1
|
Guo L, Li S, Zhang Y, Yang X, Zhang Y, Cui H, Li Y. Effects of exercise intensity on spatial memory performance and hippocampal synaptic function in SAMP8 mice. Neurobiol Learn Mem 2023:107791. [PMID: 37380098 DOI: 10.1016/j.nlm.2023.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Learning and memory impairment is commonly noted in Alzheimer's disease (AD), which is regarded as a progressive synaptic failure disease. Exercise is a nonpharmacological strategy that may help prevent cognitive decline and reduce the risk of AD, which is usually thought to be related to synaptic damage in the hippocampus. However, the effects of exercise intensity on hippocampal memory and synaptic function in AD remain unclear. In this study, senescence-accelerated mouse prone-8 (SAMP8) mice were randomly assigned to the control group (Con), low-intensity exercise group (Low), and moderate-intensity exercise group (Mid). Here, we showed that eight weeks of treadmill exercise beginning in four-month-old mice improved spatial memory and recognition memory in six-month-old SAMP8 mice, while the Con group exhibited impaired spatial memory and recognition memory. Treadmill exercise also improved hippocampal neuron morphology in SAMP8 mice. Furthermore, dendritic spine density and the levels of postsynaptic density protein-95 (PSD95) and Synaptophysin (SYN) increased significantly in the Low and Mid groups as compared with the Con group. We further showed that moderate-intensity exercise (60% of maximum speed) was more efficacious in increasing dendritic spine density、PSD95 and SYN, than low-intensity exercise (40% of maximum speed). In conclusion, the positive effect of treadmill exercise is closely related to exercise intensity, with moderate-intensity exercise showing the most optimal effects.
Collapse
Affiliation(s)
- Linlin Guo
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xinxin Yang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China.
| | - Yan Li
- College of Nursing, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China.
| |
Collapse
|
2
|
Xie D, Deng T, Zhai Z, Qin T, Song C, Xu Y, Sun T. Moschus exerted protective activity against H 2O 2-induced cell injury in PC12 cells through regulating Nrf-2/ARE signaling pathways. Biomed Pharmacother 2023; 159:114290. [PMID: 36708701 DOI: 10.1016/j.biopha.2023.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The pivotal characteristics of Alzheimer's disease (AD) are irreversible memory loss and progressive cognitive decline, eventually causing death from brain failure. In the various proposed hypotheses of AD, oxidative stress is also regarded as a symbolic pathophysiologic cascade contributing to brain diseases. Using Chinese herbal medicine may be beneficial for treating and preventing AD. As a rare and valuable animal medicine, Moschus possesses antioxidant and antiapoptotic efficacy and is extensively applied for treating unconsciousness, stroke, coma, and cerebrovascular diseases. We aim to evaluate whether Moschus protects PC12 cells from hydrogen peroxide (H2O2)-induced cellular injury. The chemical constituents of Moschus are analyzed by GC-MS assay. The cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) levels, oxidative stress-related indicators, and apoptotic proteins are determined. Through GC-MS analysis, nineteen active contents were identified. The cell viability loss, lactate dehydrogenase releases, MMP levels, ROS productions, and Malondialdehyde (MDA) activities decreased, and BAX, Caspase-3, and Kelch-like ECH-associated protein 1 expression also significantly down-regulated and heme oxygenase 1, nuclear factor erythroid-2-related factor 2 (Nrf-2), and quinine oxidoreductase 1 expression upregulated after pretreatment of Moschus. The result indicated Moschus has neuroprotective activity in relieving H2O2-induced cellular damage, and the potential mechanism might be associated with regulating the Nrf-2/ARE signaling pathway. A more in-depth and comprehensive understanding of Moschus in the pathogenesis of AD will provide a fundamental basis for in vivo AD animal model research, which may be able to provide further insights and new targets for AD therapy.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting Deng
- Jintang Second People' s Hospital, Chengdu 610404, China.
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Davis JA, Paul JR, Mokashi MV, Yates SA, Mount DJ, Munir HA, Goode LK, Young ME, Allison DB, Gamble KL. Circadian disruption of hippocampus in an early senescence male mouse model. Pharmacol Biochem Behav 2022; 217:173388. [PMID: 35447158 DOI: 10.1016/j.pbb.2022.173388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Age-related cognitive decline and disruptions in circadian rhythms are growing problems as the average human life span increases. Multiple strains of the senescence-accelerated mouse (SAM) show reduced life span, and the SAMP8 strain in particular has been well documented to show cognitive deficits in behavior as well as a bimodal pattern of circadian locomotor activity. However, little is known about circadian regulation within the hippocampus of these strains of mice. Here we test the hypothesis that in this early senescence model, disruption of the molecular circadian clock in SAMP8 animals drives disrupted behavior and physiology. We found normal rhythms in PER2 protein expression in the SCN of SAMP8 animals at 4 months, despite the presence of disrupted wheel-running activity rhythms at this age. Interestingly, a significant rhythm in PER2 expression was not observed in the hippocampus of SAMP8 animals, despite a significant 24-h rhythm in SAMR1 controls. We also examined time-restricted feeding as a potential strategy to rescue disrupted hippocampal plasticity. Time-restricted feeding increased long-term potentiation at Schaffer collateral-CA1 synapses in SAMP8 mice (compared to SAMR1 controls). Overall, we confirm disrupted circadian locomotor rhythms in this early senescence model (as early as 4 months) and discovered that this disruption is not due to arrhythmic PER2 levels in the SCN; however, other extra-SCN circadian oscillators (i.e., hippocampus) are likely impaired with accelerated aging.
Collapse
Affiliation(s)
- Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mugdha V Mokashi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefani A Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel J Mount
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hira A Munir
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B Allison
- School of Public Health, Indiana University, Bloomington, IN, USA.
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Li JZ, Hao XH, Wu HP, Li M, Liu XM, Wu ZB. An enriched environment delays the progression from mild cognitive impairment to Alzheimer's disease in senescence-accelerated mouse prone 8 mice. Exp Ther Med 2021; 22:1320. [PMID: 34630674 PMCID: PMC8495563 DOI: 10.3892/etm.2021.10755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
A previous study demonstrated that middle-aged (5-6 months of age) senescence-accelerated mouse prone 8 (SAMP8) mice can be used as animal models of mild cognitive impairment (MCI). An enriched environment (EE) can mitigate cognitive decline and decrease the pathological changes associated with various neurodegenerative diseases. In the present study, the learning-memory abilities of SAMP8 mice during the MCI phase (5 months of age) was evaluated and neuropathological changes in the hippocampus were examined after the mice were exposed to an EE for 60 days. In the Morris water maze test, EE-exposed mice demonstrated significantly decreased escape latency and increased time spent in the target quadrant and number of platform crossings compared with control mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining showed that EE-exposed mice had reduced neuronal apoptosis and increased number of surviving neurons compared with control mice. Golgi staining, transmission electron microscopy, and immunohistochemical staining demonstrated that EE-exposed mice exhibited increased dendritic spine densities among secondary and tertiary apical dendrites; increases in synaptic numerical density, synaptic surface density, and expression of synaptophysin; and reduced deposition of amyloid-β (Aβ) and expression of amyloid-precursor protein (APP) in the hippocampal CA1 region compared with control mice. These results demonstrate that EE exposure effectively decreases neuronal loss and regulates neuronal synaptic plasticity by reducing the expression of APP and the deposition of Aβ in the hippocampal CA1 region, thereby mitigating cognitive decline in SAMP8 mice during the MCI phase and delaying the progression from MCI to Alzheimer's disease.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xing-Hua Hao
- Department of Clinical Psychology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Hai-Ping Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Ming Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xue-Min Liu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Zhi-Bing Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| |
Collapse
|
5
|
Du J, Zhang S, Zhao J, Li S, Chen W, Cui H, Su Y. Draxin inhibits chick trunk neural crest delamination and migration by increasing cell adhesion. Dev Growth Differ 2021; 63:501-515. [PMID: 34611891 DOI: 10.1111/dgd.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
The neural crest is a multipotent cell population that migrates extensively to play important roles during embryonic development. After acquiring motility, trunk neural crest cells delaminate from the spinal cord and migrate to various regions of the body. Several cellular adhesion molecules, such as vinculin, are involved in the regulation of neural crest delamination and migration. In the present study, we found that draxin could inhibit delamination and migration of neural crest cells from the chick spinal cord and abnormal aggregation of the migrating neural crest cells. In the presence of draxin, the resuspended neural crest regained its adhesive ability such that it was significantly increased. Overexpression of draxin caused increased vinculin expression in vivo. Our data indicate that draxin might control delamination and migration of chick trunk neural crest by increasing cell adhesion.
Collapse
Affiliation(s)
- Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| | - Sanbing Zhang
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Jiqian Zhao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| | - Wenyong Chen
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| | - Yuhong Su
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Yang Q, Zhang Y, Zhang L, Li X, Dong R, Song C, Cheng L, Shi M, Zhao H. Combination of tea polyphenols and proanthocyanidins prevents menopause-related memory decline in rats via increased hippocampal synaptic plasticity by inhibiting p38 MAPK and TNF-α pathway. Nutr Neurosci 2021; 25:1909-1927. [PMID: 33871312 DOI: 10.1080/1028415x.2021.1913929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Many studies have examined the beneficial effects of tea polyphenols (TP) and proanthocyanidins (PC) on the memory impairment in different animal models. However, the combined effects of them on synaptic, memory dysfunction and molecular mechanisms have been poorly studied, especially in the menopause-related memory decline in rats. METHODS In this rat study, TP and PC were used to investigate their protective effects on memory decline caused by inflammation. We characterized the learning and memory abilities, synaptic plasticity, AMPAR, phosphorylation of the p38 protein, TNF-ɑ, structural synaptic plasticity-related indicators in the hippocampus. RESULTS The results showed that deficits of learning and memory in OVX + D-gal rats, which was accompanied by dendrites and synaptic morphology damage, and increased expression of Aβ1-42 and inflammation. The beneficial effects of TP and PC treatment were found to prevent memory loss and significantly improve synaptic structure and functional plasticity. TP+PC combination shows more obvious advantages than intervention alone. TP and PC treatment improved behavioral performance, the hippocampal LTP damage and the shape and number of dendrites, dendritic spines and synapses, reduced the burden of Aβ and decreased the inflammation in hippocampus. In addition, TP and PC treatment decreased the expressions of Iba-1, TNF-α, TNFR1, and TRAF2. CONCLUSIONS These results provided a novel evidence TP combined with PC inhibits p38 MAPK pathway, suppresses the inflammation in hippocampus, and increase the externalization of AMPAR, which may be one of the mechanisms to improve synaptic plasticity and memory in the menopause-related memory decline rats.
Collapse
Affiliation(s)
- Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, People's Republic of China
| | - Ruirui Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
7
|
Guo G, Kang L, Geng D, Han S, Li S, Du J, Wang C, Cui H. Testosterone modulates structural synaptic plasticity of primary cultured hippocampal neurons through ERK - CREB signalling pathways. Mol Cell Endocrinol 2020; 503:110671. [PMID: 31805308 DOI: 10.1016/j.mce.2019.110671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/24/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022]
Abstract
Although hippocampus-derived androgens play an important role in hippocampal synaptic plasticity, studies at the cellular level have received relatively less attention. Furthermore, the underlying signalling pathways associated with synaptic plasticity remain unclear. Results of the present study demonstrated that testosterone treatment of primary cultured rat hippocampal neurons resulted in a rapid increase in spine density, accompanied by the elevation of protein and messenger RNA levels of synaptophysin, developmentally regulated brain protein (Drebrin), and the N-methyl-D-aspartate receptor NR1 subunit. Testosterone treatment also increased the phosphorylation levels of extracellular-regulated protein kinase (ERK)1/2 and cAMP-responsive element binding protein (CREB), rather than p38 and Jun N-terminal kinase (JNK). U0126 significantly reversed the testosterone-mediated phosphorylation of CREB. Importantly, the increase in spine density was not induced by testosterone under U0126 treatment. These findings suggest that the ERK1/2-CREB signalling pathway plays an important role in testosterone-mediated rapid spinogenesis of cultured rat hippocampal neurons. Results of this study will be helpful in further clarifying the physiological function of testosterone and related signalling pathways in vitro.
Collapse
Affiliation(s)
- Guoxin Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Lin Kang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Dandan Geng
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Shuo Han
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
8
|
Chronological Molecular Changes in Neuronal Communication in Androgen-Deficient Rats. J Mol Neurosci 2019; 69:83-93. [DOI: 10.1007/s12031-019-01335-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
|
9
|
Yan XS, Yang ZJ, Jia JX, Song W, Fang X, Cai ZP, Huo DS, Wang H. Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer's disease. Neural Regen Res 2019; 14:649-657. [PMID: 30632505 PMCID: PMC6352583 DOI: 10.4103/1673-5374.245477] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Cognitive dysfunction in Alzheimer's disease is strongly associated with a reduction in synaptic plasticity, which may be induced by oxidative stress. Testosterone is beneficial in learning and memory, although the underlying protective mechanism of testosterone on cognitive performance remains unclear. This study explored the protective mechanism of a subcutaneous injection of 0.75 mg testosterone on cognitive dysfunction induced by bilateral injections of amyloid beta 1-42 oligomers into the lateral ventricles of male rats. Morris water maze test results demonstrated that testosterone treatment remarkably reduced escape latency and path length in Alzheimer's disease rat models. During probe trials, testosterone administration significantly elevated the percentage of time spent in the target quadrant and the number of platform crossings. However, flutamide, an androgen receptor antagonist, inhibited the protective effect of testosterone on cognitive performance in Alzheimer's disease rat models. Nissl staining, immunohistochemistry, western blot assay, and enzyme-linked immunosorbent assay results showed that the number of intact hippocampal pyramidal cells, the dendritic spine density in the hippocampal CA1 region, the immune response and expression level of postsynaptic density protein 95 in the hippocampus, and the activities of superoxide dismutase and glutathione peroxidase were increased with testosterone treatment. In contrast, testosterone treatment reduced malondialdehyde levels. Flutamide inhibited the effects of testosterone on all of these indicators. Our data showed that the protective effect of testosterone on cognitive dysfunction in Alzheimer's disease is mediated via androgen receptors to scavenge free radicals, thereby enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhan-Jun Yang
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Wei Song
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Xin Fang
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhi-Ping Cai
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| |
Collapse
|
10
|
Hu Y, Chen W, Wu L, Jiang L, Liang N, Tan L, Liang M, Tang N. TGF-β1 Restores Hippocampal Synaptic Plasticity and Memory in Alzheimer Model via the PI3K/Akt/Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2018; 67:142-149. [PMID: 30539409 DOI: 10.1007/s12031-018-1219-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disturbances. Dysfunction of synaptic plasticity and decline in cognitive functions are the most prominent features of AD, but the mechanisms of pathogenesis have not been well elucidated. In this paper, transforming growth factor-β1 (TGF-β1) was found to be reduced in the hippocampus of AD mouse which was accompanied by impaired pine density, synaptic plasticity, and memory function. Hippocampal injection of TGF-β1 rescued the AD-induced memory function impairment. In addition, TGF-β1 ameliorated synaptic plasticity and increased synaptic plasticity-associated protein expression including Arc, NR2B, and PSD-95 in mouse model of AD. Furthermore, we demonstrated that Akt/Wnt/β-catenin pathway protein expression in the hippocampus was suppressed in a mouse model of AD and TGF-β1 significantly enhanced the phosphorylation Akt, GSK3β, and increased the nuclear β-catenin. These results indicate that TGF-β1activates PI3K/Akt/Wnt/β-catenin signaling in mouse model of AD, which is important for promoting synaptic plasticity related to memory function. More importantly, suppression of PI3K/Akt/Wnt/β-catenin pathway compromised the beneficial effects of TGFβ1 in Alzheimer's model. Hence, TGF-β1 shows protective effect on neurons, which might be through the PI3K/Akt/Wnt/β-catenin signaling pathway, serving as a potential target in AD pathology.
Collapse
Affiliation(s)
- Yueqiang Hu
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.,Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Wei Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.,Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lin Wu
- Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.,Scientific Laboratorial Centre Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lingfei Jiang
- Graduate College of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Ni Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lulu Tan
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Minghui Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Nong Tang
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China. .,Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China. .,Scientific Laboratorial Centre Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| |
Collapse
|
11
|
Jia JX, Yan XS, Song W, Fang X, Cai ZP, Huo DS, Wang H, Yang ZJ. The protective mechanism underlying phenylethanoid glycosides (PHG) actions on synaptic plasticity in rat Alzheimer's disease model induced by beta amyloid 1-42. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1098-1107. [PMID: 30430925 DOI: 10.1080/15287394.2018.1501861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phenylethanoid glycosides (PHG), derived from Herba cistanche, were found to exert protective effects on cognitive dysfunctions by improving synaptic plasticity in Alzheimer's disease (AD) rat model. However, the mechanisms underlying these effects of PHG on synaptic plasticity remain to be determined. Thus the aim of this study was to examine the influence of PHG on synaptic plasticity in male AD rat model induced by bilateral central nervous system ventricle injections of beta amyloid 1-42 oligomers (Aβ1-42). The following parameters were measured: (1) number of intact pyramidal cells in hippocampal CA1 region by Nissl staining, (2) post synaptic density 95 (PSD-95), phosphorylated N-methyl-D-aspartate receptor-1(p-NMDAR1) and (3) phosphorylated Tau protein (p-Tau) by immunohistochemistry and western blot. In addition, the content of malondialdehyde (MDA) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined. Aβ1-42 lowered the number of intact pyramidal cells in hippocampal CA1 region. In contrast, treatment with PHG significantly elevated this cell number. Aβ1-42 significantly diminished protein expression levels of PSD-95 accompanied by elevated protein expression levels of p-NMDAR1 and p-Tau. PHG markedly increased protein expression levels of PSD-95, but significantly reduced protein expression levels of p-NMDAR1 and p-Tau. Further, Aβ1-42 markedly increased MDA content concomitantly with reduced activities of SOD and GSH-Px. PHG significantly decreased MDA content accompanied by elevated activities of SOD and GSH-Px. Data suggest that the protective effects of PHG on synaptic plasticity may involve inhibition of cytotoxicity-mediated by Aβ-1-42 administration and reduction of oxidant stress.
Collapse
Affiliation(s)
- Jian-Xin Jia
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xu-Sheng Yan
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Wei Song
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xin Fang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Zhi-Ping Cai
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Dong-Sheng Huo
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - He Wang
- b School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Zhan-Jun Yang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| |
Collapse
|
12
|
McCarthny CR, Du X, Wu YC, Hill RA. Investigating the Interactive Effects of Sex Steroid Hormones and Brain-Derived Neurotrophic Factor during Adolescence on Hippocampal NMDA Receptor Expression. Int J Endocrinol 2018; 2018:7231915. [PMID: 29666640 PMCID: PMC5831834 DOI: 10.1155/2018/7231915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Sex steroid hormones have neuroprotective properties which may be mediated by brain-derived neurotrophic factor (BDNF). This study sought to determine the interactive effects of preadolescent hormone manipulation and BDNF heterozygosity (+/-) on hippocampal NMDA-R expression. Wild-type and BDNF+/- mice were gonadectomised, and females received either 17β-estradiol or progesterone treatment, while males received either testosterone or dihydrotestosterone (DHT) treatment. Dorsal (DHP) and ventral hippocampus (VHP) were dissected, and protein expression of GluN1, GluN2A, GluN2B, and PSD-95 was assessed by Western blot analysis. Significant genotype × OVX interactions were found for GluN1 and GluN2 expression within the DHP of female mice, suggesting modulation of select NMDA-R levels by female sex hormones is mediated by BDNF. Furthermore, within the DHP BDNF+/- mice show a hypersensitive response to hormone treatment on GluN2 expression which may result from upstream alterations in TrkB phosphorylation. In contrast to the DHP, the VHP showed no effects of hormone manipulation but significant effects of genotype on NMDA-R expression. Castration had no effect on NMDA-R expression; however, androgen treatment had selective effects on GluN2B. These data show case distinct, interactive roles for sex steroid hormones and BDNF in the regulation of NMDA-R expression that are dependent on dorsal versus ventral hippocampal region.
Collapse
Affiliation(s)
- Cushla R. McCarthny
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Xin Du
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - YeeWen Candace Wu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel A. Hill
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Golden LC, Voskuhl R. The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res 2017; 95:633-643. [PMID: 27870415 DOI: 10.1002/jnr.23955] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
To date, scientific research has often focused on one sex, with assumptions that study of the other sex would yield similar results. However, many diseases affect males and females differently. The sex of a patient can affect the risk for both disease susceptibility and progression. Such differences can be brought to the laboratory bench to be investigated, potentially bringing new treatments back to the clinic. This method of research, known as a "bedside to bench to bedside" approach, has been applied to studying sex differences in multiple sclerosis (MS). Females have greater susceptibly to MS, while males have worse disease progression. These two characteristics of the disease are influenced by the immune system and the nervous system, respectively. Thus, sex differences in each system must be studied. Personalized medicine has been at the forefront of research recently, and studying sex differences in disease fits with this initiative. This review will discuss the known sex differences in MS and highlight how investigating them can lead to new insights and potential treatments for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa C Golden
- Department of Neurology, University of California Los Angeles, Los Angeles, California.,Molecular Biology IDP, University of California Los Angeles, Los Angeles, California
| | - Rhonda Voskuhl
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Hui S, Yang Y, Peng WJ, Sheng CX, Gong W, Chen S, Xu PP, Wang Z. Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer's disease. Neural Regen Res 2017; 12:1680-1686. [PMID: 29171433 PMCID: PMC5696849 DOI: 10.4103/1673-5374.217347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2017] [Indexed: 12/26/2022] Open
Abstract
Bushen Tiansui decoction is composed of six traditional Chinese medicines: Herba Epimedii, Radix Polygoni multiflori, Plastrum testudinis, Fossilia Ossis Mastodi, Radix Polygalae, and Rhizoma Acorus tatarinowii. Because Bushen Tiansui decoction is effective against amyloid beta (Aβ) toxicity, we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer's disease. To test this hypothesis, we used a previously established animal model of Alzheimer's disease, that is, microinjection of aggregated Aβ25-35 into the bilateral brain ventricles of Sprague-Dawley rats. We found that long-term (28 days) oral administration of Bushen Tiansui decoction (0.563, 1.688, and 3.375 g/mL; 4 mL/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins, including postsynaptic density protein 95, the N-methyl-D-aspartate receptor 2B subunit, and Shank1. These results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins. Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze (i.e., increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aβ25-35 compared with those measures in untreated Aβ25-35-injected rats. Overall, these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted.
Collapse
Affiliation(s)
- Shan Hui
- Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Geriatric Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Yang
- Department of Geriatric Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wei-jun Peng
- Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chen-xia Sheng
- Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wei Gong
- Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shuai Chen
- Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Pan-pan Xu
- Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhe Wang
- Department of Integrated Chinese and Western Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
15
|
Jia JX, Yan XS, Cai ZP, Song W, Huo DS, Zhang BF, Wang H, Yang ZJ. The effects of phenylethanoid glycosides, derived from Herba cistanche, on cognitive deficits and antioxidant activities in male SAMP8 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1180-1186. [PMID: 28880744 DOI: 10.1080/15287394.2017.1367097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cognitive deficits are closely associated with hippocampal synaptic changes. Phenylethanoid glycosides (PhG), derived from Herba cistanche, are known to exert protective effects on cognitive deficits in Alzheimer's disease (AD); however, the underlying mechanisms of this herbal extract on cognitive performance remain unclear. The aim of this study was thus to examine the protective mechanism attributed to PhG on cognitive deficits in an AD senescence accelerated mouse prone 8 (SAMP8) model. Cognitive deficit parameters examined included (1) Morris water maze (MWM) assessing cognitive performance and (2) quantification of dendritic spine density in hippocampal CA1 region by Golgi staining, a molecular biomarker of synaptic function. In addition, levels of malondialdehyde (MDA) and activities of superoxide dismutase (SOD) and gluthathione peroxidase (GSH-Px) were determined to examine the potential role of oxidant processes in cognitive dysfunction. Data showed that PhG significantly decreased escape latency and path length, associated with a rise in the percentage of time spent in the target quadrant and number of platform crossings. In addition, PhG significantly increased dendritic spine density in the hippocampal CA1 region accompanied by elevated expression levels of synaptophysin (SYN) and post synaptic density 95 (PSD-95), reduced MDA content, and elevated the activities of SOD and GSH-Px. Data suggest that the ability of PhG to ameliorate cognitive deficits in SAMP8 mice may be related to promotion in synaptic plasticity involving antioxidant processes.
Collapse
Affiliation(s)
- Jian-Xin Jia
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xu-Sheng Yan
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Zhi-Ping Cai
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Wei Song
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Dong-Sheng Huo
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Bai-Feng Zhang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - He Wang
- b School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Zhan-Jun Yang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| |
Collapse
|
16
|
Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y. Epimedii Herba: A Promising Herbal Medicine for Neuroplasticity. Phytother Res 2017; 31:838-848. [PMID: 28382688 DOI: 10.1002/ptr.5807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
Abstract
Epimedii Herba (EH) is an herbal medicine originating from several plants of the genus Epimedium. It is a major therapeutic option for kidney yang deficiency syndrome, which is closely related to androgen hormones and also has been used to treat hemiplegia following a stroke in traditional medicine of Korea and PR China. To date, many clinical and basic researches of EH have shown the activities on functional recovery from brain diseases. Recently, neuroplasticity, which is the spontaneous reaction of the brain in response to diseases, has been shown to accelerate functional recovery. In addition, androgen hormones including testosterone are known to be the representative of neuroplasticity factors in the brain recovery processes. In this review, we described the neuro-pharmacological activities of EH, focusing on neuroplasticity. Thirty-three kinds of papers from MEDLINE/PubMed, EMBASE, and CNKI were identified and analyzed. We categorized the results into five types based on neuroplasticity mechanisms and presented the definition of each category and briefly described the results of these papers. Altogether, we can suggest that neuroplasticity is a novel viewpoint for guiding future brain research of EH and provide the evidence for the development of new clinical applications using EH in the treatment of brain diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae-Heung Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Beom-Joon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Kyungjin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Woo Park
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Youngmin Bu
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
17
|
Song J, Jung C, Kim OY. The Novel Implication of Androgen in Diabetes-induced Alzheimer's Disease. J Lipid Atheroscler 2017. [DOI: 10.12997/jla.2017.6.2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea
| |
Collapse
|
18
|
Pan W, Han S, Kang L, Li S, Du J, Cui H. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice. Exp Ther Med 2016; 12:1455-1463. [PMID: 27588067 PMCID: PMC4997989 DOI: 10.3892/etm.2016.3470] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023] Open
Abstract
The current study focused on how dihydrotestosterone (DHT) regulates synaptic plasticity in the hippocampus of mild cognitive impairment male senescence-accelerated mouse prone 8 (SAMP8) mice. Five-month-old SAMP8 mice were divided into the control, castrated and castrated-DHT groups, in which the mice were castrated and treated with physiological doses of DHT for a period of 2 months. To determine the regulatory mechanisms of DHT in the cognitive capacity, the effects of DHT on the morphology of the synapse and the expression of synaptic marker proteins in the hippocampus were investigated using immunohistochemistry, qPCR and western blot analysis. The results showed that the expression of cAMP-response element binding protein (CREB), postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and developmentally regulated brain protein (Drebrin) was reduced in the castrated group compared to the control group. However, DHT promoted the expression of CREB, PSD95, SYN and Drebrin in the hippocampus of the castrated-DHT group. Thus, androgen depletion impaired the synaptic plasticity in the hippocampus of SAMP8 and accelerated the development of Alzheimer's disease (AD)-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, DHT regulated synaptic plasticity in the hippocampus of mild cognitive impairment (MCI) SAMP8 mice and delayed the progression of disease to Alzheimer's dementia. In conclusion, androgen-based hormone therapy is a potentially useful strategy for preventing the progression of MCI in aging men. Androgens enhance synaptic markers (SYN, PSD95, and Drebrin), activate CREB, modulate the fundamental biology of synaptic structure, and lead to the structural changes of plasticity in the hippocampus, all of which result in improved cognitive function.
Collapse
Affiliation(s)
- Wensen Pan
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Respiration Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuo Han
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lin Kang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
19
|
Jia JX, Cui CL, Yan XS, Zhang BF, Song W, Huo DS, Wang H, Yang ZJ. Effects of testosterone on synaptic plasticity mediated by androgen receptors in male SAMP8 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:849-855. [PMID: 27599230 DOI: 10.1080/15287394.2016.1193113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synaptic changes are closely associated with cognitive deficits. In addition, testosterone (T) is known to exert regulative effects on synaptic plasticity. T may improve cognitive deficits in Alzheimer's disease (AD) patients, but the underlying mechanisms of androgenic action on cognitive performance remain unclear. The aim of this study was thus to examine the protective mechanism attributed to T on cognitive performance in an AD senescence, accelerated mouse prone 8 (SAMP8) animal model. Using Golgi staining to quantify the dendritic spine density in hippocampal CA1 region, molecular biomarkers of synapse function were analyzed using immunohistochemistry and western blot. T significantly increased the dendritic spine density in hippocampal CA1 region, while flutamide (F) inhibited these T-mediated effects. Immunohistochemistry and western blot analysis showed that the expression levels of brain derived neurotrophic factor (BDNF), postsynaptic density 95 (PSD-95), and p-cyclic-AMP response element binding protein (CREB)/CREB levels were significantly elevated in the T group, but F reduced the T-induced effects in these biomarkers to control levels. There were no significant differences in the expression levels of PSD-95, BDNF, and p-CREB/CREB between C and F. These findings indicate that the effects of T on improvement in synaptic plasticity were mediated via androgen receptor (AR). It is conceivable that new treatments targeted toward preventing synaptic pathology in AD may involve the use of androgen-acting drugs.
Collapse
Affiliation(s)
- Jian-Xin Jia
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Cheng-Li Cui
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xu-Sheng Yan
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Bai-Feng Zhang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Wei Song
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Dong-Sheng Huo
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - He Wang
- b School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Zhan-Jun Yang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| |
Collapse
|
20
|
Li S, Kang L, Zhang Y, Feng B, Du J, Cui H. Detecting the presence of hippocampus membrane androgen receptors in male SAMP8 mice and their induced synaptic plasticity. Mol Cell Endocrinol 2015; 414:82-90. [PMID: 26164088 DOI: 10.1016/j.mce.2015.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 12/14/2022]
Abstract
Testosterone (T), the principal androgen, and its metabolite, dihydrotestosterone (DHT), are known to mediate their effects through binding to intracellular androgen receptors (iARs). In addition to their well-known genomic effects, androgens rapidly alter neuronal excitability through a non-genomic pathway mediated by membrane androgen receptors (mARs). The existence and specificity of mARs in the hippocampus were investigated in SAMP8 mice. Using T-BSA-FITC, we detected plasma membrane labeling by flow cytometry analysis for the presence of mARs. The specificity of binding was examined with iAR antagonist or anti-iAR antibody. Flow cytometry analysis showed that pretreatment with iAR antagonist, flutamide (F), failed to completely prevent the coupling action of the T-BSA-FITC membrane binding. In addition, we found classical iARs did not localize to the membrane of hippocampal neurons. These data indicate that these mARs might be not identical to classical iARs. Modulation of hippocampal synaptic plasticity by androgen has been attracting much attention. To identify the functional consequences induced by mARs, we analyzed the rapid effects of T on the density of dendritic spines using Golgi staining. The application of 50 μg/5 μl T and 30 μg/5 μl DHT induced a rapid increase in the dendritic spines within 2 h. Almost no difference was observed between T and T-BSA in the effect on thorn density. Next, we explored the protective mechanism and found that T and DHT altered the expression of synaptophysin (SYN) and postsynaptic dense material 95 (PSD95), which play crucial roles in cognitive function and synaptic plasticity.
Collapse
Affiliation(s)
- Sha Li
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Hebei, PR China
| | - Lin Kang
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yizhou Zhang
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Baofeng Feng
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Juan Du
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Hebei, PR China.
| |
Collapse
|
21
|
Yin X, Zhang X, Lv C, Li C, Yu Y, Wang X, Han F. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep 2015; 5:14507. [PMID: 26419512 PMCID: PMC4588513 DOI: 10.1038/srep14507] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a serious consequence of obstructive sleep apnoea (OSA) and has deleterious effects on central neurons and neurocognitive functions. This study examined if protocatechuic acid (PCA) could improve learning and memory functions of rats exposed to CIH conditions and explore potential mechanisms. Neurocognitive functions were evaluated in male SD rats by step-through passive avoidance test and Morris water maze assay following exposure to CIH or room air conditions. Ultrastructure changes were investigated with transmission electron microscopy, and neuron apoptosis was confirmed by TUNEL assays. Ultrastructure changes were investigated with transmission electron microscope and neuron apoptosis was confirmed by TUNEL assays. The effects of PCA on oxidative stress, apoptosis, and brain IL-1β levels were investigated. Expression of Bcl-2, Bax, Cleaved Caspase-3, c-fos, SYN, BDNF and pro-BDNF were also studied along with JNK, P38 and ERK phosphorylation to elucidate the molecular mechanisms of PCA action. PCA was seen to enhance learning and memory ability, and alleviate oxidative stress, apoptosis and glial proliferation following CIH exposure in rats. In addition, PCA administration also decreased the level of IL-1β in brain and increased the expression of BDNF and SYN. We conclude that PCA administration will ameliorate CIH-induced cognitive dysfunctions.
Collapse
Affiliation(s)
- Xue Yin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China.,Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiuli Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Changjun Lv
- Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Chunli Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China.,Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Xiaozhi Wang
- Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fang Han
- Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| |
Collapse
|
22
|
Hara Y, Waters EM, McEwen BS, Morrison JH. Estrogen Effects on Cognitive and Synaptic Health Over the Lifecourse. Physiol Rev 2015; 95:785-807. [PMID: 26109339 PMCID: PMC4491541 DOI: 10.1152/physrev.00036.2014] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen facilitates higher cognitive functions by exerting effects on brain regions such as the prefrontal cortex and hippocampus. Estrogen induces spinogenesis and synaptogenesis in these two brain regions and also initiates a complex set of signal transduction pathways via estrogen receptors (ERs). Along with the classical genomic effects mediated by activation of ER α and ER β, there are membrane-bound ER α, ER β, and G protein-coupled estrogen receptor 1 (GPER1) that can mediate rapid nongenomic effects. All key ERs present throughout the body are also present in synapses of the hippocampus and prefrontal cortex. This review summarizes estrogen actions in the brain from the standpoint of their effects on synapse structure and function, noting also the synergistic role of progesterone. We first begin with a review of ER subtypes in the brain and how their abundance and distributions are altered with aging and estrogen loss (e.g., ovariectomy or menopause) in the rodent, monkey, and human brain. As there is much evidence that estrogen loss induced by menopause can exacerbate the effects of aging on cognitive functions, we then review the clinical trials of hormone replacement therapies and their effectiveness on cognitive symptoms experienced by women. Finally, we summarize studies carried out in nonhuman primate models of age- and menopause-related cognitive decline that are highly relevant for developing effective interventions for menopausal women. Together, we highlight a new understanding of how estrogen affects higher cognitive functions and synaptic health that go well beyond its effects on reproduction.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Elizabeth M Waters
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Bruce S McEwen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - John H Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| |
Collapse
|
23
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
24
|
Abstract
Golgi silver impregnation techniques remain ideal methods for the visualization of the neurons as a whole in formalin fixed brains and paraffin sections, enabling to obtain insight into the morphological and morphometric characters of the dendritic arbor, and the estimation of the morphology of the spines and the spinal density, since they delineate the profile of nerve cells with unique clarity and precision. In addition, the Golgi technique enables the study of the topographic relationships between neurons and neuronal circuits in normal conditions, and the following of the spatiotemporal morphological alterations occurring during degenerative processes. The Golgi technique has undergone many modifications in order to be enhanced and to obtain the optimal and maximal visualization of neurons and neuronal processes, the minimal precipitations, the abbreviation of the time required for the procedure, enabling the accurate study and description of specific structures of the brain. In the visualization of the sequential stages of the neuronal degeneration and death, the Golgi method plays a prominent role in the visualization of degenerating axons and dendrites, synaptic “boutons,” and axonal terminals and organelles of the cell body. In addition, new versions of the techniques increases the capacity of precise observation of the neurofibrillary degeneration, the proliferation of astrocytes, the activation of the microglia, and the morphology of capillaries in autopsy material of debilitating diseases of the central nervous system.
Collapse
|
25
|
Li R, Singh M. Sex differences in cognitive impairment and Alzheimer's disease. Front Neuroendocrinol 2014; 35:385-403. [PMID: 24434111 PMCID: PMC4087048 DOI: 10.1016/j.yfrne.2014.01.002] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
Abstract
Studies have shown differences in specific cognitive ability domains and risk of Alzheimer's disease between the men and women at later age. However it is important to know that sex differences in cognitive function during adulthood may have their basis in both organizational effects, i.e., occurring as early as during the neuronal development period, as well as in activational effects, where the influence of the sex steroids influence brain function in adulthood. Further, the rate of cognitive decline with aging is also different between the sexes. Understanding the biology of sex differences in cognitive function will not only provide insight into Alzheimer's disease prevention, but also is integral to the development of personalized, gender-specific medicine. This review draws on epidemiological, translational, clinical, and basic science studies to assess the impact of sex differences in cognitive function from young to old, and examines the effects of sex hormone treatments on Alzheimer's disease in men and women.
Collapse
Affiliation(s)
- Rena Li
- Center for Hormone Advanced Science and Education (CHASE), Roskamp Institute, Sarasota, FL 34243, United States.
| | - Meharvan Singh
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research (IAADR), Center FOR HER, University of North Texas, Health Science Center, Fort Worth, TX 76107, United States
| |
Collapse
|
26
|
Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103906. [PMID: 25045655 PMCID: PMC4086619 DOI: 10.1155/2014/103906] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022]
Abstract
Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer's disease (AD), there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ), but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD.
Collapse
|
27
|
Wang F, Chang G, Geng X. NGF and TERT co-transfected BMSCs improve the restoration of cognitive impairment in vascular dementia rats. PLoS One 2014; 9:e98774. [PMID: 24887495 PMCID: PMC4041744 DOI: 10.1371/journal.pone.0098774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/06/2014] [Indexed: 11/25/2022] Open
Abstract
Vascular dementia (VaD) is a mental disorder caused by brain damage due to cerebrovascular disease, and incidence of VaD is rising. To date, there is no known effective cure for VaD, so effort in developing an effective treatment for VaD is of great importance. The differentiation plasticity of BMSCs, in conjunction with its weak immunogenicity, makes manipulated BMSCs an attractive strategy for disease treatment. However, BMSCs often display disabled differentiation, premature aging, and unstable proliferation, reducing their neuroprotective function. These problems may be caused by the lack of telomerase activity in BMSCs. Our results show that NGF-TERT co-transfected BMSCs have a better therapeutic effect than BMSCs lacking NGF and TERT expression, demonstrated by significant improvements in learning and memory in VaD rats. The underlying mechanism might be increased expression of NGF, TrkA and SYN in the hippocampal CA1 area, which has potential implication in advancing therapeutics for VaD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China,
| | - Guangming Chang
- Department of clinical laboratory, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- Key Laboratory of Educational Ministry of China, Tianjin, China
- * E-mail:
| |
Collapse
|
28
|
Kang L, Li S, Xing Z, Li J, Su Y, Fan P, Wang L, Cui H. Dihydrotestosterone treatment delays the conversion from mild cognitive impairment to Alzheimer's disease in SAMP8 mice. Horm Behav 2014; 65:505-15. [PMID: 24717850 DOI: 10.1016/j.yhbeh.2014.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/07/2014] [Accepted: 03/31/2014] [Indexed: 01/25/2023]
Abstract
The senescence-accelerated-prone mouse 8 (SAMP8) has been proposed as a suitable, naturally derived animal model for Alzheimer's disease (AD). In the current study, we focus on the problem whether SAMP8 mice show abnormal behavioral and neuropathological signs before they present the characteristic of AD. Our results demonstrated that given the presence of the senescent, behavioral and neuropathological characteristics, the "middle-aged" SAMP8 mice appear to be a suitable and naturally derived animal model for MCI basic research. There is relatively less evidence that androgen may be involved in the pathogenesis of AD. We determined testosterone (T) levels of SAMR1 and SAMP8 mice and found that the marked age-related decrease in serum androgen levels may be one of the risk factors for Alzheimer's dementia. We also evaluated the interventional effect on MCI phase by dihydrotestosterone (DHT) in male SAMP8 mice and found that timely and appropriate androgen intervention can postpone the onset and improve the symptoms of dementia.
Collapse
Affiliation(s)
- Lin Kang
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Zhaoguo Xing
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Jianzhong Li
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yuhong Su
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Ping Fan
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Hebei, PR China.
| |
Collapse
|
29
|
Cheng XR, Cui XL, Zheng Y, Zhang GR, Li P, Huang H, Zhao YY, Bo XC, Wang SQ, Zhou WX, Zhang YX. Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model. Front Aging Neurosci 2013; 5:65. [PMID: 24194717 PMCID: PMC3810591 DOI: 10.3389/fnagi.2013.00065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022] Open
Abstract
Harboring the behavioral and histopathological signatures of Alzheimer's disease (AD), senescence accelerated mouse-prone 8 (SAMP8) mice are currently considered a robust model for studying AD. However, the underlying mechanisms, prioritized pathways and genes in SAMP8 mice linked to AD remain unclear. In this study, we provide a biological interpretation of the molecular underpinnings of SAMP8 mice. Our results were derived from differentially expressed genes in the hippocampus and cerebral cortex of SAMP8 mice compared to age-matched SAMR1 mice at 2, 6, and 12 months of age using cDNA microarray analysis. On the basis of PPI, MetaCore and the co-expression network, we constructed a distinct genetic sub-network in the brains of SAMP8 mice. Next, we determined that the regulation of synaptic transmission and apoptosis were disrupted in the brains of SAMP8 mice. We found abnormal gene expression of RAF1, MAPT, PTGS2, CDKN2A, CAMK2A, NTRK2, AGER, ADRBK1, MCM3AP, and STUB1, which may have initiated the dysfunction of biological processes in the brains of SAMP8 mice. Specifically, we found microRNAs, including miR-20a, miR-17, miR-34a, miR-155, miR-18a, miR-22, miR-26a, miR-101, miR-106b, and miR-125b, that might regulate the expression of nodes in the sub-network. Taken together, these results provide new insights into the biological and genetic mechanisms of SAMP8 mice and add an important dimension to our understanding of the neuro-pathogenesis in SAMP8 mice from a systems perspective.
Collapse
Affiliation(s)
- Xiao-Rui Cheng
- Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|