented. However, there is still a lack of systematic understanding of how Fe redox dynamics affects As speciation depending on the soil environmental conditions. In this review, we summarize the mechanisms for As speciation transformation and redistribution, as well as the role of environmental factors in the main Fe redox processes in soils. These processes include the biotic Fe oxidation mediated by Fe-oxidizing bacteria, abiotic Fe oxidation by oxygen or manganese oxides, dissimilatory Fe reduction mediated by Fe-reducing bacteria, and Fe(II)-catalyzed transformation of Fe oxides. This review contributes to a deeper understanding of the environmental behaviors of Fe and As in soils, and provides theoretical guidance for the development of remediation strategies for As-contaminated soils.
Collapse
Affiliation(s)
- Keman Zeng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lihu Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
3
|
Khalid MS, Farooq N, Amjad M, Shahid M, Imran M, Khalid S, Bakht HF, Shah GM, Naeem MA, Abbas G, Murtaza B. Ecotoxicological investigation of arsenic contamination within the water-soil-fruit-human continuum. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:176. [PMID: 40237933 DOI: 10.1007/s10653-025-02483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Arsenic (As) contamination of water, soil, and plants has become a global critical concern owing to its ecological consequences and human health risks. This study investigated As contamination in soil-irrigation water-fruit plant systems from previously unexplored fruit orchards in Vehari District, Pakistan. A total of 193 samples, comprising irrigation water, soil, and plants, were collected from three tehsils of district Vehari: Mailsi, Vehari, and Burewala. Results showed As concentrations ranging from 0.2 to 69.9 µg/L (mean: 16.2 µg/L) in water, 0.1-83.6 µg/L (mean: 44.6 µg/L) in soil, and 0-50.6 µg/L (mean: 9.18 µg/L) in plants. Notably, the world of water, 91.6% of soil, 28.3% of plant leaves, and 15.28% of fruit samples exceeded the permissible limit of 10 µg/L set by the World Health Organization (WHO). Moreover, 11.6% of irrigation water, 45% of soil, and 1.67% of plant leaf samples surpassed the hazardous threshold of 50 µg/L. To evaluate health risks, target hazard quotients, estimated daily intake, and cancer risk values for As were calculated as 1.54E-03, 4.63E-04, and 6.94E-07, respectively. Principal component analysis (PCA) revealed a strong correlation among water quality parameters including As carbonate (CO₃2-), bicarbonate (HCO₃-), and pH, which significantly influenced As uptake by plants. A triangular heatmap indicated associations of water and soil As with pH, CO₃2- (r2: 0.08, 0.17, 0.46), and plant As (r2: - 0.04), supporting the concept of reduced As absorption in high-carbonate soils. This study underscores widespread As contamination in groundwater, soil, and vegetation in Vehari District, Pakistan. The findings highlight the urgent need to improve irrigation water quality or implement systematic evaluations to mitigate risks to human health.
Collapse
Affiliation(s)
- Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan.
| | - Nimra Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Samina Khalid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Hafiz Faiq Bakht
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan.
| |
Collapse
|
4
|
Lu X, Yu J, Li J, Yu Y, Sun L, Li M. Influence of freeze-thaw cycles on change of arsenic speciation and toxic effects to bacteria in paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125927. [PMID: 40015440 DOI: 10.1016/j.envpol.2025.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Global warming increases the freeze-thaw (FT) cycles, however, the impact of increased FT cycles on the environmental behavior of arsenic (As) in soils and the toxic effect of As to microorganisms are still unknown. Herein, the influence of FT cycles on As forms, available As, and microbial community structure in paddy soils was investigated. After 60 FT cycles, the content of exchangeable As and residual state As decreased by 1.77% and 14.18%, respectively, while the carbonate-bound As, iron-manganese oxide-bound As, and organic-bound As increased by 4.53%, 6.5%, and 5.35%, respectively. The available As in soil and As(III) in soil water increased by 6.53 mg/kg and 38.9 μg/L, respectively. High throughput sequencing data indicated that FT cycles reduced Alpha diversity and significantly changed Beta diversity of soil microorganisms. FT cycles considerably enhanced the relative abundance of Sphingomonas and Lysobacter. Kyoto Encyclopedia of Genes and Genomes function predictions revealed that FT cycles significantly activated cellular gene segments involved in soil bacterial immunological disorders, cell motility, parasite infectious diseases, and neurological diseases. This study would serve as a reference for future study on environmental behavior and toxic effects of heavy metals in farm soils of seasonal FT aeras.
Collapse
Affiliation(s)
- Xiaohui Lu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jinfeng Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Long Sun
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
5
|
Xu H, Hu P, Wang H, Croot P, Li Z, Li C, Xie S, Zhou H, Zhang C. Identification of the pollution sources and hidden clustering patterns for potentially toxic elements in typical peri-urban agricultural soils in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125904. [PMID: 39988249 DOI: 10.1016/j.envpol.2025.125904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Peri-urban agricultural soils are often contaminated by potentially toxic elements (PTEs) due to rapid urbanization, industrial activities, and agricultural practices. In this study, two advanced analytical methods including positive matrix factorization (PMF) model and K-means clustering algorithm were integrated to explore the potential sources and concealed contamination patterns of 8 PTEs in peri-urban soils in county Gaoming, China. Descriptive statistics showed average concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) as 19.11, 0.18, 35.69, 20.31, 18.26, 151.7, 67.75, and 0.29 mg/kg, respectively. The PMF model identified three primary sources: geogenic (Cr, Ni), industrial and traffic-related (Pb, Hg, Zn), and agricultural (As, Cd and Cu). The contribution of each source was quantified: geogenic sources contributed 55.6% to Cr and 52.3% to Ni, industrial sources accounted for 41.8% of Pb, 58.4% of Hg, and 41.9% of Zn, while agricultural practices contributed 88.1% of As, 77.9% of Cu, and 70.7% of Cd. Subsequently, K-means clustering classified the soil samples into three distinct clusters based on the derived factor contribution from PMF model, reflecting their clear spatial associations with different types of land use: large-scale agricultural areas (Cluster 1), natural vegetation (Cluster 2), and urbanized zones (Cluster 3). Furthermore, boxplots showed that the highest PTE concentrations were found in the third cluster, confirming the significant impact of human activities, while the lower concentrations in the second cluster indicated more natural conditions. These results underscored the dual influences of agriculture and urbanization on PTE contamination, which highlighted the need for targeted soil management strategies. Moreover, the integration of PMF and K-means clustering effectively reveals potential sources and concealed pollution patterns, providing insights for managing pollution and safeguarding environmental health in rapidly urbanized areas.
Collapse
Affiliation(s)
- Haofan Xu
- Department of Space Information and Resources Environment, School of Architecture and Planning, Foshan University, Foshan, Guangdong, 528000, China; School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Peng Hu
- Department of Space Information and Resources Environment, School of Architecture and Planning, Foshan University, Foshan, Guangdong, 528000, China; School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Peter Croot
- Irish Centre for Research in Applied Geoscience (iCRAG), Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, H91 CF50, Ireland
| | - Zhiwen Li
- Department of Space Information and Resources Environment, School of Architecture and Planning, Foshan University, Foshan, Guangdong, 528000, China
| | - Cheng Li
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR/ International Research Center on Karst under the Auspices of UNESCO, Guilin, Guangxi, 541004, China
| | - Shaowen Xie
- Department of Space Information and Resources Environment, School of Architecture and Planning, Foshan University, Foshan, Guangdong, 528000, China
| | - Hongyi Zhou
- Department of Space Information and Resources Environment, School of Architecture and Planning, Foshan University, Foshan, Guangdong, 528000, China
| | - Chaosheng Zhang
- International Network for Environment and Health (INEH), School of Geography, Archaeology & Irish Studies, University of Galway, Galway, H91 CF50, Ireland.
| |
Collapse
|
6
|
Sun C, Li X, Li S, Qin N. Risk assessment of Arsenic in surface water of China water systems based on a time-dependent species sensitivity distribution (SSD) method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125070. [PMID: 39368625 DOI: 10.1016/j.envpol.2024.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Arsenic (As) is a naturally occurring metalloid element widespread in the environment. Assessing the ecological risk of As in surface water, especially the acute risk caused by emergent pollution incidents, is of great significance. However, acute toxicity data including median lethal concentration (LC50) and median effective concentration (EC50) of As derived by toxicology experiment may vary according to the exposure time, which is referred as time dependence effect. Time dependence not only affects toxicity data but also influences the characterization of acute risk in the ecosystem. However, previous research on the time dependence effect of As, especially the quantitative influence on the risk assessment is still limited. In this research, acute toxicity data of As(III) and As(V) was collected. Time dependence of toxicology data of inorganic As was studied. Time-dependent species sensitivity distributions of freshwater species were established. The hazardous concentration for 5% of species (HC5) values in different exposure time were further derived. Finally, the dynamic ecological risk of As in major Chinese water basins was evaluated. The results suggested that the toxicity data of inorganic As had a significant linear relationship (p < 0.01) with time. The HC5 values of As (III) and As (V) at an exposure time of four days were reduced by 15.5% and 77.5%, respectively, as compared to the HC5 value of one day. According to the ecological risk characterized by the probability density overlapping area method, the ecological risk of As(III) and As(V) increases with the exposure duration. The Yangtze River had the highest risk, with risk values ranging from 19.9% to 22.6%. According to the results, the time dependence of toxicity data should be fully considered in the formulation of water quality criteria or ecological risk assessment so as to provide better protection for the water ecosystem security.
Collapse
Affiliation(s)
- Chi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
7
|
Xu X, Xu Z, Liang L, Han J, Wu G, Lu Q, Liu L, Li P, Han Q, Wang L, Zhang S, Hu Y, Jiang Y, Yang J, Qiu G, Wu P. Risk hotspots and influencing factors identification of heavy metal(loid)s in agricultural soils using spatial bivariate analysis and random forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176359. [PMID: 39306125 DOI: 10.1016/j.scitotenv.2024.176359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Heavy metal(loid)s (HMs) in agricultural soils not only affect soil function and crop security, but also pose health risks to residents. However, previous concerns have typically focused on only one aspect, neglecting the other. This lack of a comprehensive approach challenges the identification of hotspots and the prioritization of factors for effective management. To address this gap, a novel method incorporating spatial bivariate analysis with random forest was proposed to identify high-risk hotspots and the key influencing factors. A large-scale dataset containing 2995 soil samples and soil HMs (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Zn) was obtained from across Henan province, central China. Spatial bivariate analysis of both health risk and ecological risks revealed risk hotspots. Positive matrix factorization model was initially used to investigate potential sources. Twenty-two environmental variables were selected and input into random forest to further identify the key influencing factors impacting soil accumulation. Results of local Moran's I index indicated high-high HM clusters at the western and northern margins of the province. Hotspots of high ecological and health risk were primarily observed in Xuchang and Nanyang due to the widespread township enterprises with outdated pollution control measures. As concentration and exposure frequency dominated the non-carcinogenic and carcinogenic risks. Anthropogenic activities, particularly vehicular traffic (contributing ∼37.8 % of the total heavy metals accumulation), were the dominant sources of HMs in agricultural soils. Random forest modeling indicated that soil type and PM2.5 concentrations were the most influencing natural and anthropogenic variables, respectively. Based on the above findings, control measures on traffic source should be formulated and implemented provincially; in Xuchang and Nanyang, scattered township enterprises with outdated pollution control measures should be integrated and upgraded to avoid further pollution from these sources.
Collapse
Affiliation(s)
- Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China.
| | - Jialiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Gaoen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Lin Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Pan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Qiao Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Le Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Sensen Zhang
- Henan Academy of Geology, Zhengzhou 450016, China.
| | - Yanhai Hu
- No.6 Geological Unit Team, Henan Provincial Non-ferrous Metals Geological and Mineral Resources Bureau, Luoyang 471002, China
| | - Yuping Jiang
- No.6 Geological Unit Team, Henan Provincial Non-ferrous Metals Geological and Mineral Resources Bureau, Luoyang 471002, China
| | - Jialin Yang
- No.6 Geological Unit Team, Henan Provincial Non-ferrous Metals Geological and Mineral Resources Bureau, Luoyang 471002, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
8
|
Pan H, Su Q, Hong P, You Y, Zhou L, Zou J, Sun J, Zhong G, Liao J, Zhang H, Tang Z, Hu L. Arsenic-induced mtDNA release promotes inflammatory responses through cGAS-STING signaling in chicken hepatocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106129. [PMID: 39477583 DOI: 10.1016/j.pestbp.2024.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024]
Abstract
Arsenic is a toxic element that can cause severe liver damage in humans and animals. Arsenic-based inorganic pesticides, such as lead arsenate, copper arsenate, and calcium arsenate, are widely used for insect control and can eventually affect human health through accumulation in the food chain. However, the relationship between arsenic trioxide (ATO)-induced hepatotoxicity and the cGAS-STING signaling pathway has not been reported. The aim of this study was to investigate the potential role of inflammatory response in ATO-induced hepatotoxicity in chickens. In this study, we found that ATO exposure resulted in mtDNA leakage into the cytoplasm of chicken hepatocytes, which activated the cGAS-STING pathway and significantly increased the cGAS, STING, TBK1, and IRF7 mRNA and protein expression levels. Moreover, type I interferon response was activated. Concurrently, STING triggered the activation of the traditional NF-κB signaling pathway and promoted the expression of pro-inflammatory cytokine genes, including TNF-α, IL-6, and IL-1β. Subsequently, we found that both mtDNA clearance with EtBr and inhibition of the cGAS-STING pathway with H-151 reversed the ATO-induced innate immune and inflammatory responses. In summary, the above findings indicate that chicken hepatocytes can induce innate immune responses and inflammatory responses via mtDNA-cGAS-STING under ATO-exposure conditions, which is of great significance for further studies on the toxicity mechanism of ATO.
Collapse
Affiliation(s)
- Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Panjing Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yanli You
- College of Life Science, Yantai University, Yantai, 264005, Shandong Province, China.
| | - Limeng Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Junbo Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jingping Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Li J, Lu X, Wang P, Yu Y, Sun L, Li M. Influence of freeze-thaw process on As migration and microorganisms in aggregates of paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122847. [PMID: 39405878 DOI: 10.1016/j.jenvman.2024.122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
A natural phenomenon known as the seasonal freeze-thaw (FT) cycle happens in cold temperature zone such as high latitude and high altitude regions where the soil frequently freezes and thaws in response to temperature variations. Global warming would increase the number of FT cycles in FT regions. However, the influence of FT process on arsenic (As) migration in paddy soil is seldom investigated. Herein, indoor simulation experiment was conducted to investigate the influence of FT process (60 cycles) on As migration from surface to deep soil and microorganisms in paddy soil column. Compared to non FT treatment groups, the concentrations of As in microaggregates of 8-10 cm depth and 18-20 cm depth in soil column of FT treatment group increased by 3.69 mg/kg and 4.16 mg/kg, respectively; the concentrations of As in macroaggregates of 8-10 cm depth and 18-20 cm depth in soil column of FT treatment group increased by 3.34 mg/kg and 3.94 mg/kg, respectively, indicating that FT process accelerated the As migration from surface to deep soil. FT process affected the microbial community structure by changing the physicochemical properties of the soil, which decreased the diversity and uniformity of bacterial community distribution in the soil. The relative abundance of two As-resistant bacteria, e.g., Sphingomonas and Lysobacter, increased by 8.2% and 11.35% after 60 cycles, respectively; moreover, total As in the soil was significantly (p < 0.05) negatively correlated with the alpha index of the soil microorganisms. This study would provide basic data for future study on determining environmental behavior and risk of metals in farm soils in seasonal FT aeras.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xiaohui Lu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ping Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Long Sun
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Ma X, Guan DX, Zhang C, Yu T, Li C, Wu Z, Li B, Geng W, Wu T, Yang Z. Improved mapping of heavy metals in agricultural soils using machine learning augmented with spatial regionalization indices. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135407. [PMID: 39116745 DOI: 10.1016/j.jhazmat.2024.135407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The accurate spatial mapping of heavy metal levels in agricultural soils is crucial for environmental management and food security. However, the inherent limitations of traditional interpolation methods and emerging machine-learning techniques restrict their spatial prediction accuracy. This study aimed to refine the spatial prediction of heavy metal distributions in Guangxi, China, by integrating machine learning models and spatial regionalization indices (SRIs). The results demonstrated that random forest (RF) models incorporating SRIs outperformed artificial neural network and support vector regression models, achieving R2 values exceeding 0.96 for eight heavy metals on the test data. Hierarchical clustering for feature selection further improved the model performance. The optimized RF models accurately predicted the heavy metal distributions in agricultural soils across the province, revealing higher levels in the central-western regions and lower levels in the north and south. Notably, the models identified that 25.78 % of agricultural soils constitute hotspots with multiple co-occurring heavy metals, and over 6.41 million people are exposed to excessive soil heavy metal levels. Our findings provide valuable insights for the development of targeted strategies for soil pollution control and agricultural soil management to safeguard food security and public health.
Collapse
Affiliation(s)
- Xudong Ma
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography, Archaeology and Irish Studies, University of Galway, Ireland
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Cheng Li
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, Guangxi 541004, China
| | - Zhiliang Wu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Bo Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Wenda Geng
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Tiansheng Wu
- Guangxi Institute of Geological Survey, Nanning 530023, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
11
|
Jiang M, Zhao W, Liang Q, Cai M, Fan X, Hu S, Zhu Y, Xie H, Peng C, Liu J. Polystyrene microplastics enhanced the toxicity of cadmium to rice seedlings: Evidence from rice growth, physiology, and element metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173931. [PMID: 38885718 DOI: 10.1016/j.scitotenv.2024.173931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Microplastics (MPs) and cadmium (Cd) are toxic to rice; however, the effects and mechanisms of their combined exposure are unclear. The combined exposure effects of polystyrene microplastics (PS-MPs) with different particle sizes (1-10 μm, 50-150 μm) and concentrations (50, 500 mg·L-1) and Cd on rice were explored. PS-MPs combined with Cd amplifies the inhibition of each individual exposure on the height and biomass of rice seedlings, and they showed antagonistic effects. PS-MPs reduced the content of chlorophyll and increased the content of carotenoid rice seedlings significantly. High concentrations of PS-MPs enhanced the inhibition of Cd on chlorophyll content. Cd, PS-MPs single and combined exposures significantly altered the antioxidant enzyme (POD, CAT, SOD) activities in rice seedlings. Under PS-MPs exposure, overall, the MDA content in shoots and roots exhibited opposite trends, with a decrease in the former and an increase in the latter. In comparison with Cd treatment, the combined exposures' shoot and root MDA content was reduced. Cd and PS-MPs showed "low concentration antagonism, high concentration synergism" on the composite physiological indexes of rice seedlings. PS-MPs significantly increased the Cd accumulation in shoots. PS-MPs promoted the root absorption of Cd at 50 mg·L-1 while inhibited at 500 mg·L-1. Cd and PS-MPs treatments interfered with the balance of microelements (Mn, Zn, Fe, Cu, B, Mo) and macroelements (S, P, K, Mg, Ca) in rice seedlings; Mn was significantly inhibited. PS-MPs can enhance of Cd's toxicity to rice seedlings. The combined toxic effects of the two contaminants appear to be antagonistic or synergistic, relying on the particle size and concentration of the PS-MPs. Our findings offer information to help people understanding the combined toxicity of Cd and MPs on crops.
Collapse
Affiliation(s)
- Menglei Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Zhao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiulian Liang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shiyu Hu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yunhua Zhu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongyan Xie
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Hu T, Li K, Ma C, Zhou N, Chen Q, Qi C. Improved classification of soil As contamination at continental scale: Resolving class imbalances using machine learning approach. CHEMOSPHERE 2024; 363:142697. [PMID: 38925515 DOI: 10.1016/j.chemosphere.2024.142697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The identification of arsenic (As)-contaminated areas is an important prerequisite for soil management and reclamation. Although previous studies have attempted to identify soil As contamination via machine learning (ML) methods combined with soil spectroscopy, they have ignored the rarity of As-contaminated soil samples, leading to an imbalanced learning problem. A novel ML framework was thus designed herein to solve the imbalance issue in identifying soil As contamination from soil visible and near-infrared spectra. Spectral preprocessing, imbalanced dataset resampling, and model comparisons were combined in the ML framework, and the optimal combination was selected based on the recall. In addition, Bayesian optimization was used to tune the model hyperparameters. The optimized model achieved recall, area under the curve, and balanced accuracy values of 0.83, 0.88, and 0.79, respectively, on the testing set. The recall was further improved to 0.87 with the threshold adjustment, indicating the model's excellent performance and generalization capability in classifying As-contaminated soil samples. The optimal model was applied to a global soil spectral dataset to predict areas at a high risk of soil As contamination on a global scale. The ML framework established in this study represents a milestone in the classification of soil As contamination and can serve as a valuable reference for contamination management in soil science.
Collapse
Affiliation(s)
- Tao Hu
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Kechao Li
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Chundi Ma
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Nana Zhou
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Qiusong Chen
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Chongchong Qi
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China; School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Fankou Lead-Zinc Mine, NONFEMET, Shaoguan, 511100, China.
| |
Collapse
|
13
|
Zang X, He M, Xu Y, Che T, Wang F, Xu J, Zhang H, Hu F, Xu L. Metaphire guillelmi exhibited predominant capacity of arsenic efflux. CHEMOSPHERE 2024; 361:142479. [PMID: 38815813 DOI: 10.1016/j.chemosphere.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Earthworm could regulate their body concentration of arsenic via storage or excretion, and the ability of As efflux among different earthworms is not consistent. Here, whole and semi As exposure patterns with 0-10-30-60-100 mg kg-1 exposure concentrations were set to characterize the As efflux in geophagous earthworm, Metaphire guillelmi. Cast As (As-C) and earthworms' antioxidative responses were monitored to explore the efflux mechanisms under 30 mg kg-1 As-spiked soil (As30), besides, As concentration in earthworm tissue after egestion and dissection depurations were compared. In the whole exposure pattern, As concentration in gut content (As-G, 19.2-120.3 mg kg-1) surpassed that in the tissue (As-T, 17.2-53.2 mg kg-1), and they both increased with exposure concentrations. With the prolong time, they firstly increased and kept stable between day 10-15, then As-G increased while As-T decreased between day 15-20. In the semi-exposure pattern, both As-G and As-T decreased when M. guillelmi was transferred to clean soil for 5 days. During the 42-day incubation in As30, the antioxidative responses including reactive oxygen species (ROS), glutathione (GSH) and glutathione-S-transferase (GST) were firstly increased and then decreased, and As-C (13.9-43.9 mg kg-1) kept higher than As-G (14.2-35.1 mg kg-1). Significantly positive correlations were found between As-T and GSH, As-C and GST. Moreover, tissue As after dissection (11.6-22.9 mg kg-1) was obviously lower than that after egestion (11.4-26.4 mg kg-1), but significantly related to ROS and GSH. Taken together, M. guillelmi exhibited excellent capacity of As efflux, and GSH explained tissue As accumulation while GST facilitated the As elimination via cast. Besides, dissection instead of egestion revealed the As efflux in M. guillelmi more accurately. These findings contributed to a better understanding of how geophagous earthworm M. guillelmi regulated tissue As accumulation for As stress tolerance, and recommended an optimal depuration mode to characterize As accumulation.
Collapse
Affiliation(s)
- Xiayun Zang
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Mingyue He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ting Che
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Hu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Li Xu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
14
|
Wang W, Ye Y, Liu Y, Sun H, Gao C, Fu X, Li T. Induction of oxidative stress and cardiac developmental toxicity in zebrafish embryos by arsenate at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116529. [PMID: 38843745 DOI: 10.1016/j.ecoenv.2024.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
The contamination of water by arsenic (As) has emerged as a significant environmental concern due to its well-documented toxicity. Environmentally relevant concentrations of As have been reported to pose a considerable threat to fish. However, previous studies mainly focused on the impacts of As at environmentally relevant concentrations on adult fish, and limited information is available regarding its impacts on fish at early life stage. In this study, zebrafish embryos were employed to evaluate the environmental risks following exposure to different concentrations (0, 25, 50, 75 and 150 μg/L) of pentavalent arsenate (AsV) for 120 hours post fertilization. Our findings indicated that concentrations ≤ 150 μg/L AsV did not exert significant effects on survival or aberration; however, it conspicuously inhibited heart rate of zebrafish larvae. Furthermore, exposure to AsV significantly disrupted mRNA transcription of genes associated with cardiac development, and elongated the distance between the sinus venosus and bulbus arteriosus at 75 μg/L and 150 μg/L treatments. Additionally, AsV exposure enhanced superoxide dismutase (SOD) activity at 50, 75 and 150 μg/L treatments, and increased mRNA transcriptional levels of Cu/ZnSOD and MnSOD at 75 and 150 μg/L treatments. Concurrently, AsV suppressed metallothionein1 (MT1) and MT2 mRNA transcriptions while elevating heat shock protein70 mRNA transcription levels in zebrafish larvae resulting in elevated malondialdehyde (MDA) levels. These findings provide novel insights into the toxic effects exerted by low concentrations of AsV on fish at early life stage, thereby contributing to an exploration into the environmental risks associated with environmentally relevant concentrations.
Collapse
Affiliation(s)
- Wenqian Wang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321007, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yanan Ye
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chang Gao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoyan Fu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321007, China.
| | - Tao Li
- Jinhua Center for Disease Control and Prevention, Jinhua 321000, China.
| |
Collapse
|
15
|
Zhong R, Pan D, Huang G, Yang G, Wang X, Niu R, Cai X, Ding Z, Chi W, Wang Y, Li X. Colloidal fraction on pomelo peel-derived biochar plays a dual role as electron shuttle and adsorbent in controlling arsenic transformation in anoxic paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173340. [PMID: 38763201 DOI: 10.1016/j.scitotenv.2024.173340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Arsenic release and reduction in anoxic environments can be mitigated or facilitated by biochar amendment. However, the key fractions in biochars and how they control arsenic transformation remain poorly understood. In this study, a biochar produced from pomelo peel was rich in colloids and was used to evaluate the roles of the colloidal and residual fractions of biochar in arsenic transformation in anoxic paddy soil. Bulk biochar showed a markedly higher maximum adsorption capacity for As(III) at 1732 mg/kg than for As(V) at 75.7 mg/kg, mainly because of the colloidal fraction on the surface. When compared with the control and treatments with the colloidal/residual fraction, the addition of bulk biochar facilitated As(V) reduction and release in the soil during days 0-12, but decreased the dissolved As(III) concentration during days 12-20. The colloidal fraction revealed significantly higher electron donating capacity (8.26 μmole-/g) than that of bulk biochar (0.88 μmole-/g) and residual fraction (0.65 μmole-/g), acting as electron shuttle to promote As(V) reduction. Because the colloidal fraction was rich in aliphatic carbon, fulvic acid-like compounds, potassium, and calcium, it favored As(III) adsorption when more As(III) was released, probably via organic-cation-As(III) complexation. These findings provide deeper insight into the role of the colloidal fraction of biochar in controlling anaerobic arsenic transformation, which will be helpful for the practical application of biochar in arsenic-contaminated environments.
Collapse
Affiliation(s)
- Ruilin Zhong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoyong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guang Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaonan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Rumiao Niu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ziman Ding
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Wenting Chi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Guo J, Rong H, He L, Chen C, Zhang B, Tong M. Effects of arsenic on the transport and attachment of microplastics in porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134285. [PMID: 38640672 DOI: 10.1016/j.jhazmat.2024.134285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Understanding the impact of arsenic (As(III), inorganic pollutant widely present in natural environments) on microplastics (MPs, one type of emerging contaminants) mobility is essential to predict MPs fate and distribution in soil-groundwater systems, yet relevant research is lacking. This study explored the effects of As(III) copresent in suspensions (0.05, 0.5, and 5 mg/L) on MPs transport/attachment behaviors in porous media containing varied water contents (θ = 100 %, 90 %, and 60 %) under different ionic strengths (5, 10, and 50 mM NaCl) and flow rates (2, 4, and 8 m/day). Despite solution ionic strengths, flow rates, porous media water contents, sizes, and surface charges of MPs, with coexisting humic acid, and in actual water samples, As(III) of three concentrations increased MPs transport in quartz sand and natural sandy soil. The increased electrostatic repulsion between MPs and sand caused by the altered MPs surface charge via the adsorption of As(III) together with steric repulsion from As(III) in solution contributed to the promoted MPs mobility in porous media. The occupying attachment sites by As(III) partially contributed to the increased mobility of MPs with negative surface charge in porous media. Clearly, As(III) coexisting in suspensions would enhance MPs transport in porous media, increasing MPs environment risks.
Collapse
Affiliation(s)
- Jia Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Cuibai Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
17
|
Zhu X, Yan Z, Liu S, Zhou M, Zeng X, Wang S, Jia Y. Simultaneous stabilization of particulate and bioavailable arsenic in soils from the realgar mining area by polyacrylamide, nano-SiO 2, and ferrihydrite composite materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172123. [PMID: 38575008 DOI: 10.1016/j.scitotenv.2024.172123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Arsenic (As) contamination in realgar mining areas poses a severe environmental and health risk, highlighting the critical need for effective strategies to manage As migration, particularly in its particulate and bioavailable states. Soil erosion and water leaching serve as significant pathways for spreading As, emphasizing the imperative to curtail its mobility. In the present study, we proposed an effective strategy that combines the utilization of polyacrylamide (PAM), nano-SiO2 (NS), and ferrihydrite (Fh) to elevate the stability of As in soils from a realgar mining area. The results show that this composite material demonstrates the capability to concurrently regulate soil erosion and mitigate the leaching of bioavailable As. The combination of the three materials in the proportion of 0.5 % PAM +0.1 % NS + 1.0 % Fh can reduce the soil particulate and bioavailable As content by 99.11 % and 93.98 %, respectively. The unconfined compressive strength of the soil can be increased by about 30 % under this condition. The SEM analyses show that the addition of PAM and NS can significantly enhance the aggregation of soil particles and then reduce the soil erosion rate. These findings highlight the significant potential of the proposed approach in mitigating As contamination in soil within mining environments. The approach offers a sustainable and comprehensive solution to address the transport of heavy metal contaminants in both particulate and bioavailable states in mining areas.
Collapse
Affiliation(s)
- Xiayu Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zelong Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shichao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mengchao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
18
|
Geng Z, Wang P, Yin N, Cai X, Fu Y, Fan C, Chang X, Li Y, Ma J, Cui Y, Holm PE. Assessment of the stabilization effect of ferrous sulfate for arsenic-contaminated soils based on chemical extraction methods and in vitro methods: Methodological differences and linkages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171729. [PMID: 38492589 DOI: 10.1016/j.scitotenv.2024.171729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Stabilization of arsenic-contaminated soils with ferrous sulfate has been reported in many studies, but there are few stabilization effects assessments simultaneously combined chemical extraction methods and in vitro methods, and further explored the corresponding alternative relationships. In this study, ferrous sulfate was added at FeAs molar ratio of 0, 5, 10 and 20 to stabilize As in 10 As spiked soils. Stabilization effects were assessed by 6 chemical extraction methods (toxicity characteristic leaching procedures (TCLP), HCl, diethylenetriamine pentaacetic acid (DTPA), CaCl2, CH3COONH4, (NH4)2SO4), and 4 in vitro methods (physiologically based extraction test (PBET), in vitro gastrointestinal method (IVG), Solubility Bioaccessibility Research Consortium (SBRC) method, and the Unified Bioaccessibility Research Group of Europe method (UBM)). The results showed that the HCl method provides the most conservative assessment results in non-calcareous soils, and in alkaline calcareous soils, (NH4)2SO4 method provides a more conservative assessment. In vitro methods provided significantly higher As concentrations than chemical extraction methods. The components of the simulated digestion solution as well as the parameters may have contributed to this result. The small intestinal phase of PBET and SBRC method produced the highest and lowest ranges of As concentrations, and in the range of 127-462 mg/kg and 68-222 mg/kg when the FeAs molar ratio was 5. So the small intestinal phase of PBET method may provide the most conservative assessment results, while the same phase of SBRC may underestimate the human health risks of As in stabilized soil by 51 %(at a FeAs molar ratio of 5). Spearman correlation analysis indicated that the small intestinal phase of PBET method correlated best with HCl method (correlation coefficient: 0.71). This study provides ideas for the assessment of stabilization efforts to ensure that stabilization meets ecological needs while also being less harmful to humans.
Collapse
Affiliation(s)
- Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, PR China; Sino-Danish Center(SDC) for Education and Research, Beijing 101408, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yaqi Fu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, PR China; Sino-Danish Center(SDC) for Education and Research, Beijing 101408, PR China
| | - Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jingnan Ma
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, PR China; Sino-Danish Center(SDC) for Education and Research, Beijing 101408, PR China
| | - Yanshan Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish Center(SDC) for Education and Research, Beijing 101408, PR China.
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center(SDC) for Education and Research, Beijing 101408, PR China
| |
Collapse
|
19
|
Shao F, Li K, Ouyang D, Zhou J, Luo Y, Zhang H. Sources apportionments of heavy metal(loid)s in the farmland soils close to industrial parks: Integrated application of positive matrix factorization (PMF) and cadmium isotopic fractionation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171598. [PMID: 38461995 DOI: 10.1016/j.scitotenv.2024.171598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Understanding the source identification and distribution of heavy metal(loid)s in soil is essential for risk management. The sources of heavy metal(loid)s in farmland soil, especially in areas with rapid economic development, were complicated and need to be explored urgently. This study combined geographic information system (GIS) mapping, positive matrix factorization (PMF) model and cadmium (Cd) isotope fingerprinting methods to identify heavy metal(loid) sources in a typical town in the economically developed Yangtze River Delta region of China. Cd, As, Cu, Zn, Pb, Ni and Co in different samples were detected. The results showed that Cd was the most severely contaminated element, with an exceedance rate of 78.0 %. GIS mapping results indicated that the hotspot area was located in the northeastern area with prolonged operational histories of electroplating and non-ferrous metal smelting industries. The PMF model analysis also identified emissions from smelting and electroplating enterprises as the main sources of Cd in the soil, counted for 49.28 %, followed by traffic (25.66 %) and agricultural (25.06 %) sources. Through further isotopic analysis, it was found that in soil samples near the industrial park, the contribution of electroplating and non-ferrous metal smelting enterprises to cadmium pollution was significantly higher than other regions. The integrated use of various methodologies allows for precise analysis of sources and input pathways, offering valuable insights for future pollution control and soil remediation endeavors.
Collapse
Affiliation(s)
- Fanglei Shao
- Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Kainan Li
- Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Da Ouyang
- Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jiawen Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yating Luo
- Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Haibo Zhang
- Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
20
|
Lin X, Wang W, He F, Hou H, Guo F. Molecular level toxicity effects of As(V) on Folsomia candida: Integrated transcriptomics and metabolomics analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171409. [PMID: 38432367 DOI: 10.1016/j.scitotenv.2024.171409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Arsenic (As) is a widespread metalloid with well-known toxicity. To date, numerous studies have focused on individual level toxicity (e.g., growth and reproduction) of As to typical invertebrate springtails in soils, however, the molecular level toxicity and mechanism was poorly understood. Here, an integrated transcriptomics and metabolomics approach was used to reveal responses of Folsomia candida exposed to As(V) of 10 and 60 mg kg-1 at which the individual level endpoints were influenced. Transcriptomics identified 5349 and 4020 differentially expressed genes (DEGs) in low and high concentration groups, respectively, and the most DEGs were down-regulated. Enrichment analysis showed that low and high concentrations of As(V) significantly inhibited chromatin/chromosome-related biological processes (chromatin/chromosome organization, nucleosome assembly and organization, etc.) in springtails. At high concentration treatment, structural constituent of cuticle, chitin metabolic process and peptidase activity (serine-type peptidase activity, endopeptidase activity, etc.) were inhibited or disturbed. Moreover, the apoptosis pathway was significantly induced. Metabolomics analysis identified 271 differential changed metabolites (DCMs) in springtails exposed to high concentration of As. Steroid hormone biosynthesis was the most significantly affected pathway. Several DCMs that related to chitin metabolism could further support above transcriptomic results. These findings further extended the knowledge of As toxic mechanisms to soil fauna and offer important information for the environmental risk assessment.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Fei He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
21
|
Qin C, Lian H, Zhang B, He Z, Alsahli AA, Ahanger MA. Synergistic influence of selenium and silicon supplementation prevents the oxidative effects of arsenic stress in wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133304. [PMID: 38159516 DOI: 10.1016/j.jhazmat.2023.133304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Influence of supplementation of selenium (Se, 1 and 5 µM) and silicon (Si, 0.1 and 0.5 mM) was investigated in wheat under arsenic (30 µM As) stress. Plants grown under As stress exhibited a significant decline in growth parameters however, Se and Si supplementation mitigated the decline significantly. Treatment of Se and Si alleviated the reduction in the intermediate components of chlorophyll biosynthesis pathway and the content of photosynthetic pigments. Arsenic stressed plants exhibited increased reactive oxygen species accumulation and the NADPH oxidase activity which were lowered significantly due to Se and Si treatments. Moreover, Se and Si supplementation reduced lipid peroxidation and activity of lipoxygenase and protease under As stress. Supplementation of Se and Si significantly improved the antioxidant activities and the content of cysteine, tocopherol, reduced glutathione and ascorbic acid. Treatment of Se and Si alleviated the reduction in nitrate reductase activity. Exogenously applied Se and Si mitigated the reduction in mineral elements and reduced As accumulation. Hence, supplementation of Se and Si is beneficial in preventing the alterations in growth and metabolism of wheat under As stress.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China
| | - Huida Lian
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China
| | - Bo Zhang
- Shanxi Normal University, Taiyuan, China
| | - Zhan He
- College of Life Science, Northwest A&F University, Yangling, Xianyang, Shaanxi, China
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
22
|
Li Y, Wang J, Liu C, Wang L, Zhang P, Zhao Q, Xiong Z, Zhang G, Zhang W. Remediation of arsenic-contaminated soil using nanoscale schwertmannite synthesized by persulfate oxidation with carboxymethyl cellulose stabilization. ENVIRONMENTAL RESEARCH 2024; 244:117937. [PMID: 38109958 DOI: 10.1016/j.envres.2023.117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Schwertmannite (SCH) is a promising material for adsorbing inorganic arsenic (As). We synthesized SCH nanoparticles (nano-SCH) via a modified chemical oxidation method and investigated the application of nano-SCH for the remediation of As-contaminated soils. The production of nano-SCH was successfully prepared using the persulfate oxidation method with carboxymethyl cellulose stabilization. The spherical structure of the nano-SCH particles had an average hydrodynamic diameter of 296 nm with high specific surface areas (108.9 m2/g). Compared with SCH synthesized via the H2O2 oxidation method, the percentage of Fe3+ precipitation in nano-SCH synthesis increased from 63.2% to 84.1%. The inorganic As adsorption capacity of nano-SCH improved by 2.27 times at solution pH = 6. After remediation of heavily As-contaminated soils by using 5% nano-SCH, the leachability of inorganic As rapidly decreased to 0.01% in 30 d. Correspondingly, the immobilization efficiencies of inorganic As in soil reached >99.9%. The inorganic As fractions in treated soil shifted from specifically and nonspecifically bound forms to amorphous and crystalline hydrous oxide-bound fractions. After treatment with 5% nano-SCH for 60 d, soil pH slightly decreased from 5.47 to 4.94; by contrast, soil organic matter content increased by 20.9%. Simultaneously, dehydrogenase concentration in soil decreased by 22.4%-34.7% during the remediation process. These changes in soil properties and As immobilization jointly decreased microbial activity and initiated the re-establishment of bacterial communities in the soil. In summary, this study presents a novel and high-productivity technology for nano-SCH synthesis and confirms the high As immobilization effectiveness of nano-SCH in the remediation of As-contaminated soils.
Collapse
Affiliation(s)
- Yujie Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China; Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Jia Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Chao Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Long Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Peng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Gaosheng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
23
|
Zhang L, Wu Y, Jiang Z, Ren Y, Li J, Lin J, Ni Z, Huang X. Identification of anthropogenic source of Pb and Cd within two tropical seagrass species in South China: Insight from Pb and Cd isotopes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115917. [PMID: 38171104 DOI: 10.1016/j.ecoenv.2023.115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Seagrass beds are susceptible to deterioration and heavy metals represent a crucial impact factor. The accumulation of heavy metal in two tropical seagrass species were studied in South China in this study and multiple methods were used to identify the heavy metal sources. E. acoroides (Enhalus acoroides) and T. hemperichii (Thalassia hemperichii) belong to the genus of Enhalus and Thalassia in the Hydrocharitaceae family, respectively. Heavy metal concentrations in the two seagrasses followed the order of Cr > Zn > Cu > Ni > As > Pb > Co > Cd based on the whole plant, and their bioconcentration factors were 31.8 ± 29.3 (Cr), 5.7 ± 1.3 (Zn), 7.0 ± 3.8 (Cu), 3.0 ± 1.9 (Ni), 1.2 ± 0.3 (As), 1.7 ± 0.9 (Pb), 9.1 ± 11.1 (Co) and 2.8 ± 0.6 (Cd), indicating the intense enrichment in Co and Cr within the two seagrasses. The two seagrasses were prone to accumulate all the listed heavy metals (except for As in E. acoroides), especially Co (BCFs of 1124) and Cr (BCFs of 2689) in the aboveground parts, and the belowground parts of both seagrasses also accumulated most metals (BCFs of 27) excluding Co and Pb. The Pb isotopic ratios (mean 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb values of 38.2054, 15.5000 and 18.3240, respectively) and Cd isotopic compositions (δ114/110Cd values ranging from -0.09‰ to 0.58‰) within seagrasses indicated the anthropogenic sources of Pb and Cd including coal combustion, traffic emissions and agricultural activities. This study described the absorption characteristics of E. acoroides and T. hemperichii to some heavy metals, and further demonstrated the successful utilization of Pb and Cd isotopes as discerning markers to trace anthropogenic origins of heavy metals (mainly Pb and Cd) in seagrasses. Pb and Cd isotopes can mutually verify and be helpful to understand more information in pollution sources and improve the reliability of conclusion deduced from concentrations or a single isotope.
Collapse
Affiliation(s)
- Ling Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yunchao Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Zhijian Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzheng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhen Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixin Ni
- South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou 510300, China
| | - Xiaoping Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Shi X, Ma C, Gustave W, Orr M, Sritongchuay T, Yuan Z, Wang M, Zhang X, Zhou Q, Huang Y, Luo A, Zhu C. Effects of arsenic and selenium pollution on wild bee communities in the agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168052. [PMID: 37898201 DOI: 10.1016/j.scitotenv.2023.168052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Wild bees play crucial roles in pollinating numerous crops and fruits worldwide. However, these essential insect pollinators are threatened with decline due to a variety of stressors. Among stressors, relatively little work has been done on metalloid pollution. Laboratory experiments have shown that arsenic (As) and selenium (Se) can negatively impact on bees, it is unknown if these effects translate in real-world environments. To address this knowledge gap, wild bee communities were sampled from 18 smallholder farmlands in Kaihua County in Quzhou, Southeast China and As and Se concentrations in three bee species were measured (Xylocopa tranquebarorum, Eucera floralia, and Apis cerana). Analyses revealed that the large carpenter bee, X. tranquebarorum, exhibited significantly lower As and Se concentrations than the other two wild bee species. No significant correlations were found between As and Se concentrations in all three wild bee species. Interestingly, the proportion of semi-natural habitat was found to be significantly related to reduced Se concentration in wild bee bodies, though no such effect was observed for As. As pollution negatively impacted bee diversity but not abundance, whereas Se significantly impacted neither bee diversity nor abundance. Furthermore, both As and Se pollution had no significant effect on the abundance of small-bodied wild bees. Given the essential role of wild bees for pollination services, monitoring of As and Se pollution in wild bee bodies and their food resources (pollen and nectar) is recommended across agricultural and other potentially impacted systems.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, P.O. Box N-4912, Bahamas
| | - Michael Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Tuanjit Sritongchuay
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ Leipzig, Leipzig, Germany; Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Zhaofeng Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Mei Wang
- Eurofins Technology Service (Suzhou) Co., Ltd., China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yixin Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences/International College, University of Chinese Academy of Sciences, Beijing, China.
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences/International College, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Chen Z, Imran M, Jing G, Wang W, Huang B, Li Y, Zhang Y, Yang Y, Lu Q, Zhang Z, Antoniadis V, Shaheen SM, Bolan N, Rinklebe J. Toxic elements pollution risk as affected by various input sources in soils of greenhouses, kiwifruit orchards, cereal fields, and forest/grassland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122639. [PMID: 37778487 DOI: 10.1016/j.envpol.2023.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Increasing food demand has led to more intensive farming, which threatens our ecosystem and human health due to toxic elements accumulation. This study aimed to estimate the vulnerability of different agricultural systems with unequal high fertilizer input practices regarding toxic element pollution in the greenhouse, kiwifruit orchard, cereal field, and forest/grassland. Soil samples were collected from 181 sites across Shaanxi Province, China, and analyzed for selected characteristics and toxic elements (As, Cd, Cr, Cu, Hg, Pb, and Zn). The contamination factor (CFx) represents the ratio of the measured value of the toxic element in the soil over the soil background values. The CFx values of all the toxic elements were above background values, while Cd and Hg contamination levels were more severe than those of Zn, Cu, As, Cr, and Pb. Kiwifruit orchards and greenhouse soils were contaminated with Cd, Hg, Cu, and Zn, but cereal fields and forest/grassland soils were contaminated with As, Cd, Hg, and Hg. Overall, the cumulative pollution load (PLI) of toxic elements indicated moderate contamination. The cumulative ecological risk (RI) results indicated that greenhouse (178.81) and forest/grassland (156.25) soils were at moderate ecological risks, whereas kiwifruit orchards (120.97) and cereal field (139.72) soils were at low ecological risks. According to a Pearson correlation analysis, Cd, Hg, Cu, and Zn were substantially linked with soil organic matter (SOM), total nitrogen (TN), total phosphorous (TP), and total potassium (TK). The primary sources of toxic elements were phosphate and potash fertilizers, manure, composts, and pesticides in a greenhouse, kiwifruit orchards, and cereal fields, whereas, in forest/grassland soils parent material and atmospheric deposition were the sources identified by positive matrix factorization (PMF). Furthermore, the partial least square structural equation model (PLS-SEM) demonstrated that agriculture inputs largely influenced toxic elements accumulation. We conclude that high fertilizer inputs in greenhouse soils should be considered carefully so that toxic element pollution may be minimized.
Collapse
Affiliation(s)
- Zhikun Chen
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Muhammad Imran
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China.
| | - Guanghua Jing
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Weixi Wang
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Biao Huang
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingmei Li
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043, China
| | - Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yizhe Yang
- Shaanxi Province Cultivated Land Quality and Agricultural Environment Protection Workstation, Xi'an, 710003, China
| | - Qiangqiang Lu
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Zhao Zhang
- Key Laboratory of Soil Resource &Biotech Application, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China; Xi 'an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| |
Collapse
|
26
|
Morosini C, Terzaghi E, Raspa G, Grotti M, Armiraglio S, Anelli S, Di Guardo A. Arsenic movement and fractionation in agricultural soils which received wastewater from an adjacent industrial site for 50 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165422. [PMID: 37453704 DOI: 10.1016/j.scitotenv.2023.165422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Arsenic (As) is an element with important environmental and human health implications due to its toxic properties. It is naturally occurring since it is contained in minerals, but it can also be enriched and distributed in the environment by anthropogenic activities. This paper reports on the historic As contamination of agricultural soils in one of the most important national relevance site for contamination in Italy, the so-called SIN Brescia-Caffaro, in the city of Brescia, northern Italy. These agricultural areas received As through the use of irrigation waters from wastewater coming from a factory of As-based pesticides (lead and calcium arsenates, sodium arsenite). Pesticide production started in 1920 and ended in the '70. Concentrations in the areas are generally beyond the legal threshold values for different soil uses and are up to >200 mg/kg. Arsenic contamination was studied to assess the long-time trend and the dynamics related to the vertical movement of As down to 1 m depth and its horizontal diffusion with surface irrigation in the entire field. Arsenic fractionation analysis (solid phase speciation by sequential extraction procedure) was also performed on samples collected from these areas and employed in greenhouse experiments with several plant species to evaluate the long-term contamination and the role of plant species in modifying As availability in soil. The results of this work can help in the evaluation of the conditions controlling the vertical transfer of As towards surface aquifers, the bioaccumulation likelihood in the agricultural food chain and the selection of sustainable remediation techniques such as phytoextraction.
Collapse
Affiliation(s)
| | - Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | - Giuseppe Raspa
- DICMA, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Marco Grotti
- Dept. of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | | | | |
Collapse
|
27
|
Mao Q, Xie X, Pinzon-Nuñez DA, Xie Z, Liu T, Irshad S. Native microalgae and Bacillus XZM remediate arsenic-contaminated soil by forming biological soil crusts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118858. [PMID: 37647731 DOI: 10.1016/j.jenvman.2023.118858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Biological soil crusts (BSCs) are a useful tool for immobilization of metal(loid)s in mining areas. Yet, the typical functional microorganisms involved in promoting the fast development of BSCs and their impacts on arsenic(As) contaminated soil remain unverified. In this study, As-contaminated soil was inoculated with indigenous Chlorella thermophila SM01 (C. thermophila SM01), Leptolyngbya sp. XZMQ, isolated from BSCs in high As-contaminated areas and plant growth-promoting (PGP) bacteria (Bacillus XZM) to construct BSCs in different manners. After 45 days of ex-situ culture experiment, Leptolyngbya sp. XZMQ and bacteria could form obvious BSCs. Compared to single-inoculated microalgae, the co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased soil pH and water content by 10% and 26%, respectively, while decreasing soil EC and density by 19% and 14%, respectively. The soil catalase, alkaline phosphatase, sucrase, and urease activities were also increased by 30.53%, 96.24%, 154.19%, and 272.17%, respectively. The co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM drove the formation of BSCs by producing large amounts of extracellular polymeric substances (EPS). The three-dimensional fluorescence spectroscopy (3D-EEM) analysis showed that induced BSCs increased As immobilization by enhancing the contents of tryptophan and tyrosine substances, fulvic acid, and humic acid in EPS. The presence of the -NH2 and -COOH functional groups in tryptophan residues were determined using Fourier Transform Infrared Spectroscopy (FTIR). X-Ray Diffraction (XRD) analysis showed that there were iron (hydrogen) oxides in BSCs, which could form ternary complexes with humic acid and As, thereby increasing the adsorption of As. Therefore, BSCs formed by co-inoculation of Leptolyngbya sp. XZMQ and Bacillus XZM increased the immobilization of As, thereby reducing the content of soluble As in the environment. In summary, our findings innovatively provided a new method for the remediation of As-contaminated soil in mining areas.
Collapse
Affiliation(s)
- Qing Mao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xi Xie
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | | | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi, 276000, China
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 51806, China
| |
Collapse
|
28
|
Zhu H, Lin W, Fan L. Novel Method for the Arsenic Removal Experiment and Mechanism Analysis. ACS OMEGA 2023; 8:35893-35903. [PMID: 37810684 PMCID: PMC10552136 DOI: 10.1021/acsomega.3c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
This study focuses on the hydrothermal synthesis of magnetically activated carbon and its efficacy in As(III) adsorption. The successful incorporation of magnetite nanoparticles within the porous carbon structure was confirmed, enriching the adsorbent's properties. Comprehensive characterization was performed to analyze the pore size distribution, zeta potential at varying pH levels, and thermostability using thermogravimetric analysis. These adsorbents exhibited high As(III) removal efficiency with a uniform pore distribution. The zeta potentials were observed to decrease with an increase in pH, suggesting a relationship between adsorbent charge and pH. Adsorption dynamics were rigorously modeled using pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models for different adsorbents labeled as a,b,c, and d. Each adsorbent displayed unique fitted parameters, revealing varied adsorption capabilities. The study further explored the adsorption kinetics and found that the pseudo-second-order kinetics model and the Langmuir model were most appropriate for describing the adsorption process. Adsorption thermodynamics was also fitted to elucidate the underlying adsorption mechanisms. For the a,b,c, and d adsorbents, the pseudo-first-order model, the qe(cal) values for the four adsorbents were 434.2, 418.4, 283.5, and 279.5 μg/g, respectively. Take adsorbent a as an example; the qm values for 298, 303, 308, and 313 K were 702, 673, 605, and 589 μg/g, respectively, and KL values of these temperatures were 0.021, 0.031, 0.018, and 0.009 L/μg, respectively. For the Langmuir model, the R2 values at the four temperatures were 0.999, 0.978, 0.985, and 0.993, respectively, which indicated that the Langmuir model showed higher fitness. For the Freundlich model, the KL values (L/μg) at the parameters of these temperatures are 432, 409, 328, and 294, respectively. For the Freundlich model, the 1/n values at temperatures of 298, 303, 308, and 313 K are 0.049, 0.045, 0.052, and 0.035, respectively. For the Freundlich model, the R2 values at parameters of 298, 303, 308, and 313 K are 0.986, 0.989, 0.982, and 0.872, respectively. For the Temkin model, the B values (in J/mol) are 30.93, 0.894, 0.824, and 0.782 at these temperatures, respectively. The KT values (in L/μg) are 1.02 × 106, 0.07 × 106, 0.003 × 106, and 0.002 × 106, respectively. The R2 values are 0.973, 0.958, 0.972, and 0.894, respectively. In the end, the ΔH, ΔS, and ΔG values for different adsorbents were calculated. Collectively, these findings contribute significant insights into the design and application of magnetically activated carbon adsorbents for effective As(III) removal.
Collapse
Affiliation(s)
- Hao Zhu
- Department
of Stomatology, General Hospital of Northern
Theater Command, Shenyang 110016, China
| | - Wenhui Lin
- School
of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200030, China
| | - Liwen Fan
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Chen G, Huan L, Liu Y, Wang G. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115382. [PMID: 37619453 DOI: 10.1016/j.ecoenv.2023.115382] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Nano-enabled agriculture has emerged as an attractive approach for facilitating soil pollution mitigation and enhancing crop production and nutrition. In this study, we conducted a greenhouse experiment to explore the efficacy of silicon oxide nanoparticles (SiONPs) and iron oxide nanoparticles (FeONPs) in alleviating arsenic (As) toxicity in wheat (Triticum aestivum L.) and elucidated the underlying mechanisms involved. The application of SiONPs and FeONPs at 25, 50, and 100 mg kg-1 soil concentration significantly reduced As toxicity and concurrently improved plant growth performance, including plant height, dry matter, spike length, and grain yield. The biochemical analysis showed that the enhanced plant growth was mainly due to stimulated antioxidative enzymes (catalase, superoxide dismutase, peroxidase) and reduced reactive oxygen species (electrolyte leakage, malondialdehyde, and hydrogen peroxide) in wheat seedlings under As stress upon NPs application. The nanoparticles (NPs) exposure also enhanced the photosynthesis efficiency, including the total chlorophyll and carotenoid contents as compared with the control treatment. Importantly, soil amendments with 100 mg kg-1 FeONPs significantly reduced the acropetal As translocation in the plant root, shoot and grains by 74%, 54% and 78%, respectively, as compared with the control treatment under As stress condition, with relatively lower reduction levels (i.e., 64%, 37% and 58% for the plant root, shoot and grains, respectively) for SiONPs amendment. Overall, the application of NPs especially the FeONPs as nanoferlizers for agricultural crops is a promising approach towards mitigating the negative impact of HMs toxicity, ensuring food safety, and promoting future sustainable agriculture.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Liaqat Ali
- University of Agriculture Faisalabad, Sub-Campus Burewala Vehari, 61100, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Tahir Abbas
- Department of environmental sciences, University of Jhang, Punjab, Pakistan
| | - Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liying Huan
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China; National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Ghouri F, Shahid MJ, Liu J, Sun L, Riaz M, Imran M, Ali S, Liu X, Shahid MQ. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132019. [PMID: 37437486 DOI: 10.1016/j.jhazmat.2023.132019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Genome doubling in plants induces physiological and molecular changes to withstand environmental stress. Diploid rice (D-2x) and its tetraploid (T-4x) plants were treated with 25 μM Arsenic (As) and 15 mg L-1 TiO2 nanoparticles (NPs), and results indicated decreased growth and photosynthetic activity with high accumulation of reactive oxygen species (ROS) due to the As-toxicity in rice lines, significantly in D-2x rice plants. The treatment of As-contaminated rice with TiO2 NPs resulted in increased root length (8.17%) and chlorophyll AB (13.28%) and decreased electrolyte leakage (21.76%) and H2O2 (17.65%) contents than its counterpart diploid rice. Moreover, TiO2 NPs improved the activity of peroxidase, catalase, glutathione, and superoxide dismutase and reduced lipid peroxidation due to lower ROS production in D-2x and T-4x under As toxicity. Transcriptome analysis revealed abrupt changes in the expression levels of key signaling heat shock proteins, tubulin, aquaporins, As, and metal transporters under As toxicity in T-4x and D-2x lines. The KEGG and GO studies highlighted the striking distinctions between rice lines under As-stress in glutathione metabolism, H2O2 catabolic process, MAPK signaling pathway, and carotenoid biosynthesis terms, revealing consistency between physiological and molecular results. Root cells from D-2x rice were significantly more distorted by As poisoning than those from 4x rice, and cell organelles, such as mitochondria and endoplasmic reticulum, were changed or deformed. These findings proved the superiority of tetraploid rice lines over their diploid counterpart in coping with As-stress.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
31
|
Ge XY, Xie SH, Wang H, Ye X, Chen W, Zhou HN, Li X, Lin AH, Cao SM. Associations between serum trace elements and the risk of nasopharyngeal carcinoma: a multi-center case-control study in Guangdong Province, southern China. Front Nutr 2023; 10:1142861. [PMID: 37465140 PMCID: PMC10351973 DOI: 10.3389/fnut.2023.1142861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 07/20/2023] Open
Abstract
Background Associations between trace elements and nasopharyngeal carcinoma (NPC) have been speculated but not thoroughly examined. Methods This study registered a total of 225 newly diagnosed patients with NPC and 225 healthy controls matched by sex and age from three municipal hospitals in Guangdong Province, southern China between 2011 and 2015. Information was collected by questionnaire on the demographic characteristics and other possibly confounding lifestyle factors. Eight trace elements and the level of Epstein-Barr virus (EBV) antibody were measured in casual (spot) serum specimens by inductively coupled plasma-mass spectrometry (ICP-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. Restricted cubic splines and conditional logistic regression were applied to assess the relationship between trace elements and NPC risk through single-and multiple-elements models. Results Serum levels of chromium (Cr), cobalt (Co), nickel (Ni), arsenic (As), strontium (Sr) and molybdenum (Mo) were not associated with NPC risk. Manganese (Mn) and cadmium (Cd) were positively associated with NPC risk in both single-and multiple-element models, with ORs of the highest tertile compared with the reference categories 3.90 (95% CI, 1.27 to 7.34) for Mn and 2.30 (95% CI, 1.26 to 3.38) for Cd. Restricted cubic splines showed that there was a linear increasing trend between Mn and NPC risk, while for Cd there was a J-type correlation. Conclusion Serum levels of Cd and Mn was positively related with NPC risk. Prospective researches on the associations of the two trace elements with NPC ought to be taken into account within the future.
Collapse
Affiliation(s)
- Xin-Yu Ge
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shang-Hang Xie
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Wang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang-Ning Zhou
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueqi Li
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Hua Lin
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
32
|
Xue W, Ying D, Li Y, Sheng Y, He T, Shi P, Liu M, Zhao L. Method for establishing soil contaminant discharge inventory: An arsenic-contaminated site case study. ENVIRONMENTAL RESEARCH 2023; 227:115700. [PMID: 36931375 DOI: 10.1016/j.envres.2023.115700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 05/08/2023]
Abstract
The existing method to survey site pollution is generally based on soil-groundwater sampling and instrumental analysis, which enables us to access the detailed soil pollution status while lacking quantitative association with industrial activities. It is urgent to understand contaminant discharge modes and establish a discharge inventory for achieving process-targeted pollution control. This study took a 40-year phosphate fertilizer-sulfuric acid site as an example and constructed a contaminant tracing method based on on-site investigations and detailed industrial data. These investigations and data were combined to determine the characteristic pollutant of this site, arsenic. And the calculation process of four-pathway pollution modes (atmospheric deposition, wastewater, solid waste leaching, and storage dripping) is derived from the existing acceptance criteria and risk assessment guidelines. They are set to calculate the arsenic's factory-to-soil discharge flux. The absent process contaminant release information and parameters, such as discharge coefficient, were obtained from soil-groundwater pollution control standards and discharge handbooks. It was found that the high concentration of arsenic (around 1930 mg g-1) was preponderantly caused by sulfur-iron slag and tailing leaching (96.19%), while the other pathways accounted for only 0.13% (atmospheric deposition), 3.59% (wastewater) and 0.09% (storage tank). Results were verified by the measured arsenic concentration, and the difference was +16.29%, which was acceptable. Finally, a contaminant discharge inventory was established with high-resolution spatial distribution and time-scale (historical discharge) evolution. The innovation of this study lies in the preliminary construction of a method for formulating soil discharge inventory. This study would contribute to the refined management of site pollution and reduction of source contaminants discharge. In addition, it will help infer the pollution condition of sites that are difficult to sample so as to help the government achieve precise source control.
Collapse
Affiliation(s)
- Weizhen Xue
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Diwen Ying
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Sheng
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, 310014, China
| | - Tianhao He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Peili Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
33
|
Sun W, Ye J, Lin H, Yu Q, Wang Q, Chen Z, Ma J, Ma J. Dynamic characteristics of heavy metal accumulation in agricultural soils after continuous organic fertilizer application: Field-scale monitoring. CHEMOSPHERE 2023:139051. [PMID: 37271470 DOI: 10.1016/j.chemosphere.2023.139051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
Manure has been considered as a source of soil heavy metal (HM) pollution. However, the long-term impact of manure application on soil HM accumulation have not been well studied. This study tracked the long-term cumulative trends of soil copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) in three soil-crop systems over 5-8 years' application of commercial manure fertilizer. The contribution of different fertilization treatments (CF, chemical fertilizer; T1-T3, manure with different application dosages) to soil HMs pollution risk were assessed. There are accumulating tendencies for Cu, Zn, and Pb in paddy fields, Cu and As in orchard fields, and Zn, As, and Pb in vegetable fields, while the concentrations of As in paddy fields and Zn in orchard fields decreased over time. Manure application significantly influenced the accumulation of Cu, Zn, and As in soils rather than that of Pb. The modeling prediction subsequently revealed that the time required to reach the risk screening values (Cu: 50 mg kg-1; Zn: 200 mg kg-1) for HM content in paddy soil, according to GB15618-2018, decreased from 18.20 years to 7.20 years due to the introduction of Cu and Zn via manure use. Recommend annual manure application dosage was 7.73 t hm-2 y-1 to ensure a 20-year period of clean production in paddy soils, while it was 26.15 t hm-2 y-1 in the orchard soil and 16.23 t hm-2 y-1 in vegetable soil to ensure a 50-year period of clean production, respectively. Overall, the impacts of HMs input by manure application on soil HMs accumulation varied depending on the type of metal and the soil-crop system. The cumulative trends of HMs in soils play a crucial role in determining whether the input of HMs through manure application can lead to the risk of HM pollution.
Collapse
Affiliation(s)
- Wanchun Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, PR China, Hangzhou 310021, China
| | - Qiaogang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhaoming Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinchuan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
34
|
Hu NW, Yu HW, Deng BL, Hu B, Zhu GP, Yang XT, Wang TY, Zeng Y, Wang QY. Levels of heavy metal in soil and vegetable and associated health risk in peri-urban areas across China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115037. [PMID: 37210996 DOI: 10.1016/j.ecoenv.2023.115037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Peri-urban vegetable field plays an essential role in providing vegetables for local residents. Because of its particularity, it is affected by both industrial and agricultural activities which have led to the accumulations of heavy metal in soil. So far, information on heavy metal pollution status, spatial features, and human health risks in peri-urban vegetable areas across China is still scarce. To fill this gap, we systematically compiled soil and vegetable data collected from 123 articles published between 2010 and 2022 at a national level. The pollution status of heavy metals (i.e., cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn)) in peri-urban vegetable soils and vegetables were investigated. To evaluate the levels of heavy metal pollution in soil and human health risks, the geoaccumulation index (Igeo) and target hazard quotient (HQ) were calculated. The results showed that mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn in peri-urban vegetable soils were 0.50, 0.53, 12.03, 41.97, 55.56, 37.69, 28.55, and 75.38 mg kg-1, respectively. The main pollutants in peri-urban vegetable soil were Cd and Hg, and 85.25% and 92.86% of the soil samples had Igeo > 1, respectively. The mean Igeo values of this regions followed the order of northwest > central > south > north > east > southwest > northeast for Cd and northeast > northwest > north > southwest > east > central > south for Hg. The mean Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn concentrations in vegetables were 0.30, 0.26, 0.37, 0.54, 1.17, 6.17, 1.96, and 18.56 mg kg-1, respectively. Approximately 87.01% (Cd), 71.43% (Hg), 20% (As), 65.15% (Pb), 27.08% (Cr) of the vegetable samples exceeded the safety requirement values. The vegetables grown in central, northwest, and northern China accumulated much more heavy metals than those grown in other regions. As the HQ values for adults, 53.25% (Cd), 71.43% (Hg), 84.00% (As), and 58.33% (Cr) of the sampled vegetables were higher than 1. For children, the HQ values were higher than 1 for 66.23% (Cd), 73.81% (Hg), 86.00% (As), and 87.50% (Cr) of the sampled vegetables. The findings of this study demonstrate that the situation of heavy metal pollution in peri-urban vegetable areas across China are not optimistic and residents who consume the vegetables are at high risk of health issues. To ensure soil quality and human health, strategies should be taken to guide vegetable production and remedy soil pollution in peri-urban areas with the rapidly urbanizing China.
Collapse
Affiliation(s)
- Nai-Wen Hu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Wen Yu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Bo-Ling Deng
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Hu
- Agricultural Technology and Extension Center of Jilin Province, Changchun 130033, China
| | - Guo-Peng Zhu
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Tao Yang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tian-Ye Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ying Zeng
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Quan-Ying Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
35
|
Xie Q, Liu B, Dong W, Li J, Wang D, Liu Z, Gao C. Comparative transcriptomic and metabolomic analyses provide insights into the responses to NaCl and Cd stress in Tamarix hispida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163889. [PMID: 37142042 DOI: 10.1016/j.scitotenv.2023.163889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Salinity and heavy metal pollution seriously affect plant growth. Tamarix hispida (T. hispida) has the potential to remediate soil saline-alkali and heavy metal pollution. In this study, the response mechanisms of T. hispida under NaCl, CdCl2 (Cd) and combined CdCl2 and NaCl (Cd-NaCl) stresses were explored. Overall, the antioxidant system showed changes under the three stresses. The addition of NaCl inhibited the absorption of Cd2+. However, there were obvious differences in the transcripts and metabolites identified among the three stress responses. Interestingly, the number of DEGs was greatest under NaCl stress (929), but the number of differentially expressed metabolites (DEMs) was lowest (48), with 143 and 187 DEMs identified under Cd and Cd-NaCl stress, respectively. It is worth noting that both DEGs and DEMs were enriched in the linoleic acid metabolism pathway under Cd stress. In particular, the content of lipids changed significantly under Cd and Cd-NaCl stress, suggesting that maintaining normal lipid synthesis and metabolism may be an important way to improve the Cd tolerance of T. hispida. Flavonoids may also play an important role in the response to NaCl and Cd stress. These results provide a theoretical basis for cultivating plants with improved salt and cadmium repair abilities.
Collapse
Affiliation(s)
- Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenfang Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Danni Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
36
|
Shi J, Zhao D, Ren F, Huang L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161768. [PMID: 36740051 DOI: 10.1016/j.scitotenv.2023.161768] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Soil heavy metal pollution has been a serious and widespread problem in China. Although more attention has been paid on soil pollution status of heavy metals in China, systematic reviews on the spatiotemporal distribution of soil heavy metals and their related health risk considering different land use types at a national scale are still lacking. In this review, we extracted concentrations of seven heavy metals in soils including lead (Pb), cadmium (Cd), mercury (Hg), chromium (Cr), arsenic (As), nickel (Ni), and copper (Cu), assessed the spatiotemporal distribution of soil heavy metal concentrations from studies carried out between 1977 and 2020, and estimated the ecological and human health risks on a national scale. Among the seven metals, associated risks posed by Pb and As are more serious compared to other metals. Based on the temporal trend of the geoaccumulation index of the seven heavy metals during 1977-2020, there is no further increasing trend. Among different land use types, mining areas showed higher risk compared to others. Totally, the pollution was more serious in southeast China than those in northwest. Children and adult females are identified as the priority group for protection. This paper presents a comprehensive ecological and health risk assessment of seven heavy metals in soils across China considering different land use types and spatiotemporal variation, and provides important evidence for policy makers to manage and reduce soil heavy metal pollution and related health risks.
Collapse
Affiliation(s)
- Jiangdan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Di Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Futian Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China.
| |
Collapse
|
37
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
38
|
Qiao P, Wang S, Li J, Shan Y, Wei Y, Zhang Z, Lei M. Quantitative analysis of the contribution of sources, diffusion pathways, and receptor attributes for the spatial distribution of soil heavy metals and their nested structure analysis in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163647. [PMID: 37088387 DOI: 10.1016/j.scitotenv.2023.163647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Investigation of heavy metal pollution degree, pollution sources, and spatial distribution structure is crucial for the country's soil pollution prevention, but relevant research is lacking. In this study, As, Cd, Cr, Cu, Pb and Zn in the national scope are taken as research objects. Among them, Cd has the highest pollution level. Four sources were quantitatively allocated as soil type, mining and dressing industry, GDP, and NDVI, which accounted for 92.93, 97.81, 99.30 and 96.24 % of Cr, Cd, Zn and As contamination, respectively. In addition, according to the geographical detector, the spatial distribution of As was affected by three diffusion pathways, whose influence degree were 0.822-0.947, especially the slope. Cadmium was primarily affected by both receptor attributes and diffusion pathways, with an influence degree of 0.010-0.175, especially soil water content and slope; Cr and Pb were affected by receptor attributes, with an influence degree of 0.886-0.986 and 0.007-0.288, respectively, especially for soil water content and soil organic carbon; Cu and Zn were affected by receptor attributes, with an influence degree of 0.182-0.823 and 0.002-0.150, respectively, especially for soil texture. There are two spatial distribution structures with nested scales in east-west and north-south directions. The large spatial structure has a more significant impact on the spatial distribution of heavy metals, especially in the east-west direction. Overall, the mining and dressing industry is the main source in Hunan, Yunnan, and Liaoning, where many mines exist and mining activities are frequent. GDP was the main source in Shanghai and Zhejiang areas, where the economy is developed. NDVI was the main source in Guangdong and Anhui areas, where agriculture is relatively developed. These results provide a basis for determining remediation and prevention objectives in soil pollution remediation and prevention in the national scope.
Collapse
Affiliation(s)
- Pengwei Qiao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Shuo Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Jiabin Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Yue Shan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Yan Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Li Y, Pan S, Wang L, Jia F, Lu F, Shi J. Soil Chromium Accumulation in Industrial Regions across China: Pollution and Health Risk Assessment, Spatial Pattern, and Temporal Trend (2002-2021). TOXICS 2023; 11:363. [PMID: 37112590 PMCID: PMC10143473 DOI: 10.3390/toxics11040363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
This study conducted a nationwide specific assessment of soil chromium (Cr) contamination status in 506 of China's industrial regions. The overall soil Cr concentrations were 0.74-37,967.33 mg/kg, and the soil Cr content in 4.15% of the regions exceeded the reference screening value (2500 mg/kg). Geochemical accumulation index (Igeo) and monomial potential ecological risk index (E) revealed Cr salt production and tanning were the primary control industries. The non-carcinogenic risks posed by Cr salt production and tanning industries were higher than the national average values, and children were the most vulnerable groups. The heavily polluted regions were mainly located at the Yangtze River Delta, the Bohai Rim, the Pearl River Delta, the Yangtze River Basin, and the Yellow River Basin. The Yangtze River Delta was further identified as the high priority control area based on the class distribution of Igeo and E. Regression analysis showed the soil Cr concentrations in industrial regions increased during 2002-2009 and then turned into a declining trend in 2009-2021. This paper gives detailed insights into soil Cr pollution status in industrial regions across China and the results may serve as references for formulating tailored control measures for different industries and areas.
Collapse
Affiliation(s)
- Yifan Li
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Lubin Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Jia
- Zhejiang Jiuhe Geological and Ecological Environment Planning and Design Company, Huzhou 313002, China
| | - Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Gong Y, Yang S, Chen S, Zhao S, Ai Y, Huang D, Yang K, Cheng H. Soil microbial responses to simultaneous contamination of antimony and arsenic in the surrounding area of an abandoned antimony smelter in Southwest China. ENVIRONMENT INTERNATIONAL 2023; 174:107897. [PMID: 37001217 DOI: 10.1016/j.envint.2023.107897] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Soil contamination with heavy metal(loid)s may influence microbial activities in the soil, and consequently jeopardize soil health. Microbial responses to soil contamination play an important role in ecological risk assessment. This study investigated the effect of heavy metal(loid)s contamination on microbial community structure and abundance in the surrounding soil of an abandoned antimony (Sb) smelter in Qinglong county, Guizhou province, Southwest China. A total of 46 soil samples were collected from ten sampling sites (labelled as A-I, and CK) across the study area at depths of 0-2, 2-10, 10-20, 20-30, 30-40, and 40-50 cm. The soil samples were analyzed for total and bioavailable heavy metal(loid) concentrations, bacterial, fungal, and archaeal community structures, diversities, and functions, together with soil basic physicochemical properties. Much greater ecological risk of Sb and arsenic (As) was present in the surface soil (0-2 cm) compared to that in the subsoils. The activities of dominant microorganisms tended to be associated with soil pH and heavy metal(loid)s (i.e., Sb, As, lead (Pb), cadmium (Cd), and chromium (Cr)). Bacteria associated with IMCC26256, Rhizobiales, Burkholderiales, and Gaiellales, and archaea associated with Methanocellales were estimated to be tolerant to high concentrations of Sb and As in the soil. In addition, the magnitude of soil microbial responses to Sb and As contamination was in the order of archaea > bacteria > fungi. In contrast to the negligible response of fungi and negative response of bacteria to Sb and As contamination, there was a strongly positive correlation between archaeal activity and total Sb and As concentrations in the soil. Our findings provide a theoretical basis for the remediation of Sb smelter-affected soil.
Collapse
Affiliation(s)
- Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuwen Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shaoyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shoudao Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yadi Ai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Di Huang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
41
|
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Use of Microbial Consortia in Bioremediation of Metalloid Polluted Environments. Microorganisms 2023; 11:microorganisms11040891. [PMID: 37110315 PMCID: PMC10143001 DOI: 10.3390/microorganisms11040891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| | - Raymond J. Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada;
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14178-64411, Iran
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| |
Collapse
|
42
|
Patel KS, Pandey PK, Martín-Ramos P, Corns WT, Varol S, Bhattacharya P, Zhu Y. A review on arsenic in the environment: contamination, mobility, sources, and exposure. RSC Adv 2023; 13:8803-8821. [PMID: 36936841 PMCID: PMC10020839 DOI: 10.1039/d3ra00789h] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Arsenic is one of the regulated hazard materials in the environment and a persistent pollutant creating environmental, agricultural and health issues and posing a serious risk to humans. In the present review, sources and mobility of As in various compartments of the environment (air, water, soil and sediment) around the World are comprehensively investigated, along with measures of health hazards. Multiple atomic spectrometric approaches have been applied for total and speciation analysis of As chemical species. The LoD values are basically under 1 μg L-1, which is sufficient for the analysis of As or its chemical species in environmental samples. Both natural and anthropogenic sources contributed to As in air, while fine particulate matter tends to have higher concentrations of arsenic and results in high concentrations of As up to a maximum of 1660 ng m-3 in urban areas. Sources for As in natural waters (as dissolved or in particulate form) can be attributed to natural deposits, agricultural and industrial effluents, for which the maximum concentration of 2000 μg L-1 was found in groundwater. Sources for As in soil can be the initial contents, fossil fuel burning products, industrial effluents, pesticides, and so on, with a maximum reported concentration up to 4600 mg kg-1. Sources for As in sediments can be attributed to their reservoirs, with a maximum reported concentration up to 2500 mg kg-1. It is notable that some reported concentrations of As in the environment are several times higher than permissible limits. However, many aspects of arsenic environmental chemistry including contamination of the environment, quantification, mobility, removal and health hazards are still unclear.
Collapse
Affiliation(s)
- Khageshwar Singh Patel
- Department of Applied Sciences, Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Piyush Kant Pandey
- Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza Carretera de Cuarte, s/n 22071 Huesca Spain
| | - Warren T Corns
- PS Analytical Ltd, Arthur House Unit 11 Cray fields Industrial Estate Orpington Kent BR5 3HP UK
| | - Simge Varol
- Department of Geological Engineering, Faculty of Engineering, Suleyman Demirel University Çünür Isparta-32260 Turkey
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology Teknikringen 10B SE-100 44 Stockholm Sweden
| | - Yanbei Zhu
- Environmental Standards Research Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba Ibaraki 305-8563 Japan
| |
Collapse
|
43
|
Ciampi P, Esposito C, Bartsch E, Alesi EJ, Rehner G, Morettin P, Pellegrini M, Olivieri S, Ranaldo M, Liali G, Papini MP. A data-driven modeling approach for the sustainable remediation of persistent arsenic (As) groundwater contamination in a fractured rock aquifer through a groundwater recirculation well (IEG-GCW®). ENVIRONMENTAL RESEARCH 2023; 217:114827. [PMID: 36410461 DOI: 10.1016/j.envres.2022.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Persistent arsenic (As) pollution sources from anthropogenic activities pose a serious threat to groundwater quality. This work aims to illustrate the application of an innovative remediation technology to remove As from a heavily contaminated fractured aquifer at a historically polluted industrial site. Groundwater circulation well (GCW) technology was tested to significantly increase and accelerate the mobilization and removal of As in the source area. The GCW extracts and re-injects groundwater at different depths of a vertical circulation well. By pumping out and reinjecting in different screen sections of the well, the resulting vertical hydraulic gradients create recirculation cells and affect and mobilize trapped contaminants that cannot be influenced by traditional pumping systems. The first 45-m deep IEG-GCW® system was installed in 2020, equipped with 4 screen sections at different depths and with an above-ground As removal system by oxidation and filtration on Macrolite (Enki). A geomodeling approach supports both remediation and multi-source data interpretation. The first months of operation demonstrate the hydraulic effectiveness of the IEG-GCW® system in the fractured rock aquifer and the ability to significantly enhance As removal compared to conventional pumping wells currently feeding a centralized treatment system. The recirculation flow rate amounts to about 2 m3/h. Water pumped and treated by the GCW system is reintroduced with As concentrations reduced by an average of 20%-60%. During the pilot test, the recirculating system removed 23 kg As whilst the entire central pump-and-treat (P&T) system removed 129 kg, although it treated 100 times more water volume. The P&T plant removed 259 mg As per m3 of pumped and treated groundwater while the GCW removed 4814 mg As per m3 of the treated groundwater. The results offer the opportunity for a more environmentally sustainable remediation approach by actively attacking the contamination source rather than containing the plume.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Ernst Bartsch
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Gert Rehner
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Piero Morettin
- Enki Ambiente Srl, Via Zandonai 6, 30174, Mestre, Italy.
| | | | | | | | | | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
44
|
Zhang J, Liu Z, Tian B, Li J, Luo J, Wang X, Ai S, Wang X. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129891. [PMID: 36103763 DOI: 10.1016/j.jhazmat.2022.129891] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Ecological risks can vary dramatically depending on abiotic factors, such as soil properties and the background values of elements. This study developed a framework for an integrated risk assessment system to derive soil quality criteria (SQC) for heavy metals (HMs) applicable to different soil types and to assess ecological risks at a multi-regional scale. Through the construction of normalization and species sensitivity distribution models, 248 SQC values for Cd, Pb, Zn, As, Cu, Cr, Sb, and Ni in 31 Chinese provinces were derived. These SQC considered the soil types and background values of the elements and effectively reduced the uncertainty caused by spatial heterogeneity. Using the derived SQC values, the qualitative and quantitative ecological risks of HMs in the terrestrial environment of China were comprehensively assessed using a three-level ecological risk assessment (ERA) approach. Compared to traditional ERA methods, the new methodology reached a more quantitative conclusion. The mean overall probabilities of ecological risk in China were 2.42 % (Cd), 2.82 % (Pb), 12.17 % (Zn), 14.89 % (As), 10.42 % (Cu), 32.20 %(Cr), and 8.88 % (Ni). The new framework could be useful for the ERA of various soil types.
Collapse
Affiliation(s)
- Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Biao Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jingjing Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
45
|
Yan Y, Chen R, Jin H, Rukh G, Wang Y, Cui S, Liu D. Pollution Characteristics, Sources, and Health Risk Assessments of Potentially Toxic Elements in Community Garden Soil of Lin'an, Zhejiang, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1106-1116. [PMID: 35988125 DOI: 10.1007/s00128-022-03605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/04/2022] [Indexed: 05/16/2023]
Abstract
The characteristics, sources and risk assessment of heavy metal pollution in community garden soil of Lin'an District were evaluated. The 28 soil samples from community garden were collected for determination of 7 heavy metal elements. The Geostatistical analysis, Spearman correlation coefficient, Principal component analysis and PMF model have explored sources of heavy metal pollution. The health risk assessment model has assessed ecological risk of heavy metals. The results revealed that average concentration of As, Cd, Cr, Cu, Ni, Pb and Zn were 16.0, 0.158, 76.1, 34.6, 45.8, 20.9 and 166 mg kg-1, respectively. Whereas As, Cd, Cr, Cu, Ni and Zn were higher than background values. The spatial distribution of heavy metal pollution in the southwest of the study area was higher than northeast. The pollution sources of Cd, Cu, Ni and Zn in the study area were due to agricultural activities (42.9%), Cr and Pb were from traffic sources (36.2%), and As was domestic pollution (20.9%) according to Spearman correlation coefficient, Principal component analysis and PMF model. The non-carcinogenic risks of As (5.39), Cr (3.53) and Ni (2.07) have a value of 1, which indicated significant risk. The potentially toxic elements have not exceeded maximum threshold of USEPA, with regard to carcinogenic risk, while As (3.37E-05) and Cr (5.74E-05) have exceeded the safety range. It is concluded that soils of community gardens are facing pollution problem due to potentially toxic elements which require environmental monitoring of the soil to reduce risk of human health.
Collapse
Affiliation(s)
- Yue Yan
- School of Landscape Architecture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Rongrong Chen
- School of Landscape Architecture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Hexian Jin
- School of Landscape Architecture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China.
| | - Gul Rukh
- Institute of Chemical Sciences, The University of Peshawar, Peshawar, Pakistan
| | - Ying Wang
- School of Landscape Architecture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Shiyu Cui
- School of Landscape Architecture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Dan Liu
- School of Landscape Architecture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| |
Collapse
|
46
|
Wen M, Ma Z, Gingerich DB, Zhao X, Zhao D. Heavy metals in agricultural soil in China: A systematic review and meta-analysis. ECO-ENVIRONMENT & HEALTH 2022; 1:219-228. [PMID: 38077260 PMCID: PMC10702913 DOI: 10.1016/j.eehl.2022.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 05/27/2024]
Abstract
Research about farmland pollution by heavy metals/metalloids in China has drawn growing attention. However, there was rare information on spatiotemporal evolution and pollution levels of heavy metals in the major grain-producing areas. We extracted and examined data from 276 publications between 2010 and 2021 covering five major grain-producing regions in China from 2010 to 2021. Spatiotemporal evolution characteristics of main heavy metals/metalloids was obtained by meta-analysis. In addition, subgroup analyses were carried out to study preliminary correlations related to accumulation of the pollutants. Cadmium (Cd) was found to be the most prevailing pollutant in the regions in terms of both spatial distribution and temporal accumulation. The Huang-Huai-Hai Plain was the most severely polluted. Accumulation of Cd, mercury (Hg) and copper (Cu) increased from 2010 to 2015 when compared with the 1990 background data. Further, the levels of five key heavy metals (Cd, Cu, Hg, lead [Pb] and zinc [Zn]) showed increasing trends from 2016 to 2021 in all five regions. Soil pH and mean annual precipitation had variable influences on heavy metal accumulation. Alkaline soil and areas with less rainfall faced higher pollution levels. Farmlands cropped with mixed species showed smaller effect sizes of heavy metals than those with single upland crop, suggesting that mixed farmland use patterns could alleviate the levels of heavy metals in soil. Of various soil remediation efforts, farmland projects only held a small market share. The findings are important to support the research of risk assessment, regulatory development, pollution prevention, fund allocation and remediation actions.
Collapse
Affiliation(s)
- Moyan Wen
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Ziqi Ma
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Daniel B. Gingerich
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xiao Zhao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
47
|
Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Li X, Meng W, Liu N, Wu P. Lithological controls on arsenic accumulation in cultivated soils: observations from typical karst areas in Central Guizhou, Southwest China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:741-746. [PMID: 35715701 DOI: 10.1007/s00128-022-03564-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, topsoil and soil profiles were collected from typical karst areas in central Guizhou to investigate the accumulation and bioavailability of As in cultivated soils. The parent material of the investigated soil is carbonate rock, but there is strong heterogeneity in the As concentrations of soils developed in the Permian and Triassic, with average concentrations of 18.31 and 40.35 mg/kg, respectively. Additionally, the average As concentration of dolomite of the Anshun Formation (46.23 mg/kg) is slightly higher than that of the limestone in the Daye Formation (31.96 mg/kg) from the Triassic. Arsenic in the soil profiles of Triassic is also higher than that of the Permian and shows deep enrichment characteristics. Approximately 80% of the As exists as stable crystalline hydrous oxide-bound As and residual As fractions, and the bioavailability is very low.
Collapse
Affiliation(s)
- Xuexian Li
- College of Agriculture, Guizhou University, 550025, Guiyang, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, 550025, Guiyang, China
| | - Wei Meng
- Guizhou Academy of Geological Survey, 550005, Guiyang, China
| | - Nanting Liu
- College of Agriculture, Guizhou University, 550025, Guiyang, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, 550025, Guiyang, China.
| |
Collapse
|
49
|
Kuang J, Qi S, Shi C, Qu C. Supergene geochemistry of arsenic and activation mechanism of eucalyptus to arsenic source. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4017-4029. [PMID: 34812976 DOI: 10.1007/s10653-021-01155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) migration and transformation in the supergene environment and eucalyptus planting have essential effects on ecology or even human health, respectively. However, the combined environmental impact of As migration and transformation and eucalyptus planting has not been studied. Here we report a case of soil As contamination caused by eucalyptus planting and address the fate of As in Longmen county, Guangdong Province, China. We found high As content in weathered arsenopyrite bearing granite or granite-derived soil, where a large area of eucalyptus is planted. The release of organic acids from eucalyptus roots promoted the electrochemical reaction of arsenopyrite to produce AsO33-. In the subsequent supergene migration process, As species change from arsenite to arsenate with the addition of oxygen and the effect of clay minerals, last with As infiltration, precipitation, and enrichment, forming the As contamination in soil. The whole process reveals the activation process of eucalyptus to the As source (arsenopyrite), the migration and transformation process of As in the supergene environment, and the formation mechanism of soil As contamination. This finding provides a new perspective of soil As contamination around arsenopyrite bearing granite of the Nanling area with eucalyptus planting and proposes that the negative effects of Nanling eucalyptus planting may be greater than expected.
Collapse
Affiliation(s)
- Jian Kuang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Changhe Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
50
|
Zhou M, Wang X, Yang S, Wang B, Ma J, Wang D, Guo Y, Shi T, Chen W. Cross-sectional and longitudinal associations between urinary arsenic and lung function among urban Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157028. [PMID: 35777566 DOI: 10.1016/j.scitotenv.2022.157028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
To investigate the associations of arsenic exposure with lung function and ventilatory impairment. The repeated-measures study was developed with 8479 observations from three study periods of the Wuhan-Zhuhai cohort. Urinary arsenic and lung function were measured during each period. Linear mixed models were used to estimate the cross-sectional and longitudinal relationships between urinary arsenic and lung function. Logistic regression models and COX regression models were used to evaluate the cross-sectional and longitudinal associations between urinary arsenic and ventilatory impairment, respectively. In the cross-sectional analysis, each 1-unit increase in log-transformed urinary arsenic was associated with a -22.499 mL (95 % confidence interval (CI): -35.832 to -9.165), -15.081 mL (-25.205 to -4.957), and -0.274 % (-0.541 to -0.007) change in forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and FEV1/FVC, respectively. In the longitudinal analysis, each 1-unit increase in log-transformed urinary arsenic was associated with an annual change rate of -6.240 mL/year (95 % CI: -12.429 to -0.051), -5.855 mL/year (-10.632 to -1.079), and -0.143 %/year (-0.234 to -0.051) in FVC, FEV1, and FEV1/FVC, respectively. Stratified analyses suggested a modification role of gender on the cross-sectional and longitudinal associations between urinary arsenic and FEV1, with the stronger associations were found among males (P for modification 0.0384 and 0.0168). Furtherly, each 1-unit increase in log-transformed urinary arsenic was associated with a 14.8 % (odds ratio 1.148, 95 % CI: 1.043 to 1.263) and 11.7 % (hazard ratio 1.117, 95 % CI: 1.023 to 1.218) increase in the prevalent and incident risk of restrictive ventilatory impairment, respectively. Source analyses suggested that fish intake and fine particulate matter inhalation positively associated with the total arsenic levels. In conclusion, arsenic exposure was associated with lung function decline and the risk of restrictive ventilatory impairment.
Collapse
Affiliation(s)
- Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|