1
|
Tekiyeh Maroof N, Mehrzadi S, Naseroleslami M, Aboutaleb N. Apelin13 Loaded Nano-Niosomes Confer Cardioprotection in a Rat Model of Myocardial Ischemia Reperfusion by Targeting the Nrf2/HO-1 Pathway. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10597-z. [PMID: 39971890 DOI: 10.1007/s12265-025-10597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Although apelin-13 has cardioprotective impact, its short half-life in the bloodstream has challenged its clinical application. Using nanocarriers can increase the bioavailability, functionality, and stability of drugs. Current investigation aims to find whether apelin13-loaded nano-niosomes confer cardioprotection in an animal model of myocardial ischemia/reperfusion injury (MI/R) via suppressing ferroptosis, targeting Nrf2 pathway, and AMPK/GSK-3β axis. Ligation of the left anterior coronary artery descending was done to establish the MI/R model and 15 μg/kg of apelin13-loaded nano-niosomes were intramyocardially administrated. Echocardiography, RT-PCR, immunohistochemistry, western blot, ELISA kits, and H&E staining were applied to measure the related indicators. Treatment with both apelin13 and apelin13 loaded nano-niosomes could improve cardiac function and attenuate oxidative stress, myocardial inflammatory factors, and hence ferroptosis by activating the Nrf2 and its downstream proteins HO1, NQO1, AMPK/GSK-3β signaling pathway. In conclusion, apelin13-loaded nano-niosomes are effective MI therapeutic agents against MI/R-induced ferroptosis by activation of Nrf2 via AMPK/GSK-3β axis.
Collapse
Affiliation(s)
- Neda Tekiyeh Maroof
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mohamed ATAE, Ragheb MA, Shehata MR, Mohamed AS. In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production. J Trace Elem Med Biol 2024; 86:127516. [PMID: 39226872 DOI: 10.1016/j.jtemb.2024.127516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is the result of reduced or stopped blood supply to a section of the myocardium. Regardless of its potential effectiveness in the treatment of several types of cancers, doxorubicin (DOX) capabilities are restricted because of its widespread cardiotoxic impact. AIM In this study, the protective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction in rats is examined. METHODS Zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using X-ray diffraction, transmission electron microscope, and UV-Vis spectral analysis. A total cumulative dose of DOX (18 mg/kg body weight, i.p.) was injected once daily on days 2, 4, 6, 8, 10, and 12 (i.p.) to induce MI in rats. 24 rats were divided into 4 groups; control, MI, and MI treated with two doses of ZnO NPs (45 and 22.5 mg/kg). RESULTS The treatment with ZnO NPs restored ST-segment near normal, ameliorated the changes in cardiac troponin T, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total proteins, malondialdehyde, nitric oxide, reduced glutathione, and catalase.The histological investigation revealed that ZnO NPs treated group showed marked improvement in the examined cardiac muscle and liver in numerous sections.The lower dose of ZnO NPs (22.5 mg/kg) was significantly more effective than the higher dose (45 mg/kg). CONCLUSION The effect of ZnO NPs against doxorubicin-induced myocardial infarction in rats was assessed and the results revealed a successful cardioprotective potency through enhancing the antioxidant system and stimulating nitric oxide production in myocardial infarcted rats. This work implies that ZnO NPs could serve as promising agents for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Egypt.
| | | | | |
Collapse
|
3
|
Naz H, Vaseem H. Alteration in oxidative stress markers, digestive physiology and gut microbiota of Heteropneustes fossilis and Clarias batrachus exposed to eriochrome black T. CHEMOSPHERE 2024; 364:143045. [PMID: 39121963 DOI: 10.1016/j.chemosphere.2024.143045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Synthetic dyes are the primary cause of water pollution in industrial regions. Azo dyes account for 60-70% of such dyes used in the textile sector due to their numerous beneficial characteristics. Nevertheless, there is a dearth of knowledge regarding the toxicity of Eriochrome Black T (EBT), a widely used azo dye in the textile industry. Therefore, the current study was designed to investigate the effect of EBT exposure on two catfish species, Heteropneustes fossilis and Clarias batrachus. Following 96 h exposure to 1, 10 and 20 mgL-1 of EBT, the MDA content and activities of SOD, CAT and GR exhibited a rising trend. However, as the concentration of EBT increased in both species, GPx showed decreased activity. EBT exposure also altered gut morphometry as well as the three main digestive enzymes activity (increase in lipase and trypsin activity, while decrease in amylase activity). In addition, the exposure of EBT had a significant impact on the gut microbiota of both species. C. batrachus demonstrated the suppression or absence of beneficial gut commensals (Bacillus and Cetobacterium), whereas H. fossilis revealed the proliferation and appearance of beneficial commensal microbes (Bacillus, Bacteroides, Prevotella, and Megashaera). Furthermore, the expansion or absence of these microbial communities indicated that the gut microbiota of both species was involved in dye digestion, immunity and detoxification. Overall, the percent change calculation of all the selected biomarkers, together with gut microbiota analysis, indicates that C. batrachus was more vulnerable to EBT exposure than H. fossilis. The present investigation effectively demonstrated the toxic impact of EBT on fish health by employing oxidative stress markers, digestive enzymes, and the fish gut microbiota as a promising tool for screening the impact of dye exposure on digestive physiology in toxicological research.
Collapse
Affiliation(s)
- Huma Naz
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India.
| | - Huma Vaseem
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India.
| |
Collapse
|
4
|
Moradi A, Aslani MR, Mirshekari Jahangiri H, Naderi N, Aboutaleb N. Protective effects of 4-methylumbelliferone on myocardial ischemia/reperfusion injury in rats through inhibition of oxidative stress and downregulation of TLR4/NF-κB/NLRP3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5015-5027. [PMID: 38183448 DOI: 10.1007/s00210-023-02934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MI/R) has been found to be one of the important risk factors for global cardiac mortality and morbidity. The study was conducted to inquire into the protective effect of 4-methylumbilliferon (4-MU) against MI/R in rats and clarify its potential underlying mechanism. Animals were divided into four groups (n = 15) including sham, MI/R, MI/R + vehicle, and MI/R + 4-MU. MI/R was established in Wistar rats by occluding the left anterior descending (LAD) coronary artery for 30 min. 4-MU (25 mg/kg) was injected intraperitoneally before the induction of reperfusion. Cardiac function, fibrosis, oxidant/antioxidant markers, and inflammatory cytokines were evaluated using echocardiography, ELISA, and Western blot assay. As a result of MI/R induction, a decrease in left ventricular contractile function occurred along with increased cardiac fibrosis and tissue damage. The serum levels of TNF-α, IL-1β, and IL-18 increased, while IL-10 decreased. Oxidant/antioxidant changes were evident with increased MDA levels and decreased GSH, SOD, and CAT in the MI/R group. Furthermore, the protein levels of TLR4, NF-κB, and NLRP3 were significantly increased in the heart tissue of MI/R group. Treatment with 4-MU significantly prevented the reduction of cardiac contractile function and its pathological changes as a result of MI/R by inhibiting the increase of serum inflammatory factors and improving the oxidant/antioxidant balance probably through the TLR4/NF-κB/NLRP3 axis. The results of a current study showed that 4-MU had a potential ability to attenuate the cardiac injury by reducing oxidative stress and inflammation in a TLR4/NF-κB/NLRP3-dependent mechanism.
Collapse
Affiliation(s)
- Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamzeh Mirshekari Jahangiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:385-398. [PMID: 38693014 DOI: 10.1016/j.joim.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; 22(4): 385-398.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Chen S, Pan H. Vesicle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:347-383. [PMID: 39218506 DOI: 10.1016/bs.afnr.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vesicular delivery systems are highly ordered assemblies consisting of one or more concentric bilayers formed by the self-assembly of amphiphilic building blocks in the presence of water. In the field of functional food, vesicular delivery systems have been widely explored for effective formulations to deliver functional substances. With the effort of scientific research, certain categories of vesicular delivery systems have successfully been translated from the laboratory to the global market of functional food. This chapter aims to present comprehensively the various vesicular delivery systems, including their design, preparation methods, encapsulation of functional substances, and application in nutritional interventions.
Collapse
Affiliation(s)
- Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, P.R. China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
7
|
Wu L, Lv X, Zhang J, Wu M, Zhao X, Shi X, Ma W, Li X, Zou Y. Roles of β-catenin in innate immune process and regulating intestinal flora in Qi river crucian carp (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109521. [PMID: 38552889 DOI: 10.1016/j.fsi.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
In mammals, β-catenin participates in innate immune process through interaction with NF-κB signaling pathway. However, its role in teleost immune processes remains largely unknown. We aimed to clarify the function of β-catenin in the natural defense mechanism of Qi river crucian carp (Carassius auratus). β-catenin exhibited a ubiquitous expression pattern in adult fish, as indicated by real-time PCR analysis. Following lipopolysaccharide (LPS), Polyinosinic-polycytidylic acid (polyI: C) and Aeromonas hydrophila (A. hydrophila) challenges, β-catenin increased in gill, intestine, liver and kidney, indicating that β-catenin likely plays a pivotal role in the immune response against pathogen infiltration. Inhibition of the β-catenin pathway using FH535, an inhibitor of Wnt/β-catenin pathway, resulting in pathological damage of the gill, intestine, liver and kidney, significant decrease of innate immune factors (C3, defb3, LYZ-C, INF-γ), upregulation of inflammatory factors (NF-κB, TNF-α, IL-1, IL-8), and downregulation of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities, increase of Malondialdehyde (MDA) content. Following A. hydrophila invasion, the mortality rate in the FH535 treatment group exceeded that of the control group. In addition, the diversity of intestinal microflora decreased and the community structure was uneven after FH535 treatment. In summary, our findings strongly suggest that β-catenin plays a vital role in combating pathogen invasion and regulating intestinal flora in Qi river crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Xixi Lv
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jingjing Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengfan Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xi Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Wenge Ma
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China.
| | - Yuanchao Zou
- College of Life Sciences, Neijiang Normal University, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang, Sichuan, 641100, PR China.
| |
Collapse
|
8
|
Toma L, Deleanu M, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Stancu CS. Bioactive Compounds Formulated in Phytosomes Administered as Complementary Therapy for Metabolic Disorders. Int J Mol Sci 2024; 25:4162. [PMID: 38673748 PMCID: PMC11049841 DOI: 10.3390/ijms25084162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders (MDs), including dyslipidemia, non-alcoholic fatty liver disease, diabetes mellitus, obesity and cardiovascular diseases are a significant threat to human health, despite the many therapies developed for their treatment. Different classes of bioactive compounds, such as polyphenols, flavonoids, alkaloids, and triterpenes have shown therapeutic potential in ameliorating various disorders. Most of these compounds present low bioavailability when administered orally, being rapidly metabolized in the digestive tract and liver which makes their metabolites less effective. Moreover, some of the bioactive compounds cannot fully exert their beneficial properties due to the low solubility and complex chemical structure which impede the passive diffusion through the intestinal cell membranes. To overcome these limitations, an innovative delivery system of phytosomes was developed. This review aims to highlight the scientific evidence proving the enhanced therapeutic benefits of the bioactive compounds formulated in phytosomes compared to the free compounds. The existing knowledge concerning the phytosomes' preparation, their characterization and bioavailability as well as the commercially available phytosomes with therapeutic potential to alleviate MDs are concisely depicted. This review brings arguments to encourage the use of phytosome formulation to diminish risk factors inducing MDs, or to treat the already installed diseases as complementary therapy to allopathic medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Camelia Sorina Stancu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania; (L.T.); (M.D.); (G.M.S.); (T.B.); (L.Ş.N.); (A.V.S.)
| |
Collapse
|
9
|
Rathore A, Sharma AK, Murti Y, Bansal S, Kumari V, Snehi V, Kulshreshtha M. Medicinal Plants in the Treatment of Myocardial Infarction Disease: A Systematic Review. Curr Cardiol Rev 2024; 20:e290424229484. [PMID: 38685783 PMCID: PMC11327834 DOI: 10.2174/011573403x278881240405044328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), also referred to as a "heart attack," is brought on by a partial or total interruption of blood supply to the myocardium. Myocardial infarction can be "silent," go undiagnosed, or it can be a catastrophic occurrence that results in hemodynamic decline and untimely death. In recent years, herbal remedies for MI have become effective, secure, and readily accessible. OBJECTIVE The purpose of this review was to examine the medicinal plants and phytochemicals that have been used to treat MI in order to assess the potential contribution of natural substances to the development of herbal MI treatments. METHODOLOGY A literature search was employed to find information utilizing electronic databases, such as Web of Science, Google Scholar, PubMed, Sci Finder, Reaxys, and Cochrane. RESULTS The identification of 140 plants from 12 families led to the abstraction of data on the plant families, parts of the plant employed, chemical contents, extracts, model used, and dose. CONCLUSION The majority of the MI plants, according to the data, belonged to the Fabaceae (11%) and Asteraceae (9%) families, and the most prevalent natural components in plants with MI were flavonoids (43%), glucosides (25%), alkaloids (23%), phenolic acid (19%), saponins (15%), and tannins (12%).
Collapse
Affiliation(s)
- Anamika Rathore
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anuj Kumar Sharma
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Yogesh Murti
- G.L.A. University, Mathura, Uttar Pradesh, India
| | - Sonal Bansal
- Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Vibha Kumari
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Varsha Snehi
- Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Mayank Kulshreshtha
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, Chang CM, Priyadarshini A. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents. Coord Chem Rev 2023; 491:215251. [DOI: 10.1016/j.ccr.2023.215251] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
11
|
Oliveira da Silva L, Assunção Ferreira MR, Lira Soares LA. Nanotechnology Formulations Designed with Herbal Extracts and Their Therapeutic Applications - A Review. Chem Biodivers 2023; 20:e202201241. [PMID: 37455394 DOI: 10.1002/cbdv.202201241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Because of the increasing demand for natural products, the development of nanoformulations containing natural active ingredients requires in-depth knowledge of the substances used, methods of obtaining, and stability profiles to ensure product quality, efficacy, and safety. Considering this, the bibliography of the last five years presented in databases (PubMed and Science Direct) was discussed in this work, discussing the study with medicinal plants to obtain active metabolites with therapeutic properties, as well as the different nano-systems responsible for carrying these molecules. Due to the wealth of biodiversity found in the world, many species are submitted to the extraction process for several purposes. However, identifying, classifying, and quantifying the constituents of herbal matrices are crucial steps to verify their therapeutic potential. In addition, knowing the techniques of production and elaboration of nanotechnology products allows the optimization of the incorporation of herbal extracts as an innovation target. For studies to be successful, it is necessary to exhaust experimental results that guarantee the efficacy, safety, and quality of natural nanosystems, with the objective of obtaining reliable answers in nanotechnology therapy.
Collapse
Affiliation(s)
- Lucas Oliveira da Silva
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
12
|
Kalajahi SG, Malekjani N, Samborska K, Akbarbaglu Z, Gharehbeglou P, Sarabandi K, Jafari SM. The enzymatic modification of whey-proteins for spray drying encapsulation of Ginkgo-biloba extract. Int J Biol Macromol 2023:125548. [PMID: 37356680 DOI: 10.1016/j.ijbiomac.2023.125548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Ginkgo biloba extract (GBLE) contains many bioactives including flavonoids and terpene trilactones that play some pharmacological roles. These compounds are sensitive to operating conditions; so, encapsulation is a suitable approach to protect them. In this study, different carriers including maltodextrin (MD), and its combination with gum-Arabic (MD-GA), whey protein concentrate (MD-WPC), and whey-protein hydrolysate (MD-HWPC) were used to encapsulate GBLE. Powder production yield, physicochemical/functional characteristics, physical stability and flowability of particles were affected by the type and composition of carriers. FTIR results indicated the placement of phenolic compounds in the carrier matrix. The SEM images also showed the morphological changes of particles (especially the size, indentation and surface shrinkage) under the influence of various carriers. Microencapsulated powders formulated using MD-HWPC showed the highest values of TPC, DPPH, and ABTS and a lighter color which determined the suitability of this wall material (due to the improvement of surface activity and emulsifying properties of protein as a result of partial enzymatic hydrolysis) to protect the antioxidant properties of GBLE during spray-drying, improving the production yield and preserving physical and functional characteristics of the encapsulated powders.
Collapse
Affiliation(s)
- Sina Ghadimi Kalajahi
- Occupational Health Research Center, Iran National Standards Organization (INSO), Tabriz, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Poland
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Pouria Gharehbeglou
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
13
|
Ahmad T, Khan T, Kirabo A, Shah AJ. Antioxidant Flavonoid Diosmetin Is Cardioprotective in a Rat Model of Myocardial Infarction Induced by Beta 1-Adrenergic Receptors Activation. Curr Issues Mol Biol 2023; 45:4675-4686. [PMID: 37367046 PMCID: PMC10297416 DOI: 10.3390/cimb45060297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Myocardial infarction (MI) is a common and life-threatening manifestation of ischemic heart diseases (IHD). The most important risk factor for MI is hypertension. Natural products from medicinal plants have gained considerable attention globally due to their preventive and therapeutic effects. Flavonoids have been found to be efficacious in ischemic heart diseases (IHD) by alleviating oxidative stress and beta-1 adrenergic activation, but the mechanistic link is not clear. We hypothesized that antioxidant flavonoid diosmetin is cardioprotective in a rat model of MI induced by beta 1-adrenergic receptor activation. To test this hypothesis, we evaluated the cardioprotective potential of diosmetin on isoproterenol-induced MI in rats by performing lead II electrocardiography (ECG), cardiac biomarkers including troponin I (cTnI) and creatinine phosphokinase (CPK), CK-myocardial band, (CK-MB), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotranferase (AST) by using biolyzer 100, as well as histopathological analysis. We found that diosmetin (1 and 3 mg/kg) attenuated isoproterenol-induced elevation in the T-wave and deep Q-wave on the ECG, as well as heart-to-body weight ratio and infarction size. In addition, pretreatment with diosmetin attenuated the isoproterenol-induced increase in serum troponin I. These results demonstrate that flavonoid diosmetin may provide therapeutic benefit in myocardial infarction.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, University Road, Abbottabad 22060, Pakistan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taous Khan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Abdul Jabbar Shah
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| |
Collapse
|
14
|
Köktürk M. In vivo toxicity assessment of Remazol Gelb-GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158473. [PMID: 36063928 DOI: 10.1016/j.scitotenv.2022.158473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Dyes, which are very important for various industries, have very adverse effects on the aquatic environment and aquatic life. However, there are limited studies on the toxic properties of dyes on living things. This research elucidated the sublethal toxicity of acute exposure of the textile dye remazol gelb-GR (RG-GR) using zebrafish embryos and larvae for 96 h. The 96 h-LC50 for RG-GR in zebrafish embryos/larvae was determined to be 151.92 mg/L. Sublethal 96 hpf exposure was performed in RG-GR concentrations (0.5; 1.0; 10.0; 100.0 mg/L) to determine the development of toxicity in zebrafish embryos/larvae. RG-GR dye affected morphological development, and decreased heart rate, hatching, blood flow, and survival rates in zebrafish embryos/larvae. The immunopositivity of 8-hydroxy 2 deoxyguanosine (8-OHdG) in larvae exposed to RG-GR at high concentrations was found to be intense. Depending on the RG-GR dose increase, some biochemical parameters such as glutathione peroxidase (GSH) level, acetylcholinesterase (AChE) activity, catalase (CAT) activities, superoxide dismutase (SOD), and nuclear factor erythroid 2 (Nrf-2) levels were detected to be decreased in larvae, while malondialdehyde (MDA) content, nuclear factor kappa (NF-kB), tumor necrosis factor-α (TNF-α), DNA damage (8-OHdG level), interleukin-6 (IL-6) and apoptosis (Caspase-3) levels were found to be increased. The experimental results revealed that RG-GR dye has high acute toxicity on zebrafish embryo/larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Igdir University, TR-76000 Igdir, Turkey.
| |
Collapse
|
15
|
Cardioprotective effect of Hrudroga Chintamani Rasa in isoproterenol induced cardiotoxicity in male Sprague Dawley rats. J Diabetes Metab Disord 2022; 21:1261-1270. [PMID: 36404861 PMCID: PMC9672163 DOI: 10.1007/s40200-022-01012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
Purpose Ayurvedic system, a traditional medicinal system has mentioned a preparation Bruhat Vata Chintamani Rasa (Suvarnayukta) for management of heart diseases. Hrudroga Chintamani Rasa (HCR) is a formulation containing Bruhat Vata Chintamani Rasa and a few additional ingredients having beneficial effects in heart diseases. The present study was designed to investigate the cardioprotective activity of the Hrudroga Chintamani Rasa in isoproterenol (ISO)-induced myocardial infarction in rats. Methods Male Sprague Dawley rats were treated with HCR at a dose of 56.16 and 112.32 mg/kg for 30 days. Animals received ISO (85 mg/kg. s.c.) on 28th and 29th day at an interval of 24 h. Result Disease control animals treated with HCR at a dose of 56.16 mg/kg and 112.32 mg/kg to rats showed a significant reduction in elevated levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine phosphokinase MB (CK-MB), and prevented loss of depleted antioxidant enzymes from the cardiac tissue. ISO-altered electrocardiogram pattern and haemodynamic parameters were also brought about to normal by treatment with HCR. HCR treatment also improved the levels of 5' adenosine monophosphate-activated protein kinase (AMPK) and Silent information regulator 1 (SIRT1) which have potent role in antioxidant defence mechanism. Histopathological findings also showed HCR treatment prevented cardiac tissue from damage. Conclusion HCR treatment showed a significant cardioprotective effect in ISO-induced cardiotoxicity in rats probably because of the potent antioxidant activity. Supplementary information The online version contains supplementary material available at 10.1007/s40200-022-01012-4.
Collapse
|
16
|
Lv H, He Y, Wu J, Zhen L, Zheng Y. Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis. J Vet Sci 2022; 24:e2. [PMID: 36726274 PMCID: PMC9899938 DOI: 10.4142/jvs.22185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. OBJECTIVES This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. METHODS In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4°C) for three hours per day for three weeks. RESULTS CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stress-involved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. CONCLUSIONS These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.
Collapse
Affiliation(s)
- Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yvxi He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Jingjing Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| | - Yvwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| |
Collapse
|
17
|
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A Recent Review on Bio-availability Enhancement of Poorly Water-soluble Drugs by using Bioenhancer and Nanoparticulate Drug Delivery System. Curr Pharm Des 2022; 28:3212-3224. [PMID: 36281868 DOI: 10.2174/1381612829666221021152354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intravenous route of drug administration has maximum bioavailability, which shows 100% of the drug reaches blood circulation, whereas the oral administration of drugs, are readily undergoing pre-systemic metabolism, which means the poor bioavailability of the drug and limited amount of drug reaches the target site. INTRODUCTION Bioenhancers are substances having medicinal entities which enhance the bioavailability and efficacy of the active constituents of drugs. The enhanced bioavailability of drugs may lead to dose reduction, which may further reduce the cost and undesired side effects associated with the drugs. METHODS The solid lipid nanoparticles (SLNs) loaded with ketoprofen made from carnauba wax and beeswax. It was discovered that when the drug-loaded SLNs were mixed with egg-lecithin and Tween-80, as well as when the total surfactant concentration was increased, the average particle size of the drug-loaded SLNs decreased. RESULTS The drug-loaded nanoparticles, when given in combination with bio-enhancers such as piperine and quercetin, enhanced the drug's effectiveness. The Area Under Curve (AUC) was increased when the drug was coupled with bio-enhancers. Based on the findings, it can be concluded that piperine and quercetin when used with drug-loaded nanoparticles improve their therapeutic effectiveness. CONCLUSION Bioenhancers are crucial to amplifying the bioavailability of many synthetic drugs. These attributes are useful to reduce the dose of drugs and increase the therapeutic efficacy of drugs with poor bioavailability.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Sumant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
18
|
Kushwah AS, Mittal R, Kumar M, Kaur G, Goel P, Sharma RK, Kabra A, Nainwal LM. Cardioprotective Activity of Cassia fistula L. Bark Extract in Isoproterenol-Induced Myocardial Infarction Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6874281. [PMID: 36051494 PMCID: PMC9427257 DOI: 10.1155/2022/6874281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Cassia fistula Linn, generally recognized as Indian laburnum, is one of the ancient trees in the Indian subcontinent used for its ornamental and diverse medicinal properties. It is known for its ethnic medicinal uses in inflammatory and infectious pathologies such as antihelmintic, purgative, carminative, antipyretic, expectorant, analgesic, laxative, antiseptic, and antidote against snake poison. The Cassia bark is rich in anthraquinones, flavanols glycosides, and sitosterols, which renders it cardioprotective properties. The existing experiments were designed to assess the potential of Cassia fistula bark against isoproterenol (ISP)-induced cardiotoxicity in rats, which has not been validated yet. The bark was successively extracted with five different solvents, and each extract was subjected to in vitro antioxidant studies. Further acute oral toxicity assays were carried out preceding in vivo myocardial studies. Cardiotoxicity-inducing agent, ISP, was administrated to the rats for two consecutive days (8th and 9th). Based on in vitro studies, the Cassia fistula methanolic extract (CFME) was administered in two doses: CFME-LD (lower dose 250 mg/kg) and CFME-HD (high dose 500 mg/kg) separately. It was found that CFME produced a substantial decrease in lipid peroxidation and an increase in antioxidants in myocardial tissues. CFME abrogated the levels of triglyceride and total cholesterol with a decrease in alanine transaminase (ALT) and aspartate transaminase (AST) activity in serum at both doses. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and histopathology also revealed the protective effects of CFME against ISP-induced myocardial infarction. The study showed the significant role of the CFME as a strong antioxidant and cardioprotective action in ISP-induced toxicity.
Collapse
Affiliation(s)
- Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Rupnagar, Punjab 140111, India
| | - Roopal Mittal
- RKSD College of Pharmacy, Kaithal, Haryana 136027, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Department of Neurosurgery, College of Medicine, Penn State Health Milton S. Hershey Medical Center, The Pennsylvania State University, State College, PA 17033-0850, USA
| | - Gurpreet Kaur
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Rupnagar, Punjab 140111, India
| | - Prerna Goel
- School of Medical and Allied Sciences, GD Goenka University, Sohna, Gurugram, Haryana 122102, India
| | - Rahul Kumar Sharma
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Rupnagar, Punjab 140111, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Lalit Mohan Nainwal
- School of Medical and Allied Sciences, GD Goenka University, Sohna, Gurugram, Haryana 122102, India
| |
Collapse
|
19
|
Ahmad T, Khan T, Tabassum T, Alqahtani YS, Mahnashi MH, Alyami BA, Alqarni AO, Alasmary MY, Almedhesh SA, Shah AJ. Juglone from Walnut Produces Cardioprotective Effects against Isoproterenol-Induced Myocardial Injury in SD Rats. Curr Issues Mol Biol 2022; 44:3180-3193. [PMID: 35877444 PMCID: PMC9319353 DOI: 10.3390/cimb44070220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutic and/or preventive interventions using phytochemical constituents for ischemic heart disease have gained considerable attention worldwide, mainly due to their antioxidant activity. This study investigated the cardioprotective effect and possible mechanism of juglone, a major constituent of the walnut tree, using an isoproterenol (ISO)-induced myocardial infarction (MI) model in rats. Rats were pretreated for five (5) days with juglone (1, 3 mg/kg, i.p) and atenolol (1 mg/kg, i.p) in separate experiments before inducing myocardial injury by administration of ISO (80 mg/kg, s.c) at an interval of 24 h for 2 consecutive days (4th and 5th day). The cardioprotective effect of juglone was confirmed through a lead II electrocardiograph (ECG), cardiac biomarkers (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological study. The results of our present study suggest that prior administration of juglone (1 and 3 mg/kg) proved to be effective as a cardioprotective therapeutic agent in reducing the extent of myocardial damage (induced by ISO) by fortifying the myocardial cell membrane, preventing elevated T-waves, deep Q-waves in the ECG, heart to body weight ratio, infarction and also by normalizing cardiac marker enzymes (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological changes, such as inflammation, edema and necrosis. In conclusion, this study has identified phytochemical constituents, in particular juglone, as a potential cardioprotective agent.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
| | - Tahira Tabassum
- Department Pathology, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan;
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Mohammed Y. Alasmary
- Medical Department, College of Medicine, Najran University, Najran 61441, Saudi Arabia;
| | - Sultan A. Almedhesh
- Pediatric Department, College of Medicine, Najran University, Najran 61441, Saudi Arabia;
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
- Correspondence:
| |
Collapse
|
20
|
Ghazouani L, Khdhiri E, Elmufti A, Zarei A, Feriani A, Baaziz I, Hajji R, Abid M, Ammar H, Abid S, Allouche N, Mnafgui K, Ramazani A, Tlili N. A Novel Synthetized sulfonylhydrazone coumarin (E)-4-methyl-N'-(1-(3-oxo-3H-benzo[f]chromen-2- yl)ethylidene)benzenesulfonohydrazide Protect against Isoproterenol Induced Myocardial Infarction in Rats by attenuating Oxidative damage, Biological Changes, and Electrocardiogram. Clin Exp Pharmacol Physiol 2022; 49:1010-1026. [PMID: 35717592 DOI: 10.1111/1440-1681.13690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Coumarins and their derivatives are becoming a potential source for new drug discovery due to their vast array of biological activities. The present study was designed to investigate the cardioprotective effects of a newly synthesized coumarin, symbolized as 5,6-PhSHC, against cardiac remodeling process in isoproterenol (ISO) induced myocardial infarction (MI) in male Wistar rats by evaluating hematological, biochemical, and cardiac biomarkers. Rats were pre/co-treated with 5,6-PhSHC or clopidogrel (150 μg/kg body weight) daily for a period of 7 days and then MI was induced by injecting ISO (85 mg/kg body weight), at an interval of 24 hours for 2 consecutive days, on 6th and 7th days. The in vivo exploration indicated that the injection of 5,6-PhSHC improved the electrocardiographic (ECG) pattern and prevented severe heart damages by reducing leakage of the cardiac injury markers, such as troponin-T (cTn-T), lactate dehydrogenase (LDH), and creatine kinase-MB. The cellular architecture of cardiac sections, altered in the myocardium of infracted rats, was reversed by 5,6-PhSHC treatment. Results showed that injection of 5,6-PhSHC elicited significant cardioprotective effects by prevention of myocardium cell necrosis and inflammatory cells infiltration, along with marked decrease in plasma levels of fibrinogen. In addition, the total cholesterol, triglyceride, LDL-c, and HDL profiles underwent remarkable beneficial changes. It was also interesting to note that 5,6-PhSHC enhanced the antioxidative defense mechanisms by increasing myocardial glutathione (GSH) level, superoxide dismutase (SOD), and catalase (CAT) activities, together with reducing the levels of thiobarbituric-acid-reactive substances (TBARS), when compared with ISO-induced rats. Taken together, these findings suggested a beneficial role for 5,6-PhSHC against ISO-induced MI in rats. Furthermore, in silico analysis showed that 5,6-PhSHC pocess high computational affinities (E-value > - 9.0 kcal/mol) against cyclooxygenase-2 (PDB-ID: 1CX2), vitamin K epoxide reductase (PDB-ID: 3KP9), glycoprotein IIb/IIIa (PDB-ID: 2VDM) and catalase (PDB-ID: 1DGF). Therefore, the present study provided promising data that the newly synthesized coumarin can be useful in the design and synthesis of novel drug against Myocardial infarction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lakhdar Ghazouani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Afoua Elmufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Armin Zarei
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Intissar Baaziz
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Raouf Hajji
- Internal Medicine Department, Sidi Bouzid Hospital, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts, Jouf University, Jouf, Saudi Arabia
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Souhir Abid
- Chemistry Department, College of Science and Arts, Jouf University, Jouf, Saudi Arabia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax, Tunisia
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Nizar Tlili
- Higher Institute of Sciences and Technology of Environment of Borj Cedria, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
21
|
Khan A, Iqubal A, Haque SE. Combinatorial Delivery of Cinnamaldehyde and Quercetin Ameliorates Isoproterenol-Induced Cardiac Inflammation, Apoptosis and Myocardial Infarction via Modulation of NF-kB P65 and Cleaved Caspase-3 Signaling Molecules in Wistar Rats. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Antithrombotic Activity of the Antiplatelet Agent Angipur on the Model of Arterial Thrombosis in Rats with Isoproterenol-Induced Myocardial Infarction. Bull Exp Biol Med 2022; 172:314-317. [PMID: 35001313 DOI: 10.1007/s10517-022-05383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 10/19/2022]
Abstract
We studied the effect of Angipur on the process of experimental thrombosis induced by damage to the carotid artery wall by surface application of 50% ferric chloride (III) solution in rats without comorbidities and with isoproterenol-induced myocardial infarction. In animals without comorbidities, Angipur administered intravenously was 1.2 times less effective, in terms of ED50, than the well-known inhibitor of GPIIb/IIIa platelet receptors tirofiban. However, under conditions of non-coronary myocardial infarction, Angipur significantly prolonged the time of thrombus formation and exhibited 1.4-fold higher activity than the reference drug tirofiban.
Collapse
|
23
|
Ossai EC, Eze AA, Ogugofor MO. Plant-derived compounds for the treatment of schistosomiasis: Improving efficacy via nano-drug delivery. Niger J Clin Pract 2022; 25:747-764. [DOI: 10.4103/njcp.njcp_1322_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Wu L, Lv X, Zhang Y, Xin Q, Zou Y, Li X. Tartrazine exposure results in histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in juvenile crucian carp (Carassius carassius). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:105998. [PMID: 34706309 DOI: 10.1016/j.aquatox.2021.105998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Tartrazine (TZ) is an azo dye widely used in foods, cosmetics, beverages, textile, and leather. In recent years, there are reports on detecting azo dyes in the aquatic environment, so the impact of these compounds on aquatic organisms could not be ignored. In this study, we aimed to evaluate the adverse effects of TZ exposure on teleosts' embryo development and juvenile's health by using crucian carp (Carassius carassius) as the experimental fish. The results showed that embryos exposed to TZ (0.19, 0.76 and 1.5 mM) exhibited a deformity, delayed egg resorption and decreased fertilization and hatching rate. When the juvenile fish were exposed to TZ at a level higher than those present in water for 30 days caused severe histopathological damages of the gill, intestine, kidney and liver. Antioxidant enzymes (CAT, SOD and GSH-Px) activities in the gill, intestine and liver, exhibited a decreasing trend after TZ exposure, while MDA contents elevated. TZ exposure also resulted in the upregulation of pro-inflammatory cytokines (il1 and il6), lysozymes (lyz), complement component 3 (c3), and β-defensin 3 (defb3). In addition, TZ exposure also affected the intestinal microbiota structure. In summary, the data in the present study indicated that TZ exposure reduce the embryo fertilization and hatching rate; cause histopathological damage of tissues, trigger oxidative stress, innate immune disorders and dysbiosis of gut microbiota in juvenile crucian carp. Therefore, it is necessary to be informed about the hazards of TZ exposure and the discharge of the dye into waters should be strictly administrated to prevent environmental pollution.
Collapse
Affiliation(s)
- Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xixi Lv
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yifan Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Qingqing Xin
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yuanchao Zou
- College of Life sciences, Neijiang Normal University, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang, Sichuan 641100, PR China.
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
25
|
Gupta MK, Sansare V, Shrivastava B, Jadhav S, Gurav P. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery. J Liposome Res 2021; 32:211-223. [PMID: 34727833 DOI: 10.1080/08982104.2021.1968430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Plant-derived phytoconstituents are well known for their therapeutic potential. It has been experimentally demonstrated that whole-plant extract or isolated phytoconstituents reveal various therapeutic potentials like hepatoprotective, antimicrobial, neuroprotective, antitumor, antioxidant, skin protectives, etc. Although these phytoconstituents have potential therapeutic benefits, their use is limited due to their poor bioavailability, stability in biological fluids, and authentication issues. These continue to be an open problem that affects the application of these valuable ancient herbal herbs in the effective treatment and management of various disease conditions. A potential solution to these difficult problems could be the loading of phytoactives in phospholipid-based vesicular systems. Phospholipid-based vesicles like liposomes, phytosomes, ethosomes as well as transfersomes were effectively utilized recently to solve drawbacks and for effective delivery of phytoactives. Several landmark studies observed better therapeutic efficacy of phytoactive loaded vesicles compared to conventional drug delivery. Thus phospholipid-based vesicles mediated phytoactive delivery is a recently developed promising and attractive strategy for better therapeutic control on disease conditions. The present short review highlights recent advances in herbal bioactive loaded phospholipid-based vesicles.
Collapse
Affiliation(s)
- Manish Kumar Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Vipul Sansare
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | | | - Santosh Jadhav
- Department of Pharmaceutical Chemistry, SVPM'S College of Pharmacy, Malegaon, India
| | - Prashant Gurav
- Department of Pharmaceutics, Indira Institute of Pharmacy, Sadavali, India
| |
Collapse
|
26
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Wu L, Xu Y, Lv X, Chang X, Ma X, Tian X, Shi X, Li X, Kong X. Impacts of an azo food dye tartrazine uptake on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in crucian carp (Carassius auratus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112551. [PMID: 34358931 DOI: 10.1016/j.ecoenv.2021.112551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Food dyes, or color additives, are often added into foods, cosmetics and beverages during processing to improve the sensory attributes of the final products. However, the toxicity of tartrazine (TZ), one of the most common azo-dyes, is still unclear, and needs to be ascertained by further study. Hence, in the present study, we aimed to evaluate the effects of TZ consumption on health by using a teleost, crucian carp (Carassius auratus) as the experimental fish. TZ consumption (1.4, 5.5 and 10 mg/kg bwt/day) could cause severe histopathological and cellular alterations in intestine and liver. The height of intestinal villus, thickness of intestinal muscle, and microvilli density were also affected. With the increasing of TZ concentrations, the activities of antioxidant enzymes (CAT, SOD and GSH-Px), exhibited a decreasing trend, while the contents of MDA elevated. Upregulations of pro-inflammatory cytokines (il6 and tnfα), anti-inflammatory cytokines (il8, and il10) and other immune related genes (complement component 3 (c3), lysozymes (lyz), β-defensin 3 (defb3)), were observed after TZ uptake. In addition, TZ consumption also affected the community structure of the microbiota in the intestine of crucian carp. The amount of some probiotic bacteria (Roseomonas, Rhodococcus and Bacillus) and the bacteria (Bacteroides and Clostridium), producing short chain fatty acids, were significantly reduced, and some pathogenetic microorganisms (e.g. Bdellovibrio and Shewanella) were significantly increased after TZ uptake. In summary, the data in the present study indicate that TZ consumption, even at a low concentration, may lead to adverse effects on fish health. Therefore, in aquaculture, it is necessary to be informed about the hazardous effects of TZ, and more attentions should be focused on using natural substitutes.
Collapse
Affiliation(s)
- Limin Wu
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yufeng Xu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xixi Lv
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xulu Chang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Ma
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xue Tian
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xi Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
28
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
29
|
Khalifa AA, Rashad RM, El-Hadidy WF. Thymoquinone protects against cardiac mitochondrial DNA loss, oxidative stress, inflammation and apoptosis in isoproterenol-induced myocardial infarction in rats. Heliyon 2021; 7:e07561. [PMID: 34355083 PMCID: PMC8322274 DOI: 10.1016/j.heliyon.2021.e07561] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/28/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Myocardial infarction (MI) is an ischemic life-threatening disease with exaggerated oxidative stress state that vigorously damages the cardiomyocyte membrane and subcellular structures, including the vital mitochondrial DNA (mtDNA). The mtDNA is responsible for the proper functionality of the mitochondria, which are abundant in cardiomyocytes due to their dynamic nature and energy production requirements. Furthermore, oxidative stress triggers an inflammatory cascade and eventual apoptosis, which exacerbates cardiac injuries and dysfunction. AIM The present study used an isoproterenol (ISP)-induced MI rat model to investigate the role of the main active constituent of Nigella Sativa seeds, thymoquinone (TQ), in preserving the cardiac mtDNA content and ameliorating oxidative stress, inflammation, and apoptosis. METHODS Rats in the (TQ + ISP) group were pre-treated with TQ (20 mg/kg/day) for 21 days before the MI induction using ISP (85 mg/kg/day). In addition, negative control and ISP groups were included in the study for comparison. A histopathological examination was performed and serum cardiac parameters (cTnI and LDH) were assessed. In addition, mtDNA content, oxidative stress parameters (MDA, GSH, SOD, GPx, and CAT), inflammatory mediators (IL-6, IL-1β, and TNF-α), and apoptosis markers (BAX, Bcl2, and caspase-3) were detected. RESULTS The results showed that pre- and co-treatment with TQ in the (TQ + ISP) group reversed the histoarchitecture changes, caused a significant decrease in serum cardiac markers, oxidative stress markers, inflammatory cytokines, the apoptosis process, and preserved the cardiac mtDNA content. CONCLUSION TQ is a cardioprotective agent with an extended effect on preserving the cardiac mtDNA content, in addition to its powerful antioxidant, anti-inflammatory, and anti-apoptotic action.
Collapse
Affiliation(s)
- Asmaa A. Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
| | - Radwa M. Rashad
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Wessam F. El-Hadidy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Rababa'h AM, Alzoubi MA. Origanum majorana L. Extract Protects Against Isoproterenol-Induced Cardiotoxicity in Rats. Cardiovasc Toxicol 2021; 21:543-552. [PMID: 33786740 DOI: 10.1007/s12012-021-09645-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Coronary artery diseases are the major causes of disabilities and death worldwide. Evidence from the literature has demonstrated that Origanum majorana L. (marjoram) acts as an antioxidant, anti-inflammatory, antiplatelet, and assists in hormonal regulation. However, there is limited scientific evidence describing the signaling pathways associated with the marjoram's positive effect on cardiac injury. Therefore, we aimed to understand the mechanistic protective effects of marjoram on isoproterenol (ISO)-induced myocardial injury in rats. Sprague Dawley rats were randomly assigned into six groups. Marjoram was administrated by oral gavage and isoproterenol was administrated subcutaneously (ISO; 85 mg/kg). Heart weight, cardiac enzymes, inflammatory, and oxidative stress biomarkers were measured. The ISO-induced cardiac injury was confirmed by the significant increase in the levels of cardiac enzymes (P value < 0.05), whereas pre-treatment with marjoram normalized these cardiac injury parameters. We also determined that marjoram had a protective effect against ISO-induced increase in C-reactive protein (CRP), IL-6, IL-13, and TNF-α. Additionally, marjoram significantly decreased cardiac thiobarbituric acid reactive substances (TBARS) levels (P value < 0.05) and protected against ISO-induced oxidative stress. We have demonstrated that marjoram decreased both cardiac oxidative stress and inflammation, thus establishing the beneficial effects of marjoram on ISO-induced cardiac injury in rats.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| | - Miya A Alzoubi
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
31
|
Iqbal M, Khan I, Manzoor A, Arshad S, Sial A, Dar E, Shaikh A. Cardioprotective effect of hydroalcoholic leaf extract of Jatropha mollissima on isoproterenol-induced myocardial infarction in rats. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_16_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Wang N, Zhang Y, Liu H, Wang A, Ren T, Gou J, Zhang Y, Yin T, He H, Tang X. Toxicity Reduction and Efficacy Promotion of Doxorubicin in the Treatment of Breast Tumors Assisted by Enhanced Oral Absorption of Curcumin-Loaded Lipid-Polyester Mixed Nanoparticles. Mol Pharm 2020; 17:4533-4547. [PMID: 33201717 DOI: 10.1021/acs.molpharmaceut.0c00718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin (CUR), a polyphenol derived from turmeric, exhibits anticancer and anti-inflammatory properties. However, it has poor water solubility, stability, and oral bioavailability. To overcome these limitations, lipid-polyester mixed nanoparticles (NPs) embedded in enteric polymer-EudragitL100-55(Eu) were formulated (CUR-NPs-Eu). NPs composed of mPEG-b-PCL have a hybrid core made up of middle chain triglyceride (MCT) and poly(ε-caprolactone) (PCL) for enhancing drug loading. The CUR-NPs with MCT content of 10% had a particle size of 121.2 ± 16.8 nm, ζ potential of -16.25 ± 1.38 mV, drug loading of 9.8%, and encapsulation efficiency of 87.4%. The transport of the CUR-NPs-Eu across Caco-2 monolayers is enhanced compared with CUR alone (1.98 ± 0.94 × 10-6 of curcumin versus 55.43 ± 6.06 × 10-6 cm/s of curcumin-loaded NPs) because of the non-disassociated nanostructure during absorption. The absolute bioavailability of CUR-NPs-Eu was 7.14%, which was drastically improved from 1.08% of the CUR suspension (CUR-Sus). Therefore, in the xenograft 4T1 tumor-bearing mice, increased drug accumulation in heart and tumor was noticed because of enhanced oral bioavailability of CUR. The chemosensitizing effect of CUR was attributed to its NF-κB reduction effect (148 ± 11.83 of DOX alone versus 104 ± 8.71 of combined therapy, ng/g tissue). The cardioprotective effect of CUR was associated with maintenance of cardiac antioxidant enzyme activity and down-regulation of NF-κB. This study provided a partial illustration of the mechanisms of chemosensitizing and cardioprotective effects of CUR utilizing the oral availability promotion effect brought by the NPs-Eu formulation. And these results further demonstrated that the capability of this NPs-Eu system in oral delivery of poorly soluble and poorly permeable drugs.
Collapse
Affiliation(s)
- Na Wang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China
| | | | | | - Andong Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Tianyang Ren
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | | | | | | | | | | |
Collapse
|
33
|
Poly (Lactic- co-Glycolic Acid) Nanoparticles and Nanoliposomes for Protein Delivery in Targeted Therapy: A Comparative In Vitro Study. Polymers (Basel) 2020; 12:polym12112566. [PMID: 33139610 PMCID: PMC7692461 DOI: 10.3390/polym12112566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Over the previous years, the design, development, and potential application of nanocarriers in the medical field have been intensively studied for their ability to preserve drug properties, especially their pharmacological activity, and to improve their bioavailability. This work is a comparative study between two different types of nanocarriers, poly (lactic-co-glycolic acid)-based nanoparticles and phosphatidylcholine-based nanoliposomes, both prepared for the encapsulation of bovine serum albumin as a model protein. Polymeric nanoparticles were produced using the double emulsion water-oil-water evaporation method, whereas nanoliposomes were obtained by the thin-film hydration method. Both nanocarriers were characterized by morphological analysis, particle mean size, particle size distribution, and protein entrapment efficiency. Invitro release studies were performed for 12 days at 37 °C. In order to explore a possible application of these nanocarriers for a targeted therapy in the cardiovascular field, hemolytic activity and biocompatibility, in terms of cell viability, were performed by using human red blood cells and EA.hy926 human endothelial cell line, respectively.
Collapse
|
34
|
Zhang B, Wang H, Yang Z, Cao M, Wang K, Wang G, Zhao Y. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum Exp Toxicol 2020; 39:1596-1606. [PMID: 32602371 DOI: 10.1177/0960327120934537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monoterpenes present in the essential oils exhibit anti-inflammatory properties. In this study, we investigated the preventive effect of alpha-pinene (AP), a monoterpene, against isoproterenol (ISO)-induced myocardial infarction and inflammation in Wistar rats. Male Wistar rats were pretreated with AP (50 mg/kg body weight (bw)) administration for 21 days and ISO (85 mg/kg bw) was administered subcutaneously for last two consecutive days (20th day and 21st day). We noticed that there was an increased activity of cardiac marker enzymes in ISO-treated rats. We also observed that elevated levels of lipid peroxidative indices decreased activities of antioxidant status in plasma, erythrocyte, and heart tissue in ISO-induced rats. Furthermore, ISO-treated rats showed an increase in the levels of inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum. Besides, we confirmed the upregulated expression of TNF-α, IL-6, and nuclear factor kappa-light-chain-enhancer of activated B cells in ISO-induced rat heart tissue. Conversely, we found that AP pretreatment significantly decreased levels of cardiac markers like serum cardiac troponin T and cardiac troponin I, lipid peroxidative markers, and restored antioxidants status in ISO-treated rats. Besides, AP administration attenuated ISO-induced inflammatory marker expression. The present findings demonstrated that AP significantly protects the myocardium and exerts cardioprotective and anti-inflammatory effects in experimental rats.
Collapse
Affiliation(s)
- B Zhang
- Department of Health Care Center, Beijing Friendship Hospital Medical, 12517Capital Medical University, Beijing, China
| | - H Wang
- Department of Pharmacy, 34706The First Affiliated Hospital of Nanhua University, Hengyang City, Hunan Province, China
| | - Z Yang
- Department of ICU, 381901The First People's Hospital of Huaihua, Huaihua City, Hunan Province, China
| | - M Cao
- Department of Cardiovascular, 232831The People's Hospital of Tianjin, Tianjin City, China
| | - K Wang
- Department of Endocrinology, 12476Tianyou Hospital Affiliated to Tongji University, Shanghai, China
| | - G Wang
- Department of Endocrinology, 12476The Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Y Zhao
- Department of Cardiovascular Biology, 12418Changsha Central Hospital, Changsha City, Hunan Province, China
| |
Collapse
|
35
|
Abd Al Haleem EN, Ahmed SF, Temraz A, El-Tantawy WH. Evaluation of the cardioprotective effect of Casuarina suberosa extract in rats. Drug Chem Toxicol 2019; 45:367-377. [PMID: 31778078 DOI: 10.1080/01480545.2019.1696815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the current study was to examine and compare the cardioprotective activities of the chloroform and petroleum extracts the leaves of Casuarina suberosa in isoproterenol (ISO)-induced cardiac tissue oxidative stress. Rats were categorized into 6 groups as follows: control group, vehicle or Tween 80-treated group, ISO-treated group, chloroform extract + ISO treated group, petroleum ether extract + ISO treated group and Reference drug (Captopril) + ISO treated group. ISO injection significantly (p < 0.05) increased the activities of cardiac marker enzymes (CK-MB, LDH, ALT, and AST), cardiac troponin-I, levels of lipid peroxides (MDA), nitric oxide (NO), and vascular endothelial growth factor (VEGF), serum angiotensin-converting enzyme (ACE) activity and neutrophil infiltration marker; myeloperoxidase (MPO) in the cardiac tissues. Pretreatment with chloroform or petroleum ether extracts significantly (p < 0.05) prevented the ISO-induced alteration; they upregulated VEGF expression. Histopathological findings corroborated biochemical results. These extracts exerted a cardioprotective effect by alleviating oxidative stress.
Collapse
Affiliation(s)
- Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy For Girls, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
36
|
Lu H, Guo J, Xu C. Cardioprotective Efficacy of Hispidulin on Isoproterenol-induced Heart Failure in Wistar Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.816.822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
BOARESCU PM, BOARESCU I, BOCȘAN 4, IC, POP RM, GHEBAN 5, D, BULBOACĂ AE, DOGARU G, BOLBOACĂ SD. Experimental model of acute myocardial infarction for evaluation of prevention and rehabilitation strategies in cardiovascular diseases – a pilot study. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Acute myocardial infarction (AMI) is an important acute disease of myocardial tissue, that occurs as a result of an imbalance between coronary blood supply and myocardial demand. Isoproterenol (ISO) is a synthetic catecholamine, a beta-adrenergic agonist that produces extensive biochemical, functional, and histological alterations in the heart, characteristic for AMI. The present study has been designed to identify the best dose of ISO that induces electrocardiogram (ECG) alterations, enzymatic reaction, and histopathological changes characteristic of AMI. Material and method: AMI was induced to Wistar-Bratislava white male rats, using three different subcutaneous doses of ISO (85 mg/kg bw, 100 mg/kg bw, and 150 mg/kg bw). ISO was administrated twice, with the second dose at 24h after the initial one. The ECGs were recorded at 24 hours after the last dose of ISO. Blood samples were collected for measurement of creatine kinase (CK), and CK-MB serum levels, and the hearts were excised and prepared for histopathologic examination. Results and discussions: All doses of ISO induced alterations in the ECG patterns such as increased heart rate and prolongation of QT and QTc intervals. Depression of the ST segment coupled with marked T wave inversion were observed at the doses of 100 mg/kg bw and 150 mg/kg bw of ISO. All doses of ISO induced an elevation of CK and CK-MB with highest levels observed for the dose of 150 mg/kg bw. Histopathologic examination revealed subendocardial AMI lesions for all doses tested. Conclusions: ISO in doses of 100 mg/kg and 150 mg/kg is useful for induction of infarct-like lesion on ECG, increased levels of myocardial necrosis enzymes and morphological changes characteristic for AMI.
Collapse
Affiliation(s)
- Paul-Mihai BOARESCU
- "Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Pathophysiology, Cluj-Napoca, Romania 2. Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Medical Informatics and Biostatistic, Cluj-Napoca, Romania
| | - Ioana BOARESCU
- County Clinical Emergency Hospital, Department of Neurology, Cluj-Napoca, Romania
| | - Ioana Corina BOCȘAN 4,
- "Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| | - Raluca Maria POP
- "Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| | - Dan GHEBAN 5,
- Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Pathological Anatomy, Cluj-Napoca, Romania
| | - Adriana Elena BULBOACĂ
- "Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Pathophysiology, Cluj-Napoca, Romania
| | - Gabriela DOGARU
- Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Medical Rehabilitation, Cluj-Napoca, Romania
| | - Sorana D. BOLBOACĂ
- Iuliu-Hațieganu" University of Medicine and Pharmacy, Department of Medical Informatics and Biostatistic, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Ren J, Fu L, Nile SH, Zhang J, Kai G. Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications. Front Pharmacol 2019; 10:753. [PMID: 31338034 PMCID: PMC6626924 DOI: 10.3389/fphar.2019.00753] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Bioactive chemical constitutes from the root of Salvia miltiorrhiza classified in two major groups, viz., liposoluble tanshinones and water-soluble phenolics. Tanshinone IIA is a major lipid-soluble compound having promising health benefits. The in vivo and in vitro studies showed that the tanshinone IIA and salvianolate have a wide range of cardiovascular and other pharmacological effects, including antioxidative, anti-inflammatory, endothelial protective, myocardial protective, anticoagulation, vasodilation, and anti-atherosclerosis, as well as significantly help to reduce proliferation and migration of vascular smooth muscle cells. In addition, some of the clinical studies reported that the S. miltiorrhiza preparations in combination with Western medicine were more effective for treatment of various cardiovascular diseases including angina pectoris, myocardial infarction, hypertension, hyperlipidemia, and pulmonary heart diseases. In this review, we demonstrated the potential applications of S. miltiorrhiza, including pharmacological effects of salvianolate, tanshinone IIA, and its water-soluble derivative, like sodium tanshinone IIA sulfonate. Moreover, we also provided details about the clinical applications of S. miltiorrhiza preparations in controlling the cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Li Fu
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guoyin Kai
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
39
|
Murugesan S, Pandiyan A, Saravanakumar L, Moodley K, Mackraj I. Protective role of wild garlic on isoproterenol-induced myocardial necrosis in wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:108-115. [PMID: 30905788 DOI: 10.1016/j.jep.2019.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/14/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tulbaghia violacea Harv. (TVL) is a folk medicine, native to South Africa which has previously shown antioxidant, anti-hypertensive and anti-diabetic effects. THE AIM OF THE STUDY The aim of the current study was to investigate the protective role of wild garlic or TVL on isoproterenol (ISO)-induced myocardial necrosis in rats. MATERIALS AND METHODS Animal (n = 6 each group) were pre and co-treated with TVL (60 mg/kg body weight) daily for 30 days. Myocardial necrosis was administrated by subcutaneous injection of ISO (85 mg/kg body weight) into rats on 29th and 30th day. On the 31st day, rats were anaesthetized and blood, heart samples were obtained for the biochemical, histopathological and molecular study. The specific protein target analysis from TVL was done by reverse docking study (reverse pharmacophore mapping) using PharmMapper. RESULTS The levels of cardiac markers, lipid peroxidation products, and heart rate were considerably increased in ISO-induced myocardial necrosis in rats whilst plasma enzymatic antioxidants were significantly decreased. Myocardial necrotic mRNA genes were increased in ISO-induced myocardial necrosis in rats compared to controls. Pre and co-treatment with TVL and ramipril of myocardial necrosis in rats showed significant effects on all the biochemical and molecular studies evaluated. TVL reduced heart rate, prevented oxidative stress and downregulated the Fas-receptor and caspase-mediated apoptosis-signaling pathway, and heart muscle damage in myocardial necrosis in rats. The specific target protein [disulfide, bis (2-sulfhydrylethyl] from TVL mediates the protective effects. CONCLUSION Wild garlic or TVL extract has shown a protective effect on ISO-induced myocardial necrosis in rats by increasing antioxidant production confirmed with docking studies.
Collapse
Affiliation(s)
- Saravanakumar Murugesan
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Arunagiri Pandiyan
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lakshmi Saravanakumar
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kogi Moodley
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackraj
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
40
|
Eltobshy SAG, Hussein AM, Elmileegy AA, Askar MH, Khater Y, Metias EF, Helal GM. Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:203-217. [PMID: 31080351 PMCID: PMC6488703 DOI: 10.4196/kjpp.2019.23.3.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asaad A Elmileegy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yomna Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
41
|
Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S. Anti-fibrotic Actions of Roselle Extract in Rat Model of Myocardial Infarction. Cardiovasc Toxicol 2019; 19:72-81. [PMID: 30128816 DOI: 10.1007/s12012-018-9478-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Disease Models, Animal
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hibiscus/chemistry
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Inflammation Mediators/blood
- Interleukin-10/blood
- Interleukin-10/genetics
- Interleukin-6/blood
- Interleukin-6/genetics
- Isoproterenol
- Male
- Myocardial Infarction/chemically induced
- Myocardial Infarction/drug therapy
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Rats, Wistar
- Troponin T/blood
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Shafreena Shaukat Ali
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Siti Fatimah Azaharah Mohamed
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nur Hafiqah Rozalei
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Yap Wei Boon
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Shaikh S, Bhatt LK, Barve K. Attenuation of isoproterenol-induced cardiotoxicity in rats by Narirutin rich fraction from grape fruit. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:222-228. [PMID: 30668432 DOI: 10.1016/j.phymed.2018.06.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/31/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Oxidative stress is one of the major mechanism involved in pathogenesis of myocardial infarction. Use of natural products as therapeutic approach for ischemic myocardial injury is gaining attention worldwide. PURPOSE This study was designed to investigate efficacy of Narirutin rich fraction (NRF), obtained from grape fruit peel, in the treatment of isoproterenol induced myocardial infarction in rats. METHODS After 3-days pretreatment with NRF (100 mg/kg and 200 mg/kg, p.o.) myocardial injury was induced by subcutaneous administration of isoproterenol (85 mg/kg) for 2 days. Hemodynamic parameters, biochemical parameters, histological and ultrastructural changes were observed. RESULTS Isoproterenol induced myocardial injury was evidenced by significant alterations in ECG, mean arterial pressure and left ventricular functions. Myocardial creatine kinase-MB isoenzyme, lactate dehydrogenase, superoxide dismutase, catalase, and glutathione level were reduced while MDE levels were increased. Histological findings also showed severe changes. Treatment with NRF significantly attenuated these parameters in dose dependent manner. CONCLUSION Thus, present study provides evidences for efficacy of NRF against isoproterenol induced myocardial infarction in rats.
Collapse
Affiliation(s)
- Shagufta Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India.
| | - Kalyani Barve
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NMIMS University, Vile Parle (West), Mumbai, India
| |
Collapse
|
43
|
Zhang L, Liu J, Ge Y, Liu M. Ginkgo biloba Extract Reduces Hippocampus Inflammatory Responses, Improves Cardiac Functions And Depressive Behaviors In A Heart Failure Mouse Model. Neuropsychiatr Dis Treat 2019; 15:3041-3050. [PMID: 31754303 PMCID: PMC6825506 DOI: 10.2147/ndt.s229296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Depression has been shown to share an extremely high comorbidity with heart failure (HF). Ginkgo biloba extract (GBE) is a widely used traditional Chinese medicine in cardiac disease. However, its potential therapeutic effect on depressive symptoms following HF largely remains unknown. In this article, we aimed to investigate its effects in reducing depressive behaviors of a HF mouse model. Moreover, we also discussed whether its effects are associated with changes in neural inflammation and 5-hydroxytryptamine (5-HT) signaling. METHODS Mice were randomly divided into three groups: sham, HF+saline and HF+GBE (150 mg/kg/d) (n=10 per group). Systolic heart failure was induced by ligating the left anterior descending coronary artery. Cardiac functions together with depressive-like behaviors were measured after 4 weeks' treatment. Levels of brain natriuretic peptide (BNP), 5-HT, 5-HT receptor 2A (5-HT2AR), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), (cleaved) caspase-3, Bax and Bcl-2 were analyzed by Western blot, Elisa and immunohistochemistry at the end of the experiments. RESULTS GBE benefited antidepressant-like behaviors and improved cardiac functions in mice with heart failure. Levels of TNF-α, IL-1β and 5-HT were reduced in the hippocampus after the administration of GBE. Further experiments revealed that GBE also blocked the release of serotonin in the peripheral blood and triggered HIF-1 induced anti-apoptotic pathways. CONCLUSION GBE has potential therapeutic effects in relieving depressive status of patients with HF.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, People's Republic of China
| | - Jianyang Liu
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, People's Republic of China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Meiyan Liu
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, People's Republic of China
| |
Collapse
|
44
|
Li AY, Wang JJ, Yang SC, Zhao YS, Li JR, Liu Y, Sun JH, An LP, Guan P, Ji ES. Protective role of Gentianella acuta on isoprenaline induced myocardial fibrosis in rats via inhibition of NF-κB pathway. Biomed Pharmacother 2018; 110:733-741. [PMID: 30554111 DOI: 10.1016/j.biopha.2018.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022] Open
Abstract
Gentianella acuta (Michx.) Hulten (G. acuta) has been widely used in Mongolian medicines for the treatment of cardiovascular diseases in Ewenki and Oroqen, Inner Mongolia autonomous region, China. The aim of this study was to investigate the effects and related mechanism of G. acuta on isoproterenol (ISO)-induced oxidative stress, fibrosis, and myocardial damage in rats. Male Sprague Dawley rats were randomly divided into the normal control group, ISO induced group and ISO+G. acuta treatment group. Rats were administered with ISO subcutaneously (5 mg/kg/day) for 7 days, and were orally administered simultaneously with aqueous extracts of G. acuta for 21 days. This investigation showed G. acuta treatment ameliorated cardiac structural disorder, excessive collagenous fiber accumulation and cardiac malfunction. Compared with the ISO induced model group, G. acuta treatment increased superoxide dismutase (SOD) activities and glutathione (GSH) level, prevented the rise of malondialdehyde (MDA), and decreased hydroxyproline contents in the heart tissues. Moreover, G. acuta reduced the expression of transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF), and inhibited the expression and activation of NF-κB-P65 in myocardial tissues. These results suggested that G. acuta protects against ISO-induced cardiac malfunction probably by preventing oxidative stress, and fibrosis, and the mechanism might be through inhibiting NF-κB pathway.
Collapse
Affiliation(s)
- Ai-Ying Li
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Jing-Jing Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Sheng-Chang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Jie-Ru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Yu Liu
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Jia-Huan Sun
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Li-Ping An
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
45
|
Zhong W, Sun B, Gao W, Qin Y, Zhang H, Huai L, Tang Y, Liang Y, He L, Zhang X, Tao H, Chen S, Yang W, Yang L, Liu Y, Liu H, Zhou H, Sun T, Yang C. Salvianolic acid A targeting the transgelin-actin complex to enhance vasoconstriction. EBioMedicine 2018; 37:246-258. [PMID: 30361065 PMCID: PMC6286650 DOI: 10.1016/j.ebiom.2018.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Salvia miltiorrhiza is used extensively to treat cardiovascular diseases. SAA is a major bioactive component in Salvia miltiorrhiza and mediates myocardial ischemia (MI). However, the industrial production of SAA is limited due to low yields. In addition, the direct targets of SAA are unknown. Here we explore cardioprotective mechanisms and targets of SAA in the cardiovascular system. METHODS Transgelin and actin were identified as targets of SAA using a chemical biology method and were validated by Biacore analysis, microscale thermophoresis and single-molecule imaging. Studies of transgelin (-/-) knockout mice further verify the target. Cardioprotective mechanisms and targets of SAA were studied in cultured vascular smooth muscle cells and transgenic mice. FINDINGS In WT mice, SAA targeted transgelin and had a protective effect on myocardium but did not have the same protective effect on transgelin (-/-) mice. SAA stabilizes the transgelin-actin complex, modulates the reorganization of the actin cytoskeleton, facilitates F-actin bundling, further enhances the contractility and blood flows of coronary arteries, and improves outcomes of myocardial ischemia. Based on the target, a more active SAA derivative offering myocardial protection, SAA-30, was obtained. INTERPRETATION We report on the direct targets of SAA and mechanisms of myocardial ischemia treatment. We also find that transgelin may act as a novel therapeutic target of myocardial ischemia. Furthermore, a more effective derivative of SAA provides the basis for further clinical translational research.
Collapse
Affiliation(s)
- Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wenqing Gao
- Heart Center, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Longcong Huai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuan Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Lingfei He
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Honglian Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wei Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Lan Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| |
Collapse
|
46
|
Liu J, Chen L, Lu H. Asiatic Acid Enhances Antioxidant and Anti-inflammatory Activity to Suppress Isoproterenol Induced Cardiotoxicity. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.1038.1045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Moringa concanensis Nimmo ameliorates hyperglycemia in 3T3-L1 adipocytes by upregulating PPAR-γ, C/EBP-α via Akt signaling pathway and STZ-induced diabetic rats. Biomed Pharmacother 2018; 103:719-728. [DOI: 10.1016/j.biopha.2018.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
|
48
|
Li L, Sun Z, Xu C, Wu J, Liu G, Cui H, Chen H. Adenovirus-mediated overexpression of sST2 attenuates cardiac injury in the rat with severe acute pancreatitis. Life Sci 2018; 202:167-174. [PMID: 29653119 DOI: 10.1016/j.lfs.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
Abstract
AIMS Severe acute pancreatitis (SAP) is a serious disease associated with systematic inflammation and multiple organs dysfunction. Soluble ST2 (sST2), a member of the Toll interleukin (IL)-1 receptor (TIR) superfamily, has been demonstrated to exert immune-regulatory and anti-inflammatory properties in several inflammation-related diseases. In this study, we investigated whether transfer of sST2 gene by adenovirus vector could attenuate sodium taurocholate-induced SAP and associated cardiac injury. MAIN METHODS A rat model of SAP was induced by retrograde injection of 5% sodium taurocholate (1 ml/kg) into the biliopancreatic duct. Rats in the treatment groups were intravenously injected with adenovirus expressing sST2 (Ad-sST2, 1 × 109 particles/rat) or green fluorescent protein (Ad-GFP) via the tail vein 48 h before SAP induction. Histological changes in the pancreatic and heart tissues, and parameters for evaluating SAP and associated cardiac injury were determined at 24 h after SAP. KEY FINDINGS Sodium taurocholate induced obvious pathological changes in pancreas and elevated serum levels of amylase and lipase. Furthermore, SAP animals exhibited significant cardiac impairment, evidenced by decreased cardiac function, increased myocardial apoptosis and cardiac-related enzymes including creatine kinase isoenzyme, lactate dehydrogenase, and Troponin T. Administration of Ad-sST2 markedly improved the structure of pancreas and heart tissues, and reversed the alterations in serum amylase, lipase and cardiac-related enzymes. In addition, Ad-sST2 treatment downregulated pro-inflammatory cytokines production, demonstrating the anti-inflammatory property of sST2. SIGNIFICANCE Our results suggest that administration of Ad-sST2 significantly attenuated the severity of SAP and associated cardiac damage, and the cardioprotective effect is associated with its anti-inflammatory action.
Collapse
Affiliation(s)
- Lei Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China; Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Zhongwei Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
| | - Jun Wu
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Geliang Liu
- Department of Urology Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Hongzhang Cui
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, People's Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China.
| |
Collapse
|
49
|
Wong ZW, Thanikachalam PV, Ramamurthy S. Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomed Pharmacother 2017; 94:1145-1166. [PMID: 28826162 DOI: 10.1016/j.biopha.2017.08.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/09/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Modern medicine has been used to treat myocardial infarction, a subset of cardiovascular diseases, and have been relatively effective but not without adverse effects. Consequently, this issue has stimulated interest in the use of natural products, which may be equally effective and better tolerated. Many studies have investigated the cardioprotective effect of natural products, such as plant-derived phytochemicals, against isoproterenol (ISO)-induced myocardial damage; these have produced promising results on the basis of their antioxidant, anti-atherosclerotic, anti-apoptotic and anti-inflammatory activities. This review briefly introduces the pathophysiology of myocardial infarction (MI) and then addresses the progress of natural product research towards its treatment. We highlight the promising applications and mechanisms of action of plant extracts, phytochemicals and polyherbal formulations towards the treatment of ISO-induced myocardial damage. Most of the products displayed elevated antioxidant levels with decreased oxidative stress and lipid peroxidation, along with restoration of ionic balance and lowered expression of myocardial injury markers, pro-inflammatory cytokines, and apoptotic parameters. Likewise, lipid profiles were positively altered and histopathological improvements could be seen from, for example, the better membrane integrity, decreased necrosis, edema, infarct size, and leukocyte infiltration. This review highlights promising results towards the amelioration of ISO-induced myocardial damage, which suggest the direction for future research on natural products that could be used to treat MI.
Collapse
Affiliation(s)
- Zheng Wei Wong
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | | | - Srinivasan Ramamurthy
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia.
| |
Collapse
|
50
|
The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother 2017; 91:1042-1052. [DOI: 10.1016/j.biopha.2017.05.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/30/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022] Open
|