1
|
Singh R, Bansal SL, Tripathi SC, Ahmad I, Srivastava N. Nanofabrication of Biochar from Cellulosic Waste for Bio-Sensing Application of Waste Water Treatment: Process, Challenges and Future Update. Indian J Microbiol 2025; 65:297-305. [PMID: 40371024 PMCID: PMC12069177 DOI: 10.1007/s12088-024-01387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/28/2024] [Indexed: 05/16/2025] Open
Abstract
Waste water pollution is one of the most prominent concerns across the globe due to its severe impact on human health and environment which affects the ecosystem directly. Therefore, for sustainable and consistence environment, waste water treatment is the primary and mandatory agenda of agencies involve worldwide to rectify this issue. Additionally, among various sustainable trail based strategies for waste water treatment, biochar catalyst utilization is very potential and impactful whereas, use of nanoform of biochar which is also known as nanobiochar is more impactful in waste water pollution remediation. Therefore, the present review represents the sustainable fabrication of nanobiochar from organic waste biomass and process strategy for its reduction from bulk form to nano form using different sustainability procedures. Type and mode of action of different biomass, types, fabrication, methods and functional properties along with their functional efficacy have been highlighted and discussed in the review. Existing challenges and sustainable possibilities to overcome them have also discussed as future prospects for sustainable and promising application of nanobiochar as potential sensor foreco-friendly remediation of waste water pollution. Graphical Abstract The figure present general overview to fabricate nanobiochar from waste biomass biomass for environmental application.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi, 110025 India
| | - Swarn Lata Bansal
- Department of Chemistry, University of Lucknow, Lucknow, UP 226007 India
| | - Subhash C. Tripathi
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406 India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, UP 221005 India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| |
Collapse
|
2
|
Hassan M, Wang B, Wu P, Wang S. Engineered biochar for in-situ and ex-situ remediation of contaminants from soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177384. [PMID: 39510289 DOI: 10.1016/j.scitotenv.2024.177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Tailoring physical and chemical properties of biochar enhances its selectivity, treatability, and efficiency in contaminant remediation. Thus, engineered biochar has emerged as a promising remedy for both in-situ and ex-situ remediation of polluted soil and water. Several factors influence the effectiveness of engineered biochar, including feedstock sources, pyrolysis conditions, surface functionalization, mode of application, and site characteristics. The advantages and disadvantages of different modification approaches to engineered biochar and their specific treatability for in-situ and ex-situ remediation are obscure and must be adequately addressed. This review critically evaluates the application of engineered biochar for on/off-spot contamination management, taking into account the long-term stability and biocompatibility prospects. The properties of engineered biochar resulting from modification with clay minerals, nanoparticles, polymers, surfactants, and oxidants/reductants were critically reviewed. Recent progress and advances in remediation mechanisms and modes of application were elaborated for the effective removal of organic and inorganic contaminants, including heavy metals, pesticides, dyes, polycyclic aromatic hydrocarbons, per- and poly-fluoroalkyl substances, and agrochemicals. Several crucial parameters influence in-situ remediation, including the distribution of contaminants, background electrolytes, hydraulic conductivity, as well as dispersion and stability of adsorbents. Ex-situ remediation of pollutants relies heavily on adsorption or degradation kinetics, background electrolytes, adsorbent dose, and pollutant concentrations. In addition, factors restricting the application of engineered biochar were highlighted for long-term sustainable contaminant management and maintaining low environmental impact. Finally, the challenges and future perspectives of utilizing engineered biochar for field-scale demonstration of contaminated sites are proposed.
Collapse
Affiliation(s)
- Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
3
|
Saraugi SS, Routray W. Advances in sustainable production and applications of nano-biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176883. [PMID: 39419217 DOI: 10.1016/j.scitotenv.2024.176883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Biochar is a carbonaceous material that can be amplified into nano-biochar (N-BC) using different physicochemical techniques. Contrary to bulk biochar, nano-biochar, and have better physicochemical characteristics, including a large specific surface area, pore properties, distinctive nanostructure, and high catalytic activity. The spotlight of this review is to contribute up-to-date information on the scaling up of biochar into nano-biochar through various sustainable techniques. This review paper is a compilation of research on nano-biochar from biochar including preparation, distinctive characteristics, and intended applications in the environmental and agricultural sectors, along with some other cutting-edge applications, which are all covered in detail in this review paper and also provides the knowledge gap that will be useful for future investigation and development.
Collapse
Affiliation(s)
- Shristi Shefali Saraugi
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
4
|
Kang YG, Park DG, Lee JY, Choi J, Kim JH, Kim JH, Yun YU, Oh TK. Ammonium capture Kinetic, Capacity, and Prospect of Rice Husk Biochar produced by different pyrolysis conditions. Sci Rep 2024; 14:29910. [PMID: 39622876 PMCID: PMC11612482 DOI: 10.1038/s41598-024-80873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
This study explores the potential application of rice husk biochars, categorized by their pH (acidic, pH 5.98; neutral, pH 7.02; and alkali, pH 11.21) and particle sizes (micron-scale and sub-centimeter) in aquatic ecosystems for efficient removal of ammonium (NH4+). To assess the NH4+ adsorption capacity of the rice husk biochars, both NH4+ adsorption kinetics and isotherms were employed. Additionally, we propose future prospects for utilizing rice husk biochar as an efficient adsorbent based on a review of previous studies. Our findings suggest that the NH4+adsorption capacity of rice husk biochars is primarily influenced by their surface characteristics, specifically surface area of rice husk biochars and loss of acidic functional groups. In this study, the neutral rice husk biochars, which had the highest surface area at 9.86 m2 g-1, exhibited the highest NH4+adsorption performance at 1.12 mg g-1 (micron-scale) and 0.94 mg g-1 (sub-centimeter) compared to acidic and alkali rice husk biochars. Additionally, particle size control proves to be a promising strategy for enhancing adsorption efficiency of rice husk biochars, with the micron-scale rice husk biochars being 1.19-fold higher than sub-centimeter ones. However, before implementing biochar-based pollutant removal strategies in aquatic ecosystems, several considerations (e.g., the potential harmfulness of inner components in biochar, side effects of biochar on aquatic life, and tracking the fate of biochar in aquatic ecosystems) must be addressed. By addressing these concerns, we can expect to expand the practical application of biochar for remediation in aquatic environments, contributing to the effective management of pollutants.
Collapse
Affiliation(s)
- Yun-Gu Kang
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Do-Gyun Park
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea
- Rural Development Administration, National Institute of Agricultural Sciences, Wanju, 55365, South Korea
| | - Jun-Yeong Lee
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jiwon Choi
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jun-Ho Kim
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Ji-Hoon Kim
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Yeo-Uk Yun
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea.
- Division of Environmentally Friendly Agriculture, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, 32418, South Korea.
| | - Taek-Keun Oh
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Science, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
5
|
Irewale AT, Dimkpa CO, Elemike EE, Oguzie EE. Water hyacinth: Prospects for biochar-based, nano-enabled biofertilizer development. Heliyon 2024; 10:e36966. [PMID: 39281463 PMCID: PMC11401212 DOI: 10.1016/j.heliyon.2024.e36966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The widespread proliferation of water hyacinth (Eichhornia crassipes) in aquatic ecosystems has raised significant ecological, environmental, and socioeconomic concerns globally. These concerns include reduced biodiversity, impeded water transportation and recreational activities, damage to marine infrastructure, and obstructions in power generation dams and irrigation systems. This review critically evaluates the challenges posed by water hyacinth (WH) and investigates potential strategies for converting its biomass into value-added agricultural products, specifically nanonutrients-fortified, biochar-based, green fertilizer. The review examines various methods for producing functional nanobiochar and green fertilizer to enhance plant nutrient uptake and improve soil nutrient retention. These methods include slow or fast pyrolysis, gasification, laser ablation, arc discharge, or chemical precipitation used for producing biochar which can then be further reduced to nano-sized biochar through ball milling, a top-down approach. Through these means, utilization of WH-derived biomass in economically viable, eco-friendly, sustainable, precision-driven, and smart agricultural practices can be achieved. The positive socioeconomic impacts of repurposing this invasive aquatic plant are also discussed, including the prospects of a circular economy, job creation, reduced agricultural input costs, increased agricultural productivity, and sustainable environmental management. Utilizing WH for nanobiochar (or nano-enabled biochar) for green fertilizer production offers a promising strategy for waste management, environmental remediation, improvement of waterway transportation infrastructure, and agricultural sustainability. To underscore the importance of this work, a metadata analysis of literature carried out reveals that an insignificant section of the body of research on WH and biochar have focused on the nano-fortification of WH biochar for fertilizer development. Therefore, this review aims to expand knowledge on the upcycling of non-food crop biomass, particularly using WH as feedstock, and provides crucial insights into a viable solution for mitigating the ecological impacts of this invasive species while enhancing agricultural productivity.
Collapse
Affiliation(s)
- Adewale T Irewale
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511 United States
| | - Elias E Elemike
- Department of Chemistry, Federal University of Petroleum Resources Effurun, Nigeria
| | - Emeka E Oguzie
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
6
|
Chandi K, Udomkun P, Boonupara T, Kaewlom P. Enhancing soil health, microbial count, and hydrophilic methomyl and hydrophobic lambda-cyhalothrin remediation with biochar and nano-biochar. Sci Rep 2024; 14:19551. [PMID: 39174647 PMCID: PMC11341857 DOI: 10.1038/s41598-024-70515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Pesticide contamination and soil degradation present significant challenges in agricultural ecosystems, driving extensive exploration of biochar (BC) and nano-biochar (NBC) as potential solutions. This study examines their effects on soil properties, microbial communities, and the fate of two key pesticides: the hydrophilic methomyl (MET) and the hydrophobic lambda-cyhalothrin (LCT), at different concentrations (1%, 3%, and 5% w w-1) in agricultural soil. Through a carefully designed seven-week black bean pot experiment, the results indicated that the addition of BC/NBC significantly influenced soil dynamics. Soil pH and moisture content (MC) notably increased, accompanied by a general rise in soil organic carbon (SOC) content. However, in BC5/NBC5 treatments, SOC declined after the 2nd or 3rd week. Microbial populations, including total plate count (TPC), phosphate-solubilizing bacteria (PSB), and nitrogen-fixing bacteria (NFB), showed dynamic responses to BC/NBC applications. BC1/NBC1 and BC3/NBC3 applications led to a significant increase in microbial populations, whereas BC5/NBC5 treatments experienced a decline after the initial surge. Furthermore, the removal efficiency of both MET and LCT increased with higher BC/NBC concentrations, with NBC demonstrating greater efficacy than BC. Degradation kinetics, modeled by a first-order equation, revealed that MET degraded faster than LCT. These findings underscore the profound impact of BC/NBC on pesticide dynamics and microbial communities, highlighting their potential to transform sustainable agricultural practices.
Collapse
Affiliation(s)
- Kanchana Chandi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Pathak HK, Seth CS, Chauhan PK, Dubey G, Singh G, Jain D, Upadhyay SK, Dwivedi P, Khoo KS. Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: Mechanism, adsorption kinetic model, plant growth and development. ENVIRONMENTAL RESEARCH 2024; 255:119136. [PMID: 38740295 DOI: 10.1016/j.envres.2024.119136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Even though researches have shown that biochar can improve soil-health and plant-growth even in harsh environments and get rid of harmful heavy metals and new contaminants, it is still not sustainable, affordable, or effective enough. Therefore, scientists are required to develop nanomaterials in order to preserve numerous aquatic and terrestrial species. The carbonaceous chemical known as nano-biochar (N-BC) can be used to get rid of metal contamination and emerging contaminants. However, techniques to reduce hetero-aggregation and agglomeration of nano-biochar are needed that lead to the emergence of emerging nano-biochar (EN-BC) in order to maximise its capacity for adsorption of nano-biochar. To address concerns in regards to the expanding human population and sustain a healthy community, it is imperative to address the problems associated with toxic heavy metals, emerging contaminants, and other abiotic stressors that are threatening agricultural development. Nano-biochar can provide an effective solution for removal of emerging contaminants, toxic heavy metals, and non-degradable substance. This review provides the detailed functional mechanistic and kinetics of nano-biochar, its effectiveness in promoting plant growth, and soil health under abiotic stress. Nonetheless, this review paper has comprehensively illustrated various adsorption study models that will be employed in future research.
Collapse
Affiliation(s)
- Himanshu K Pathak
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | | | - Prabhat K Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | - Gopal Dubey
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | - Garima Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India.
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
8
|
Sun Y, Wang X, Wu Q, Zong T, Xin X, Xie J, Yang J. Use of rice straw nano-biochar to slow down water infiltration and reduce nitrogen leaching in a clayey soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174956. [PMID: 39053523 DOI: 10.1016/j.scitotenv.2024.174956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Biochar exhibits numerous advantages in enhancing the soil environment despite a few limitations due to its lower surface energy. Nanomodified biochar combines the advantages of biochar and nanoscale materials. However, its effects on water infiltration and N leaching in a clayey soil remain unclear. Therefore, this study prepared rice straw nano-biochar by a ball milling method, and investigated its physicochemical properties and effects of bulk biochar and nano-biochar at various addition rates (0 %, 0.5 %, 1 %, 2 %, 3 %, and 5 %) on wetting peak migration, cumulative infiltration, water absorption and retention, and N leaching. The results showed that, compared with bulk biochar, nano-biochar presented a more abundant pore structure with an increase in specific surface area of approximately 1.5 times, accompanied by a 20 % increase in acid functional groups. Compared with those for clayey soil without biochar addition, the wetting front migration time was increased by 10.2 %-123.9 % and 17.0 %-257.9 %, and the cumulative infiltration volume at 60 min was decreased by 26.0 %-48.4 % and 14.1 %-62.4 % for bulk biochar and nano-biochar, respectively. The parameter S of Philip model and the parameter a of Kostiakov model for nano-biochar were lower than those for bulk biochar, whereas the parameter b of Kostiakov model was greater, indicating that nano-biochar decreased initial soil infiltration rate and increased attenuation degree of the infiltration rate. Nano-biochar increased water absorption by 8.03 % and subsequently enhanced water retention capacity relative to bulk biochar. In addition, bulk biochar and nano-biochar reduced NH4+-N leaching by 3.0 %-13.1 % and 5.7 %-39.2 %, respectively, and NO3--N leaching by 2.7 %-3.6 % and 9.0 %-43.3 %, respectively, by decreasing N concentration and leachate volume relative to those with no biochar addition. This study provides new knowledge for nano-biochar application in a clayey soil.
Collapse
Affiliation(s)
- Yidi Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuetao Wang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi Wu
- College of Water Resource, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Tao Zong
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoping Xin
- Department of Soil and Water Science/Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, United States
| | - Jigan Xie
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianchang Yang
- College of Agriculture, Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
9
|
Shahid S, Imtiaz H, Rashid J, Xu M, Vithanage M, Ahmad M. Uptake, translocation, and nutrient efficiency of nano-bonechar as a plant growth regulator in hydroponics and soil systems. ENVIRONMENTAL RESEARCH 2024; 251:118695. [PMID: 38493857 DOI: 10.1016/j.envres.2024.118695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The use of nanotechnology in terms of nanoparticles, carbon nanotubes, and quantum dots, when exposed to the plants, helps increase their productivity. It is worth the effort to comprehend the fate of these nanoparticles in plants. Bonechar derived from bones is a rich source of C, P, Ca2+, and Mg2+ nutrients, which can significantly contribute to the growth of the plants. This study focused on the uptake of nano-bonechar (NBC) in the Syngonium podophyllum plant, and its effects on plant growth under hydroponics and soil systems. The compound microscopy and SEM-EDX results confirmed the presence of NBC in the leaves and roots of the plants in hydroponics and soil systems. The FTIR spectra reflected the presence of functional groups of the NBC in the leaves of the Syngonium podophyllum plant. The plant's growth parameters showed an increase in fresh weight, dry weight, shoot length, chlorophyll content, leaf count, total Ca2+, total PO43-, and total organic carbon of plants in both systems. The NBC not just improved plant physiochemical parameters but also built up the soil quality in terms of bioavailable Ca2+, PO43-, water holding capacity, and soil organic matter. It is concluded that the production of carbon-based NBC not only helps manage bone waste but also their efficient uptake in plants significantly improving plant productivity.
Collapse
Affiliation(s)
- Saher Shahid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Imtiaz
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Jamshaid Rashid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
10
|
Li P, Xia Y, Song K, Liu D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:984. [PMID: 38611512 PMCID: PMC11013062 DOI: 10.3390/plants13070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
As global food security faces challenges, enhancing crop yield and stress resistance becomes imperative. This study comprehensively explores the impact of nanomaterials (NMs) on Gramineae plants, with a focus on the effects of various types of nanoparticles, such as iron-based, titanium-containing, zinc, and copper nanoparticles, on plant photosynthesis, chlorophyll content, and antioxidant enzyme activity. We found that the effects of nanoparticles largely depend on their chemical properties, particle size, concentration, and the species and developmental stage of the plant. Under appropriate conditions, specific NMs can promote the root development of Gramineae plants, enhance photosynthesis, and increase chlorophyll content. Notably, iron-based and titanium-containing nanoparticles show significant effects in promoting chlorophyll synthesis and plant growth. However, the impact of nanoparticles on oxidative stress is complex. Under certain conditions, nanoparticles can enhance plants' antioxidant enzyme activity, improving their ability to withstand environmental stresses; excessive or inappropriate NMs may cause oxidative stress, affecting plant growth and development. Copper nanoparticles, in particular, exhibit this dual nature, being beneficial at low concentrations but potentially harmful at high concentrations. This study provides a theoretical basis for the future development of nanofertilizers aimed at precisely targeting Gramineae plants to enhance their antioxidant stress capacity and improve photosynthesis efficiency. We emphasize the importance of balancing the agricultural advantages of nanotechnology with environmental safety in practical applications. Future research should focus on a deeper understanding of the interaction mechanisms between more NMs and plants and explore strategies to reduce potential environmental impacts to ensure the health and sustainability of the ecosystem while enhancing the yield and quality of Gramineae crops.
Collapse
Affiliation(s)
| | | | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| | - Duo Liu
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| |
Collapse
|
11
|
Chaubey A, Pratap T, Preetiva B, Patel M, Singsit JS, Pittman CU, Mohan D. Definitive Review of Nanobiochar. ACS OMEGA 2024; 9:12331-12379. [PMID: 38524436 PMCID: PMC10955718 DOI: 10.1021/acsomega.3c07804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Nanobiochar is an advanced nanosized biochar with enhanced properties and wide applicability for a variety of modern-day applications. Nanobiochar can be developed easily from bulk biochar through top-down approaches including ball-milling, centrifugation, sonication, and hydrothermal synthesis. Nanobiochar can also be modified or engineered to obtain "engineered nanobiochar" or biochar nanocomposites with enhanced properties and applications. Nanobiochar provides many fold enhancements in surface area (0.4-97-times), pore size (0.1-5.3-times), total pore volume (0.5-48.5-times), and surface functionalities over bulk biochars. These enhancements have given increased contaminant sorption in both aqueous and soil media. Further, nanobiochar has also shown catalytic properties and applications in sensors, additive/fillers, targeted drug delivery, enzyme immobilization, polymer production, etc. The advantages and disadvantages of nanobiochar over bulk biochar are summarized herein, in detail. The processes and mechanisms involved in nanobiochar synthesis and contaminants sorption over nanobiochar are summarized. Finally, future directions and recommendations are suggested.
Collapse
Affiliation(s)
| | - Tej Pratap
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Manvendra Patel
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jonathan S. Singsit
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Charles U. Pittman
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School
of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
12
|
Rajput P, Kumar P, Priya AK, Kumari S, Shiade SRG, Rajput VD, Fathi A, Pradhan A, Sarfraz R, Sushkova S, Mandzhieva S, Minkina T, Soldatov A, Wong MH, Rensing C. Nanomaterials and biochar mediated remediation of emerging contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170064. [PMID: 38242481 DOI: 10.1016/j.scitotenv.2024.170064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamil Nadu, India
| | | | | | | | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rubab Sarfraz
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russia; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Sultan H, Li Y, Ahmed W, Yixue M, Shah A, Faizan M, Ahmad A, Abbas HMM, Nie L, Khan MN. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120448. [PMID: 38422850 DOI: 10.1016/j.jenvman.2024.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.
Collapse
Affiliation(s)
- Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mu Yixue
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Aqeel Ahmad
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| |
Collapse
|
14
|
Mahmoud E, El-shahawy A, Ibrahim M, Abd El-Halim AEHA, Abo-Ogiala A, Shokr MS, Mohamed ES, Rebouh NY, Ismail SM. Enhancing Maize Yield and Soil Health through the Residual Impact of Nanomaterials in Contaminated Soils to Sustain Food. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:369. [PMID: 38392742 PMCID: PMC10892150 DOI: 10.3390/nano14040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Studying the impact of residual soil nanomaterials is a promising challenge for sustainable agricultural development to improve soil health and crop productivity. The objective of this study is to assess the long-term impacts of 50, 100, and 250 mg kg-1 soil of nanobiochar (nB) and nano-water treatment residues (nWTR) on the fertility, biological activity, and yield of maize (Zea mays L.) growing in heavy metal-contaminated soils. The results showed that when nB and nWTR were added in larger quantities, the concentrations of lead (Pb), nickel (Ni), cadmium (Cd), and cobalt (Co) extracted with DTPA decreased. With the addition of nB or nWTR, it also showed a significant increase in exchangeable cations, cation exchange capacity (CEC), soil fertility, soil organic matter (OM), microbial biomass carbon (MBC), and a decrease in soil salinity and sodicity. Catalase and dehydrogenase activities rose as nB addition increased, while they decreased when nWTR addition increased. In comparison to the control, the addition of nB and nWTR greatly boosted maize yield by 54.5-61.4% and 61.9-71.4%, respectively. These findings suggest that the researched nanomaterials' residual effect provides an eco-friendly farming method to enhance the qualities of damaged soils and boost maize production. Our research suggested that adding recycling waste in the form of nanoparticles could immobilize heavy metals, improve soil characteristics, and increase the soil's capacity for productivity.
Collapse
Affiliation(s)
- Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31111, Egypt; (E.M.); (M.I.)
| | - Asmaa El-shahawy
- Water and Environment Research Institute, Sakha Agricultural Research Station, Kafr El-Sheikh P.O. Box 33717, Egypt
| | - Mahmoud Ibrahim
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31111, Egypt; (E.M.); (M.I.)
| | | | - Atef Abo-Ogiala
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31111, Egypt;
| | - Mohamed. S. Shokr
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31111, Egypt; (E.M.); (M.I.)
| | - Elsayed Said Mohamed
- National Authority for Remote Sensing and Space Sciences, Cairo 1564, Egypt
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya, Moscow 117198, Russia
| | - Nazih Y. Rebouh
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya, Moscow 117198, Russia
| | - Sahar Mohamed Ismail
- Soil Physics and Chemistry Department, Desert Research Center, Cairo 4540031, Egypt
| |
Collapse
|
15
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
16
|
Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, Zulfiqar U, Rizwan M, Mahmood S, Ullah A, Arslan M, Rehman MHU, Ditta A, Tariq A. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Sci Rep 2024; 14:217. [PMID: 38167973 PMCID: PMC10762257 DOI: 10.1038/s41598-023-50623-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Muhammad Usman
- Department of Botany, Government College University, Katcheri Road, Lahore, 54000, Punjab, Pakistan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, 410011, China
| | - Salman Mahmood
- Faculty of Economics and Management, Southwest Forestry, Kunming, Yunnan, 650224, China
| | - Abd Ullah
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Habib Ur Rehman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), KPK, Sheringal, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| |
Collapse
|
17
|
Sani MNH, Amin M, Siddique AB, Nasif SO, Ghaley BB, Ge L, Wang F, Yong JWH. Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166881. [PMID: 37678534 DOI: 10.1016/j.scitotenv.2023.166881] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The greatest challenge for the agriculture sector in the twenty-first century is to increase agricultural production to feed the burgeoning global population while maintaining soil health and the integrity of the agroecosystem. Currently, the application of biochar is widely implemented as an effective means for boosting sustainable agriculture while having a negligible influence on ecosystems and the environment. In comparison to traditional biochar, nano-biochar (nano-BC) boasts enhanced specific surface area, adsorption capacity, and mobility properties within soil, allowing it to promote soil properties, crop growth, and environmental remediation. Additionally, carbon sequestration and reduction of methane and nitrous oxide emissions from agriculture can be achieved with nano-BC applications, contributing to climate change mitigation. Nonetheless, due to cost-effectiveness, sustainability, and environmental friendliness, waste-derived nano-BC may emerge as the most viable alternative to conventional waste management strategies, contributing to the circular bioeconomy and the broader goal of achieving the Sustainable Development Goals (SDGs). However, it's important to note that research on nano-BC is still in its nascent stages. Potential risks, including toxicity in aquatic and terrestrial environments, necessitate extensive field investigations. This review delineates the potential of waste-derived nano-BC for sustainable agriculture and environmental applications, outlining current advancements, challenges, and possibilities in the realms from a sustainability and circular bioeconomy standpoint.
Collapse
Affiliation(s)
- Md Nasir Hossain Sani
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56 Alnarp, Sweden.
| | - Mehedi Amin
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Tasmania, Australia.
| | - Saifullah Omar Nasif
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 30, 2630 Taastrup, Denmark.
| | - Liya Ge
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.
| | - Feng Wang
- Environmental Resources and Soil Fertilizer Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56 Alnarp, Sweden.
| |
Collapse
|
18
|
Aziz S, Uzair B, Ali MI, Anbreen S, Umber F, Khalid M, Aljabali AA, Mishra Y, Mishra V, Serrano-Aroca Á, Naikoo GA, El-Tanani M, Haque S, Almutary AG, Tambuwala MM. Synthesis and characterization of nanobiochar from rice husk biochar for the removal of safranin and malachite green from water. ENVIRONMENTAL RESEARCH 2023; 238:116909. [PMID: 37673119 DOI: 10.1016/j.envres.2023.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Xenobiotic pollution in environment is a potential risk to marine life, and human health. Nanobiotechnology is an advanced and emerging solution for the removal of environmental pollutants. Adsorption-based technologies are being used to alleviate the global prevalence of xenobiotics like dyes, due to their high efficacy and cost effectiveness. Current study explored the potential of nanobiochar syntehsized via ultrasonication and centrifugation from rice husk for dye removal from water. It involves the synthesis of nanobiochar from rice husk biochar for removal of Safranin, Malachite green, and a mixture of both from aqueous water. Biochar was synthesized through pyrolysis at 600 °C for 2 h. To convert it into nanobiochar, sonication and centrifugation techniques were applied. The yield obtained was 27.5% for biochar and 0.9% for nanobiochar. Nanobiochar analysis through Fourier-Transform Spectrometer (FTIR), X-ray Power Diffraction (XRD) and scanning electron microscopy (SEM) suggested its crystalline nature having minerals rich in silicon, with a cracked and disintegrated carbon structure due to high temperature and processing treatments. Removal of dyes by nanobiochar was evaluated by changing different physical parameters i.e., nanobiochar dose, pH, and temperature. Pseudo-first order model and pseudo-second order model were applied to studying the adsorption kinetics mechanism. Kinetics for adsorption of dyes followed the pseudo-second order model suggesting the removal of dyes by process of chemical sorption. High adsorption was found at a higher concentration of nanobiochar, high temperature, and neutral pH. Maximum elimination percentages of safranin, malachite green, and a mixture of dyes were obtained as 91.7%, 87.5%, and 85% respectively. We conclude that nanobiochar could be a solution for dye removal from aqueous media.
Collapse
Affiliation(s)
- Sadia Aziz
- International Islamic University, Islamabad, Pakistan.
| | - Bushra Uzair
- International Islamic University, Islamabad, Pakistan.
| | | | | | - Fatiha Umber
- International Islamic University, Islamabad, Pakistan.
| | | | - Alaa Aa Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan.
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, Valencia, Spain.
| | - Gowhar A Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, 211, Salalah, Oman.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Alkhama Medical and Health Sciences University, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon.
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates; Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia.
| | - Murtaza M Tambuwala
- Lincoln Medical School - Universities of Nottingham and Lincoln, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, Lincolnshire, UK.
| |
Collapse
|
19
|
Li Y, Cheng C, Wang H, Zhou L, Yang J, Zhang Y, Li H, Zhou D. Distribution, toxicity, and impacts of nano-biochar in mice following dietary exposure: Insights into environmental risks and mammalian effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122652. [PMID: 37783417 DOI: 10.1016/j.envpol.2023.122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Nano-biochar is a novel material with emerging applications in various fields, including agriculture and environmental remediation. The potential risks of nano-biochar (N-BC) in the food chain necessitate further investigation. We studied the distribution and toxicity of N-BC in mice through dietary exposure. Using Balb/c mice, we assessed N-BC accumulation in organs and its impact on vital organs. Isotope analysis showed significant accumulation of 13C-N-BC in the liver (53.1%-55.9%), kidneys (4.0%-5.9%), and blood (9.2%-13.6%), with lesser amounts in the intestines (0.8%-1.2%) and stool (28.0%-28.1%). N-BC induced liver damage, evident by increased oxidative stress markers and histopathological changes. It disrupted tight junction proteins in the intestine, potentially allowing systemic entry. N-BC also influenced gut microbiota composition and metabolites. Our study provides insights into N-BC's distribution, toxicity, and environmental risks, urging further research on its implications for mammalian health and the ecosystem.
Collapse
Affiliation(s)
- Yuliang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Hongyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jinlei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yaosheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
20
|
Nascimento ÍVD, Fregolente LG, Pereira APDA, Nascimento CDVD, Mota JCA, Ferreira OP, Sousa HHDF, Silva DGGD, Simões LR, Souza Filho AG, Costa MCG. Biochar as a carbonaceous material to enhance soil quality in drylands ecosystems: A review. ENVIRONMENTAL RESEARCH 2023; 233:116489. [PMID: 37385417 DOI: 10.1016/j.envres.2023.116489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Drylands are fragile environments that should be carefully managed to improve their quality and functions to achieve sustainable development. Their major problems involve low availability of nutrients and soil organic carbon content. Biochar effect on soil is a joint response of micro to nano sized biochar and soil characteristics. In this review, we attempt to carry out a critical analysis of biochar application to enhance dryland soil quality. Correlating the effects identified from its soil application, we explored the subjects that remains open in the literature. The relation of composition-structure-properties of biochar vary among pyrolysis parameters and biomass sources. Limitations in soil physical quality in drylands, such as low water-holding capacity, can be alleviated by applying biochar at a rate of 10 Mg ha-1 also resulting in beneficial effects on soil aggregation, improved soil porosity, and reduced bulk density. Biochar addition can contribute to the rehabilitation of saline soils, by releasing cations able to displaces sodium in the exchange complex. However, the recovery process of salt-affected soils might be accelerated by the association of biochar with another soil conditioners. This is a promising strategy especially considering the biochar alkalinity and variability in nutrients bioavailability to improve soil fertilization. Further, while higher biochar application rate (>20 Mg ha-1) might change soil C dynamics, a combination of biochar and nitrogen fertilizer can increase microbial biomass carbon in dryland systems. Other aspect of biochar soil application is the economic viability of scale-up production, which is mainly associate to pyrolysis process being biochar production the costliest stage. Nevertheless, the supplying of feedstock might also represent a great input on biochar final costs. Therefore, biochar-based technology is a big opportunity to improve fragile environments such as drylands, integrating sustainable technologies with regional development. Considering the specificity of application area, it might be a model of sustainable agricultural practices protecting the environment in a bioeconomic perspective.
Collapse
Affiliation(s)
- Ícaro Vasconcelos do Nascimento
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Laís Gomes Fregolente
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil
| | - Arthur Prudêncio de Araújo Pereira
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil.
| | | | - Jaedson Cláudio Anunciato Mota
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Odair Pastor Ferreira
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil; State University of Londrina, Department of Chemistry, Highway Celso Garcia Cid (445) - km 380, Londrina, Paraná, ZIP code 86050-482, Mailbox 6001, Brazil
| | - Helon Hébano de Freitas Sousa
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Débora Gonçala Gomes da Silva
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Lucas Rodrigues Simões
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - A G Souza Filho
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil.
| | - Mirian Cristina Gomes Costa
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| |
Collapse
|
21
|
Bhandari G, Gangola S, Dhasmana A, Rajput V, Gupta S, Malik S, Slama P. Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation. Front Microbiol 2023; 14:1214870. [PMID: 37547682 PMCID: PMC10400457 DOI: 10.3389/fmicb.2023.1214870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into "nano-biochar" by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, India
| | - Archna Dhasmana
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vishal Rajput
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
22
|
Rashid MI, Shah GA, Iqbal Z, Ramzan M, Rehan M, Ali N, Shahzad K, Summan A, Ismail IMI, Ondrasek G. Nanobiochar Associated Ammonia Emission Mitigation and Toxicity to Soil Microbial Biomass and Corn Nutrient Uptake from Farmyard Manure. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091740. [PMID: 37176798 PMCID: PMC10181413 DOI: 10.3390/plants12091740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
The unique properties of NB, such as its nano-size effect and greater adsorption capacity, have the potential to mitigate ammonia (NH3) emission, but may also pose threats to soil life and their associated processes, which are not well understood. We studied the influence of different NB concentrations on NH3 emission, soil microbial biomass, nutrient mineralization, and corn nutrient uptake from farmyard manure (FM). Three different NB concentrations i.e., 12.5 (NB1), 25 (NB2), and 50% (NB3), alone and in a fertilizer mixture with FM, were applied to corn. NB1 alone increased microbial biomass in soil more than control, but other high NB concentrations did not influence these parameters. In fertilizer mixtures, NB2 and NB3 decreased NH3 emission by 25% and 38%, respectively, compared with FM alone. Additionally, NB3 significantly decreased microbial biomass carbon, N, and soil potassium by 34%, 36%, and 14%, respectively, compared with FM. This toxicity to soil parameters resulted in a 21% decrease in corn K uptake from FM. Hence, a high NB concentration causes toxicity to soil microbes, nutrient mineralization, and crop nutrient uptake from the FM. Therefore, this concentration-dependent toxicity of NB to soil microbes and their associated processes should be considered before endorsing NB use in agroecosystems.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Zahid Iqbal
- Department of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Ramzan
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ahmad Summan
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Iqbal M I Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
24
|
Rashid MI, Shah GA, Sadiq M, Amin NU, Ali AM, Ondrasek G, Shahzad K. Nanobiochar and Copper Oxide Nanoparticles Mixture Synergistically Increases Soil Nutrient Availability and Improves Wheat Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061312. [PMID: 36986999 PMCID: PMC10052822 DOI: 10.3390/plants12061312] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Recently, nanomaterials have received considerable attention in the agricultural sector, due to their distinctive characteristics such as small size, high surface area to volume ratio, and charged surface. These properties allow nanomaterials to be utilized as nanofertilizers, that can improve crop nutrient management and reduce environmental nutrient losses. However, after soil application, metallic nanoparticles have been shown to be toxic to soil biota and their associated ecosystem services. The organic nature of nanobiochar (nanoB) may help to overcome this toxicity while maintaining all the beneficial effects of nanomaterials. We aimed to synthesize nanoB from goat manure and utilize it with CuO nanoparticles (nanoCu) to influence soil microbes, nutrient content, and wheat productivity. An X-ray diffractogram (XRD) confirmed nanoB synthesis (crystal size = 20 nm). The XRD spectrum showed a distinct carbon peak at 2θ = 42.9°. Fourier-transform spectroscopy of nanoB's surface indicated the presence of C=O, C≡N-R, and C=C bonds, and other functional groups. The electron microscopic micrographs of nanoB showed cubical, pentagonal, needle, and spherical shapes. NanoB and nanoCu were applied alone and as a mixture at the rate of 1000 mg kg-1 soil, to pots where wheat crop was grown. NanoCu did not influence any soil or plant parameters except soil Cu content and plant Cu uptake. The soil and wheat Cu content in the nanoCu treatment were 146 and 91% higher, respectively, than in the control. NanoB increased microbial biomass N, mineral N, and plant available P by 57, 28, and 64%, respectively, compared to the control. The mixture of nanoB and nanoCu further increased these parameters, by 61, 18, and 38%, compared to nanoB or nanoCu alone. Consequently, wheat biological, grain yields, and N uptake were 35, 62 and 80% higher in the nanoB+nanoCu treatment compared to the control. NanoB further increased wheat Cu uptake by 37% in the nanoB+nanoCu treatment compared to the nanoCu alone. Hence, nanoB alone, or in a mixture with nanoCu, enhanced soil microbial activity, nutrient content, and wheat production. NanoB also increased wheat Cu uptake when mixed with nanoCu, a micronutrient essential for seed and chlorophyll production. Therefore, a mixture of nanobiochar and nanoCu would be recommended to farmers for improving their clayey loam soil quality and increasing Cu uptake and crop productivity in such agroecosystems.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Maqsood Sadiq
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Noor ul Amin
- Department of Environmental Science, Sub-Campus, COMSATS University Islamabad, Vehari 61000, Pakistan
| | - Arshid Mahmood Ali
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Rajput VD, Chernikova N, Minkina T, Gorovtsov A, Fedorenko A, Mandzhieva S, Bauer T, Tsitsuashvili V, Beschetnikov V, Wong MH. Biochar and metal-tolerant bacteria in alleviating ZnO nanoparticles toxicity in barley. ENVIRONMENTAL RESEARCH 2023; 220:115243. [PMID: 36632881 DOI: 10.1016/j.envres.2023.115243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The constant use of zinc oxide nanoparticles (ZnO NPs) in agriculture could increase their concentration in soil, and cause a threat to sustainable crop production. The present study was designed to determine the role of spore-forming and metal-tolerant bacteria, and biochar in alleviating the toxic effects of a high dose of ZnO NPs (2000 mg kg-1) spiked to the soil (Haplic Chernozem) on barley (Hordeum sativum L). The mobile compounds of Zn in soil and their accumulation in H. sativum tissues were increased significantly. The addition of biochar (2.5% of total soil) and bacteria (1010 CFU kg-1) separately and in combination showed a favorable impact on H. sativum growth in ZnO NPs polluted soil. The application of bacteria (separately) to the contaminated soil reduced the mobility of Zn compounds by 7%, due to loosely bound Zn compounds, whereas only biochar inputs lowered Zn mobile compounds mobility by 33%, even the combined application of biochar and bacteria also suppressed the soil Zn mobile compounds. Individual application of biochar and bacteria reduced the Zn plant uptake, i.e., underground parts (roots) by 44% and 20%, and in the above-ground parts of H. sativum plants by 39% and 13%, respectively, compared to ZnO NPs polluted soil treatments. Biochar, both separately and in combination with bacteria improved the root length by 48 and 85%, and plant height by 53 and 40%, respectively, compared to the polluted control. The root length and plant height decreased by 52 and 40% in ZnO NPs spiked soil compared clean soil treatments. Anatomical results showed an improvement in the structural organization of cellular-sub-cellular tissues of root and leaf. The changes in ultrastructural organization of assimilation tissue cells were noted all treatments due to the toxic effects of ZnO NPs compared with control treatment. The results indicate that metal-tolerant bacteria and biochar could be effective as a soil amendment to reduce metal toxicity, enhance crop growth, and improve soil health.
Collapse
Affiliation(s)
- Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia.
| | - Natalya Chernikova
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Andrey Gorovtsov
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Alexey Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Tatiana Bauer
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Victoria Tsitsuashvili
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | | | - Ming Hung Wong
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia; Consortium on Health, Environment, Education, and Research (CHEER), And Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
26
|
Burachevskaya M, Minkina T, Bauer T, Lobzenko I, Fedorenko A, Mazarji M, Sushkova S, Mandzhieva S, Nazarenko A, Butova V, Wong MH, Rajput VD. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Sci Rep 2023; 13:2020. [PMID: 36737633 PMCID: PMC9898244 DOI: 10.1038/s41598-023-27638-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
For effective soil remediation, it is vital to apply environmentally friendly and cost-effective technologies following the notion of green sustainable development. In the context of recycling waste and preserving nutrients in the soil, biochar production and utilization have become widespread. There is an urgent need to develop high-efficiency biochar-based sorbents for pollution removal from soil. This research examined the efficacy of soil remediation using biochar made from three distinct sources: wood, and agricultural residues (sunflower and rice husks). The generated biochars were characterized by SEM/SCEM, XRF, XRD, FTIR, BET Specific Surface Area, and elemental compositions. The presence of hydroxyl and phenolic functional groups and esters in wood, sunflower and rice husk biochar were noted. The total volume of pores was in the following descending order: rice husk > wood > sunflower husk. However, wood biochar had more thermally stable, heterogeneous, irregular-shaped pores than other samples. Adsorption of soil-heavy metals into biochars differed depending on the type of adsorbent, according to data derived from distribution coefficients, sorption degree, Freundlich, and Langmuir adsorption models. The input of biochars to Calcaric Fluvic Arenosol increased its adsorption ability under contamination by Cu(II), Zn(II), and Pb(II) in the following order: wood > rice husk > sunflower husk. The addition of sunflower husk, wood, and rice husk biochar to the soil led to an increase in the removal efficiency of metals in all cases (more than 77%). The increase in the percentage adsorption of Cu and Pb was 9-19%, of Zn was 11-21%. The present results indicated that all biochars functioned well as an absorbent for removing heavy metals from soils. The tailor-made surface chemistry properties and the high sorption efficiency of the biochar from sunflower and rice husks could potentially be used for soil remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexander Nazarenko
- The Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russia
| | - Vera Butova
- Southern Federal University, Rostov-on-Don, Russia
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | | |
Collapse
|
27
|
Fu T, Zhang B, Gao X, Cui S, Guan CY, Zhang Y, Zhang B, Peng Y. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158810. [PMID: 36162572 DOI: 10.1016/j.scitotenv.2022.158810] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China; Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
28
|
Song C, Sun S, Wang J, Gao Y, Yu G, Li Y, Liu Z, Zhang W, Zhou L. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Front Microbiol 2023; 13:1084097. [PMID: 36699598 PMCID: PMC9868176 DOI: 10.3389/fmicb.2022.1084097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Fulvic acid (FA) has been shown to play a decisive role in controlling the environmental geochemical behavior of metals. As a green and natural microbial metabolite, FA is widely used in environmental remediation because of its good adsorption complexation and redox ability. This paper introduces the reaction mechanism and properties of FA with metals, and reviews the progress of research on the remediation of metal pollutant by FA through physicochemical remediation and bioremediation. FA can control the biotoxicity and migration ability of some metals, such as Pb, Cr, Hg, Cd, and As, through adsorption complexation and redox reactions. The concentration, molecular weight, and source are the main factors that determine the remediation ability of FA. In addition, the ambient pH, temperature, metal ion concentrations, and competing components in sediment environments have significant effects on the extent and rate of a reaction between metals and FA during the remediation process. Finally, we summarize the challenges that this promising environmental remediation tool may face. The research directions of FA in the field of metals ecological remediation are also prospected. This review can provide new ideas and directions for the research of remediation of metals contaminants in sediments.
Collapse
Affiliation(s)
- Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.,Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Zhengqian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|
29
|
Arenas-Lago D, Race M, Zhang Z, Núñez-Delgado A. Removal of emerging pollutants from the environment: From bioadsorbents to nanoparticle-based systems. ENVIRONMENTAL RESEARCH 2023; 216:114692. [PMID: 36374794 DOI: 10.1016/j.envres.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the Call for Papers corresponding to this Virtual Special Issue (VSI), the Editors indicated that, as is well known, emerging pollutants include a variety of substances that pose remarkable risks for the environment and public health. In fact, emerging pollutants are considered a matter of concern deserving increasing efforts to elucidate their occurrence, fate, repercussions, and alternatives to their removal from the various environmental compartments where they can be found after spreading as contaminants. Also, the Editors commented that, among the various alternatives that can be considered for achieving their successful removal, some of them are based on the use of sorbent materials, and, specifically, bioadsorbents, which are attractive due to the efficacy and low cost associated with some of them. Another alternative is related to the utilization of nanoparticle-based systems, which may be considered a promising field of research in this way. In both cases, obtaining new research results, as well as designing and programming new ways of going steps ahead in the investigation of both kinds of materials, would be key objectives. According to the previous considerations, the Editors of the VSI invited researchers having new data concerning these aspects to submit manuscripts with experimental results, discussion, reflections and prospective related to their work. With the Special Issue closed, the number of submissions received was 83, with 40 high-quality works being accepted for publication, increasing the overall knowledge on this topic by providing results that we are sure will be of value for the scientific community and the society.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Soil Science and Agricultural Chemistry, Univ. of Vigo, Fac. Sciences, Campus Univ., 32004 Ourense, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, Univ. of Cassino and Southern Lazio 03043 Cassino, Italy
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia Univ., Morgantown, WV, USA
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. of Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002 Lugo, Spain.
| |
Collapse
|