1
|
Ahmadizad Firouzjaei A, Aghaee-Bakhtiari SH. Integrating cuproptosis and immunosenescence: A novel therapeutic strategy in cancer treatment. Biochem Biophys Rep 2025; 42:101983. [PMID: 40224540 PMCID: PMC11986980 DOI: 10.1016/j.bbrep.2025.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Recent advancements in our understanding of cell death mechanisms have progressed beyond traditional apoptosis to encompass various forms of regulated cell death, notably cuproptosis. This copper-dependent cell death occurs when copper interacts with lipoylated enzymes in the tricarboxylic acid cycle, leading to protein aggregation and subsequent cell death. Alongside this, immunosenescence the gradual decline in immune function due to aging has emerged as a significant factor in cancer progression and response to treatment. Innovative strategies that integrate cuproptosis and immunosenescence are showing considerable promise in cancer therapy. By leveraging the altered copper metabolism in cancer cells, cuproptosis can selectively induce cell death, effectively targeting and eliminating tumors. Simultaneously, addressing immunosenescence can rejuvenate the aging immune system, enhancing its capacity to identify and destroy cancer cells. This dual approach creates a synergistic effect, optimizing therapeutic efficacy by directly attacking tumor cells while revitalizing the immune response. Such integration bolsters the defense against cancer progression and recurrence and holds great potential for advancing cancer treatment modalities and improving patient outcomes. This paper delves into the interactions between cuproptosis and immunosenescence, emphasizing their implications for developing innovative cancer therapies.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Alshevskaya A, Zhukova J, Lopatnikova J, Vasilyev F, Khutornoy I, Golikova E, Kireev F, Sennikov S. Nonlinear Dynamics of TNFR1 and TNFR2 Expression on Immune Cells: Genetic and Age-Related Aspects of Inflamm-Aging Mechanisms. Biomedicines 2025; 13:852. [PMID: 40299450 PMCID: PMC12024874 DOI: 10.3390/biomedicines13040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction: Immunosenescence alters TNF receptor expression (TNFR1 and TNFR2), contributing to chronic inflammation (inflamm-aging) and age-related diseases. Polymorphisms in TNFRSF1A and TNFRSF1B may influence receptor expression; however, their role in age-dependent modulation remains unclear. This study examines TNFR1/TNFR2 expression dynamics on T cells, B cells, and monocytes across different ages and evaluates the impact of genetic polymorphisms. Methods: PBMCs from 150 donors (18-60 years) were isolated via density-gradient centrifugation and cultured under spontaneous and LPS-stimulated conditions. TNFR1 and TNFR2 expression on immune cell subsets was quantified using flow cytometry with BD QuantiBRITE PE beads. SNP genotyping in TNFRSF1A and TNFRSF1B was performed via PCR with restriction analysis. Nonlinear age-related trends were assessed using polynomial approximation and inflection point analysis (Tukey's method). Results: Among the 23 analyzed TNF system parameters, the proportion of TNFR2+CD3+ T cells increased with age, whereas TNFR1+ and TNFR2+ monocyte populations showed significant negative correlations (p < 0.05). Inflection points (~27, 34-36, and 44-45 years) indicated nonlinear dynamics in TNFRs expression during aging. TNFR2 expression on T cells gradually increased and stabilized at later ages, whereas TNFR1 and TNFR2 expression on monocytes followed distinct declining trajectories. Genetic polymorphisms influenced correlation strength, but did not alter direction, demonstrating a conserved pattern of age-related receptor expression shifts. Conclusions: TNFR expression exhibits nonlinear, age-dependent alterations across immune cells, shaped by immunosenescence and genetic variability. The identified critical age intervals represent key phases of immune remodeling, where assessing TNFR expression may provide insights into inflamm-aging mechanisms and potential targets for immune modulation.
Collapse
Affiliation(s)
- Alina Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia; (A.A.); (J.L.); (E.G.)
| | - Julia Zhukova
- Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (J.Z.); (F.V.); (F.K.)
| | - Julia Lopatnikova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia; (A.A.); (J.L.); (E.G.)
- Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (J.Z.); (F.V.); (F.K.)
| | - Filipp Vasilyev
- Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (J.Z.); (F.V.); (F.K.)
- Institute of Medicine, Ammosov North-Eastern Federal University in Yakutsk, Yakutsk 677013, Russia
| | - Ivan Khutornoy
- Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Elena Golikova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia; (A.A.); (J.L.); (E.G.)
| | - Fedor Kireev
- Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (J.Z.); (F.V.); (F.K.)
| | - Sergey Sennikov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia; (A.A.); (J.L.); (E.G.)
- Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk 630099, Russia; (J.Z.); (F.V.); (F.K.)
| |
Collapse
|
3
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Mas-Bargues C, Román-Domínguez A, Sanz-Ros J, Romero-García N, Huete-Acevedo J, Dromant M, Cuervo AM, Borrás C, Viña J. Bcl-xL overexpression in T cells preserves muscle mitochondrial structure and function and prevents frailty in old mice. SCIENCE ADVANCES 2025; 11:eadr1378. [PMID: 40106552 PMCID: PMC11922028 DOI: 10.1126/sciadv.adr1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Our previous transcriptomic analysis revealed an up-regulation of the antiapoptotic protein B cell lymphoma-extra large (Bcl-xL) in centenarians relative to octogenarians or younger cohorts. In this study, we used Bcl-xL-overexpressing mice to assess its impact on successful aging. Our findings indicate that Bcl-xL overexpression modifies T cell subsets and improves their metabolism, apoptosis resistance, macroautophagy, and cytokine production during aging. This more resilient immune system reduces inflammation and preserves mitochondrial integrity and function in muscle tissue, thereby retarding the onset of frailty. These results underscore the important contribution of Bcl-xL to healthy aging, a phenomenon that is conserved across mammalian species.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Ana María Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
5
|
Mapuskar KA, London B, Zacharias ZR, Houtman JC, Allen BG. Immunometabolism in the Aging Heart. J Am Heart Assoc 2025; 14:e039216. [PMID: 39719411 PMCID: PMC12054428 DOI: 10.1161/jaha.124.039216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
Structural, functional, and molecular-level changes in the aging heart are influenced by a dynamic interplay between immune signaling and cellular metabolism that is referred to as immunometabolism. This review explores the crosstalk between cellular metabolic pathways including glycolysis, oxidative phosphorylation, fatty acid metabolism, and the immune processes that govern cardiac aging. With a rapidly aging population that coincides with increased cardiovascular risk and cancer incidence rates, understanding the immunometabolic underpinnings of cardiac aging provides a foundation for identifying therapeutic targets to mitigate cardiac dysfunction. Aging alters the immune environment of the heart by concomitantly driving the changes in immune cell metabolism, mitochondrial dysfunction, and redox signaling. Shifts in these metabolic pathways exacerbate inflammation and impair tissue repair, creating a vicious cycle that accelerates cardiac functional decline. Treatment with cancer therapy further complicates this landscape, as aging-associated immunometabolic disruptions augment the susceptibility to cardiotoxicity. The current review highlights therapeutic strategies that target the immunometabolic axis to alleviate cardiac aging pathologies. Interventions include modulating metabolic intermediates, improving mitochondrial function, and leveraging immune signaling pathways to restore cardiac health. Advances in immunometabolism thus hold significant potential for translating preclinical findings into therapies that improve the quality of life for the aging population and underscore the need for approaches that address the immunometabolic mechanisms of cardiac aging, providing a framework for future research.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Barry London
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Internal MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Zeb R. Zacharias
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Jon C.D. Houtman
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Microbiology and ImmunologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Bryan G. Allen
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| |
Collapse
|
6
|
Krams R, Cīrule D, Munkevics M, Popovs S, Jõers P, Contreras Garduño J, Krams IA, Krama T. Great Tit ( Parus major) Nestlings Have Longer Telomeres in Old-Growth Forests Than in Young Forests. Ecol Evol 2025; 15:e70823. [PMID: 39803201 PMCID: PMC11725386 DOI: 10.1002/ece3.70823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Modification and deterioration of old-growth forests by industrial forestry have seriously threatened species diversity worldwide. The loss of natural habitats increases the concentration of circulating glucocorticoids and incurs chronic stress in animals, influencing the immune system, growth, survival, and lifespan of animals inhabiting such areas. In this study, we tested whether great tit (Parus major) nestlings grown in old-growth unmanaged coniferous forests have longer telomeres than great tit nestlings developing in young managed coniferous forests. This study showed that the patches of young managed coniferous forests had lower larval biomass than old-growth forests. Since insect larvae are the preferred food for great tit nestlings, the shortage of food may divert energy resources away from growth, which can show up as physiological stress, often raising the heterophil/lymphocyte (H/L) ratio. The H/L ratio revealed a significant difference in stress levels, being the highest in great tit nestlings developing in young-managed pine forests. We also found that the development of great tit nestlings in young managed forests had significantly shorter telomeres than in old-growth forests. Although nestling survival did not differ between the habitats, nestlings growing up in old-growth forests had greater telomere lengths, which can positively affect their lifespan. Our results suggest that the forest habitats affected by industrial forestry may represent ecological traps, as the development of young birds in deteriorated environments can affect the age structure of populations.
Collapse
Affiliation(s)
- Ronalds Krams
- Latvian Biomedical Research and Study CentreRigaLatvia
- Department of Biodiversity, Institute of Life Sciences and TechnologiesDaugavpils UniversityDaugavpilsLatvia
- Chair of Plant Health, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Dina Cīrule
- Institute of Food Safety, Animal Health and Environment "BIOR"RigaLatvia
| | - Maris Munkevics
- Section of Ecology, Faculty of Medicine and Life SciencesUniversity of LatviaRigaLatvia
- Statistics Unit, Faculty of MedicineRiga Stradins UniversityRigaLatvia
| | - Sergejs Popovs
- Department of Biodiversity, Institute of Life Sciences and TechnologiesDaugavpils UniversityDaugavpilsLatvia
| | - Priit Jõers
- Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
| | - Jorge Contreras Garduño
- Escuala Nacional de Estudios SuperioresNational Autonomous University of MexicoMoreliaMexico
| | - Indrikis A. Krams
- Latvian Biomedical Research and Study CentreRigaLatvia
- Department of Biodiversity, Institute of Life Sciences and TechnologiesDaugavpils UniversityDaugavpilsLatvia
- Section of Ecology, Faculty of Medicine and Life SciencesUniversity of LatviaRigaLatvia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Tatjana Krama
- Latvian Biomedical Research and Study CentreRigaLatvia
- Department of Biodiversity, Institute of Life Sciences and TechnologiesDaugavpils UniversityDaugavpilsLatvia
- Chair of Plant Health, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| |
Collapse
|
7
|
Mukherjee AK, Dutta S, Singh A, Sharma S, Roy SS, Sengupta A, Chatterjee M, Vinayagamurthy S, Bagri S, Khanna D, Verma M, Soni D, Budharaja A, Bhisade SK, Anand V, Perwez A, George N, Faruq M, Gupta I, Sabarinathan R, Chowdhury S. Telomere length sensitive regulation of interleukin receptor 1 type 1 (IL1R1) by the shelterin protein TRF2 modulates immune signalling in the tumour microenvironment. eLife 2024; 13:RP95106. [PMID: 39728924 PMCID: PMC11677240 DOI: 10.7554/elife.95106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Subhajit Dutta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ankita Singh
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Megha Chatterjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Divya Khanna
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Dristhi Soni
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | | | - Vivek Anand
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Ahmad Perwez
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Nija George
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Mohammed Faruq
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | | | - Radhakrishnan Sabarinathan
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Trivedi School of Biosciences, Ashoka UniversitySonepatIndia
| |
Collapse
|
8
|
Singh B, Kumari S, Kureel AK, Saini S, Prakash S, Shah A, Chaturvedi CP, Singh K, Rai AK. In-vitro evidence indicating that IL-10 causes aging-related hypoalbuminemia via JAK1/STAT3 and CEBP-β. Exp Cell Res 2024; 443:114327. [PMID: 39536933 DOI: 10.1016/j.yexcr.2024.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Albumin (ALB) has numerous vital physiological outcomes for healthy aging. A decrease in serum albumin, i.e., hypoalbuminemia, is one of the risk factors associated with aging, which affects physiological functioning. Hypoalbuminemia is the outcome of either decreased ALB synthesis or increased degradation. However, the potential mechanism controlling ALB's mRNA level expression in aged individuals is yet to be explored. We noted decreased serum ALB concentrations in aged individuals participating in our study, as compared to the young ones. We found that IL-10, a paradoxical inflammaging marker, reduced ALB concentration in HepG2 cells. Inhibiting the JAK/STAT3 signalling increased albumin mRNA suggesting its IL-10-driven regulation via JAK/STAT3 pathway. Albumin promotor analysis revealed the presence of a CEBP-β binding site. We showed that CEBP-β binds to the albumin promoter in an IL-10-dependent manner. Further, IL-10 increased the expressions of all CEBP-β isoforms, including the inhibitory isoform (LIP). The CEBP-β inhibition either by a functional inhibitor (i.e., quercetin) or shRNA silencing increased albumin mRNA in HepG2 cells. Our finding showed that IL-10 likely regulates albumin expression in a JAK/STAT3 and CEBP-β dependent manner in aging. A better understanding of the underlying condition can improve albumin protein levels and the well-being of the aged population.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India
| | - Satya Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India
| | - Arunim Shah
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, U.P., India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, U.P., India
| | - Kulwant Singh
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, U.P., India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, U.P., India.
| |
Collapse
|
9
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
10
|
Czarnowicki T, David E, Yamamura K, Han J, He H, Pavel AB, Glickman J, Erickson T, Estrada Y, Krueger JG, Rangel SM, Paller AS, Guttman-Yassky E. Evolution of pathologic B-cell subsets and serum environment-specific sIgEs in patients with atopic dermatitis and controls, from infancy to adulthood. Allergy 2024; 79:2732-2747. [PMID: 39003573 PMCID: PMC11449672 DOI: 10.1111/all.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND While B-cells have historically been implicated in allergy development, a growing body of evidence supports their role in atopic dermatitis (AD). B-cell differentiation across ages in AD, and its relation to disease severity scores, has not been well defined. OBJECTIVE To compare the frequency of B-cell subsets in blood of 0-5, 6-11, 12-17, and ≥18 years old patients with AD versus age-matched controls. METHODS Flow cytometry was used to measure B-cell subset frequencies in the blood of 27 infants, 17 children, 11 adolescents, and 31 adults with moderate-to-severe AD and age-matched controls. IgD/CD27 and CD24/CD38 core gating systems and an 11-color flow cytometry panel were used to determine frequencies of circulating B-cell subsets. Serum total and allergen-specific IgE (sIgEs) levels were measured using ImmunoCAP®. RESULTS Adolescents with AD had lower frequencies of major B-cells subsets (p < .03). CD23 expression increased with age and was higher in AD compared to controls across all age groups (p < .04). In AD patients, multiple positive correlations were observed between IL-17-producing T-cells and B-cell subsets, most significantly non-switched memory (NSM) B-cells (r = .41, p = .0005). AD severity positively correlated with a list of B-cell subsets (p < .05). IL-9 levels gradually increased during childhood, reaching a peak in adolescence, paralleling allergen sensitization, particularly in severe AD. Principal component analysis of the aggregated environmental sIgE data showed that while controls across all ages tightly clustered together, adolescents with AD demonstrated distinct clustering patterns relative to controls. CONCLUSIONS Multiple correlations between B-cells and T-cells, as well as disease severity measures, suggest a complex interplay of immune pathways in AD. Unique B-cell signature during adolescence, with concurrent allergen sensitization and IL-9 surge, point to a potentially wider window of opportunity to implement interventions that may prevent the progression of the atopic march.
Collapse
Affiliation(s)
- Tali Czarnowicki
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Shaare Zedek Medical Center, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden David
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kazuhiko Yamamura
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Joseph Han
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen He
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana B Pavel
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob Glickman
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taylor Erickson
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Yeriel Estrada
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Stephanie M. Rangel
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Bredewold OW, Moest WT, de Fijter JW, Meijers E, Bruchfeld A, Skov K, Svensson MHS, Chan J, Mjornstedt L, Sorensen SS, Fellstrom B, Feltkamp MCW, van Zonneveld AJ, Rotmans JI. Attenuation of Torque teno viral load over time in kidney transplantation recipients treated with calcineurin inhibitors is mitigated after conversion to belatacept. J Med Virol 2024; 96:e29905. [PMID: 39228322 DOI: 10.1002/jmv.29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Torque Teno Virus (TTV) is a non-pathogenic anellovirus, highly prevalent in healthy populations. Variations in its viral load have been associated with states of diminished immunity, as occurs after organ transplantation. It is hypothesized that TTV-load might be used as a diagnostic tool to guide prescription and dosing of immunosuppressive drugs. Not much is known about the effects of combined immunosuppressive drugs on TTV replication in renal transplantation. Belatacept was introduced to counter side-effects of calcineurin inhibitors (CNI). It was never widely adopted, mainly because its association with increased risk of rejection. To investigate the differential effects of a regimen based on calcineurin inhibitors versus belatacept on TTV-loads, we measured TTV-levels in 105 patients from two randomized controlled trials in kidney transplant recipients (KTRs). We observed that time after transplantation was inversely related to TTV-levels of patients that remained on a CNI-containing regime, whereas this decline over time was diminished after conversion to belatacept. In addition, a correlation with tacrolimus-trough levels and age were found. Our study is the first report on the impact of conversion from CNI to belatacept on TTV-levels in KTR. In conclusion, the time-related decline in TTV-levels is mitigated after conversion from CNI to belatacept.
Collapse
Affiliation(s)
- O W Bredewold
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - W T Moest
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - J W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Department of Nephrology, Antwerp University Medical Center, Edegem, Belgium
| | - E Meijers
- Department of Medical Microbiology and Infection Control, Leiden University Center for Infectious diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - A Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - K Skov
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - M H S Svensson
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Nephrology, Akershus University Hospital, Lorenskog, Norway
| | - J Chan
- Department of Nephrology, Akershus University Hospital, Lorenskog, Norway
| | - L Mjornstedt
- Transplantation Institute, Sahlgrenska University Hospital, Goteborg, Sweden
| | - S S Sorensen
- Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Fellstrom
- Department of Medical Science, Renal Unit, University Hospital, Uppsala, Sweden
| | - M C W Feltkamp
- Department of Medical Microbiology and Infection Control, Leiden University Center for Infectious diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - A J van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - J I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Pan C, Ma X, Yao Y, Wang C. EBV-Positive Intravascular Large B-Cell Lymphoma of the Small Intestine: A Case Report and Literature Review. Int J Surg Pathol 2024; 32:586-593. [PMID: 37431259 DOI: 10.1177/10668969231183637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Intravascular large B-cell lymphoma (IVLBCL) is a rare lymphoma that affects the brain, skin, and bone marrow. We describe the case of a 75-year-old man who was admitted to the hospital after 4 h of stomach aches. A thorough physical examination indicated stomach discomfort and skin discoloration. Laboratory tests revealed thrombocytopenia and elevated lactate dehydrogenase levels. A computed tomography scan of the abdomen revealed that the small intestine wall was thickened, edematous, and necrotic. The necrotic small bowel was surgically removed, revealing many little round, homogenous, and unusual cells in the mesenteric vein. In-situ hybridization revealed that these cells were positive for PAX5, CD20, CD79a, CD10, and BCL2, as well as Epstein-Barr virus-encoded small RNA. After 1 week of hospitalization without treatment, the patient was diagnosed with IVLBCL and died of multiple organ dysfunction syndrome. IVLBCL is a rare illness that affects the small intestine and possibly the gastrointestinal system. It has an insidious start, a fast development, and a dismal prognosis. Knowing its clinicopathologic traits helps in understanding the illness, making an early diagnosis, and preventing rapid worsening.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Xiaoling Ma
- Department of Pathology, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Yanfei Yao
- Department of Pathology, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Chunyan Wang
- Department of Pathology, Kunming Medical University First Affiliated Hospital, Kunming, China
| |
Collapse
|
13
|
Zhou F, Wang Z, Zhang G, Wu Y, Xiong Y. Immunosenescence and inflammaging: Conspiracies against alveolar bone turnover. Oral Dis 2024; 30:1806-1817. [PMID: 37288702 DOI: 10.1111/odi.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Inflammaging and immunosenescence are characteristics of senescent immune system alterations. This review provides insights into inflammaging and immunosenescence in periodontitis and focuses on the innerlink of inflammaging and immunosenescence in alveolar bone turnover from a perspective of cell-cell interaction. METHODS This review is conducted by a narrative approach to discuss the effect of inflammaging and immunosenescence in aging-related alveolar bone loss. A comprehensive literature research in PubMed and Google was applied to identify reports in English. RESULTS Inflammaging is concerned with abnormal M1 polarization and increasing circulating inflammatory cytokines, while immunosenescence involves reduced infection and vaccine responses, depressed antimicrobial function, and infiltration of aged B cells and memory T cells. TLR-mediated inflammaging and altered adaptive immunity significantly affect alveolar bone turnover and aggravate aging-related alveolar bone loss. Besides, energy consumption also plays a vital role in aged immune and skeletal system of periodontitis. CONCLUSIONS Senescent immune system exerts a significant function in aging-related alveolar bone loss. Inflammaging and immunosenescence interact functionally and mechanistically, which affects alveolar bone turnover. Therefore, further clinical treatment strategies targeting alveolar bone loss could be based on the specific molecular mechanism connecting inflammaging, immunosenescence, and alveolar bone turnover.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Lagou MK, Argyris DG, Vodopyanov S, Gunther-Cummins L, Hardas A, Poutahidis T, Panorias C, DesMarais S, Entenberg C, Carpenter RS, Guzik H, Nishku X, Churaman J, Maryanovich M, DesMarais V, Macaluso FP, Karagiannis GS. Morphometric Analysis of the Thymic Epithelial Cell (TEC) Network Using Integrated and Orthogonal Digital Pathology Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584509. [PMID: 38559037 PMCID: PMC10979902 DOI: 10.1101/2024.03.11.584509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Dimitrios G Argyris
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Stepan Vodopyanov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Leslie Gunther-Cummins
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Alexandros Hardas
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, United Kingdom
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Panorias
- Division of Statistics and Operational Research, Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia DesMarais
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Conner Entenberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hillary Guzik
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Xheni Nishku
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Joseph Churaman
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Vera DesMarais
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Frank P Macaluso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| |
Collapse
|
15
|
Sharma R. Exploring the emerging bidirectional association between inflamm-aging and cellular senescence in organismal aging and disease. Cell Biochem Funct 2024; 42:e3970. [PMID: 38456500 DOI: 10.1002/cbf.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
There is strong evidence that most individuals in the elderly population are characterized by inflamm-aging which refers to a subtle increase in the systemic pro-inflammatory environment and impaired innate immune activation. Although a variety of distinct factors are associated with the progression of inflamm-aging, emerging research is demonstrating a dynamic relationship between the processes of cellular senescence and inflamm-aging. Cellular senescence is a recognized factor governing organismal aging, and through a characteristic secretome, accumulating senescent cells can induce and augment a pro-inflammatory tissue environment that provides a rationale for immune system-independent activation of inflamm-aging and associated diseases. There is also accumulating evidence that inflamm-aging or its components can directly accelerate the development of senescent cells and ultimately senescent cell burden in tissues in a likely vicious inflammatory loop. The present review is intended to describe the emerging senescence-based molecular etiology of inflamm-aging as well as the dynamic reciprocal interactions between inflamm-aging and cellular senescence. Therapeutic interventions concurrently targeting cellular senescence and inflamm-aging are discussed and limitations as well as research opportunities have been deliberated. An effort has been made to provide a rationale for integrating inflamm-aging with cellular senescence both as an underlying cause and therapeutic target for further studies.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
16
|
Zhu L, Tang Z, Hu R, Gu M, Yang Y. Ageing and Inflammation: What Happens in Periodontium? Bioengineering (Basel) 2023; 10:1274. [PMID: 38002398 PMCID: PMC10669535 DOI: 10.3390/bioengineering10111274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with a high incidence and severity in the elderly population, making it a significant public health concern. Ageing is a primary risk factor for the development of periodontitis, exacerbating alveolar bone loss and leading to tooth loss in the geriatric population. Despite extensive research, the precise molecular mechanisms underlying the relationship between ageing and periodontitis remain elusive. Understanding the intricate mechanisms that connect ageing and inflammation may help reveal new therapeutic targets and provide valuable options to tackle the challenges encountered by the rapidly expanding global ageing population. In this review, we highlight the latest scientific breakthroughs in the pathways by which inflammaging mediates the decline in periodontal function and triggers the onset of periodontitis. We also provide a comprehensive overview of the latest findings and discuss potential avenues for future research in this critical area of investigation.
Collapse
Affiliation(s)
| | | | | | | | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China; (L.Z.); (Z.T.); (R.H.); (M.G.)
| |
Collapse
|
17
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Aghamohamadi N, Shahba F, Zarezadeh Mehrabadi A, Khorramdelazad H, Karimi M, Falak R, Emameh RZ. Age-dependent immune responses in COVID-19-mediated liver injury: focus on cytokines. Front Endocrinol (Lausanne) 2023; 14:1139692. [PMID: 37654571 PMCID: PMC10465349 DOI: 10.3389/fendo.2023.1139692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.
Collapse
Affiliation(s)
- Nazanin Aghamohamadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
19
|
Vallet H, Guidet B, Boumendil A, De Lange DW, Leaver S, Szczeklik W, Jung C, Sviri S, Beil M, Flaatten H. The impact of age-related syndromes on ICU process and outcomes in very old patients. Ann Intensive Care 2023; 13:68. [PMID: 37542186 PMCID: PMC10403479 DOI: 10.1186/s13613-023-01160-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023] Open
Abstract
In this narrative review, we describe the most important age-related "syndromes" found in the old ICU patients. The syndromes are frailty, comorbidity, cognitive decline, malnutrition, sarcopenia, loss of functional autonomy, immunosenescence and inflam-ageing. The underlying geriatric condition, together with the admission diagnosis and the acute severity contribute to the short-term, but also to the long-term prognosis. Besides mortality, functional status and quality of life are major outcome variables. The geriatric assessment is a key tool for long-term qualitative outcome, while immediate severity accounts for acute mortality. A poor functional baseline reduces the chances of a successful outcome following ICU. This review emphasises the importance of using a geriatric assessment and considering the older patient as a whole, rather than the acute illness in isolation, when making decisions regarding intensive care treatment.
Collapse
Affiliation(s)
- Hélène Vallet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), Department of Geriatrics, Saint Antoine, Assistance Publique Hôpitaux de Paris (AP-HP), Sorbonne Université, F75012, Paris, France
| | - Bertrand Guidet
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, Hôpital Saint-Antoine, service de réanimation, Sorbonne Université, INSERM, AP-HP, 75012, Paris, France.
| | - Ariane Boumendil
- service de réanimation, AP-HP, Hôpital Saint-Antoine, F75012, Paris, France
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Susannah Leaver
- Department of Critical Care Medicine, St George's Hospital London, London, England
| | - Wojciech Szczeklik
- Intensive Care and Perioperative Medicine Division, Jagiellonian University Medical College, Kraków, Poland
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sigal Sviri
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Michael Beil
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Hans Flaatten
- Department of Clinical Medicine, Department of Research and Developement, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
van der Putten GJ, de Baat C. An Overview of Systemic Health Factors Related to Rapid Oral Health Deterioration among Older People. J Clin Med 2023; 12:4306. [PMID: 37445340 DOI: 10.3390/jcm12134306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The oral health of older individuals can be negatively impacted by various systemic health factors, leading to rapid oral health deterioration. This paper aims to present an overview of the published evidence on systemic health factors that contribute to rapid oral health deterioration in older individuals, and to explore the implications of these factors for both general healthcare and oral healthcare provision. Older people are at risk of experiencing adverse reactions to medications due to multimorbidity, polypharmacy, and changes in pharmacokinetics and pharmacodynamics. Hyposalivation, a significant side effect of some medications, can be induced by both the type and number of medications used. Frailty, disability, sarcopenia, care dependency, and limited access to professional oral healthcare can also compromise the oral health of older people. To prevent rapid oral health deterioration, a comprehensive approach is required that involves effective communication between oral healthcare providers, other healthcare providers, and informal caregivers. Oral healthcare providers have a responsibility to advocate for the importance of maintaining adequate oral health and to raise awareness of the serious consequences of weakened oral health. By doing so, we can prevent weakened oral health from becoming a geriatric syndrome.
Collapse
Affiliation(s)
- Gert-Jan van der Putten
- Orpea Dagelijks Leven, 7327 AA Apeldoorn, The Netherlands
- Department of Dentistry, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Cees de Baat
- Fresh Unieke Mondzorg, 2411 NT Bodegraven, The Netherlands
| |
Collapse
|
22
|
Allen JC, Toapanta FR, Baliban SM, Sztein MB, Tennant SM. Reduced immunogenicity of a live Salmonella enterica serovar Typhimurium vaccine in aged mice. Front Immunol 2023; 14:1190339. [PMID: 37207226 PMCID: PMC10188964 DOI: 10.3389/fimmu.2023.1190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Non-typhoidal Salmonella (NTS) is responsible for a high burden of foodborne infections and deaths worldwide. In the United States, NTS infections are the leading cause of hospitalizations and deaths due to foodborne illnesses, and older adults (≥65 years) are disproportionately affected by Salmonella infections. Due to this public health concern, we have developed a live attenuated vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), against Salmonella enterica serovar Typhimurium, a common serovar of NTS. Little is known about the effect of age on oral vaccine responses, and due to the decline in immune function with age, it is critical to evaluate vaccine candidates in older age groups during early product development. Methods In this study, adult (six-to-eight-week-old) and aged (18-month-old) C57BL/6 mice received two doses of CVD 1926 (109 CFU/dose) or PBS perorally, and animals were evaluated for antibody and cell-mediated immune responses. A separate set of mice were immunized and then pre-treated with streptomycin and challenged orally with 108 CFU of wild-type S. Typhimurium SL1344 at 4 weeks postimmunization. Results Compared to PBS-immunized mice, adult mice immunized with CVD 1926 had significantly lower S. Typhimurium counts in the spleen, liver, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of vaccinated versus PBS aged mice. Aged mice exhibited reduced Salmonella-specific antibody titers in the serum and feces following immunization with CVD 1926 compared to adult mice. In terms of T cell responses (T-CMI), immunized adult mice showed an increase in the frequency of IFN-γ- and IL-2-producing splenic CD4 T cells, IFN-γ- and TNF-α-producing Peyer's Patch (PP)-derived CD4 T cells, and IFN-γ- and TNF-α-producing splenic CD8 T cells compared to adult mice administered PBS. In contrast, in aged mice, T-CMI responses were similar in vaccinated versus PBS mice. CVD 1926 elicited significantly more PP-derived multifunctional T cells in adult compared to aged mice. Conclusion These data suggest that our candidate live attenuated S. Typhimurium vaccine, CVD 1926, may not be sufficiently protective or immunogenic in older humans and that mucosal responses to live-attenuated vaccines decrease with increasing age.
Collapse
Affiliation(s)
- Jessica C. Allen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Shaikh SB, Goracci C, Tjitropranoto A, Rahman I. Impact of aging on immune function in the pathogenesis of pulmonary diseases: potential for therapeutic targets. Expert Rev Respir Med 2023; 17:351-364. [PMID: 37078192 PMCID: PMC10330361 DOI: 10.1080/17476348.2023.2205127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Several immunological alterations that occur during pulmonary diseases often mimic alterations observed in the aged lung. From the molecular perspective, pulmonary diseases and aging partake in familiar mechanisms associated with significant dysregulation of the immune systems. Here, we summarized the findings of how aging alters immunity to respiratory conditions to identify age-impacted pathways and mechanisms that contribute to the development of pulmonary diseases. AREAS COVERED The current review examines the impact of age-related molecular alterations in the aged immune system during various lung diseases, such as COPD, IPF, Asthma, and alongside many others that could possibly improve on current therapeutic interventions. Moreover, our increased understanding of this phenomenon may play a primary role in shaping immunomodulatory strategies to boost outcomes in the elderly. Here, the authors present new insights into the context of lung-related diseases and describe the alterations in the functioning of immune cells during various pulmonary conditions altered with age. EXPERT OPINION The expert opinion provided the concepts on how aging alters immunity during pulmonary conditions, and suggests the associated mechanisms during the development of lung diseases. As a result, it becomes important to comprehend the complex mechanism of aging in the immune lung system.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Paparazzo E, Geracitano S, Lagani V, Citrigno L, Bartolomeo D, Aceto MA, Bruno F, Maletta R, Passarino G, Montesanto A. Thymic function and survival at advance ages in nursing home residents from Southern Italy. Immun Ageing 2023; 20:16. [PMID: 37038200 PMCID: PMC10084596 DOI: 10.1186/s12979-023-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Immunosenescence is a complex process characterized by an age-related remodelling of immune system. The prominent effects of the immunosenescence process is the thymic involution and, consequently, the decreased numbers and functions of T cells. Since thymic involution results in a collapse of the T-cell receptor (TCR) repertoire, a reliable biomarker of its activity is represented by the quantification of signal joint T-cell receptor rearrangement excision circles (sjTRECs) levels. Although it is reasonable to think that thymic function could play a crucial role on elderly survival, only a few studies investigated the relationship between an accurate measurement of human thymic function and survival at old ages. METHODS AND FINDINGS By quantifying the amount sjTRECs by real-time polymerase chain reaction (PCR), the decrease in thymic output in 241 nursing home residents from Calabria (Southern Italy) was evaluated to investigate the relationship between thymic function and survival at old ages. We found that low sjTREC levels were associated with a significant increased risk of mortality at older ages. Nursing home residents with lower sjTREC exhibit a near 2-fold increase in mortality risk compared to those with sjTREC levels in a normal range. CONCLUSION Thymic function failure is an independent predictor of mortality among elderly nursing home residents. sjTREC represents a biomarker of effective ageing as its blood levels could anticipate individuals at high risk of negative health outcomes. The identification of these subjects is crucial to manage older people's immune function and resilience, such as, for instance, to plan more efficient vaccinal campaigns in older populations.
Collapse
Affiliation(s)
- Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, 23952, Saudi Arabia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, King Abdullah University of Science and Technology KAUST, Thuwal, 23952, Saudi Arabia
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Denise Bartolomeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Mirella Aurora Aceto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, Lamezia Terme (CZ), 88046, Italy
- Association for Neurogenetic Research (ARN), Lamezia Terme (CZ), 88046, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, Lamezia Terme (CZ), 88046, Italy
- Association for Neurogenetic Research (ARN), Lamezia Terme (CZ), 88046, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
25
|
Bell A, Hewins B, Bishop C, Fortin A, Wang J, Creamer JL, Collen J, Werner JK. Traumatic Brain Injury, Sleep, and Melatonin-Intrinsic Changes with Therapeutic Potential. Clocks Sleep 2023; 5:177-203. [PMID: 37092428 PMCID: PMC10123665 DOI: 10.3390/clockssleep5020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United States and is associated with numerous chronic sequelae long after the point of injury. One of the most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work over the past two decades has contributed to our understanding of the role of melatonin as a sleep regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We also discuss potential benefits and a path forward regarding the therapeutic management of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the circadian rhythm.
Collapse
Affiliation(s)
- Allen Bell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Bryson Hewins
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Courtney Bishop
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Amanda Fortin
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Jonathan Wang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | | | - Jacob Collen
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - J. Kent Werner
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| |
Collapse
|
26
|
Molecular Markers of Blood Cell Populations Can Help Estimate Aging of the Immune System. Int J Mol Sci 2023; 24:ijms24065708. [PMID: 36982782 PMCID: PMC10055688 DOI: 10.3390/ijms24065708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Aging of the immune system involves functional changes in individual cell populations, in hematopoietic tissues and at the systemic level. They are mediated by factors produced by circulating cells, niche cells, and at the systemic level. Age-related alterations in the microenvironment of the bone marrow and thymus cause a decrease in the production of naive immune cells and functional immunodeficiencies. Another result of aging and reduced tissue immune surveillance is the accumulation of senescent cells. Some viral infections deplete adaptive immune cells, increasing the risk of autoimmune and immunodeficiency conditions, leading to a general degradation in the specificity and effectiveness of the immune system in old age. During the COVID-19 pandemic, the state-of-the-art application of mass spectrometry, multichannel flow cytometry, and single-cell genetic analysis have provided vast data on the mechanisms of aging of the immune system. These data require systematic analysis and functional verification. In addition, the prediction of age-related complications is a priority task of modern medicine in the context of the increase in the aged population and the risk of premature death during epidemics. In this review, based on the latest data, we discuss the mechanisms of immune aging and highlight some cellular markers as indicators of age-related immune disbalance that increase the risk of senile diseases and infectious complications.
Collapse
|
27
|
Wu D, Bi X, Li P, Xu D, Qiu J, Li K, Zheng S, Chow KHM. Enhanced insulin-regulated phagocytic activities support extreme health span and longevity in multiple populations. Aging Cell 2023; 22:e13810. [PMID: 36883688 DOI: 10.1111/acel.13810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The immune system plays a central role in many processes of age-related disorders and it remains unclear if the innate immune system may play roles in shaping extreme longevity. By an integrated analysis with multiple bulk and single cell transcriptomic, so as DNA methylomic datasets of white blood cells, a previously unappreciated yet commonly activated status of the innate monocyte phagocytic activities is identified. Detailed analyses revealed that the life cycle of these monocytes is enhanced and primed to a M2-like macrophage phenotype. Functional characterization unexpectedly revealed an insulin-driven immunometabolic network which supports multiple aspects of phagocytosis. Such reprogramming is associated to a skewed trend of DNA demethylation at the promoter regions of multiple phagocytic genes, so as a direct transcriptional effect induced by nuclear-localized insulin receptor. Together, these highlighted that preservation of insulin sensitivity is a key to healthy lifespan and extended longevity, via boosting the function of innate immune system in advanced ages.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Tumor Institute of The First Affiliated Hospital, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Peihu Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Jianmin Qiu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Tumor Institute of The First Affiliated Hospital, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Tumor Institute of The First Affiliated Hospital, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
28
|
A Comprehensive Analysis of Cytokine Network in Centenarians. Int J Mol Sci 2023; 24:ijms24032719. [PMID: 36769039 PMCID: PMC9916918 DOI: 10.3390/ijms24032719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Cytokines have been investigated extensively in elderly people, with conflicting results. We performed a comprehensive analysis of the plasma levels of 62 cytokines and growth factors involved in the regulation of the immune system, in healthy centenarians, and middle-aged controls. We confirmed the previously observed increase in the levels of several pro-inflammatory cytokines, such as TNF-α and IL-6, and found that several other cytokines, directly or indirectly involved in inflammation (such as IFN-α, IL-23, CCL-5), were present at higher levels in centenarians. We did not observe any increase in the levels of anti-inflammatory cytokines, with the notable exception of the Th2-shifting cytokine IL-19. No relevant difference was observed in cytokines regulating T cell immunity. Several growth factors having a role in regulating immunity, such as G-CSF, GM-CSF, EGF, and VEGF, were upregulated in centenarians, too. Principal component analysis of the cytokine dataset showed that pro and anti-inflammatory cytokines were the variables that contributed the most to the variability of the data we observed.
Collapse
|
29
|
DeNotta S, McFarlane D. Immunosenescence and inflammaging in the aged horse. Immun Ageing 2023; 20:2. [PMID: 36609345 PMCID: PMC9817422 DOI: 10.1186/s12979-022-00325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
The equine population in the United States and worldwide now includes a higher percentage of geriatric horses than ever previously recorded, and as methods to treat and manage elderly equids are developed and refined, this aging population will likely continue to expand. A better understanding of how horses age and the effect of age on immunity and disease susceptibility is needed to enable targeted preventative healthcare strategies for aged horses. This review article outlines the current state of knowledge regarding the effect of aging on immunity, vaccine responsiveness, and disease risk in the horse, highlighting similarities and differences to what is observed in aged humans. Horses show similar but milder age-related alterations in immune function to those reported in people. Decreases in lymphocyte proliferation and antibody production and diminished response to vaccination have all been documented in elderly horses, however, increased risk of infectious disease is not commonly reported. Aged horses also show evidence of a proinflammatory state (inflammaging) yet appear less susceptible to the chronic diseases of people for which inflammation is a risk factor. Information is currently lacking as to why the horse does not experience the same risk of age-related disease (e.g., cancer, heart disease, neurodegeneration) as people, although a lack of negative lifestyle habits, differences in diet, exercise, genetics and physiology may all contribute to improved health outcomes in the older horse.
Collapse
Affiliation(s)
- Sally DeNotta
- grid.15276.370000 0004 1936 8091Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL USA
| | - Dianne McFarlane
- grid.15276.370000 0004 1936 8091Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL USA
| |
Collapse
|
30
|
Ellwanger JH, Kulmann-Leal B, Ziliotto M, Chies JAB. HIV Infection, Chromosome Instability, and Micronucleus Formation. Viruses 2023; 15:155. [PMID: 36680195 PMCID: PMC9867034 DOI: 10.3390/v15010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Genome integrity is critical for proper cell functioning, and chromosome instability can lead to age-related diseases, including cancer and neurodegenerative disorders. Chromosome instability is caused by multiple factors, including replication stress, chromosome missegregation, exposure to pollutants, and viral infections. Although many studies have investigated the effects of environmental or lifestyle genotoxins on chromosomal integrity, information on the effects of viral infections on micronucleus formation and other chromosomal aberrations is still limited. Currently, HIV infection is considered a chronic disease treatable by antiretroviral therapy (ART). However, HIV-infected individuals still face important health problems, such as chronic inflammation and age-related diseases. In this context, this article reviews studies that have evaluated genomic instability using micronucleus assays in the context of HIV infection. In brief, HIV can induce chromosome instability directly through the interaction of HIV proteins with host DNA and indirectly through chronic inflammation or as a result of ART use. Connections between HIV infection, immunosenescence and age-related disease are discussed in this article. The monitoring of HIV-infected individuals should consider the increased risk of chromosome instability, and lifestyle interventions, such as reduced exposure to genotoxins and an antioxidant-rich diet, should be considered. Therapies to reduce chronic inflammation in HIV infection are needed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Postgraduate Program in Genetics and Molecular Biology (PPGBM), Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | | | | | - José Artur Bogo Chies
- Postgraduate Program in Genetics and Molecular Biology (PPGBM), Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| |
Collapse
|
31
|
The Relationship between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process. Int J Mol Sci 2022; 23:ijms232315182. [PMID: 36499506 PMCID: PMC9735967 DOI: 10.3390/ijms232315182] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
During Inflammaging, a dysregulation of the immune cell functions is generated, and these cells acquire a senescent phenotype with an increase in pro-inflammatory cytokines and ROS. This increase in pro-inflammatory molecules contributes to the chronic inflammation and oxidative damage of biomolecules, classically observed in the Inflammaging process. One of the most critical oxidative damages is generated to the host DNA. Damaged DNA is located out of the natural compartments, such as the nucleus and mitochondria, and is present in the cell's cytoplasm. This DNA localization activates some DNA sensors, such as the cGAS/STING signaling pathway, that induce transcriptional factors involved in increasing inflammatory molecules. Some of the targets of this signaling pathway are the SASPs. SASPs are secreted pro-inflammatory molecules characteristic of the senescent cells and inducers of ROS production. It has been suggested that oxidative damage to nuclear and mitochondrial DNA generates activation of the cGAS/STING pathway, increasing ROS levels induced by SASPs. These additional ROS increase oxidative DNA damage, causing a loop during the Inflammaging. However, the relationship between the cGAS/STING pathway and the increase in ROS during Inflammaging has not been clarified. This review attempt to describe the potential connection between the cGAS/STING pathway and ROS during the Inflammaging process, based on the current literature, as a contribution to the knowledge of the molecular mechanisms that occur and contribute to the development of the considered adaptative Inflammaging process during aging.
Collapse
|
32
|
Munteanu AN, Surcel M, Isvoranu G, Constantin C, Neagu M. Healthy Ageing Reflected in Innate and Adaptive Immune Parameters. Clin Interv Aging 2022; 17:1513-1526. [PMID: 36247200 PMCID: PMC9555218 DOI: 10.2147/cia.s375926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of the paper is to establish and quantify the relation between healthy ageing and the innate and adaptive immune parameters as indicators of age-related diseases. Patients In order to observe the immunological changes that occur according to age, several humoral and cellular immune parameters were investigated for 288 healthy donors (30-80 years). Subjects' selection was done using clinical, biochemical and immunological parameters of inclusion/exclusion criteria from SENIEUR protocol. Results Age-related changes were observed for both humoral and cellular immune parameters. Lymphocyte immunophenotyping revealed several significant differences in the distribution of cells, both intra- and inter-age groups, namely decreased values of T-CD3+, T-CD8+ and NK cells, and elevated values for T-CD4+, T-CD4+/T-CD8+ ratio and B cells. The percentages of unstimulated neutrophils that show basal oxidative activity and the intensity of this activity had an increasing tendency age-related. The percentage of N-Formyl-Methionyl-Leucyl-Phenylalanine stimulated neutrophils clearly decreases with age, and is associated with an increasing intensity of oxidative activity. Our data also have shown an increased percentage of oxidative neutrophils after phorbol 12-myristate 13-acetate stimulation and an elevated oxidative activity with age. Conclusion Overall healthy ageing is governed by some immune-related deregulations that account for immune exhaustion due to numerous developed immune processes during a life-time and the age-related diseases.
Collapse
Affiliation(s)
- Adriana Narcisa Munteanu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania,Doctoral School of Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Gheorghița Isvoranu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania,Department of Pathology, Colentina University Hospital, Bucharest, 020125, Romania
| | - Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania,Doctoral School of Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania,Department of Pathology, Colentina University Hospital, Bucharest, 020125, Romania,Correspondence: Monica Neagu, Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Bucharest, 050096, Romania, Tel/Fax +4021-3194528, Email
| |
Collapse
|
33
|
Tingö L, Hutchinson AN, Bergh C, Stiefvatter L, Schweinlin A, Jensen MG, Krüger K, Bischoff SC, Brummer RJ. Potential Modulation of Inflammation by Probiotic and Omega-3 Supplementation in Elderly with Chronic Low-Grade Inflammation—A Randomized, Placebo-Controlled Trial. Nutrients 2022; 14:nu14193998. [PMID: 36235651 PMCID: PMC9573426 DOI: 10.3390/nu14193998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022] Open
Abstract
Probiotic and omega-3 supplements have been shown to reduce inflammation, and dual supplementation may have synergistic health effects. We investigated if the novel combination of a multi-strain probiotic (containing B. lactis Bi-07, L. paracasei Lpc-37, L. acidophilus NCFM, and B. lactis Bl-04) alongside omega-3 supplements reduces low-grade inflammation as measured by high-sensitivity C-reactive protein (hs-CRP) in elderly participants in a proof-of-concept, randomized, placebo-controlled, parallel study (NCT04126330). In this case, 76 community-dwelling elderly participants (median: 71.0 years; IQR: 68.0–73.8) underwent an intervention with the dual supplement (n = 37) or placebo (n = 39) for eight weeks. In addition to hs-CRP, cytokine levels and intestinal permeability were also assessed at baseline and after the eight-week intervention. No significant difference was seen for hs-CRP between the dual supplement group and placebo. However, interestingly, supplementation did result in significant increases in the level of the anti-inflammatory marker IL-10. In addition, dual supplementation increased levels of valeric acid, further suggesting the potential of the supplements in reducing inflammation and conferring health benefits. Together, the results suggest that probiotic and omega-3 dual supplementation exerts modest effects on inflammation and may have potential use as a non-pharmacological treatment for low-grade inflammation in the elderly.
Collapse
Affiliation(s)
- Lina Tingö
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, 70362 Örebro, Sweden
- Food and Health Programme, Örebro University, 70362 Örebro, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, 70362 Örebro, Sweden
- Correspondence: ; Tel.: +46-737-455-302
| | - Cecilia Bergh
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 70362 Örebro, Sweden
| | - Lena Stiefvatter
- Department of Nutritional Medicine and Prevention, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anna Schweinlin
- Department of Nutritional Medicine and Prevention, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Kirsten Krüger
- Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 9101 Wageningen, The Netherlands
| | - Stephan C. Bischoff
- Department of Nutritional Medicine and Prevention, University of Hohenheim, 70599 Stuttgart, Germany
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, 70362 Örebro, Sweden
- Food and Health Programme, Örebro University, 70362 Örebro, Sweden
| |
Collapse
|
34
|
Longo PL, de Aquino RDC, Ortiz SRM, de Oliveira RS, Gavioli A, do Amaral JB, Monteiro FR, de Almeida Franco RR, Mereu GR, Bachi ALL, de Lima AJB, Laurentino GC, Bastos MF. Effects of physical distancing by COVID-19 pandemic on diet quality, neurological and immunological markers, and fecal microbiota of Brazilian older women. Front Nutr 2022; 9:972100. [PMID: 36211483 PMCID: PMC9534123 DOI: 10.3389/fnut.2022.972100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Physical distancing was used to prevent transmission of COVID-19, however there are concerns that this may promote harmful impacts on health, such as reduced levels of physical practice and changes in food intake and gut microbiota composition. This study evaluated the impacts of 6 months physical distancing on Brazilian older women upon body mass index (BMI), strength, physical activity level (IPAQ), eating habits, neurological markers (brain-derived neurotrophic factor-BDNF and cortisol), cytokines (IL-2, IL-5, IL-6, IL-10, interferon-IFN-γ, tumor necrosis factor-TNF-α), aging-associated markers (vascular endothelial growth factor-VEGF, insulin-like growth factor-IGF-1, klotho and thymic stromal lymphopoietin-TSLP), besides specific groups of fecal microbiota. Fifteen women, over 60 years old, residents of São Paulo state (Brazil), were evaluated in March and in September 2020. The older adult women, with a mean age 66 ± 6.2 years presented significantly increased BMI and high effect size for non-protective foods consumption, reduced light physical activity and strength 6 months following the physical distancing. Furthermore, the serum concentration of IFN-γ, IGF-1, and IFN-γ/IL-5 were significantly higher, while lower concentration of IL-2 and IL-5 were observed 6 months after the physical distancing. Significant increase was noted only to Blautia spp. abundance after 6 months of physical distancing. Several correlations were observed at both before and after physical distancing, however, interestingly, many of them were lost or inverted 6 months following, while new ones emerged. Taken together, these results showed that lifestyle changes and stress conditions addressed by physical distancing from the COVID-19 pandemic impacted the health of older women included in the present study. Therefore, future follow-up studies are essential to propose interventions in order to restore the health conditions observed before the pandemic period, and thus to maintain the quality of life of older adults in different socioeconomic contexts.
Collapse
Affiliation(s)
| | | | | | | | - Aline Gavioli
- Postgraduate Program in Aging Sciences, São Judas Tadeu University, São Paulo, Brazil
| | | | | | | | | | - André Luis Lacerda Bachi
- ENT Laboratory, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Postgraduate Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| | | | | | - Marta Ferreira Bastos
- Postgraduate Program in Aging Sciences, São Judas Tadeu University, São Paulo, Brazil
- *Correspondence: Marta Ferreira Bastos,
| |
Collapse
|
35
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
36
|
Developmental Exposure to Endocrine Disrupter DDT Interferes with Age-Related Involution of Thymus. Int J Mol Sci 2022; 23:ijms23126678. [PMID: 35743120 PMCID: PMC9223823 DOI: 10.3390/ijms23126678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
The impact of endocrine-disrupting chemicals on the development and involution of the immune system is a possible reason for the increased incidence of disorders associated with inappropriate immune function. The thymus is a lymphoid and also an endocrine organ, and, accordingly, its development and functioning may be impaired by endocrine disruptors. The aim was to evaluate age-related thymus involution in mature rats exposed to the endocrine disruptor DDT during prenatal and postnatal ontogeny. Methodology included in vivo experiment on male Wistar rats exposed to low doses of DDT during prenatal and postnatal development and morphological assessment of thymic involution, including the immunohistochemical detection of proliferating thymocytes. The study was carried out at the early stage of involution. Results: DDT-exposed rats exhibited a normal anatomy, and the relative weight of the thymus was within the control ranges. Histological and immunohistochemical examinations revealed increased cellularity of the cortex and the medulla, higher content of lymphoblasts, and more intensive proliferation rate of thymocytes compared to the control. Evaluation of thymic epithelial cells revealed a higher rate of thymic corpuscles formation. Conclusion: The data obtained indicate that endocrine disrupter DDT disturbs postnatal development of the thymus. Low-dose exposure to DDT during ontogeny does not suppress growth rate but violates the developmental program of the thymus by slowing down the onset of age-related involution and maintaining high cell proliferation rate. It may result in excessive formation of thymus-dependent areas in peripheral lymphoid organs and altered immune response.
Collapse
|
37
|
Kitamura M, Takazono T, Yamaguchi K, Tomura H, Yamamoto K, Harada T, Funakoshi S, Mukae H, Nishino T. Favorable Humoral Response to Third Dose of BNT162b2 in Patients Undergoing Hemodialysis. J Clin Med 2022; 11:jcm11082090. [PMID: 35456182 PMCID: PMC9024432 DOI: 10.3390/jcm11082090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Patients undergoing hemodialysis are known to exhibit low humoral responses to vaccines against severe acute respiratory syndrome coronavirus 2. In this study, we aimed to elucidate the humoral response to the third dose of BNT162b2 (Pfizer) in patients undergoing hemodialysis. We included 279 patients undergoing hemodialysis (69 ± 11 years, 65% male, median dialysis vintage: 69 months) and 189 healthcare workers (45 ± 13 years, 30% male) who received the third dose of BNT162b2. Anti-spike immunoglobulin G (anti-S IgG) antibody levels were measured 3−4.5 months after the second dose and 3 weeks after the third dose and were compared. Despite a significant difference in anti-S IgG antibody levels after the second dose between the two groups (patients: median 215 U/mL and healthcare workers: median 589 U/mL; p < 0.001), no significant difference in anti-S IgG antibody levels after the third dose was observed (patients: median 19,000 U/mL, healthcare workers: median 21,000 U/mL). Except for dialysis vintage (ρ = 0.209, p < 0.001), no other factors correlated with anti-S IgG antibody levels after the third vaccine dose in patients undergoing hemodialysis. Therefore, a favorable response to the third dose of BNT162b2 was observed in patients undergoing hemodialysis, irrespective of their backgrounds.
Collapse
Affiliation(s)
- Mineaki Kitamura
- Nagasaki Renal Center, Nagasaki 850-0032, Japan; (K.Y.); (H.T.); (T.H.); (S.F.)
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan;
- Correspondence: ; Tel.: +81-95-819-7282; Fax: +81-95-849-7274
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.T.); (K.Y.)
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan;
| | - Kosei Yamaguchi
- Nagasaki Renal Center, Nagasaki 850-0032, Japan; (K.Y.); (H.T.); (T.H.); (S.F.)
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan;
| | - Hideshi Tomura
- Nagasaki Renal Center, Nagasaki 850-0032, Japan; (K.Y.); (H.T.); (T.H.); (S.F.)
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan;
| | - Kazuko Yamamoto
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.T.); (K.Y.)
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan;
| | - Takashi Harada
- Nagasaki Renal Center, Nagasaki 850-0032, Japan; (K.Y.); (H.T.); (T.H.); (S.F.)
| | - Satoshi Funakoshi
- Nagasaki Renal Center, Nagasaki 850-0032, Japan; (K.Y.); (H.T.); (T.H.); (S.F.)
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan;
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan;
| |
Collapse
|
38
|
Priyadarsini N, Nanda P, Devi S, Mohapatra S. Sarcopenia: An Age-Related Multifactorial Disorder. Curr Aging Sci 2022; 15:209-217. [PMID: 35249518 DOI: 10.2174/1874609815666220304194539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Sarcopenia is an emerging clinical entity characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. It has been noted that sarcopenia is associated with various adverse health outcomes in the geriatric population like prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, alteration in the hormone levels, decreased neural innervation, low blood flow to the muscles, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the mechanism may help develop efficient preventive and therapeutic strategies which can improve the quality of life in elderly individuals. Thus, the objective of the present article is to review the literature regarding the mechanism involved in the development of sarcopenia in aged individuals.
Collapse
Affiliation(s)
- Nibedita Priyadarsini
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sujata Devi
- Department of Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subarna Mohapatra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
39
|
Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis 2022; 13:103-128. [PMID: 35111365 PMCID: PMC8782554 DOI: 10.14336/ad.2021.0927] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a prominent risk factor for cardiovascular diseases, which is the leading cause of death around the world. Recently, cellular senescence has received potential attention as a promising target in preventing cardiovascular diseases, including acute myocardial infarction, atherosclerosis, cardiac aging, pressure overload-induced hypertrophy, heart regeneration, hypertension, and abdominal aortic aneurysm. Here, we discuss the mechanisms underlying cellular senescence and describe the involvement of senescent cardiovascular cells (including cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts/myofibroblasts and T cells) in age-related cardiovascular diseases. Then, we highlight the targets (SIRT1 and mTOR) that regulating cellular senescence in cardiovascular disorders. Furthermore, we review the evidence that senescent cells can exert both beneficial and detrimental implications in cardiovascular diseases on a context-dependent manner. Finally, we summarize the emerging pro-senescent or anti-senescent interventions and discuss their therapeutic potential in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
40
|
Padilha de Lima A, Macedo Rogero M, Araujo Viel T, Garay-Malpartida HM, Aprahamian I, Lima Ribeiro SM. Interplay between Inflammaging, Frailty and Nutrition in Covid-19: Preventive and Adjuvant Treatment Perspectives. J Nutr Health Aging 2022; 26:67-76. [PMID: 35067706 PMCID: PMC8713542 DOI: 10.1007/s12603-021-1720-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
As humans age, their immune system undergoes modifications, including a low-grade inflammatory status called inflammaging. These changes are associated with a loss of physical and immune resilience, amplifying the risk of being malnourished and frail. Under the COVID-19 scenario, inflammaging increases the susceptibility to poor prognostics. We aimed to bring the current concepts of inflammaging and its relationship with frailty and COVID-19 prognostic; highlight the importance of evaluating the nutritional risk together with frailty aiming to monitor older adults in COVID-19 scenario; explore some compounds with potential to modulate inflammaging in perspective to manage the COVID-19 infection. Substances such as probiotics and senolytics can help reduce the high inflammatory status. Also, the periodic evaluation of nutrition risk and frailty will allow interventions, assuring the appropriate care.
Collapse
Affiliation(s)
- A Padilha de Lima
- Sandra Maria Lima Ribeiro, University of São Paulo- Public Health School, Av Dr. Arnaldo 715, Sao Paulo- SP- Brazil, e-mail:
| | | | | | | | | | | |
Collapse
|
41
|
Kasten-Jolly J, Lawrence DA. Differential blood leukocyte populations based on individual variances and age. Immunol Res 2022; 70:114-128. [PMID: 35023048 PMCID: PMC8754550 DOI: 10.1007/s12026-021-09257-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Blood was collected from the New York State Department of Health (NYSDOH) employees to assess variances in leukocyte numbers in January, May, and September throughout a year and over many years. Women and men of ages 20 to 80 volunteered to donate for this program. Most of the blood came from healthy individuals, and many remained healthy throughout the years of their blood donations. The major objective was to determine the extent that blood leukocyte numbers change so that transient vs more lingering changes may be helpful in assessing health status. Since some donors remained in the program for 14 years, age influences over time could be determined. Within a short period of 2-3 years, the flow cytometric immunophenotypic profile of blood lymphocyte is relatively stable with a CV% of < 20%. However, as humans age, the blood CD3+ T cell, CD8+ T cell, B cell, NKT cell, and CD4-/CD8- double-negative T cell (DN-T cell) subsets declined in cell numbers/μL, but the double-positive CD4+/CD8+ T cells (DP-T cells) increased in numbers. The extent and chronology of a variance, e.g., a subset exceeding its 75th or 90th percentile, might be indicative of a transient or chronic physiological or psychosocial stress affecting health or a developing pathology; however, because of the wide ranges of cell numbers/μL for each subset among individuals reported as healthy, everyone's immunity and health must be carefully evaluated. A CD4 to CD8 ratio (4/8R) of < 1 has been used to define an immunodeficiency such as HIV-induced AIDS, but a high 4/8R is less well associated with health status. A high 4/8R or granulocyte to lymphocyte ratio (GLR) might be an indicator of a stress, infection, or immune-related pathology. Sporadic and longitudinal increases of GLRs are reported. The results suggest that there are some age and sex differences in leukocyte numbers; stress influences on the blood profile of leukocytes likely exist. However, some values exceeding 2 standard deviations from means do not necessarily predict a health concern, whereas a longitudinal increase or decline might be indicative of a need for further evaluations.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA.
- School of Public Health, University of Albany, Rensselaer, NY, USA.
| |
Collapse
|
42
|
Witkowski JM. Immune system aging and the aging-related diseases in the COVIID-19 era. Immunol Lett 2022; 243:19-27. [PMID: 35108570 PMCID: PMC8801734 DOI: 10.1016/j.imlet.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022]
Abstract
The interest in the process of aging, and specifically in how aging affects the working of our immune system, has recently enormously grown among both specialists (immunologists and gerontologists) and representatives of other disciplines of health sciences. An obvious reason for this interest is the current pandemics of COVID-19, known to affect the elderly more than younger people. In this paper current knowledge about mechanisms and complex facets of human immune system aging is presented, stemming from the knowledge about the working of various parts of the immune system, and leading to understanding of immunological mechanisms of chronic, inflammatory, aging-related diseases and of COVID-19.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
43
|
Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev 2021; 71:101422. [PMID: 34391943 DOI: 10.1016/j.arr.2021.101422] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
During aging the immune system (IS) undergoes remarkable changes that collectively are known as immunosenescence. It is a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays a critical role in most chronic diseases in older people. For a long time, immunosenescence has been considered detrimental because it may lead to a low-grade, sterile chronic inflammation we proposed to call "inflammaging" and a progressive reduction in the ability to trigger effective antibody and cellular responses against infections and vaccinations. Recently, many scientists revised this negative meaning because it can be considered an essential adaptation/remodeling resulting from the lifelong immunological biography of single individuals from an evolutionary perspective. Inflammaging can be considered an adaptive process because it can trigger an anti-inflammatory response to counteract the age-related pro-inflammatory environment. Centenarians represent a valuable model to study the beneficial changes occurring in the IS with age. These extraordinary individuals reached the extreme limits of human life by slowing down the aging process and, in most cases, delaying, avoiding or surviving the major age-associated diseases. They indeed show a complex and heterogeneous phenotype determined by an improved ability to adapt and remodel in response to harmful stimuli. This review aims to point out the intimate relationship between immunosenescence and inflammaging and how these processes impact unsuccessful aging rather than longevity. We also describe the gut microbiota age-related changes as one of the significant triggers of inflammaging and the sex/gender differences in the immune system of the elderly, contributing to the sex/gender disparity in terms of epidemiology, pathophysiology, symptoms and severity of age-related diseases. Finally, we discuss how these phenomena could influence the susceptibility to COVID-19 infection.
Collapse
|
44
|
The Association of Anti-Inflammatory Diet Ingredients and Lifestyle Exercise with Inflammaging. Nutrients 2021; 13:nu13113696. [PMID: 34835952 PMCID: PMC8621229 DOI: 10.3390/nu13113696] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
One of the latest theories on ageing focuses on immune response, and considers the activation of subclinical and chronic inflammation. The study was designed to explain whether anti-inflammatory diet and lifestyle exercise affect an inflammatory profile in the Polish elderly population. Sixty individuals (80.2 ± 7.9 years) were allocated to a low-grade inflammation (LGI n = 33) or high-grade inflammation (HGI n = 27) group, based on C-reactive protein concentration (<3 or ≥3 mg/L) as a conventional marker of systemic inflammation. Diet analysis focused on vitamins D, C, E, A, β-carotene, n-3 and n-6 PUFA using single 24-h dietary recall. LGI demonstrated a lower n-6/n-3 PUFA but higher vitamin D intake than HGI. Physical performance based on 6-min walk test (6MWT) classified the elderly as physically inactive, whereby LGI demonstrated a significantly higher gait speed (1.09 ± 0.26 m/s) than HGI (0.72 ± 0.28 m/s). Circulating interleukins IL-1β, IL-6, IL-13, TNFα and cfDNA demonstrated high concentrations in the elderly with low 6MWT, confirming an impairment of physical performance by persistent systemic inflammation. These findings reveal that increased intake of anti-inflammatory diet ingredients and physical activity sustained throughout life attenuate progression of inflammaging in the elderly and indicate potential therapeutic strategies to counteract pathophysiological effects of ageing.
Collapse
|
45
|
Liao MT, Wu CC, Wu SFV, Lee MC, Hu WC, Tsai KW, Yang CH, Lu CL, Chiu SK, Lu KC. Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:1440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
Affiliation(s)
- Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (M.-T.L.); (C.-H.Y.)
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Chao Wu
- Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; (S.-F.V.W.); (M.-C.L.)
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; (S.-F.V.W.); (M.-C.L.)
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (W.-C.H.); (K.-W.T.)
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (W.-C.H.); (K.-W.T.)
| | - Chung-Hsiang Yang
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (M.-T.L.); (C.-H.Y.)
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan;
| | - Sheng-Kang Chiu
- Division of Infectious Diseases, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Division of Infectious Diseases, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
46
|
Soliman AM, Das S, Mahakkanukrauh P. Inflammatory Molecular Mediators and Pathways Involved in Vascular Aging and Stroke: A Comprehensive Review. Curr Med Chem 2021; 29:5522-5542. [PMID: 34488579 DOI: 10.2174/0929867328666210901122359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
There is an increase in the incidence of cardiovascular diseases with aging and it is one of the leading causes of death worldwide. The main cardiovascular pathologies include atherosclerosis, stroke, myocardial infarction, hypertension and stroke. Chronic inflammation is one of the significant contributors to the age-related vascular diseases. Therefore, it is important to understand the molecular mechanisms of the persistent inflammatory conditions occurring in the blood vessels as well as the signaling pathways involved. Herein, we performed an extant search of literature involving PubMed, ISI, WoS and Scopus databases for retrieving all relevant articles with the most recent findings illustrating the potential role of various inflammatory mediators along with their proposed activated pathways in the pathogenesis and progression of vascular aging. We also highlight the major pathways contributing to age-related vascular disorders. The outlined molecular mechanisms, pathways and mediators of vascular aging represent potential drug targets that can be utilized to inhibit and/or slow the pathogenesis and progression of vascular aging.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3. Canada
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, P.C. 123, Al Khoud, Muscat. Oman
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence center of Osteology Research and Training, Cadaveric Surgical and Training Center, Chiang Mai University, Chiang Mai 50200. Thailand
| |
Collapse
|
47
|
Dunne SS, Coffey JC, Konje S, Gasior S, Clancy CC, Gulati G, Meagher D, Dunne CP. Biomarkers in delirium: A systematic review. J Psychosom Res 2021; 147:110530. [PMID: 34098376 DOI: 10.1016/j.jpsychores.2021.110530] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Delirium is a common neuropsychiatric disorder associated with prolonged hospital stays, and increased morbidity and mortality. Diagnosis is frequently missed due to varying disease presentation and lack of standardized testing. We examined biomarkers as diagnostic or prognostic indicators of delirium, and provide a rational basis for future studies. METHOD Systematic review of literature published between Jan 2000 and June 2019. Searches included: PubMed; Web of Science; CINAHL; EMBASE; COCHRANE and Medline. Additional studies were identified by searching bibliographies of eligible articles. RESULTS 2082 relevant papers were identified from all sources. Seventy-three met the inclusion criteria, all of which were observational. These assessed a range of fourteen biomarkers. All papers included were in the English language. Assessment methods varied between studies, including: DSM criteria; Confusion Assessment Method (CAM) or CAM-Intensive Care Unit (ICU). Delirium severity was measured using the Delirium Rating Scale (DRS). Delirium was secondary to post-operative dysfunction or acute medical conditions. CONCLUSION Evidence does not currently support the use of any one biomarker. However, certain markers were associated with promising results and may warrant evaluation in future studies. Heterogeneity across study methods may have contributed to inconclusive results, and more clarity may arise from standardization of methods of clinical assessment. Adjusting for comorbidities may improve understanding of the pathophysiology of delirium, in particular the role of confounders such as inflammation, cognitive disorders and surgical trauma. Future research may also benefit from inclusion of other diagnostic modalities such as EEG as well as analysis of genetic or epigenetic factors.
Collapse
Affiliation(s)
- Suzanne S Dunne
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - J Calvin Coffey
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - Swiri Konje
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - Sara Gasior
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - Conor C Clancy
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - Gautam Gulati
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland
| | - David Meagher
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland; Cognitive Impairment Research Group, School of Medicine, University of Limerick, Limerick, Ireland
| | - Colum P Dunne
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and School of Medicine, University of Limerick, Limerick, Ireland; Cognitive Impairment Research Group, School of Medicine, University of Limerick, Limerick, Ireland.
| |
Collapse
|
48
|
Briongos-Figuero LS, Cobos-Siles M, Gabella-Martín M, Abadía-Otero J, Lobo-Valentin R, Aguado-De-La-Fuente A, Vargas-Ruiz B, Martín-Escudero JC. Evaluation and characterization of multimorbidity profiles, resource consumption and healthcare needs in extremely elderly people. Int J Qual Health Care 2021; 32:266-270. [PMID: 32232326 DOI: 10.1093/intqhc/mzaa022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/09/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Spanish population lifespan is one of the longest in the world. Moreover, it is known that elderly people have less chronic illnesses associated with aging. Our aims were to determine how Clinical Risk Group (CRG) predicts future use of healthcare resources in extremely elderly people without diabetes (T2DM) and to explore CRG correlation with health conditions. DESIGN Prospective cross-sectional study. SETTING Rio Hortega University Hospital. PARTICIPANTS Hospitalized patients >80 years old without T2DM, during 2017. MAIN OUTCOME MEASURES Mental status was evaluated using Pfeiffer test (SPMQS), Basic Activities of Daily Living (BADLs) and Instrumental Activities of Daily Living (IADLs) were estimated using the Older Americans Resources and Services questionnaire. Comorbidity was evaluated using Charlson index (CI) and health-related quality of life (HRQoL) with EuroQoL (EQ5D3L). CRG classification system was obtained from electronic clinical records. Data were analyzed using SPSS v.15.0. RESULTS In total, 305 patients were identified (59% women), mean age 88 ± 5 and 38% were aged >90. Estimated HRQoL was 0.43 ± 0.33 for EQ5D3L-index-value. Mean dependence level was 6.2 ± 5 for BADLs and 9.2 ± 5 for IADLs. In total, 31.6% of patients had severe cognitive impairment with a mean score of 5.4 ± 3.6 in SPMQS. In total, 30.2% of patients were categorized as G3, and presented high comorbidity more frequently than the rest. Corrected CI mean score was 6.2 ± 1.7. Significant relationship was founded in survival time, number of admissions and CI score. CONCLUSIONS Using predictive risk models like CRG is supposed to assess the complexity of morbidity but in our extremely elderly population partially fail in stratify and predict health resource consumption.
Collapse
Affiliation(s)
| | - Marta Cobos-Siles
- Internal Medicine Service, Rio Hortega University Hospital, C/Dulzaina 2, 47012 Valladolid, Spain
| | - Miriam Gabella-Martín
- Internal Medicine Service, Rio Hortega University Hospital, C/Dulzaina 2, 47012 Valladolid, Spain
| | - Jesica Abadía-Otero
- Internal Medicine Service, Rio Hortega University Hospital, C/Dulzaina 2, 47012 Valladolid, Spain
| | - Rosa Lobo-Valentin
- Clinical Chemistry Laboratory, Rio Hortega University Hospital, C/Dulzaina 2, 47012 Valladolid, Spain
| | - Ana Aguado-De-La-Fuente
- Nursing Care Department, Rio Hortega University Hospital, C/Dulzaina 2, 47012 Valladolid, Spain
| | - Beatriz Vargas-Ruiz
- Nursing Care Department, Rio Hortega University Hospital, C/Dulzaina 2, 47012 Valladolid, Spain
| | | |
Collapse
|
49
|
The Effects of Physical Activity on the Aging of Circulating Immune Cells in Humans: A Systematic Review. IMMUNO 2021. [DOI: 10.3390/immuno1030009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Age-induced cellular senescence leads to a decline in efficacy of immune response and an increase in morbidity and mortality. Physical activity may be an intervention to slow down or reverse this process for elderly individuals or even delay it via enhanced activity over their lifespan. The aim of this systematic review was to analyze and discuss the current evidence of the effects of physical activity on senescence in leukocyte subpopulations. Two electronic databases (PubMed, Web of Science) were scanned in July 2020. Studies performing endurance or resistance exercise programs and investigating leukocytes of healthy, particularly elderly subjects were included. Nine human studies were identified, including a total of 440 participants, of which two studies examined different types of exercise training retrospectively, three conducted resistance exercise, three endurance exercise, and one endurance vs. resistance training. Results revealed that exercise training increased the naïve subsets of peripheral T-helper cells and cytotoxic T-cells, whereas the senescent and effector memory T-cells re-expresses CD45RA (TEMRA) subsets decreased. Moreover, the percentage of T-helper- compared to cytotoxic T-cells increased. The results suggest that physical activity reduces or slows down cellular immunosenescence. Endurance exercise seems to affect cellular senescence in a more positive way than resistance training. However, training contents and sex also influence senescent cells. Explicit mechanisms need to be clarified.
Collapse
|
50
|
Gasmi A, Chirumbolo S, Peana M, Mujawdiya PK, Dadar M, Menzel A, Bjørklund G. Biomarkers of Senescence during Aging as Possible Warnings to Use Preventive Measures. Curr Med Chem 2021; 28:1471-1488. [PMID: 32942969 DOI: 10.2174/0929867327999200917150652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Human life expectancy is increasing significantly over time thanks to the improved possibility for people to take care of themselves and the higher availability of food, drugs, hygiene, services, and assistance. The increase in the average age of the population worldwide is, however, becoming a real concern, since aging is associated with the rapid increase in chronic inflammatory pathologies and degenerative diseases, very frequently dependent on senescent phenomena that occur alongside with senescence. Therefore, the search for reliable biomarkers that can diagnose the possible onset or predict the risk of developing a disease associated with aging is a crucial target of current medicine. In this review, we construct a synopsis of the main addressable biomarkers to study the development of aging and the associated ailments.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Alain Menzel
- Laboratoires Réunis, Junglinster, Luxembourg, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|