1
|
Marchetti S, Colombo A, Saibene M, Bragato C, La Torretta T, Rizzi C, Gualtieri M, Mantecca P. Shedding light on the cellular mechanisms involved in the combined adverse effects of fine particulate matter and SARS-CoV-2 on human lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175979. [PMID: 39233085 DOI: 10.1016/j.scitotenv.2024.175979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Airborne pathogens represent a topic of scientific relevance, especially considering the recent COVID-19 pandemic. Air pollution, and particulate matter (PM) in particular, has been proposed as a possible risk factor for the onset and spread of pathogen-driven respiratory diseases. Regarding SARS-CoV-2 infection, exposure to fine PM (PM2.5, particles with an aerodynamic diameter < 2.5 μm) has been associated with increased incidence of the COVID-19 disease. To provide useful insights into the mechanisms through which PM might be involved in infection, we exposed human lung cells (A549) to PM2.5 and SARS-CoV-2, to evaluate the toxicological properties and the molecular pathways activated when airborne particles are combined with viral particles. Winter PM2.5 was collected in a metropolitan urban area and its physico-chemical composition was analyzed. A549 cells were exposed to SARS-CoV-2 concomitantly or after pre-treatment with PM2.5. Inflammation, oxidative stress and xenobiotic metabolism were the main pathways investigated. Results showed that after 72 h of exposure PM2.5 significantly increased the expression of the angiotensin-converting enzyme 2 (ACE2) receptor, which is one of the keys used by the virus to infect host cells. We also analyzed the endosomal route in the process of internalization, by studying the expression of RAB5 and RAB7. The results show that in cells pre-activated with PM and then exposed to SARS-CoV-2, RAB5 expression is significantly increased. The activation of the inflammatory process was then studied. Our findings show an increase of pro-inflammatory markers (NF-kB and IL-8) in cells pre-activated with PM for 72 h and subsequently exposed to the virus for a further 24 h, further demonstrating that the interaction between PM and SARS-CoV-2 determines the severity of the inflammatory responses in lung epithelial cells. In conclusion, the study provides mechanistic biological evidence of PM contribution to the onset and progression of viral respiratory diseases in exposed populations.
Collapse
Affiliation(s)
- Sara Marchetti
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Anita Colombo
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Melissa Saibene
- Platform of Microscopy, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Cinzia Bragato
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Teresa La Torretta
- Laboratory of Atmospheric Pollution, National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 40129 Bologna, Italy
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy
| | - Maurizio Gualtieri
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
2
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Palestini P. Correlation between Exposure to UFP and ACE/ACE2 Pathway: Looking for Possible Involvement in COVID-19 Pandemic. TOXICS 2024; 12:560. [PMID: 39195662 PMCID: PMC11359209 DOI: 10.3390/toxics12080560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
The overlap between the geographic distribution of COVID-19 outbreaks and pollution levels confirmed a correlation between exposure to atmospheric particulate matter (PM) and the SARS-CoV-2 pandemic. The RAS system is essential in the pathogenesis of inflammatory diseases caused by pollution: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway, which is counteracted by the ACE2/Ang(1-7)/MAS axis, which activates an anti-inflammatory and protective pathway. However, ACE2 is also known to act as a receptor through which SARS-CoV-2 enters host cells to replicate. Furthermore, in vivo systems have demonstrated that exposure to PM increases ACE2 expression. In this study, the effects of acute and sub-acute exposure to ultrafine particles (UFP), originating from different anthropogenic sources (DEP and BB), on the levels of ACE2, ACE, COX-2, HO-1, and iNOS in the lungs and other organs implicated in the pathogenesis of COVID-19 were analyzed in the in vivo BALB/c male mice model. Exposure to UFP alters the levels of ACE2 and/or ACE in all examined organs, and exposure to sub-acute DEP also results in the release of s-ACE2. Furthermore, as evidenced in this and our previous works, COX-2, HO-1, and iNOS levels also demonstrated organ-specific alterations. These proteins play a pivotal role in the UFP-induced inflammatory and oxidative stress responses, and their dysregulation is linked to the development of severe symptoms in individuals infected with SARS-CoV-2, suggesting a heightened vulnerability or a more severe clinical course of the disease. UFP and SARS-CoV-2 share common pathways; therefore, in a "risk stratification" concept, daily exposure to air pollution may significantly increase the likelihood of developing a severe form of COVID-19, explaining, at least in part, the greater lethality of the virus observed in highly polluted areas.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
3
|
Shahbaz MA, Kuivanen S, Mussalo L, Afonin AM, Kumari K, Behzadpour D, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Jalava P, Vapalahti O, Balistreri G, Lampinen R, Kanninen KM. Exposure to urban particulate matter alters responses of olfactory mucosal cells to SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2024; 249:118451. [PMID: 38341073 DOI: 10.1016/j.envres.2024.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Suvi Kuivanen
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Laura Mussalo
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Alexey M Afonin
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Kajal Kumari
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Donya Behzadpour
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juho Kalapudas
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland
| | - Anne M Koivisto
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Department of Neurology, Neuro Centre, Kuopio, Finland; University of Helsinki, Faculty of Medicine, Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Helsinki, Finland
| | - Elina Penttilä
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Heikki Löppönen
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Pasi Jalava
- University of Eastern Finland, Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Olli Vapalahti
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Giuseppe Balistreri
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Riikka Lampinen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Katja M Kanninen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| |
Collapse
|
4
|
Mancusi A, Proroga YTR, Maiolino P, Marrone R, D’Emilio C, Girardi S, Egidio M, Boni A, Vicenza T, Suffredini E, Power K. Droplet Digital RT-PCR (dd RT-PCR) Detection of SARS-CoV-2 in Honey Bees and Honey Collected in Apiaries across the Campania Region. Viruses 2024; 16:729. [PMID: 38793611 PMCID: PMC11126096 DOI: 10.3390/v16050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Coronaviruses (CoVs), a subfamily of Orthocoronavirinae, are viruses that sometimes present a zoonotic character. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for the recent outbreak of COVID-19, which, since its outbreak in 2019, has caused about 774,593,066 confirmed cases and 7,028,881 deaths. Aereosols are the main route of transmission among people; however, viral droplets can contaminate surfaces and fomites as well as particulate matter (PM) in suspensions of natural and human origin. Honey bees are well known bioindicators of the presence of pollutants and PMs in the environment as they can collect a great variety of substances during their foraging activities. The aim of this study was to evaluate the possible role of honey bees as bioindicators of the prevalence SARS-CoV-2. In this regard, 91 samples of honey bees and 6 of honey were collected from different apiaries of Campania region (Southern Italy) in four time periods from September 2020 to June 2022 and were analyzed with Droplet Digital RT-PCR for SARS-CoV-2 target genes Orf1b and N. The screening revealed the presence of SARS-CoV-2 in 12/91 in honey bee samples and in 2/6 honey samples. These results suggest that honey bees could also be used as indicators of outbreaks of airborne pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Andrea Mancusi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Raffaele Marrone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Claudia D’Emilio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Santa Girardi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Marica Egidio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Arianna Boni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Karen Power
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
5
|
Ijaz MK, Sattar SA, Nims RW, Boone SA, McKinney J, Gerba CP. Environmental dissemination of respiratory viruses: dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023; 11:e16420. [PMID: 38025703 PMCID: PMC10680453 DOI: 10.7717/peerj.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Syed A. Sattar
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stephanie A. Boone
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
6
|
Miyashita L, Foley G, Semple S, Gibbons JM, Pade C, McKnight Á, Grigg J. Curbside particulate matter and susceptibility to SARS-CoV-2 infection. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100141. [PMID: 37781647 PMCID: PMC10509961 DOI: 10.1016/j.jacig.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/22/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023]
Abstract
Background Biologic plausibility for the association between exposure to particulate matter (PM) less than 10 μm in aerodynamic diameter (PM10) and coronavirus disease 2019 (COVID-19) morbidity in epidemiologic studies has not been determined. The upregulation of angiotensin-converting enzyme 2 (ACE2), the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) entry receptor on host cells, by PM10 is a putative mechanism. Objective We sought to assess the effect of PM10 on SARS-CoV-2 infection of cells in vitro. Methods PM10 from the curbside of London's Marylebone Road and from exhaust emissions was collected by cyclone. A549 cells, human primary nasal epithelial cells (HPNEpCs), SARS-CoV-2-susceptible Vero-E6 and Calu3 cells were cultured with PM10. ACE2 expression (as determined by median fluorescent intensity) was assessed by flow cytometry, and ACE2 mRNA transcript level was assessed by PCR. The role of oxidative stress was determined by N-acetyl cysteine. The cytopathic effect of SARS-CoV-2 (percentage of infection enhancement) and expression of SARS-CoV-2 genes' open reading frame (ORF) 1ab, S protein, and N protein (focus-forming units/mL) were assessed in Vero-E6 cells. Data were analyzed by either the Mann-Whitney U test or Kruskal-Wallis test with the Dunn multiple comparisons test. Results Curbside PM10 at concentrations of 10 μg/mL or more increased ACE2 expression in A549 cells (P = .0021). Both diesel PM10 and curbside PM10 in a concentration of 10 μg/mL increased ACE2 expression in HPNEpCs (P = .0022 and P = .0072, respectively). ACE2 expression simulated by curbside PM10 was attenuated by N-acetyl cysteine in HPNEpCs (P = .0464). Curbside PM10 increased ACE2 expression in Calu3 cells (P = .0256). In Vero-E6 cells, curbside PM10 increased ACE2 expression (P = .0079), ACE2 transcript level (P = .0079), SARS-CoV-2 cytopathic effect (P = .0002), and expression of the SARS-CoV-2 genes' ORF1ab, S protein, and N protein (P = .0079). Conclusions Curbside PM10 increases susceptibility to SARS-COV-2 infection in vitro.
Collapse
Affiliation(s)
- Lisa Miyashita
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Gary Foley
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Sean Semple
- Institute for Social Marketing, University of Stirling, Stirling, United Kingdom
| | - Joseph M. Gibbons
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Corinna Pade
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Áine McKnight
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Grigg
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Romeo A, Pellegrini R, Gualtieri M, Benassi B, Santoro M, Iacovelli F, Stracquadanio M, Falconi M, Marino C, Zanini G, Arcangeli C. Experimental and in silico evaluations of the possible molecular interaction between airborne particulate matter and SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165059. [PMID: 37353034 PMCID: PMC10284444 DOI: 10.1016/j.scitotenv.2023.165059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During the early stage of the COVID-19 pandemic (winter 2020), the northern part of Italy has been significantly affected by viral infection compared to the rest of the country leading the scientific community to hypothesize that airborne particulate matter (PM) could act as a carrier for the SARS-CoV-2. To address this controversial issue, we first verified and demonstrated the presence of SARS-CoV-2 RNA genome on PM2.5 samples, collected in the city of Bologna (Northern Italy) in winter 2021. Then, we employed classical molecular dynamics (MD) simulations to investigate the possible recognition mechanism(s) between a newly modelled PM2.5 fragment and the SARS-CoV-2 Spike protein. The potential molecular interaction highlighted by MD simulations suggests that the glycans covering the upper Spike protein regions would mediate the direct contact with the PM2.5 carbon core surface, while a cloud of organic and inorganic PM2.5 components surround the glycoprotein with a network of non-bonded interactions resulting in up to 4769 total contacts. Moreover, a binding free energy of -207.2 ± 3.9 kcal/mol was calculated for the PM-Spike interface through the MM/GBSA method, and structural analyses also suggested that PM attachment does not alter the protein conformational dynamics. Although the association between the PM and SARS-CoV-2 appears plausible, this simulation does not assess whether these established interactions are sufficiently stable to carry the virus in the atmosphere, or whether the virion retains its infectiousness after the transport. While these key aspects should be verified by further experimental analyses, for the first time, this pioneering study gains insights into the molecular interactions between PM and SARS-CoV-2 Spike protein and will support further research aiming at clarifying the possible relationship between PM abundance and the airborne diffusion of viruses.
Collapse
Affiliation(s)
- Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Roberto Pellegrini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Maurizio Gualtieri
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy; Department of Earth and Environmental Sciences, Piazza della Scienza 1, University of Milano-Bicocca, Milano
| | - Barbara Benassi
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Milena Stracquadanio
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Gabriele Zanini
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Caterina Arcangeli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy.
| |
Collapse
|
8
|
Marchetti S, Gualtieri M, Pozzer A, Lelieveld J, Saliu F, Hansell AL, Colombo A, Mantecca P. On fine particulate matter and COVID-19 spread and severity: An in vitro toxicological plausible mechanism. ENVIRONMENT INTERNATIONAL 2023; 179:108131. [PMID: 37586275 DOI: 10.1016/j.envint.2023.108131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
COVID-19 pandemic had a significant impact on global public health. The spread of the disease was related to the high transmissibility of SARS-CoV-2 virus but incidence and mortality rate suggested a possible relationship with environmental factors. Air pollution has been hypothesized to play a role in the transmission of the virus and the resulting severity of the disease. Here we report a plausible in vitro toxicological mode of action by which fine particulate matter (PM2.5) could promote a higher infection rate of SARS-CoV-2 and severity of COVID-19 disease. PM2.5 promotes a 1.5 fold over-expression of the angiotensin 2 converting enzyme (ACE2) which is exploited by viral particles to enter human lung alveolar cells (1.5 fold increase in RAB5 protein) and increases their inflammatory state (IL-8 and NF-kB protein expression). Our results provide a basis for further exploring the possible synergy between biological threats and air pollutants and ask for a deeper understanding of how air quality could influence new pandemics in the future.
Collapse
Affiliation(s)
- S Marchetti
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - M Gualtieri
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy.
| | - A Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - J Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - F Saliu
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - A L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, United Kingdom; National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposures and Health at the University of Leicester, United Kingdom; National Institute for Health Research NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, United Kingdom
| | - A Colombo
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| | - P Mantecca
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Italy
| |
Collapse
|
9
|
Xu X, Zhao L, Zhu Y, Du B, Zhu B, Zhang H, Han L, Liu X. Conducting quantitative mask fit tests: application details and affecting factors. Front Public Health 2023; 11:1218191. [PMID: 37521986 PMCID: PMC10372483 DOI: 10.3389/fpubh.2023.1218191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Respirators chosen based on their assigned protection factor (APF) enable wearers to effectively reduce particulate matter concentrations to safe levels when used correctly. As a crucial factor in achieving the intended APF, the fit test has become a necessary procedure in respiratory disease protection. Methods This study involved 225 participants who underwent a fit test using two reusable types of half masks and two types of full masks. Condensation nuclei counting (CNC) and controlled negative pressure (CNP) were performed. Results The results revealed that the passing rate of full masks was higher compared to half masks. Specifically, the passing rate for the half masks and the full masks were 84.7 and 91.6%, respectively. Gender exerted a statistically significant effect on the passing rate. Nevertheless, age, educational background, and training exhibited relatively negligible effects. Certain movements, such as facing forward, were identified as key actions with strong correlation. Additionally, talking was considered a key action with a high failure rate due to instantaneous leakages. Most participants failed at the initial step of CNP, but nearly all of them passed the fit test using CNC. Discussion Therefore, putting on full masks, especially for women, provides optimal protection during work. Furthermore, attention should be given to the displacement and deformation of the respirator during the key actions. When it comes to fit test methods, CNC was found to be more practical and comprehensive compared to CNP. Moreover, additional physiological characteristics, such as double chins, could be explored as potential influential factors.
Collapse
Affiliation(s)
- Xiaodan Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Occupational Disease Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Liangliang Zhao
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Occupational Disease Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Yong Zhu
- Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Bing Du
- BASF-YPC Company Limited, Nanjing, China
| | - Baoli Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Occupational Disease Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Hengdong Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Occupational Disease Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Lei Han
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Occupational Disease Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| | - Xin Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Occupational Disease Prevention, Nanjing, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, China
| |
Collapse
|
10
|
Sangkham S, Islam MA, Sarndhong K, Vongruang P, Hasan MN, Tiwari A, Bhattacharya P. Effects of fine particulate matter (PM 2.5) and meteorological factors on the daily confirmed cases of COVID-19 in Bangkok during 2020-2021, Thailand. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2023; 8:100410. [PMID: 38620170 PMCID: PMC10286573 DOI: 10.1016/j.cscee.2023.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 04/17/2024]
Abstract
The ongoing global pandemic caused by the SARS-CoV-2 virus, known as COVID-19, has disrupted public health, businesses, and economies worldwide due to its widespread transmission. While previous research has suggested a possible link between environmental factors and increased COVID-19 cases, the evidence regarding this connection remains inconclusive. The purpose of this research is to determine whether or not there is a connection between the presence of fine particulate matter (PM2.5) and meteorological conditions and COVID-19 infection rates in Bangkok, Thailand. The study employs a statistical method called Generalized Additive Model (GAM) to find a positive and non-linear association between RH, AH, and R and the number of verified COVID-19 cases. The impacts of the seasons (especially summer) and rainfall on the trajectory of COVID-19 cases were also highlighted, with an adjusted R-square of 0.852 and a deviance explained of 85.60%, both of which were statistically significant (p < 0.05). The study results assist in preventing the future seasonal spread of COVID-19, and public health authorities may use these findings to make informed decisions and assess their policies.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Kritsada Sarndhong
- Department of Community Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
| | - Patipat Vongruang
- Department of Environmental Health, School of Public Health, University of Phayao, Phayao, 56000, Thailand
- Atmospheric Pollution and Climate Change Research Unit, School of Energy and Environment, University of Phayao, Phayao, 56000, Thailand
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE, 10044, Stockholm, Sweden
| |
Collapse
|
11
|
Santurtún A, Shaman J. Work accidents, climate change and COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162129. [PMID: 36773906 PMCID: PMC9911145 DOI: 10.1016/j.scitotenv.2023.162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The effects brought by climate change and the pandemic upon worker health and wellbeing are varied and necessitate the identification and implementation of improved strategic interventions. This review aims, firstly, to assess how climate change affects occupational accidents, focusing on the impacts of extreme air temperatures and natural disasters; and, secondly, to analyze the role of the pandemic in this context. Our results show that the manifestations of climate change affect workers physically while on the job, psychologically, and by modifying the work environment and conditions; all these factors can cause stress, in turn increasing the risk of suffering a work accident. There is no consensus on the impact of the COVID-19 pandemic on work accidents; however, an increase in adverse mental effects on workers in contact with the public (specifically in healthcare) has been described. It has also been shown that this strain affects the risk of suffering an accident. During the pandemic, many people began to work remotely, and what initially appeared to be a provisional situation has been made permanent or semi-permanent in some positions and companies. However, we found no studies evaluating the working conditions of those who telework. In relation to the combined impact of climate change and the pandemic on occupational health, only publications focusing on the synergistic effect of heat due to the obligation to wear COVID-19-specific PPE, either outdoors or in poorly acclimatized indoor environments, were found. It is essential that preventive services establish new measures, train workers, and determine new priorities for adapting working conditions to these altered circumstances.
Collapse
Affiliation(s)
- Ana Santurtún
- Unit of Legal Medicine, Department of Physiology and Pharmacology, University of Cantabria, IDIVAL, Santander, Spain.
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Columbia Climate School, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Li Y, Hua Y, Ji Z, Wu Z, Fan J, Liu Y. Dual-bionic nano-groove structured nanofibers for breathable and moisture-wicking protective respirators. J Memb Sci 2023; 672:121257. [PMID: 36593802 PMCID: PMC9797220 DOI: 10.1016/j.memsci.2022.121257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic makes protective respirators highly demanded. The respirator materials should filter out viral fine aerosols effectively, allow airflow to pass through easily, and wick away the exhalant moisture timely. However, the commonly used melt-blown nonwovens perform poorly in meeting these requirements simultaneously. Herein, dual-bionic nano-groove structured (NGS) nanofibers are fabricated to serve as protective, breathable and moisture-wicking respirator materials. The creativity of this design is that the tailoring of dual-bionic nano-groove structure, combined with the strong polarity and hydrophilicity of electrospinning polymer, not only endows the nanofibrous materials with improved particle capture ability but also enable them to wick away and transmit breathing moisture. Benefitting from the synthetic effect of hierarchical structure and the intrinsic property of polymers, the resulting NGS nanofibrous membranes show a high filtration efficiency of 99.96%, a low pressure drop of 110 Pa, and a high moisture transmission rate of 5.67 kg m-2 d-1 at the same time. More importantly, the sharp increase of breathing resistance caused by the condensation of exhaled moisture is avoided, overcoming the bottleneck faced by traditional nonwovens and paving a new way for developing protective respirators with high wear comfortability.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuezhen Hua
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zekai Ji
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Zheng Wu
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Jie Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yong Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
13
|
Burbank AJ. Risk Factors for Respiratory Viral Infections: A Spotlight on Climate Change and Air Pollution. J Asthma Allergy 2023; 16:183-194. [PMID: 36721739 PMCID: PMC9884560 DOI: 10.2147/jaa.s364845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Climate change has both direct and indirect effects on human health, and some populations are more vulnerable to these effects than others. Viral respiratory infections are most common illnesses in humans, with estimated 17 billion incident infections globally in 2019. Anthropogenic drivers of climate change, chiefly the emission of greenhouse gases and toxic pollutants from burning of fossil fuels, and the consequential changes in temperature, precipitation, and frequency of extreme weather events have been linked with increased susceptibility to viral respiratory infections. Air pollutants like nitrogen dioxide, particulate matter, diesel exhaust particles, and ozone have been shown to impact susceptibility and immune responses to viral infections through various mechanisms, including exaggerated or impaired innate and adaptive immune responses, disruption of the airway epithelial barrier, altered cell surface receptor expression, and impaired cytotoxic function. An estimated 90% of the world's population is exposed to air pollution, making this a topic with high relevance to human health. This review summarizes the available epidemiologic and experimental evidence for an association between climate change, air pollution, and viral respiratory infection.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Correspondence: Allison J Burbank, 5008B Mary Ellen Jones Building, 116 Manning Dr, CB#7231, Chapel Hill, NC, 27599, USA, Tel +1 919 962 5136, Fax +1 919 962 4421, Email
| |
Collapse
|
14
|
Fdez-Arroyabe P, Salcines Suárez CL, Santurtún A, Setién I, Kassomenos P, Petäjä T. Methodology to measure atmospheric nanoparticles charge. MethodsX 2023; 10:102148. [PMID: 37025649 PMCID: PMC10070126 DOI: 10.1016/j.mex.2023.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Atmospheric pollution has become a key aspect for sustainable development world-wide. Lack of measurements of atmospheric nanoparticles properties at different geographic locations limits the understanding of the role atmospheric particulate matter plays in multiple biophysical and environmental processes and its corresponding risks for human beings. This study presents a method to measure atmospheric primary nanoparticle, secondary nanoparticle and microparticle data. Moreover, a process for samples characterization is proposed combining different spectroscopy techniques.•The method allows researcher to collect, measure, store and characterize atmospheric nanoparticles properties including their electric charge.•A specific sample characterization is proposed, based on different techniques such as TEM and RAMAN spectroscopy.•The outcomes of the approach give science the chance to study new themes such as the importance of particulate matter charge in transmission of infectious respiratory diseases; the role of electric charge in pollutants deposition in the respiratory tract; the link between electric atmospheric charge of nanoparticles and meteorological variables.
Collapse
|
15
|
Kapoor NR, Kumar A, Kumar A, Zebari DA, Kumar K, Mohammed MA, Al-Waisy AS, Albahar MA. Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16862. [PMID: 36554744 PMCID: PMC9779012 DOI: 10.3390/ijerph192416862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The emerging novel variants and re-merging old variants of SARS-CoV-2 make it critical to study the transmission probability in mixed-mode ventilated office environments. Artificial neural network (ANN) and curve fitting (CF) models were created to forecast the R-Event. The R-Event is defined as the anticipated number of new infections that develop in particular events occurring over the course of time in any defined space. In the spring and summer of 2022, real-time data for an office environment were collected in India in a mixed-mode ventilated office space in a composite climate. The performances of the proposed CF and ANN models were compared with respect to traditional statistical indicators, such as the correlation coefficient, RMSE, MAE, MAPE, NS index, and a20-index, in order to determine the merit of the two approaches. Thirteen input features, namely the indoor temperature (TIn), indoor relative humidity (RHIn), area of opening (AO), number of occupants (O), area per person (AP), volume per person (VP), CO2 concentration (CO2), air quality index (AQI), outer wind speed (WS), outdoor temperature (TOut), outdoor humidity (RHOut), fan air speed (FS), and air conditioning (AC), were selected to forecast the R-Event as the target. The main objective was to determine the relationship between the CO2 level and R-Event, ultimately producing a model for forecasting infections in office building environments. The correlation coefficients for the CF and ANN models in this case study were 0.7439 and 0.9999, respectively. This demonstrates that the ANN model is more accurate in R-Event prediction than the curve fitting model. The results show that the proposed ANN model is reliable and significantly accurate in forecasting the R-Event values for mixed-mode ventilated offices.
Collapse
Affiliation(s)
- Nishant Raj Kapoor
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Architecture and Planning Department, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Ashok Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Architecture and Planning Department, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Anuj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Building Energy Efficiency Division, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Dilovan Asaad Zebari
- Department of Computer Science, College of Science, Nawroz University, Duhok 42001, Iraq
| | - Krishna Kumar
- Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee 247667, India
| | - Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq
| | - Alaa S. Al-Waisy
- Computer Technologies Engineering Department, Information Technology College, Imam Ja’afar Al-Sadiq University, Baghdad 10064, Iraq
| | - Marwan Ali Albahar
- School of Computer Science, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| |
Collapse
|
16
|
de la Fuente J, Armas O, Barroso-Arévalo S, Gortázar C, García-Seco T, Buendía-Andrés A, Villanueva F, Soriano JA, Mazuecos L, Vaz-Rodrigues R, García-Contreras R, García A, Monsalve-Serrano J, Domínguez L, Sánchez-Vizcaíno JM. Good and bad get together: Inactivation of SARS-CoV-2 in particulate matter pollution from different fuels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157241. [PMID: 35817121 PMCID: PMC9264720 DOI: 10.1016/j.scitotenv.2022.157241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 05/15/2023]
Abstract
Air pollution and associated particulate matter (PM) affect environmental and human health worldwide. The intense vehicle usage and the high population density in urban areas are the main causes of this public health impact. Epidemiological studies have provided evidence on the effect of air pollution on airborne SARS-CoV-2 transmission and COVID-19 disease prevalence and symptomatology. However, the causal relationship between air pollution and COVID-19 is still under investigation. Based on these results, the question addressed in this study was how long SARS-CoV-2 survives on the surface of PM from different origin to evaluate the relationship between fuel and atmospheric pollution and virus transmission risk. The persistence and viability of SARS-CoV-2 virus was characterized in 5 engine exhaust PM and 4 samples of atmospheric PM10. The results showed that SARS-CoV-2 remains on the surface of PM10 from air pollutants but interaction with engine exhaust PM inactivates the virus. Consequently, atmospheric PM10 levels may increase SARS-CoV-2 transmission risk thus supporting a causal relationship between these factors. Furthermore, the relationship of pollution PM and particularly engine exhaust PM with virus transmission risk and COVID-19 is also affected by the impact of these pollutants on host oxidative stress and immunity. Therefore, although fuel PM inactivates SARS-CoV-2, the conclusion of the study is that both atmospheric and engine exhaust PM negatively impact human health with implications for COVID-19 and other diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Octavio Armas
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla - La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Aránzazu Buendía-Andrés
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Florentina Villanueva
- Instituto de Investigación en Combustión y Contaminación Atmosférica, Universidad de Castilla La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla La Mancha, Paseo de La Innovación 1, 02006 Albacete, Spain
| | - José A Soriano
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla - La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Reyes García-Contreras
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla - La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Antonio García
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Monsalve-Serrano
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain; Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
17
|
Cereda G, Viscardi C, Baccini M. Combining and comparing regional SARS-CoV-2 epidemic dynamics in Italy: Bayesian meta-analysis of compartmental models and global sensitivity analysis. Front Public Health 2022; 10:919456. [PMID: 36187637 PMCID: PMC9523586 DOI: 10.3389/fpubh.2022.919456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 01/22/2023] Open
Abstract
During autumn 2020, Italy faced a second important SARS-CoV-2 epidemic wave. We explored the time pattern of the instantaneous reproductive number, R 0(t), and estimated the prevalence of infections by region from August to December calibrating SIRD models on COVID-19-related deaths, fixing at values from literature Infection Fatality Rate (IFR) and average infection duration. A Global Sensitivity Analysis (GSA) was performed on the regional SIRD models. Then, we used Bayesian meta-analysis and meta-regression to combine and compare the regional results and investigate their heterogeneity. The meta-analytic R 0(t) curves were similar in the Northern and Central regions, while a less peaked curve was estimated for the South. The maximum R 0(t) ranged from 2.15 (South) to 2.61 (North) with an increase following school reopening and a decline at the end of October. The predictive performance of the regional models, assessed through cross validation, was good, with a Mean Absolute Percentage Error of 7.2% and 10.9% when considering prediction horizons of 7 and 14 days, respectively. Average temperature, urbanization, characteristics of family medicine and healthcare system, economic dynamism, and use of public transport could partly explain the regional heterogeneity. The GSA indicated the robustness of the regional R 0(t) curves to different assumptions on IFR. The infectious period turned out to have a key role in determining the model results, but without compromising between-region comparisons.
Collapse
Affiliation(s)
- Giulia Cereda
- Department of Statistics, Computer Science, Applications, University of Florence, Florence, Italy,Florence Center for Data Science, University of Florence, Florence, Italy,*Correspondence: Giulia Cereda
| | - Cecilia Viscardi
- Department of Statistics, Computer Science, Applications, University of Florence, Florence, Italy,Florence Center for Data Science, University of Florence, Florence, Italy,Cecilia Viscardi
| | - Michela Baccini
- Department of Statistics, Computer Science, Applications, University of Florence, Florence, Italy,Florence Center for Data Science, University of Florence, Florence, Italy,Michela Baccini
| |
Collapse
|
18
|
Del Real Á, Expósito A, Ruiz-Azcona L, Santibáñez M, Fernández-Olmo I. SARS-CoV-2 surveillance in indoor and outdoor size-segregated aerosol samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62973-62983. [PMID: 35449331 PMCID: PMC9023038 DOI: 10.1007/s11356-022-20237-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/09/2022] [Indexed: 05/13/2023]
Abstract
We aimed to determine the presence of SARS-CoV-2 RNA in indoor and outdoor size-segregated aerosol samples (PM10-2.5, PM2.5). Five outdoor daily samples were collected between November and December 2020 in an urban/industrial area with relatively high PM10 levels (Maliaño, Santander, Spain) by using a PM impactor (air flowrate of 30 L/min). In a non-hospital indoor sampling surveillance context, 8 samples in classrooms and 6 samples in the central library-Paraninfo of the University of Cantabria (UC) were collected between April and June 2021 by using personal PM samplers (air flowrate of 3 L/min). Lastly, 8 samples in the pediatric nasopharyngeal testing room at Liencres Hospital, 6 samples from different single occupancy rooms of positive patients, and 2 samples in clinical areas of the COVID plant of the University Hospital Marqués de Valdecilla (HUMV) were collected between January and May 2021. N1, N2 genes were used to test the presence of SARS-CoV-2 RNA by RT-qPCR. SARS-CoV-2 positive detection was only obtained from one fine fraction (PM2.5) sample, corresponding to one occupancy room, where a patient with positive PCR and cough was present. Negative results found in other sampling areas such as the pediatric nasopharyngeal testing rooms should be interpreted in terms of air sampling volume limitation and good ventilation.
Collapse
Affiliation(s)
- Álvaro Del Real
- Medicine and Psychiatry Department, Universidad de Cantabria, Av. Cardenal Herrera Oria, s/n, 39011, Santander, Cantabria, Spain
| | - Andrea Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros S/N, 39005, Santander, Cantabria, Spain
| | - Laura Ruiz-Azcona
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
- Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - Ignacio Fernández-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros S/N, 39005, Santander, Cantabria, Spain.
| |
Collapse
|
19
|
Pivato A, Formenton G, Di Maria F, Baldovin T, Amoruso I, Bonato T, Mancini P, Bonanno Ferraro G, Veneri C, Iaconelli M, Bonadonna L, Vicenza T, La Rosa G, Suffredini E. SARS-CoV-2 in Atmospheric Particulate Matter: An Experimental Survey in the Province of Venice in Northern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9462. [PMID: 35954818 PMCID: PMC9367860 DOI: 10.3390/ijerph19159462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023]
Abstract
Analysis of atmospheric particulate matter (PM) has been proposed for the environmental surveillance of SARS-CoV-2. The aim of this study was to increase the current knowledge about the occurrence of SARS-CoV-2 in atmospheric PM, introduce a dedicated sampling method, and perform a simultaneous assessment of human seasonal coronavirus 229E. Thirty-two PM samples were collected on quartz fiber filters and six on Teflon using a low- and high-volumetric rate sampler, respectively, adopting a novel procedure for optimized virus detection. Sampling was performed at different sites in the Venice area (Italy) between 21 February and 8 March 2020 (n = 16) and between 27 October and 25 November 2020 (n = 22). A total of 14 samples were positive for Coronavirus 229E, 11 of which were collected in October-November 2020 (11/22; positivity rate 50%) and 3 in February-March 2020 (3/16 samples, 19%). A total of 24 samples (63%) were positive for SARS-CoV-2. Most of the positive filters were collected in October-November 2020 (19/22; positivity rate, 86%), whereas the remaining five were collected in February-March 2020 at two distinct sites (5/16, 31%). These findings suggest that outdoor PM analysis could be a promising tool for environmental surveillance. The results report a low concentration of SARS-CoV-2 in outdoor air, supporting a scarce contribution to the spread of infection.
Collapse
Affiliation(s)
- Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padua, 35131 Padova, Italy;
| | - Gianni Formenton
- Environmental Agency of Veneto Region (ARPAV), 30171 Mestre, Italy;
| | - Francesco Di Maria
- LAR Laboratory, Dipartimento di Ingegneria, University of Perugia, 06125 Perugia, Italy;
| | - Tatjana Baldovin
- Hygiene and Public Health Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padova, Italy;
| | - Irene Amoruso
- Hygiene and Public Health Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padova, Italy;
| | - Tiziano Bonato
- Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042 Este, Italy;
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (G.B.F.); (C.V.); (M.I.); (L.B.); (G.L.R.)
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (G.B.F.); (C.V.); (M.I.); (L.B.); (G.L.R.)
| | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (G.B.F.); (C.V.); (M.I.); (L.B.); (G.L.R.)
| | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (G.B.F.); (C.V.); (M.I.); (L.B.); (G.L.R.)
| | - Lucia Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (G.B.F.); (C.V.); (M.I.); (L.B.); (G.L.R.)
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (T.V.); (E.S.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (G.B.F.); (C.V.); (M.I.); (L.B.); (G.L.R.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (T.V.); (E.S.)
| |
Collapse
|