1
|
Kamal S, Roheen T, Rehman K, Bibi I, Akash MSH. Development of a robust enzyme cascade system: co-immobilization of laccase and versatile peroxidase on polyacrylamide hydrogel for enhanced BPA degradation. Biodegradation 2025; 36:34. [PMID: 40259074 DOI: 10.1007/s10532-025-10129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Biodegradation using a synergically integrated system of laccase (E.C. 1.10.3.2) and versatile peroxidase (EC 1.11.1.16) co-immobilized on the polyacrylamide (PAM) hydrogel presents a promising solution for removing endocrine disrupting chemicals (EDCs) like bisphenol A (BPA) from wastewater. In this study, we developed a tailored biocatalyst consisting of a fungal laccase from Pleurotus ostreatus IBL-02 and versatile peroxidase, enzyme cascade co-immobilized covalently on a 7% (w/v) PAM hydrogel, offering high catalytic potential across various pH and temperature ranges. The PAM-VP/Lac structure was analyzed using scanning electron microscopy and Fourier-transform infrared spectrophotometry, revealing improved characteristics compared to free counterparts (FLac and FVP). The optimal pH for FLac, FVP, Lac/VP, and PAM-VP/Lac was 4, 5, 6, and 7, respectively. PAM-VP/Lac exhibited optimal activity at 50-60 °C, higher than FLac, FVP, and Lac-VP. PAM-VP/Lac showed superior operational stability, retaining 99.2% of its activity after eight cycles, with an immobilization efficiency of 78.62 ± 1.15% and activity recovery of 33.71 ± 0.2%. It also demonstrated enhanced thermal stability, with a two-fold increase in half-life at 50-70 °C. Thermodynamic analysis showed significant improvements in stability parameters for PAM-VP/Lac. This system achieved complete BPA degradation within two and a half hr, highlighting its potential for industrial-scale environmental remediation.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Taleeha Roheen
- Department of Biochemistry, University of Sargodha, Sargodha, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
2
|
Hu X, Xu T, Chen Y, Zhang Q, Tang L, Zheng L, Wang C, Wang P, Dong S, Wang R, Zhang S, Zhang Q, Xie HQ, Xu L, Zhao B. Comprehensive metabolic profiling of dioxin-like compounds exposure in laying hens: Implications for toxicity assessment. J Environ Sci (China) 2025; 148:107-115. [PMID: 39095149 DOI: 10.1016/j.jes.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 08/04/2024]
Abstract
The evaluation of toxicity related to polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) is crucial for a comprehensive risk assessment in real-world exposure scenarios. This study employed a controlled feeding experiment to investigate the metabolic effects of dioxin-like compounds (DLCs) on laying hens via feed exposure. Diets enriched with two concentrations (1.17 and 5.13 pg toxic equivalents (TEQ)/g dry weight (dw)) were administered over 14 days, followed by 28 days of clean feed. Metabolomics analyses of blood samples revealed significant metabolic variations between PCDD/Fs and DL-PCBs exposed groups and controls, reflecting the induced metabolic disruption. Distinct changes were observed in sphingosine, palmitoleic acid, linoleate, linolenic acid, taurocholic acid, indole acrylic acid, and dibutyl phthalate levels, implying possible connections between PCDD/Fs and DL-PCBs toxic effects and energy-neuronal imbalances, along with lipid accumulation and anomalous amino acid metabolism, impacting taurine metabolism. Moreover, we identified three differential endogenous metabolites-L-tryptophan, indole-3-acetaldehyde, and indole acrylic acid-as potential ligands for the aryl hydrocarbon receptor (AhR), suggesting their role in mediating PCDD/Fs and DL-PCBs toxicity. This comprehensive investigation provides novel insights into the metabolic alterations induced by PCDD/Fs and DL-PCBs in laying hens, thereby enhancing our ability to assess risks associated with their exposure in human populations.
Collapse
Affiliation(s)
- Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Lijuan Tang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Wang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Kong D, Nie Y, He H, Guo H. Investigating the role and mechanisms of bisphenol compounds in premature ovarian insufficiency using computational biology and bioinformatics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117789. [PMID: 39874714 DOI: 10.1016/j.ecoenv.2025.117789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Premature Ovarian Insufficiency refers to the premature decline in ovarian function before the age of 40, resulting in menstrual irregularities or complete cessation of menstruation, and affecting fertility. Widely used bisphenol compounds may have potential health effects, including premature ovarian insufficiency (POI). This study employs computational biology and bioinformatics to investigate the effects of bisphenols (BPs) on POI. Using bioinformatics tools, we identified potential target genes related to both bisphenols and POI, and conducted functional enrichment analysis. Further, we calculated differentially expressed genes for POI, extracted core networks, and explored immune function and screened core genes. Molecular docking and molecular dynamics simulations were used to explore the stable binding between bisphenols and core POI genes. Our results constructed a protein network of 56 potential target genes and extracted core subnetworks. Functional enrichment analysis indicated that estrogen metabolism, estrogen receptor pathways, steroid hormone metabolism, and carbohydrate and lipid metabolism may be involved in the process of BPs-induced POI. The differentially expressed genes obtained through further screening, CYP1A1 and CYP19A1, were subjected to molecular docking and dynamics simulations to reveal the mechanism by which bisphenols participate in estrogen metabolism through their stable binding. Our findings underscore the role of bisphenols in inducing POI and the potential mechanisms involved, providing new directions for further epidemiological and molecular biological research into this regulatory process.
Collapse
Affiliation(s)
- Deshui Kong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Yufei Nie
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Haojie He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
| |
Collapse
|
4
|
Guo Z, Ren X, Liu P, Deng Y, Bian J, Ge Y, Xu B, Tang X, Li X, Huang H, Liu J, Lu S. Co-exposure to parabens, bisphenol A, and triclosan and the associations with dyslipidemia in Chinese older adults: The mediation effect of oxidative stress. ENVIRONMENTAL RESEARCH 2024; 262:119835. [PMID: 39181298 DOI: 10.1016/j.envres.2024.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Dyslipidemia is a prevalent metabolic disorder in older adults and has negative effects on cardiovascular health. However, the combined effect of paraben, bisphenol A (BPA), and triclosan (TCS) exposure on dyslipidemia and the underlying mechanisms remain unclear. This cross-sectional study recruited 486 individuals ≥60 years in Shenzhen, China. Morning spot urine samples were collected and analyzed for four parabens, BPA, TCS, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), a typical biomarker for oxidative stress, using mass spectrometry. Blood samples were tested for lipid levels using an automated biochemical analyzer. Quantile-based g-computation (QGC) was used to assess the combined effects of exposures on dyslipidemia. Mediation analysis was applied to investigate the mediating role of 8-OHdG between exposure and dyslipidemia. QGC showed that co-exposure to parabens, BPA, and TCS was positively linked with hypercholesterolemia (OR: 1.17, 95%CI: 1.10-1.24, P < 0.001) and hyper-LDL-cholesterolemia (OR: 1.35, 95%CI: 1.05-1.75, P = 0.019). Methylparaben (MeP), n-propyl paraben (PrP), and butylparaben (BtP) were the major contributors. 8-OHdG mediated 6.5% and 13.0% of the overall effect of the examined chemicals on hypercholesterolemia and hyper-LDL-cholesterolemia, respectively (all P < 0.05). Our study indicated that co-exposure to parabens, BPA, and TCS is associated with dyslipidemia and oxidative stress partially mediate the association. Future research is needed to explore additional mechanisms underlying these relationships.
Collapse
Affiliation(s)
- Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yilan Deng
- Zhuhai Maternity and Child Health Care Hospital, Zhuhai, 519001, China
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Ramírez V, Gálvez-Ontiveros Y, de Bobadilla VAF, González-Palacios P, Salcedo-Bellido I, Samaniego-Sánchez C, Álvarez-Cubero MJ, Martínez-González LJ, Zafra-Gómez A, Rivas A. Exploring the role of genetic variability and exposure to bisphenols and parabens on excess body weight in Spanish children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117206. [PMID: 39427540 DOI: 10.1016/j.ecoenv.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Gene-environment interaction studies are emerging as a promising tool to shed light on the reasons for the rapid increase in excess body weight (overweight and obesity). We aimed to investigate the influence of several polymorphisms on excess weight in Spanish children according to a short- and long-term exposure to bisphenols and parabens, combining individual approach with the joint effect of them. This case-control study included 144 controls and 98 cases children aged 3-12 years. Thirty SNPs in genes involved in obesity-related pathways, xenobiotic metabolism and hormone systems were genotyped using the GSA microchip technology and qPCRs with Taqman® probes. Levels of bisphenols and parabens in urine and hair were used to assess short- and long-term exposure, respectively, via UHPLC-MS/MS system. LEPR rs9436303 was identified as a relevant risk variant for excess weight (ORDom:AAvsAG+GG=2.65, p<0.001), and this effect persisted across exposure-stratified models. For long-term exposure, GPX1 rs1050450 was associated with increased excess weight at low single paraben exposure (ORGvsA=2.00, p=0.028, p-interaction=0.016), whereas LEPR rs1137101 exhibited a protective function at high co-exposure (ORDom:AAvsAG+GG=0.17, p=0.007, p-interaction=0.043). ESR2 rs3020450 (ORDom:GGvsAG+AA=5.17, p=0.020, p-interaction=0.028) and CYP2C19 rs4244285 (ORDom:GGvsAG+AA=3.54, p=0.039, p-interaction=0.285) were identified as predisposing variants at low and high co-exposure, respectively. In short-term exposure, higher odds were observed for INSIG2 rs7566605 at high bisphenol exposure (ORCvsG=2.97, p=0.035, p-interaction=0.017) and for GSTP1 rs1695 at low levels (ORDom:AAvsAG+GG=5.38, p=0.016, p-interaction=0.016). At low and medium co-exposure, SH2B1 rs7498665 (ORAvsG=0.17, p=0.015, p-interaction=0.085) and MC4R rs17782313 (ORAvsG=0.10, p=0.023, p-interaction=0.045) displayed a protective effect, whereas ESR2 rs3020450 maintained its contributing role (ORGvsA=3.12, p=0.030, p-interaction=0.010). Our findings demonstrate for the first time that understanding the genetic variation in excess weight and how the level of exposure to bisphenols and parabens might interact with it, is crucial for a more in-depth comprehension of the complex polygenic and multifactorial aetiology of overweight and obesity.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | | | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, Granada 18016, Spain; Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Alberto Zafra-Gómez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain; Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Abady MM, Saadeldin IM, Han A, Bang S, Kang H, Seok DW, Kwon HJ, Cho J, Jeong JS. Melatonin and resveratrol alleviate molecular and metabolic toxicity induced by Bisphenol A in endometrial organoids. Reprod Toxicol 2024; 128:108628. [PMID: 38848930 DOI: 10.1016/j.reprotox.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Bisphenol A (BPA), a widespread environmental contaminant, poses concerns due to its disruptive effects on physiological functions of the uterine endometrium. In contrast, melatonin (MT) and Resveratrol (RSV) are under scrutiny for their potential protective roles against BPA-induced damage. For the efficacy and ethical concerns in the animal test, endometrial organoids, three-dimensional models mimicking endometrium, serve as crucial tools for unraveling the impact of environmental factors on reproductive health. This study aimed to comprehensively characterize the morphological, molecular and metabolic responses of porcine endometrial organoids to BPA and assess the potential protective effects of MT and RSV. Porcine uteri were prepared, digested with collagenase, mixed with Matrigel, and incubated at 38°C with 5 % CO2. Passaging involved dissociation through trypsin-EDTA treatment and subculturing. The culture medium was refreshed every 2-3 days. To investigate the environmental impact on reproductive health, endometrial organoids were treated with BPA (0.5 µM), MT (with/without BPA at 0.1 µM), and/or RSV (10 µM). Various molecular screening using gene expression, western blotting, immunofluorescence staining, and metabolites profiling were assessed the effects of BPA, MT, and RSV in terms of cell viability, morphology, reproductivity, and metabolism alteration in the endometrial organoids. As expected, BPA induced structural and molecular disruptions in organoids, affecting cytoskeletal proteins, Wnt/β-catenin signaling, and epithelial/mesenchymal markers. It triggered oxidative stress and apoptotic pathways, altered miRNA expression, and disrupted the endocannabinoid system. The level of glucose, galactose, and essential amino acids were increased or decreased by approximately 1.5-3 times in BPA-treated groups compared to the control groups (p-value < 0.05), indicating metabolic changes. Moreover, MT and RSV treated groups exhibited protective effects, mitigating BPA-induced disruptions across multiple pathways. For the first time, our study models endometrial organoids, advancing understanding of environmental impacts on reproductive health.
Collapse
Affiliation(s)
- Mariam M Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Nutrition and Food Science, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayeong Han
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heejae Kang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Wook Seok
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Singh G, Singh R, Monga V, Mehan S. Thiazolidine-2,4-dione hybrids as dual alpha-amylase and alpha-glucosidase inhibitors: design, synthesis, in vitro and in vivo anti-diabetic evaluation. RSC Med Chem 2024; 15:2826-2854. [PMID: 39149094 PMCID: PMC11324062 DOI: 10.1039/d4md00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Twelve 3,5-disubstituted-thiazolidine-2,4-dione (TZD) hybrids were synthesized using solution phase chemistry. Continuing our previous work, nine O-modified ethyl vanillin (8a-i) derivatives were synthesized and reacted with the TZD core via Knoevenagel condensation under primary reaction conditions to obtain final derivatives 9a-i. Additionally, three isatin-TZD hybrids (11a-c) were synthesized. The intermediates and final derivatives were characterized using 1H and 13C NMR spectroscopy, and the observed chemical shifts agreed with the proposed structures. The in vitro alpha-amylase and alpha-glucosidase inhibitory evaluation of newly synthesized derivatives revealed compounds 9F and 9G as the best dual inhibitors, with IC50 values of 9.8 ± 0.047 μM for alpha-glucosidase (9F) and 5.15 ± 0.0017 μM for alpha-glucosidase (9G), 17.10 ± 0.015 μM for alpha-amylase (9F), and 9.2 ± 0.092 μM for alpha-amylase (9G). The docking analysis of synthesized compounds indicated that compounds have a higher binding affinity for alpha-glucosidase as compared to alpha-amylase, as seen from docking scores ranging from -1.202 to -5.467 (for alpha-amylase) and -4.373 to -7.300 (for alpha-glucosidase). Further, the molecules possess a high LD50 value, typically ranging from 1000 to 1600 mg kg-1 of body weight, and exhibit non-toxic properties. The in vitro cytotoxicity assay results on PANC-1 and INS-1 cells demonstrated that the compounds were devoid of significant toxicity against the tested cells. Compounds 9F and 9G showed high oral absorption, i.e., oral absorption >96%, and their molecular dynamics simulation yielded results closely aligned with the observed docking outcomes. Finally, compounds 9F and 9G were evaluated for in vivo antidiabetic assessment by the induction of diabetes in Wistar rats using streptozotocin. Molecule 9G has been identified as the most effective anti-diabetic molecule due to its ability to modulate several biochemical markers in blood plasma and tissue homogenates. The results were further confirmed by histology investigations conducted on isolated pancreas, liver, and kidney.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga-142001 Punjab India
- Research Scholar, IK Gujral Punjab Technical University Kapurthala Punjab India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy GT Road, Ghal Kalan Moga Punjab India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab VPO-Ghudda Bathinda Punjab India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga Punjab India
| |
Collapse
|
8
|
Lv L, Li Y, Chen X, Qin Z. Transcriptomic analysis reveals the effects of maternal exposure to bisphenol AF on hypothalamic development in male neonatal mice. J Environ Sci (China) 2024; 141:304-313. [PMID: 38408830 DOI: 10.1016/j.jes.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.
Collapse
Affiliation(s)
- Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Chi LK, Yuan Q, Wang MY, Guo CR, Zhu XD, Jiang HB, Zhang QH, Zhao Y, Li L, Yan H. Metabolomics reveals that ferroptosis participates in bisphenol A-induced testicular injury. Heliyon 2024; 10:e31667. [PMID: 38882385 PMCID: PMC11177062 DOI: 10.1016/j.heliyon.2024.e31667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Bisphenol A (BPA) is a common environmental endocrine disruptor that negatively impairs male reproductive ability. This study aimed to explore the alterations in serum metabolomics that occur following BPA exposure and the mechanism via which BPA induces the death of testicular cells in a male mouse model. Methods The mice were classified into two groups: BPA-exposed and control groups, and samples were collected for metabolomic determination, semen quality analysis, electron microscopy, enzyme-linked immunosorbent assay, quantitative real-time PCR, pathological staining, and Western blot analysis. Results BPA exposure caused testicular damage and significantly decreased sperm quality in mice. Combined with non-target metabolomic analysis, this was closely related to ferroptosis induced by abnormal metabolites of arachidonic acid and phosphatidylcholine, and the expression of its related genes, acyl CoA synthetase 4, glutathione peroxidase 4, lysophosphatidylcholine acyltransferase 3, and phosphatidylethanolamine-binding protein 1 were altered. Conclusion BPA induced ferroptosis, caused testicular damage, and reduced fertility by affecting lipid metabolism in male mice. Inhibiting ferroptosis may potentially function as a therapeutic strategy to mitigate the male reproductive toxicity induced by BPA.
Collapse
Affiliation(s)
- Ling Kan Chi
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Yuan
- Department of Gynecology, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201203, China
| | - Min Yan Wang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun Rong Guo
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xian Dan Zhu
- Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua Bo Jiang
- Department of Gynecology, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201203, China
| | - Qin Hua Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Zhao
- Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
10
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
11
|
Chenxing W, Jie S, Yajuan T, Ting L, Yuying Z, Suhong C, Guiyuan L. The rhizomes of Atractylodes macrocephala Koidz improve gastrointestinal health and pregnancy outcomes in pregnant mice via modulating intestinal barrier and water-fluid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117971. [PMID: 38403003 DOI: 10.1016/j.jep.2024.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baizhu (BZ) is the dried rhizome of Atractylodes macrocephala Koidz (Compositae), which invigorates the spleen, improves vital energy, stabilizes the fetus, and is widely used for treating spleen deficiency syndrome. However, the impact of BZ on gastrointestinal function during pregnancy remains unexplored. AIM OF THE STUDY This study elucidated the ameliorative effects of BZ on gastrointestinal health and pregnancy outcomes in pregnant mice with spleen deficiency diarrhea (SDD). METHODS To simulate an irregular human diet and overconsumption of cold and bitter foods leading to SDD, a model of pregnant mice with SDD was established using an alternate-day fasting and high-fat diet combined with oral administration of Sennae Folium. During the experiment, general indicators and diarrhea-related parameters were measured. Gastric and intestinal motility (small intestinal propulsion and gastric emptying rates) were evaluated. Serum motilin (MTL), ghrelin, growth hormone (GH), gastrin (Gas), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), chorionic gonadotropin β (β-CG), progesterone (P), and estradiol (E2) were quantified using an enzyme-linked immunosorbent assay. Pathological changes were examined by hematoxylin and eosin staining (H&E) and alcian blue periodic acid Schiff staining (AB-PAS). Immunohistochemistry and immunofluorescence were used to measure the expression levels of the intestinal barrier and water metabolism-related proteins in colonic tissues. The pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, small size, average fetal weight, and body length of fetal mice were calculated. RESULTS The results showed that BZ significantly improved general indicators and diarrhea in pregnant mice with SDD, increased gastric emptying rate and small intestinal propulsion rate, elevated the levels of gastrointestinal hormones (AMS, ghrelin, GH, and Gas) in the serum, and reduced lipid levels (TC and LDL-c). It also improved colonic tissue morphology, increased the number of goblet cells, and promoted the mRNA and protein expression of occludin, claudin-1, ZO-1, AQP3, AQP4, and AQP8 in colonic tissues, downregulating the mRNA and protein expression levels of claudin-2, thereby alleviating intestinal barrier damage and regulating the balance of water and fluid metabolism. BZ also held the levels of pregnancy hormones (β-CG, P, and E2) in the serum of pregnant mice with SDD. Moreover, it increased the pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, litter size, average fetal weight, and body length of fetal mice. These findings indicate that BZ can improve spleen deficiency-related symptoms in pregnant mice before and during pregnancy, regulate pregnancy-related hormones, and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Wang Chenxing
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Su Jie
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Tian Yajuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Li Ting
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Zhong Yuying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Chen Suhong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | - Lv Guiyuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| |
Collapse
|
12
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
13
|
Shi J, Hu KL, Li XX, Ge YM, Yu XJ, Zhao J. Bisphenol a downregulates GLUT4 expression by activating aryl hydrocarbon receptor to exacerbate polycystic ovary syndrome. Cell Commun Signal 2024; 22:28. [PMID: 38200540 PMCID: PMC10782693 DOI: 10.1186/s12964-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) levels are high in women with polycystic ovary syndrome (PCOS). The mechanism by which BPA induces abnormal glucose metabolism in PCOS patients is largely unknown. METHODS Serum and urine samples were collected from women with and without PCOS (control) at the reproductive medicine center with informed consent. Non-PCOS patients who received in vitro fertilization were recruited for collection of ovarian follicular fluid and granular cells. Wild-type C57BL/6 and AhR -/- mice were used to verify the effects of BPA on PCOS. Real-time PCR, western blotting, and ELISA were conducted to analyze the function of BPA. Chip-qPCR verified the role of AhR in GLUT4 transcription. Flow cytometry was performed to determine glucose uptake. RESULTS A positive correlation was observed between BPA concentration and serum BPA levels in PCOS patients. BPA aggravated the changes in PCOS with abnormal glucose metabolism, impaired fertility, and increased body fat. Mechanistically, we showed that BPA activated AhR and led to decreased glucose transport via GLUT4 downregulation in ovarian granular cells. Therefore, the use of inhibitors or knockout of AhR could effectively rescue BPA-induced metabolic disorders in PCOS mice. CONCLUSIONS Our results revealed that BPA suppressed GLUT4 expression and induced abnormal glucose metabolism by activating AhR, causing insulin resistance, and is thus a potential contributor to the development of PCOS. Therefore, AhR could be a potential new therapeutic target for PCOS. Video Abstract.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiao-Xue Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Yi-Meng Ge
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Xiao-Jun Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
14
|
Akash MSH, Fatima M, Rehman K, Rehman Q, Chauhdary Z, Nadeem A, Mir TM. Resveratrol Mitigates Bisphenol A-Induced Metabolic Disruptions: Insights from Experimental Studies. Molecules 2023; 28:5865. [PMID: 37570835 PMCID: PMC10421514 DOI: 10.3390/molecules28155865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to investigate the disruptions of metabolic pathways induced by bisphenol A (BPA) and explore the potential therapeutic intervention provided by resveratrol (RSV) in mitigating these disruptions through the modulation of biochemical pathways. Wistar albino rats were divided into three groups: group 1 served as the control, group 2 received 70 mg/Kg of BPA, and group 3 received 70 mg/kg of BPA along with 100 mg/Kg of RSV. After the treatment period, various biomarkers and gene expressions were measured to assess the effects of BPA and the potential protective effects of RSV. The results revealed that BPA exposure significantly increased the serum levels of α-amylase, α-glucosidase, G6PC, insulin, HbA1c, HMG-CoA reductase, FFAs, TGs, DPP-4, MDA, and proinflammatory cytokines such as TNF-α and IL-6. Concurrently, BPA exposure led to a reduction in the levels of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), as well as GLUT4 and HDL cholesterol. However, the administration of RSV along with BPA significantly ameliorated these alterations in the biomarker levels induced through BPA exposure. RSV treatment effectively reduced the elevated levels of α-amylase, α-glucosidase, G6PC, insulin, HbA1c, HMG-CoA reductase, FFAs, TGs, DPP-4, MDA, and proinflammatory cytokines, while increasing the levels of antioxidant enzymes, GLUT4, and HDL cholesterol. Furthermore, BPA exposure suppressed the mRNA expression of glucokinase (GCK), insulin-like growth factor 1 (IGF-1), and glucose transporter 2 (GLUT2) and up-regulated the mRNA expression of uncoupling protein 2 (UCP2), which are all critical biomarkers involved in glucose metabolism and insulin regulation. In contrast, RSV treatment effectively restored the altered mRNA expressions of these biomarkers, indicating its potential to modulate transcriptional pathways and restore normal metabolic function. In conclusion, the findings of this study strongly suggest that RSV holds promise as a therapeutic intervention for BPA-induced metabolic disorders. By mitigating the disruptions in various metabolic pathways and modulating gene expressions related to glucose metabolism and insulin regulation, RSV shows potential in restoring normal metabolic function and counteracting the adverse effects induced by BPA exposure. However, further research is necessary to fully understand the underlying mechanisms and optimize the dosage and duration of RSV treatment for maximum therapeutic benefits.
Collapse
Affiliation(s)
| | - Mutayyba Fatima
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Qudsia Rehman
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
15
|
He H, Zhang F, Zhou S, Zhang S, Wang L, Li J, Zeng Q, Zhu Y, Tian J, Chang J, Cheng L, Lu Q, Miao X, Shen N, Zhong R. Interaction of metabolism-related pathway gene variants with bisphenol A exposure on serum lipid profiles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104173. [PMID: 37302441 DOI: 10.1016/j.etap.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) can be metabolized by metabolic enzymes and may induce abnormal lipid metabolism. We hypothesized that BPA exposure and its interaction with metabolism-related genes might be associated with serum lipid profiles. We performed a two-stage study among 955 middle-aged and elderly participants in Wuhan, China. Urinary BPA level was estimated without (BPA, μg/L) or with (BPA/Cr, μg/g) adjustments for urinary creatinine and ln-transformed values (ln-BPA or ln-BPA/Cr) were used to normalize the asymmetrical distributions. A total of 412 metabolism-related gene variants were selected and used for gene-BPA interaction analysis. Multiple linear regression was used to analyze the interactions between BPA exposure and metabolism-related genes on serum lipid profiles. In the discovery stage, both ln-BPA and ln-BPA/Cr was associated with decreased high-density lipoprotein cholesterol (HDL-C). Gene-urinary BPA interaction for IGFBP7 rs9992658 was observed to associate with HDL-C levels in both discovery and validation stages, with Pinteraction equal to 9.87×10-4 (ln-BPA) and 1.22×10-3 (ln-BPA/Cr) in combined analyses. In addition, the inverse association of urinary BPA with HDL-C levels was only observed among individuals carrying rs9992658 AA genotype, but not in individuals carrying rs9992658 AC or CC genotypes. The interaction between BPA exposure and metabolism-related gene IGFBP7 (rs9992658) was associated with HDL-C levels. AVAILABILITY OF DATA AND MATERIAL: Not applicable.
Collapse
Affiliation(s)
- Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Zhou
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Shanshan Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- School of Public Health, Wuhan University, Wuhan, China
| | - Jianbo Tian
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- School of Public Health, Wuhan University, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Ni L, Zhong J, Chi H, Lin N, Liu Z. Recent Advances in Sources, Migration, Public Health, and Surveillance of Bisphenol A and Its Structural Analogs in Canned Foods. Foods 2023; 12:foods12101989. [PMID: 37238807 DOI: 10.3390/foods12101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The occurrence of bisphenol A (BPA) and its structural analogs, known as endocrine disruptors is widely reported. Consumers could be exposed to these chemicals through canned foods, leading to health risks. Considerable advances have occurred in the pathogenic mechanism, migration law, and analytical methodologies for these compounds in canned foods. However, the confusion and controversies on sources, migration, and health impacts have plagued researchers. This review aimed to provide insights and perspectives on sources, migration, effects on human health, and surveillance of these chemicals in canned food products. Current trends in the determination of BPA and its structural analogs have focused on mass spectroscopy and electrochemical sensor techniques. Several factors, including pH, time, temperature, and volume of the headspace in canned foods, could affect the migration of the chemicals. Moreover, it is necessary to quantify the proportion of them originating from the can material used in canned product manufacturing. In addition, adverse reaction research about exposure to low doses and combined exposure with other food contaminants will be required. We strongly believe that the information presented in this paper will assist in highlighting the research needs on these chemicals in canned foods for future risk evaluations.
Collapse
Affiliation(s)
- Ling Ni
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Jian Zhong
- Shanghai Key Laboratory of Pediatric Gastroenterology & Nutrition, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhidong Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
17
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
18
|
Modulation of Unfolded Protein Response Restores Survival and Function of β-Cells Exposed to the Endocrine Disruptor Bisphenol A. Int J Mol Sci 2023; 24:ijms24032023. [PMID: 36768343 PMCID: PMC9916570 DOI: 10.3390/ijms24032023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a metabolic disease that currently affects nearly half a billion people worldwide. β-cells dysfunction is one of the main causes of diabetes. Exposure to endocrine-disrupting chemicals is correlated with increased diabetes incidence. We hypothesized that treatment with bisphenol A (BPA) induces endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR), leading to impaired function of the β-cells, which over time, can cause diabetes. In this study, we aimed to evaluate UPR pathways activation under BPA treatment in β-cells and possible recovery of ER homeostasis. MIN6 cells (mouse insulinoma cell line) and isolated pancreatic islets from NOR (non-obese diabetes resistant) mice were treated with BPA. We analyzed the impact of BPA on β-cell viability, the architecture of the early secretory pathway, the synthesis and processing of insulin and the activation of UPR sensors and effectors. We found that the addition of the chemical chaperone TUDCA rescues the deleterious effects of BPA, resulting in improved viability, morphology and function of the β-cells. In conclusion, we propose that modulators of UPR can be used as therapeutic interventions targeted towards regaining β-cells homeostasis.
Collapse
|
19
|
Kowalczyk M, Piwowarski JP, Wardaszka A, Średnicka P, Wójcicki M, Juszczuk-Kubiak E. Application of In Vitro Models for Studying the Mechanisms Underlying the Obesogenic Action of Endocrine-Disrupting Chemicals (EDCs) as Food Contaminants-A Review. Int J Mol Sci 2023; 24:ijms24021083. [PMID: 36674599 PMCID: PMC9866663 DOI: 10.3390/ijms24021083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Obesogenic endocrine-disrupting chemicals (EDCs) belong to the group of environmental contaminants, which can adversely affect human health. A growing body of evidence supports that chronic exposure to EDCs can contribute to a rapid increase in obesity among adults and children, especially in wealthy industrialized countries with a high production of widely used industrial chemicals such as plasticizers (bisphenols and phthalates), parabens, flame retardants, and pesticides. The main source of human exposure to obesogenic EDCs is through diet, particularly with the consumption of contaminated food such as meat, fish, fruit, vegetables, milk, and dairy products. EDCs can promote obesity by stimulating adipo- and lipogenesis of target cells such as adipocytes and hepatocytes, disrupting glucose metabolism and insulin secretion, and impacting hormonal appetite/satiety regulation. In vitro models still play an essential role in investigating potential environmental obesogens. The review aimed to provide information on currently available two-dimensional (2D) in vitro animal and human cell models applied for studying the mechanisms of obesogenic action of various industrial chemicals such as food contaminants. The advantages and limitations of in vitro models representing the crucial endocrine tissue (adipose tissue) and organs (liver and pancreas) involved in the etiology of obesity and metabolic diseases, which are applied to evaluate the effects of obesogenic EDCs and their disruption activity, were thoroughly and critically discussed.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
- Correspondence: (J.P.P.); (E.J.-K.)
| |
Collapse
|
20
|
Ramírez V, González-Palacios P, Baca MA, González-Domenech PJ, Fernández-Cabezas M, Álvarez-Cubero MJ, Rodrigo L, Rivas A. Effect of exposure to endocrine disrupting chemicals in obesity and neurodevelopment: The genetic and microbiota link. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158219. [PMID: 36007653 DOI: 10.1016/j.scitotenv.2022.158219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Current evidence highlights the importance of the genetic component in obesity and neurodevelopmental disorders (attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID)), given that these diseases have reported an elevated heritability. Additionally, environmental stressors, such as endocrine disrupting chemicals (EDCs) have been classified as obesogens, neuroendocrine disruptors, and microbiota disrupting chemicals (MDCs). For this reason, the importance of this work lies in examining two possible biological mechanistic pathways linking obesity and neurodevelopmental/behavioural disorders: EDCs - gene and EDCs - microbiota interactions. First, we summarise the shared mechanisms of action of EDCs and the common genetic profile in the bidirectional link between obesity and neurodevelopment. In relation to interaction models, evidence from the reviewed studies reveals significant interactions between pesticides/heavy metals and gene polymorphisms of detoxifying and neurotransmission systems and metal homeostasis on cognitive development, ASD and ADHD symptomatology. Nonetheless, available literature about obesity is quite limited. Importantly, EDCs have been found to induce gut microbiota changes through gut-brain-microbiota axis conferring susceptibility to obesity and neurodevelopmental disorders. In view of the lack of studies assessing the impact of EDCs - gene interactions and EDCs - mediated dysbiosis jointly in obesity and neurodevelopment, we support considering genetics, EDCs exposure, and microbiota as interactive factors rather than individual contributors to the risk for developing obesity and neurodevelopmental disabilities at the same time.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Patricia González-Palacios
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | | | - María Fernández-Cabezas
- Department of Developmental and Educational Psychology, Faculty of Educational Sciences, University of Granada, 18011 Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government PTS Granada - Avenida de la Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
| |
Collapse
|
21
|
Kasongo AA, Leroux M, Amrouche-Mekkioui I, Belhadji-Domecq M, Aguer C. BPA exposure in L6 myotubes increased basal glucose metabolism in an estrogen receptor-dependent manner but induced insulin resistance. Food Chem Toxicol 2022; 170:113505. [DOI: 10.1016/j.fct.2022.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
|
22
|
Mohamed AI, Salau VF, Erukainure OL, Islam MS. Hibiscus sabdariffa L. polyphenolic-rich extract promotes muscle glucose uptake and inhibits intestinal glucose absorption with concomitant amelioration of Fe 2+ -induced hepatic oxidative injury. J Food Biochem 2022; 46:e14399. [PMID: 36259155 DOI: 10.1111/jfbc.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
In this current study, the antidiabetic effectiveness of Hibiscus sabdariffa and its protective function against Fe2+ -induced oxidative hepatic injury were elucidated using in vitro, in silico, and ex vivo studies. The oxidative damage was induced in hepatic tissue by incubation with 0.1 mMolar ferrous sulfate (FeSO4) and then treated with different concentrations of crude extracts (ethyl acetate, ethanol, and aqueous) of H. sabdariffa flowers for 30 min at 37°C. When compared to ethyl acetate and aqueous extracts, the ethanolic extract displayed the most potent scavenging activity in ferric-reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide (NO) assays, with IC50 values of 2.8 μl/ml, 3.3 μl/ml, and 9.2 μl/ml, respectively. The extracts significantly suppressed α-glucosidase and α-amylase activities (p < .05), with the ethanolic extract demonstrating the highest activity. H. sabdariffa significantly (p < .05) raised reduced glutathione (GSH) levels while simultaneously decreasing malondihaldehyde (MDA) and NO levels and increasing superoxide dismutase (SOD) and catalase activity in Fe2+ induced oxidative hepatic injury. The extract of the plant inhibited intestinal glucose absorption and increased muscular glucose uptake. The extract revealed the presence of several phenolic compounds when submitted to gas chromatography-mass Spectroscopy (GC-MS) screening, which was docked with α-glucosidase and α- amylase. The molecular docking displayed the compound 4-(3,5-Di-tert-butyl-4-hydroxyphenyl)butyl acrylate strongly interacted with α-glucosidase and α-amylase and had the lowest free binding energy compared to other compounds and acarbose. These results suggest that H. sabdariffa has promising antioxidant and antidiabetic activity. PRACTICAL APPLICATIONS: In recent years, there has been increased concern about the side effects of synthetic anti-diabetic drugs, as well as their expensive cost, especially in impoverished nations. This has instigated a radical shift towards the use of traditional plants, which are rich in phytochemicals many years ago. Among these plants, H. sabdariffa has been used to treat diabetes in traditional medicine. In this present study, H. sabdariffa extracts demonstrated the ability to inhibit carbohydrate digesting enzymes, facilitate muscle glucose uptake and attenuate oxidative stress in oxidative hepatic injury. Hence, demonstrating H. sabdariffa's potential to protect against oxidative damage and the complications associated with diabetes. Consumption of Hibiscus tea or juice may be a potential source for developing an anti-diabetic drug.
Collapse
Affiliation(s)
- Almahi I Mohamed
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
23
|
Alvi M, Rehman K, Akash MSH, Yaqoob A, Shoaib SM. Determination of Metabolomics Profiling in BPA-Induced Impaired Metabolism. Pharmaceutics 2022; 14:pharmaceutics14112496. [PMID: 36432690 PMCID: PMC9692868 DOI: 10.3390/pharmaceutics14112496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Exposure to bisphenol A (BPA) is unavoidable and it has far-reaching negative effects on living systems. This study aimed to explore the toxic effects of BPA in an experimental animal model through a metabolomics approach that is useful in measuring small molecule perturbations. Beside this, we also examined the ameliorative effects of resveratrol (RSV) against BPA-induced disturbances in experimental mice. This study was conducted for 28 days, and the results showed that BPA indeed induced an impairment in amino acid metabolism, taking place in the mitochondria by significantly (p < 0.05) decreasing the levels of certain amino acids, i.e., taurine, threonine, asparagine, leucine, norleucine, and glutamic acid in the mice plasma. However, the administration of RSV did prove effective against the BPA-induced intoxication and significantly (p < 0.05) restored the level of free amino acids. Lipid metabolites, L-carnitine, sphinganine, phytosphingosine, and lysophosphatidylcholine were also determined in the mice serum. A significant (p < 0.05) decline in glutathione peroxidase (GPx), superoxide dismutase (SOD,) glutathione, and catalase levels and an elevation in malondialdehyde level in the BPA group confirmed the generation of oxidative stress and lipid peroxidation in experimental mice exposed to BPA. The expression of Carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II (CPT-II), lecithin−cholesterol acyltransferase (LCAT), carnitine O-octanoyltransferase (CROT), carnitine-acylcarnitine translocase (CACT), and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) genes was significantly upregulated in the liver tissue homogenates of experimental mice exposed to BPA, although RSV regulated the expression of these genes when compared with BPA treated experimental mice. CPT-I, CPT-II, and CACT genes are located in the mitochondria and are involved in the metabolism and transportation of carnitine. Hence, this study confirms that BPA exposure induced oxidative stress, upregulated gene expression, and impaired lipid and amino acid metabolism in experimental mice.
Collapse
Affiliation(s)
- Maria Alvi
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 66000, Pakistan
| | - Muhammad Sajid Hamid Akash
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence:
| | - Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Syed Muhammad Shoaib
- Drugs Testing Laboratory, Faisalabad, Primary & Secondary Healthcare Department, Government of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
24
|
Ghafoor S, Abbasi MH, Khawar MB, Tayyeb A, Saleem T, Ashfaq I, Sheikh N. Bisphenol S induced dysregulations in liver; iron regulatory genes and inflammatory mediators in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83711-83722. [PMID: 35771333 DOI: 10.1007/s11356-022-21672-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS), an analog of bisphenol A (BPA), has been frequently detected in consumer products, food wrappers, plastics, and thermal papers. Since the liver is a hub of metabolic and detoxification pathways, thus intimately related to BPS presence in the environment and body. The current study was designed to investigate the effects of BPS administration in an animal model. Twenty-five male Wistar rats weighing 175 ± 25 g were randomly divided into control and treated groups. The control group was further divided into group I (no treatment) and group II (corn oil), whereas the treatment group was divided into D-I (40 mg/kg/day), D-II (200 mg/kg/day), and D-III (400 mg/kg/day) groups, getting oral doses of BPS for 15 days. Data analysis showed a significant statistical increase in hepatic enzymes ALT (33.4%), AST (25.4%), and ALP (529.6%) in the D-III group along with the development of hypercholesterolemia and hypertriglyceridemia in all BPS groups. Aberrant mRNA expressions of some key hepatic iron regulatory genes and inflammatory mediators were evident through qRT-PCR. Bisphenol S caused congestion of central vein from mild to moderate in hepatic sections. In conclusion, our investigation insinuates BPS intoxication potential and therefore may not be a safe alternative to BPA.
Collapse
Affiliation(s)
- Shazia Ghafoor
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | | | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences (SBS), University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | - Tayyaba Saleem
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | - Isbah Ashfaq
- School of Biological Sciences (SBS), University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Q-A-Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
25
|
Molina-López AM, Bujalance-Reyes F, Urbano MT, Lora-Benítez A, Ayala-Soldado N, Moyano-Salvago R. Analysis of Blood Biochemistry and Pituitary-Gonadal Histology after Chronic Exposure to Bisphenol-A of Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113894. [PMID: 36360773 PMCID: PMC9659152 DOI: 10.3390/ijerph192113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/12/2023]
Abstract
Bisphenol-A is an emerging pollutant that is widespread in the environment, and to which live beings are continuously and inadvertently exposed. It is a substance with an endocrine-disrupting capacity, causing alterations in the reproductive, immunological, and neurological systems, among others, as well as metabolic alterations. Our study aimed to assess its clinical signs, and effects on the most relevant blood biochemical parameters, and to evaluate pituitary and gonadal histology after a chronic exposure of adult mice to different BPA doses (0.5, 2, 4, 50 and 100 µg/kg BW/day) through their drinking water. The biochemical results showed that a marked significant reduction (p < 0.05) was produced in the levels of serum glucose, hypoproteinaemia and hypoalbuminemia in the groups exposed to the highest doses, whereas in the group exposed to 50 µg/kg BW/day the glucose and total protein levels dropped, and the animals exposed to 100 µg/kg BW/day experienced a diminution in albumin levels. In the case of the group exposed to 50 µg/kg BW/day, however, hypertriglyceridemia and hypercholesterolemia were determined, and the blood parameters indicating kidney alterations such as urea and creatinine experienced a significant increase (p < 0.05) with respect to the controls. Regarding the pituitary and gonads, none of the animals exposed presented histological alterations at the doses tested, giving similar images to those of the control group. These results suggest that continuous exposure to low BPA doses could trigger an inhibition of hepatic gluconeogenesis, which would result in a hypoglycaemic state, together with an induction of the enzymes responsible for lipidic synthesis, a mechanism by which the increase in the lipid and serum cholesterol levels could be explained. Likewise, the decline in the protein and albumin levels would be indicative of a possible hepatic alteration, and the increase in urea and creatinine would point to a possible renal perturbation, derived from continuous exposure to this xenobiotic. Based on our results, it could be said that chronic exposure to low BPA doses would not produce any clinical signs or histological pituitary-gonadal effects, but it could cause modifications in some blood biochemical parameters, that could initially indicate a possible hepatic and renal effect.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - María Teresa Urbano
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
26
|
Yao J, Wang F, Zhang Y, Zhang Z, Bi J, He J, Li P, Han X, Wei Y, Zhang X, Guo H, He M. Association of serum BPA levels with changes in lipid levels and dyslipidemia risk in middle-aged and elderly Chinese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113819. [PMID: 36068747 DOI: 10.1016/j.ecoenv.2022.113819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Previous evidences exploring the associations of BPA with lipid changes and dyslipidemia did not obtain consistent results. To evaluate whether serum BPA concentration was associated with changes in blood lipid levels and incident dyslipidemia risk in middle-elderly Chinese adults, we conducted a prospective study with 1093 participants (average 62.65 years old) derived from the Dongfeng-Tongji cohort which was founded in 2008 and followed up each 5 years. Serum BPA levels were measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Changes in lipid levels were named as Δ lipids which equal to Lipid2013 - Lipid2008. The diagnosis of dyslipidemia was according to Chinese Guidelines on Prevention and Treatment of Dyslipidemia in 2016. We used multivariable linear regression and Logistic regression to explore the relations between serum BPA levels and changes in lipid levels and incident dyslipidemia risk, respectively. Besides, restricted cubic splines were used to explore the dose-response relations. After 5 years' follow-up, 51 individuals developed with hypercholesterolemia, 87 with hypertriglyceridemia, 34 with high-LDL-cholesterolemia, 74 with low-HDL-cholesterolemia, and 199 with dyslipidemia. At baseline serum BPA levels were positively related to TC, LDL-c, and Non-HDL-c levels. In the prospective study, each Ln-BPA increase was associated with 0.05 (95% CI: 0.02, 0.09) mmol/L increase in Δ TC, 0.07 (95% CI:0.03, 0.11) mmol/L increase in Δ Non-HDL-c, 0.05 (95% CI: 0.01, 0.08) increase in Δ TC/HDL-c, and 0.05 (95% CI: 0.01, 0.08) increase in Δ Non-HDL-c/HDL-c. We only observed significant associations in females but not in males. Besides, serum BPA levels were positively associated with hypercholesterolemia (OR=1.12, 95% CI: 1.01, 1.25). The restricted cubic splines obtained similar results. In conclusion, serum BPA was associated TC and Non-HDL-c changes, and BPA was also associated with increased risk of hypertriglyceridemia. Further prospective studies with large sample size are warranted to validate our findings.
Collapse
Affiliation(s)
- Jinqiu Yao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiao Bi
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China
| | - Peiwen Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Han
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Hong T, Jiang X, Zou J, Yang J, Zhang H, Mai H, Ling W, Feng D. Hepatoprotective effect of curcumin against bisphenol A-induced hepatic steatosis via modulating gut microbiota dysbiosis and related gut-liver axis activation in CD-1 mice. J Nutr Biochem 2022; 109:109103. [PMID: 35780999 DOI: 10.1016/j.jnutbio.2022.109103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Chronic exposure to low-dose bisphenol A (BPA) has become a global problem of public health. Our previous work showed that low-dose BPA exposure caused gut microbial dysbiosis and hepatic steatosis. Curcumin, a polyphenol extracted from turmeric, has an inhibitory effect on liver lipid accumulation, whether curcumin can alleviate BPA-induced hepatic steatosis through improving intestinal flora and modulating gut-liver axis remains to be elucidated. Male CD-1 mice were fed with BPA-contaminated diet supplemented with or not with curcumin for 24 weeks. Curcumin supplementation markedly ameliorated liver fat accumulation and hepatic steatosis induced by BPA. Gut microbiota analysis via 16S rRNA sequencing revealed that the relative abundance of Proteobacteria and Firmicutes/Bacteroidetes ratio were increased in BPA-fed mice, and this alteration was reversed by curcumin treatment. Akkermansia, which was recognized as a potential probiotic, was significantly reduced after BPA exposure and was restored to the control level with curcumin addition. Furthermore, curcumin supplementation reversed the down-regulation of intestinal tight junction protein expressions (zona occludens-1 and occludin), improved increased gut permeability, reduced serum lipopolysaccharide level and suppressed the activation of hepatic toll-like receptor 4 / nuclear factor-κB (TLR4/NF-κB) pathway induced by BPA. These results indicated that the protective effect of curcumin against hepatic steatosis induced by BPA and further revealed that its mechanism might be its prebiotic effect on maintaining intestinal flora homeostasis and improving intestinal barrier function, consequently reducing serum lipopolysaccharide-triggered inflammatory response in the liver. Our work provides evidence for curcumin as a potential nutritional therapy for BPA-mediated hepatic steatosis.
Collapse
Affiliation(s)
- Ting Hong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Zou
- Department of Cardiology, The Sixth Affiliated Hospital of South China University of Technology, Foshan 528200, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongmin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyan Mai
- Department of Clinical Nutrition, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
28
|
Mukhopadhyay R, Prabhu NB, Kabekkodu SP, Rai PS. Review on bisphenol A and the risk of polycystic ovarian syndrome: an insight from endocrine and gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32631-32650. [PMID: 35199272 PMCID: PMC9072519 DOI: 10.1007/s11356-022-19244-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 04/12/2023]
Abstract
Bisphenol A (BPA) is one of the most widely studied endocrine disrupting chemicals because of its structural similarity to 17-β estradiol; its ability to bind as an agonist/antagonist to estrogen receptors elicits adverse effects on the functioning of the metabolic and endocrinal system. Therefore, BPA has been thoroughly scrutinized concerning its disruption of pathways like lipid metabolism, steroidogenesis, insulin signaling, and inflammation. This has resulted in reports of its correlation with various aspects of cardiovascular diseases, obesity, diabetes, male and female reproductive disorders, and dysfunctions. Among these, the occurrence of the polycystic ovarian syndrome (PCOS) in premenopausal women is of great concern. PCOS is a highly prevalent disorder affecting women in their reproductive age and is clinically characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology, along with metabolism-related dysfunctions like hyperinsulinemia, obesity, and insulin resistance. In this review, we analyzed certain researched effects of BPA, while focusing on its ability to alter the expression of various significant genes like GnRH, AdipoQ, ESR1, StAR, CYP11A1, CYP19A1, and many more involved in the pathways and endocrine regulation, whose disruption is commonly associated with the clinical manifestations of PCOS.
Collapse
Affiliation(s)
- Risani Mukhopadhyay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
29
|
Ramírez V, Robles-Aguilera V, Salcedo-Bellido I, Gálvez-Ontiveros Y, Rodrigo L, Martinez-Gonzalez LJ, Monteagudo C, Álvarez-Cubero MJ, Rivas A. Effects of genetic polymorphisms in body mass index according to dietary exposure to bisphenols and parabens. CHEMOSPHERE 2022; 293:133421. [PMID: 34958792 DOI: 10.1016/j.chemosphere.2021.133421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
A growing body of evidence supports that more than 900 single nucleotide polymorphisms (SNPs) and exposure to endocrine disrupting chemicals, such as bisphenols and parabens, are important contributors to the development of obesity. The aim of this study was to evaluate the way in which fat mass and obesity-associated gene (FTO) rs9939609 and leptin receptor (LEPR) rs9436303 variants contribute to variability in body mass index (BMI) according to estimated dietary exposure of bisphenols and parabens. This cross-sectional study included 101 Spanish participants (16-24 years). SNP genotyping assays were performed through quantitative PCRs (qPCRs) using Taqman® probes. Dietary exposure to bisphenols and parabens was calculated from food frequency questionnaire and chemical determination in food samples by ultra-high performance liquid chromatography-tandem mass spectrometry system. Linear regression models were conducted to address the association of genetic variants and BMI according to levels of bisphenols/parabens exposure. Risk G allele of LEPR rs9436303 was significantly positively associated with BMI (exp (β) = 1.20, 95% CI: 1.04-1.38, p = 0.011). In participants highly exposed to bisphenols, the LEPR rs9436303 G allele was related to a significant increased BMI (exp (β) = 1.27, 95% CI: 1.03-1.57, p = 0.024). A more relevant trend was observed with high exposure to parabens (exp (β) = 1.33, 95% CI: 1.08-1.63, p = 0.009). We provide the first evidence that interaction between LEPR polymorphism and dietary intake of bisphenols and parabens may be responsible for an increased BMI, suggesting a potential effect in obesity. Moreover, we proposed LEPR rs9436303 as a genetic marker of susceptibility to excess weight induced by exposure.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Cartuja Campus, 18071, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Virginia Robles-Aguilera
- Department of Nutrition and Food Science, University of Granada, Cartuja Campus, 18071, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Cartuja Campus, 18071, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Monforte de Lemos 5, 2809, Madrid, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Cartuja Campus, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, 18071, Granada, Spain
| | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Celia Monteagudo
- Department of Nutrition and Food Science, University of Granada, Cartuja Campus, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - María Jesús Álvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Biochemistry and Molecular Biology III, University of Granada, Faculty of Medicine, PTS, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Cartuja Campus, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
30
|
Yi YL, Li Y, Guo S, Yan H, Ma XF, Tao WW, Shang EX, Niu Y, Qian DW, Duan JA. Elucidation of the Reinforcing Spleen Effect of Jujube Fruits Based on Metabolomics and Intestinal Flora Analysis. Front Cell Infect Microbiol 2022; 12:847828. [PMID: 35402299 PMCID: PMC8987507 DOI: 10.3389/fcimb.2022.847828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Jujube (Ziziphus jujuba Mill.) fruit (JF) is widely consumed as food in Asian countries due to its potential effects for human health. As a traditional Chinese medicine, JF is often used to treat anorexia, fatigue and loose stools caused by spleen deficiency syndromes in China, but the mechanism underlying this effect has not been thoroughly elucidated. In this study, a rat model of spleen deficiency syndromes was adopted to investigate the therapeutic effect of JF extract and its possible mechanism by metabolomics analyses of plasma and urine as well as the intestinal flora analysis. The results showed that the changes in plasma and urine metabolites caused by spleen deficiency were reversed after administration of JF, and these changed endogenous metabolites were mainly involved in retinol metabolism, pentose and glucuronate interconversions, nicotinate and niacinamide metabolism pathways. The 16S rDNA sequencing results showed that JF could regulate intestinal flora imbalance caused by spleen deficiency. The covariance analysis of intestinal flora structure and metabolome indicated that Aerococcus may be a candidate strain for predicting and treating the metabolic pathways of spleen deficiency and related disorders. In summary, it can be revealed that spleen deficiency, which alters metabolic profiles and the intestinal flora, could be alleviated effectively by JF extract.
Collapse
Affiliation(s)
- Yan-ling Yi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-fei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Da-wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Yang Q, Mao Y, Wang J, Yu H, Zhang X, Pei X, Duan Z, Xiao C, Ma M. Gestational bisphenol A exposure impairs hepatic lipid metabolism by altering mTOR/CRTC2/SREBP1 in male rat offspring. Hum Exp Toxicol 2022; 41:9603271221129852. [PMID: 36137816 DOI: 10.1177/09603271221129852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid metabolism is an important biochemical process in the body. Recent studies have found that environmental endocrine disruptors play an important role in the regulation of lipid metabolism. Bisphenol A (BPA), a common environmental endocrine disruptor, has adverse effects on lipid metabolism, but the mechanism is still unclear. This study aimed to investigate the effects of gestational BPA exposure on hepatic lipid metabolism and its possible mechanism in male offspring. The pregnant Sprague-Dawley rats were exposed to BPA (0, 0.05, 0.5, 5 mg/kg/day) from day 5 to day 19 of gestation to investigate the levels of triglyceride (TG) and total cholesterol (TC), and the expression of liver lipid metabolism-related genes in male offspring rats. The results showed that compared with the control group, the TG and TC levels in serum and liver in BPA-exposed groups was increased. And the expressions of liver fatty acid oxidation related genes, such as peroxisome proliferators-activated receptor α (PPARα) and carnitine palmitoyl transferase 1α (CPT1α), were down-regulated. However, the expressions of fatty acid synthesis related genes, such as sterol regulatory element binding proteins 1 (SREBP-1), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD-1), were up-regulated. The increased protein levels of mTOR and p-CRTC2 suggested that CREB-regulated transcription coactivator 2 (CRTC2) might be an important mediator in the mTOR/SREBP-1 pathway. In conclusion, these results demonstrated that mTOR/CRTC2/SREBP-1 could be affected by gestational BPA exposure, which may involve in the lipid metabolic disorders in later life.
Collapse
Affiliation(s)
- Q Yang
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - Y Mao
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - J Wang
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - H Yu
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - X Zhang
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - X Pei
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - Z Duan
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - C Xiao
- Department of Key Laboratory of Environmental Pollution and Microecology, 70577Shenyang Medical College, Shenyang, China
| | - M Ma
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China.,Department of Key Laboratory of Environmental Pollution and Microecology, 70577Shenyang Medical College, Shenyang, China
| |
Collapse
|
32
|
Nagarajan M, Raja B, Manivannan J. Exposure to a "safe" dose of environmental pollutant bisphenol A elevates oxidative stress and modulates vasoactive system in hypertensive rats. Hum Exp Toxicol 2021; 40:S654-S665. [PMID: 34797181 DOI: 10.1177/09603271211053285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Due to the prevalence of hypertension (one of the major risk factors of CVD) in the population, it is necessary to explore the adverse effects of daily tolerable and "safe" dose of bisphenol A (BPA) under hypertensive conditions. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME, 40 mg/kg b.w/day) induced hypertensive Wistar rats to BPA (50 μg/kg b.w/day) by oral administration along with appropriate controls for 30 days period. The results illustrate that a 'safe' dose of BPA does not influence the systolic blood pressure (SBP) and levels of circulatory biomarkers of tissue damage. On the other hand, BPA exposure significantly (p < 0.05) elevates the thiobarbituric acid reactive substances (TBARS) content in plasma and tissues (heart, aorta, liver and kidney) in hypertensive rats when compared with respective control (BPA alone exposed) rats. Similarly, a significant modulation of ROS generation in RBC, plasma nitric oxide (NO) level and angiotensin-converting enzyme (ACE) activity was observed only under hypertensive milieu. In conclusion, the observed adverse effects during 'safe' dose of BPA exposure are specific to the hypertensive condition. Therefore, a precise investigation to explore the effects of BPA exposure in vulnerable hypertensive populations is highly suggested.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, 364343Bharathiar University, Coimbatore, India
| | - Boobalan Raja
- Cardiovascular Biology Lab, Department of Biochemistry and Biotechnology, Faculty of Science, 364050Annamalai University, Chidambaram, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, 364343Bharathiar University, Coimbatore, India
| |
Collapse
|
33
|
An H, Yu H, Wei Y, Liu F, Ye J. Disrupted metabolic pathways and potential human diseases induced by bisphenol S. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103751. [PMID: 34624477 DOI: 10.1016/j.etap.2021.103751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of bisphenol S has been studied in some species, the global metabolic network disrupted by bisphenol S remains unclear. To this end, published datasets related to the genes, proteins, and metabolites disturbed by bisphenol S were investigated through omics methods. The dataset revealed that bisphenol S at high concentrations tended to downregulate biomolecules, while low concentrations of bisphenol S tended to enhance metabolic reactions. The results showed that exposure to bisphenol S upregulated estrogen and downregulated androgen metabolism in humans, mice, rats, and zebrafish. Fatty acid metabolism and phospholipid metabolism in mice were upregulated. Reactions in amino acid metabolism were upregulated, with the exception of the suppressive conversion of arginine to ornithine. In zebrafish, fatty acid synthesis was promoted, while nucleotide metabolism was primarily depressed through the downregulation of pyruvate 2-o-phosphotransferase. The interference in amino acid metabolism by bisphenol S could trigger Alzheimer's disease, while its disturbance of glucose metabolism was associated with type II diabetes. Disturbed glycolipid metabolism and vitamin metabolism could induce Alzheimer's disease and diabetes. These findings based on omics data provide scientific insight into the metabolic network regulated by bisphenol S and the diseases triggered by its metabolic disruption.
Collapse
Affiliation(s)
- Haiyan An
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Henan Yu
- Guangdong Ocean Engineering Technology School, Guangzhou, 510320, China
| | - Yibo Wei
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Feng Liu
- China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen, 518000, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Song X, Wang Z, Zhang Z, Miao M, Liu J, Luan M, Du J, Liang H, Yuan W. Differential methylation of genes in the human placenta associated with bisphenol A exposure. ENVIRONMENTAL RESEARCH 2021; 200:111389. [PMID: 34089743 DOI: 10.1016/j.envres.2021.111389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to bisphenol A (BPA) is associated with numerous adverse health outcomes among offspring. Although DNA methylation is considered one of the underlying causes of these associations, few studies have focused on the association between prenatal BPA exposure and DNA methylation in the human placenta. In this study, we examined the association between prenatal BPA exposure and DNA methylation in the placenta of 146 mother-infant pairs from the Shanghai-Minhang Birth Cohort Study. BPA concentrations in maternal urine samples were measured using high-performance liquid chromatography. Six placenta samples were selected for whole-genome methylation analysis using Infinium Human Methylation 450K Beadchip, followed by pyrosequencing-based methylation analysis of three selected genes in 146 placentas. Among 282 differentially methylated CpGs, representing 208 genes, 127 were hypermethylated, and 155 were hypomethylated in the BPA exposure group. Prenatal BPA exposure was associated with a higher methylation level of HLA-DRB6 in individuals as determined using pyrosequencing, which was consistent with the whole-genome methylation analysis results. Compared with that subjects with low BPA exposure, the methylation level (ln-transformed) of HLA-DRB6 in placentas from those with high BPA exposure increased by 0.29% (95% confidence interval[CI]: 0.02%, 0.56%) at the CpG2 site, and the average methylation level (ln-transformed) of the three CpG sites increased by 0.30% (95%CI: -0.03%, 0.63%). Our findings provide evidence that prenatal BPA exposure might alter DNA methylation levels in the placenta.
Collapse
Affiliation(s)
- Xiuxia Song
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Ziliang Wang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Zhaofeng Zhang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Maohua Miao
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Junwei Liu
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Min Luan
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jing Du
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Hong Liang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Wei Yuan
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|
35
|
Acute Exposure to Bisphenol A Causes Oxidative Stress Induction with Mitochondrial Origin in Saccharomyces cerevisiae Cells. J Fungi (Basel) 2021; 7:jof7070543. [PMID: 34356922 PMCID: PMC8303452 DOI: 10.3390/jof7070543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is a major component of the most commonly used plastic products, such as disposable plastics, Tetra Paks, cans, sport protective equipment, or medical devices. Due to the accumulation of excessive amounts of plastic waste and the subsequent release of BPA into the environment, BPA is classified as a pollutant that is undesirable in the environment. To date, the most interesting finding is the ability of BPA to act as an endocrine disrupting compound due to its binding to estrogen receptors (ERs), and adverse physiological effects on living organisms may result from this action. Since evidence of the potential pro-oxidizing effects of BPA has accumulated over the last years, herein, we focus on the detection of oxidative stress and its origin following BPA exposure using pulsed-field gel electrophoresis, flow cytometry, fluorescent microscopy, and Western blot analysis. Saccharomyces cerevisiae cells served as a model system, as these cells lack ERs allowing us to dissect the ER-dependent and -independent effects of BPA. Our data show that high concentrations of BPA affect cell survival and cause increased intracellular oxidation in yeast, which is primarily generated in the mitochondrion. However, an acute BPA exposure does not lead to significant oxidative damage to DNA or proteins.
Collapse
|
36
|
Szkudelska K, Okulicz M, Szkudelski T. Bisphenol A disturbs metabolism of primary rat adipocytes without affecting adipokine secretion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23301-23309. [PMID: 33447972 PMCID: PMC8113171 DOI: 10.1007/s11356-021-12411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an ubiquitous synthetic chemical exerting numerous adverse effects. Results of rodent studies show that BPA negatively affects adipose tissue. However, the short-term influence of this compound addressing adipocyte metabolism and adipokine secretion is unknown. In the present study, isolated rat adipocytes were exposed for 2 h to 1 and 10 nM BPA. Insulin-induced glucose conversion to lipids along with glucose transport was significantly increased in the presence of BPA. However, basal glucose conversion to lipids, glucose oxidation, and formation of lipids from acetate were unchanged in adipocytes incubated with BPA. It was also shown that BPA significantly increases lipolytic response of adipocytes to epinephrine. However, lipolysis stimulated by dibutyryl-cAMP (a direct activator of protein kinase A) and the antilipolytic action of insulin were not affected by BPA. Moreover, BPA did not influence leptin and adiponectin secretion from adipocytes. Our new results show that BPA is capable of disturbing processes related to lipid accumulation in isolated rat adipocytes. This is associated with the potentiation of insulin and epinephrine action. The effects of BPA appear already after short-term exposure to low doses of this compound. However, BPA fails to change adipokine secretion.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Monika Okulicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
37
|
Callaghan MA, Alatorre-Hinojosa S, Connors LT, Singh RD, Thompson JA. Plasticizers and Cardiovascular Health: Role of Adipose Tissue Dysfunction. Front Pharmacol 2021; 11:626448. [PMID: 33716730 PMCID: PMC7947604 DOI: 10.3389/fphar.2020.626448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since the 1950s, the production of plastics has increased 200-fold, reaching 360 million tonnes in 2019. Plasticizers, additives that modify the flexibility and rigidity of the product, are ingested as they migrate into food and beverages. Human exposure is continuous and widespread; between 75 and 97% of urine samples contain detectable levels of bisphenols and phthalates, the most common plasticizers. Concern over the toxicity of plasticizers arose in the late 1990s, largely focused around adverse developmental and reproductive effects. More recently, many studies have demonstrated that exposure to plasticizers increases the risk for obesity, type 2 diabetes, and cardiovascular disease (CVD). In the 2000s, many governments including Canada, the United States and European countries restricted the use of certain plasticizers in products targeted towards infants and children. Resultant consumer pressure motivated manufacturers to substitute plasticizers with analogues, which have been marketed as safe. However, data on the effects of these new substitutes are limited and data available to-date suggest that many exhibit similar properties to the chemicals they replaced. The adverse effects of plasticizers have largely been attributed to their endocrine disrupting properties, which modulate hormone signaling. Adipose tissue has been well-documented to be a target of the disrupting effects of both bisphenols and phthalates. Since adipose tissue function is a key determinant of cardiovascular health, adverse effects of plasticizers on adipocyte signaling and function may underlie their link to cardiovascular disease. Herein, we discuss the current evidence linking bisphenols and phthalates to obesity and CVD and consider how documented impacts of these plasticizers on adipocyte function may contribute to the development of CVD.
Collapse
Affiliation(s)
- Mikyla A Callaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | | | - Liam T Connors
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Radha D Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada.,Alberta Children's Health Research Institute, Calgary, AB, Canada
| |
Collapse
|
38
|
Fadishei M, Ghasemzadeh Rahbardar M, Imenshahidi M, Mohajeri A, Razavi BM, Hosseinzadeh H. Effects of Nigella sativa oil and thymoquinone against bisphenol A-induced metabolic disorder in rats. Phytother Res 2020; 35:2005-2024. [PMID: 33315269 DOI: 10.1002/ptr.6944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
The underlying mechanisms of bisphenol A (BPA)-induced metabolic disorder and the protective impact of Nigella sativa oil (NSO) and thymoquinone (TQ) against BPA-induced metabolic disorder were investigated. Rats were treated as follows: Control, BPA (10 mg/kg), TQ (2 mg/kg), NSO (84 μL/kg), BPA + TQ (0.5, 1, 2 mg/kg), and BPA + NSO (21, 42, 84 μL/kg). BPA was administered by gavage, while, TQ and NSO were injected intraperitoneally (daily, 54 days). The weight, blood pressure, serum parameters [glucose, lipid profile, hepatic enzymes, insulin, interlukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), leptin, adiponectin], malondialdehyde (MDA), glutathione (GSH) and insulin signaling pathways [insulin receptor substrate (p-IRS,IRS); kinase (p-Akt,Akt); glycogen synthase kinase (p-GS3K,GS3K)] were measured. BPA increased the blood pressure, MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, and leptin, and decreased the GSH and phosphorylated forms of IRS, Akt, GS3K but did not alter weight, glucose, IRS, AKT, and GS3K in the liver. Administration of NSO or TQ with BPA reduced the blood pressure, liver level of MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, leptin, and increased the liver level of GSH and p-IRS, p-AKT, p-GS3K. TQ and NSO are thought to be effective in controlling metabolic disorders induced by BPA.
Collapse
Affiliation(s)
- Masoumeh Fadishei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|