1
|
Moss SM, Gerton T, Strobel HA, Hoying JB. Isolated human adipose microvessels retain native microvessel structure and recapitulate sprouting angiogenesis. Angiogenesis 2025; 28:20. [PMID: 40048000 DOI: 10.1007/s10456-025-09972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
With interest growing in modeling more complex aspects of human disease in the laboratory, the need for effectively vascularizing human tissue models is becoming paramount. However, fully recreating human tissue microvasculatures is challenging given the multicellular complexity of the microvessel and microvessel-tissue interplay. Importantly, effective models should capture the dynamic activity of the perivascular cells of the perivascular niche, which are critical to tissue hemostasis and function. Isolated microvessel fragments from rodent adipose have been extensively studied and used in a variety of vascularization models. We have progressed this proven technology by deriving isolated fragments of intact human microvessels harvested from adipose (haMVs) to model human vascularization and advance human vascularized tissue models. Here we show the haMVs retain native microvessel structures, including perivascular cellularity, and recapitulate bona fide sprouting angiogenesis in vitro through distinct sprouting and neovessel elongation phases. As primary isolates, the angiogenic potential varies between donor lots and correlates with the presence of haMV perivascular cells. In an in vitro model of tumor angiogenesis, the addition of anti-tumor agents impacted tumor cell expansion in the presence of the haMVs but not endothelial cells alone demonstrating the importance of the perivascular cells in tissue modeling. The human adipose microvessels offer, in a single reagent, a more complex, dynamic human tissue model vascularization solution.
Collapse
Affiliation(s)
- Sarah M Moss
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH, 03101, USA.
| | - Thomas Gerton
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH, 03101, USA
| | - Hannah A Strobel
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH, 03101, USA
| | - James B Hoying
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH, 03101, USA
| |
Collapse
|
2
|
Yu H, Gao X, Ge Q, Tai W, Hao X, Shao Q, Fang Z, Chen M, Song Y, Gao W, Liu G, Du X, Li X. Tumor necrosis factor-α reduces adiponectin production by decreasing transcriptional activity of peroxisome proliferator-activated receptor-γ in calf adipocytes. J Dairy Sci 2023; 106:5182-5195. [PMID: 37268580 DOI: 10.3168/jds.2022-22919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 06/04/2023]
Abstract
Adiponectin (encoded by ADIPOQ) is an adipokine that orchestrates energy homeostasis by modulating glucose and fatty acid metabolism in peripheral tissues. During the periparturient period, dairy cows often develop adipose tissue inflammation and decreased plasma adiponectin levels. Proinflammatory cytokine tumor necrosis factor-α (TNF-α) plays a pivotal role in regulating the endocrine functions of adipocytes, but whether it affects adiponectin production in calf adipocytes remains obscure. Thus, the present study aimed to determine whether TNF-α could affect adiponectin production in calf adipocytes and to identify the underlying mechanism. Adipocytes isolated from Holstein calves were differentiated and used for (1) BODIPY493/503 staining; (2) treatment with 0.1 ng/mL TNF-α for different times (0, 8, 16, 24, or 48 h); (3) transfection with peroxisome proliferator-activated receptor-γ (PPARG) small interfering RNA for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h; and (4) overexpression of PPARG for 48 h followed by treatment with or without 0.1 ng/mL TNF-α for 24 h. After differentiation, obvious lipid droplets and secretion of adiponectin were observed in adipocytes. Treatment with TNF-α did not alter mRNA abundance of ADIPOQ but reduced the total and high molecular weight (HMW) adiponectin content in the supernatant of adipocytes. Quantification of mRNA abundance of endoplasmic reticulum (ER)/Golgi resident chaperones involved in adiponectin assembly revealed that ER protein 44 (ERP44), ER oxidoreductase 1α (ERO1A), and disulfide bond-forming oxidoreductase A-like protein (GSTK1) were downregulated in TNF-α-treated adipocytes, while 78-kDa glucose-regulated protein and Golgi-localizing γ-adaptin ear homology domain ARF binding protein-1 were unaltered. Moreover, TNF-α diminished nuclear translocation of PPARγ and downregulated mRNA abundance of PPARG and its downstream target gene fatty acid synthase, suggesting that TNF-α suppressed the transcriptional activity of PPARγ. In the absence of TNF-α, overexpression of PPARG enhanced the total and HMW adiponectin content in supernatant and upregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. However, knockdown of PPARG reduced the total and HMW adiponectin content in supernatant and downregulated the mRNA abundance of ADIPOQ, ERP44, ERO1A, and GSTK1 in adipocytes. In the presence of TNF-α, overexpression of PPARG decreased, while knockdown of PPARG further exacerbated TNF-α-induced reductions in total and HMW adiponectin secretion and gene expression of ERP44, ERO1A, and GSTK1. Overall, TNF-α reduces adiponectin assembly in the calf adipocyte, which may be partly mediated by attenuation of PPARγ transcriptional activity. Thus, locally elevated levels of TNF-α in adipose tissue may be one reason for the decrease in circulating adiponectin in periparturient dairy cows.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinxing Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Qilai Ge
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Wenjun Tai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xue Hao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Qi Shao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Meng Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
3
|
Cheng HY, Anggelia MR, Lin CH, Wei FC. Toward transplantation tolerance with adipose tissue-derived therapeutics. Front Immunol 2023; 14:1111813. [PMID: 37187733 PMCID: PMC10175575 DOI: 10.3389/fimmu.2023.1111813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Solid organ and composite tissue allotransplanation have been widely applied to treat end-stage organ failure and massive tissue defects, respectively. Currently there are a lot of research endeavors focusing on induction of transplantation tolerance, to relieve the burden derived from long-term immunosuppressant uptake. The mesenchymal stromal cells (MSCs) have been demonstrated with potent immunomodulatory capacities and applied as promising cellular therapeutics to promote allograft survival and induce tolerance. As a rich source of adult MSCs, adipose tissue provides additional advantages of easy accessibility and good safety profile. In recent years, the stromal vascular fraction (SVF) isolated from adipose tissues following enzymatic or mechanical processing without in vitro culture and expansion has demonstrated immunomodulatory and proangiogenic properties. Furthermore, the secretome of AD-MSCs has been utilized in transplantation field as a potential "cell-free" therapeutics. This article reviews recent studies that employ these adipose-derived therapeutics, including AD-MSCs, SVF, and secretome, in various aspects of organ and tissue allotransplantation. Most reports validate their efficacies in prolonging allograft survival. Specifically, the SVF and secretome have performed well for graft preservation and pretreatment, potentially through their proangiogenic and antioxidative capacities. In contrast, AD-MSCs were suitable for peri-transplantation immunosuppression. The proper combination of AD-MSCs, lymphodepletion and conventional immunosuppressants could consistently induce donor-specific tolerance to vascularized composite allotransplants (VCA). For each type of transplantation, optimizing the choice of therapeutics, timing, dose, and frequency of administration may be required. Future progress in the application of adipose-derived therapeutics to induce transplantation tolerance will be further benefited by continued research into their mechanisms of action and the development of standardized protocols for isolation methodologies, cell culture, and efficacy evaluation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Hui-Yun Cheng,
| | - Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Hodges NA, Lampejo AO, Shang H, Rowe G, LeBlanc AJ, Katz AJ, Murfee WL. Viewing stromal vascular fraction de novo vessel formation and association with host microvasculature using the rat mesentery culture model. Microcirculation 2022; 29:e12758. [PMID: 35466504 PMCID: PMC9592675 DOI: 10.1111/micc.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The objective of the study is to demonstrate the innovation and utility of mesenteric tissue culture for discovering the microvascular growth dynamics associated with adipose-derived stromal vascular fraction (SVF) transplantation. Understanding how SVF cells contribute to de novo vessel growth (i.e., neovascularization) and host network angiogenesis motivates the need to make observations at single-cell and network levels within a tissue. METHODS Stromal vascular fraction was isolated from the inguinal adipose of adult male Wistar rats, labeled with DiI, and seeded onto adult Wistar rat mesentery tissues. Tissues were then cultured in MEM + 10% FBS for 3 days and labeled for BSI-lectin to identify vessels. Alternatively, SVF and tissues from green fluorescent-positive (GFP) Sprague Dawley rats were used to track SVF derived versus host vasculature. RESULTS Stromal vascular fraction-treated tissues displayed a dramatically increased vascularized area compared to untreated tissues. DiI and GFP+ tracking of SVF identified neovascularization involving initial segment formation, radial outgrowth from central hub-like structures, and connection of segments. Neovascularization was also supported by the formation of segments in previously avascular areas. New segments characteristic of SVF neovessels contained endothelial cells and pericytes. Additionally, a subset of SVF cells displayed the ability to associate with host vessels and the presence of SVF increased host network angiogenesis. CONCLUSIONS The results showcase the use of the rat mesentery culture model as a novel tool for elucidating SVF cell transplant dynamics and highlight the impact of model selection for visualization.
Collapse
Affiliation(s)
- Nicholas A. Hodges
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Arinola O. Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Hulan Shang
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gabrielle Rowe
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| | - Amanda Jo LeBlanc
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Walter L. Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Wahlmueller M, Narzt MS, Missfeldt K, Arminger V, Krasensky A, Lämmermann I, Schaedl B, Mairhofer M, Suessner S, Wolbank S, Priglinger E. Establishment of In Vitro Models by Stress-Induced Premature Senescence for Characterizing the Stromal Vascular Niche in Human Adipose Tissue. Life (Basel) 2022; 12:life12101459. [PMID: 36294893 PMCID: PMC9605485 DOI: 10.3390/life12101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Acting as the largest energy reservoir in the body, adipose tissue is involved in longevity and progression of age-related metabolic dysfunction. Here, cellular senescence plays a central role in the generation of a pro-inflammatory environment and in the evolution of chronic diseases. Within the complexity of a tissue, identification and targeting of senescent cells is hampered by their heterogeneity. In this study, we generated stress-induced premature senescence 2D and 3D in vitro models for the stromal vascular niche of human adipose tissue. We established treatment conditions for senescence induction using Doxorubicin (Dox), starting from adipose-derived stromal/stem cells (ASCs), which we adapted to freshly isolated microtissue-stromal vascular fraction (MT-SVF), where cells are embedded within their native extracellular matrix. Senescence hallmarks for the established in vitro models were verified on different cellular levels, including morphology, cell cycle arrest, senescence-associated β-galactosidase activity (SA-βgal) and gene expression. Two subsequent exposures with 200 nM Dox for six days were suitable to induce senescence in our in vitro models. We demonstrated induction of senescence in the 2D in vitro models through SA-βgal activity, at the mRNA level (LMNB1, CDK1, p21) and additionally by G2/M phase cell cycle arrest in ASCs. Significant differences in Lamin B1 and p21 protein expression confirmed senescence in our MT-SVF 3D model. MT-SVF 3D cultures were composed of multiple cell types, including CD31, CD34 and CD68 positive cells, while cell death remained unaltered upon senescence induction. As heterogeneity and complexity of adipose tissue senescence is given by multiple cell types, our established senescence models that represent the perivascular niche embedded within its native extracellular matrix are highly relevant for future clinical studies.
Collapse
Affiliation(s)
- Marlene Wahlmueller
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Marie-Sophie Narzt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Karin Missfeldt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Verena Arminger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Anna Krasensky
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Rockfish Bio AG, 1010 Vienna, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Mario Mairhofer
- Department of Hematology and Internal Oncology, Johannes Kepler University, 4020 Linz, Austria
| | - Susanne Suessner
- Austrian Red Cross Blood Transfusion Service for Upper Austria, 4020 Linz, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
- Correspondence:
| |
Collapse
|
6
|
Rowe G, Heng DS, Beare JE, Hodges NA, Tracy EP, Murfee WL, LeBlanc AJ. Stromal Vascular Fraction Reverses the Age-Related Impairment in Revascularization following Injury. J Vasc Res 2022; 59:343-357. [PMID: 36075199 PMCID: PMC9780192 DOI: 10.1159/000526002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 12/31/2022] Open
Abstract
Adipose-derived stromal vascular fraction (SVF) has emerged as a potential regenerative therapy, but few studies utilize SVF in a setting of advanced age. Additionally, the specific cell population in SVF providing therapeutic benefit is unknown. We hypothesized that aging would alter the composition of cell populations present in SVF and its ability to promote angiogenesis following injury, a mechanism that is T cell-mediated. SVF isolated from young and old Fischer 344 rats was examined with flow cytometry for cell composition. Mesenteric windows from old rats were isolated following exteriorization-induced (EI) hypoxic injury and intravenous injection of one of four cell therapies: (1) SVF from young or (2) old donors, (3) SVF from old donors depleted of or (4) enriched for T cells. Advancing age increased the SVF T-cell population but reduced revascularization following injury. Both young and aged SVF incorporated throughout the host mesenteric microvessels, but only young SVF significantly increased vascular area following EI. This study highlights the effect of donor age on SVF angiogenic efficacy and demonstrates how the ex vivo mesenteric-window model can be used in conjunction with SVF therapy to investigate its contribution to angiogenesis.
Collapse
Affiliation(s)
- Gabrielle Rowe
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA,
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA,
| | - David S Heng
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Nicholas A Hodges
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Evan P Tracy
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Amanda J LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Du X, Liu M, Tai W, Yu H, Hao X, Loor JJ, Jiang Q, Fang Z, Gao X, Fan M, Gao W, Lei L, Song Y, Wang Z, Zhang C, Liu G, Li X. Tumor necrosis factor-α promotes lipolysis and reduces insulin sensitivity by activating nuclear factor kappa B and c-Jun N-terminal kinase in primary bovine adipocytes. J Dairy Sci 2022; 105:8426-8438. [PMID: 35965124 DOI: 10.3168/jds.2022-22009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
Abstract
Sustained lipolysis and insulin resistance increase the risk of metabolic dysfunction in dairy cows during the transition period. Proinflammatory cytokines are key regulators of adipose tissue metabolism in nonruminants, but biological functions of these molecules in ruminants are not well known. Thus, the objective of this study was to investigate whether tumor necrosis factor-α (TNF-α) could affect insulin sensitivity and lipolysis in bovine adipocytes as well as the underlying mechanisms. Bovine adipocytes (obtained from the omental and mesenteric adipose depots) isolated from 5 Holstein female calves (1 d old) with similar body weight (median: 36.9 kg, range: 35.5-41.2 kg) were differentiated and used for (1) treatment with different concentrations of TNF-α (0, 0.1, 1, or 10 ng/mL) for 12 h; (2) pretreatment with 10 μM lipolytic agonist isoproterenol (ISO) for 3 h, followed by treatment with or without 10 ng/mL TNF-α for 12 h; and (3) pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 (20 μM for 2 h) and nuclear factor kappa B (NF-κB) inhibitor BAY 11-7082 (10 μM for 1 h) followed by treatment with or without 10 ng/mL TNF-α for 12 h. The TNF-α increased glycerol content in supernatant, decreased triglyceride content and insulin-stimulated phosphorylation of protein kinase B suggesting activation of lipolysis and impairment of insulin sensitivity. The TNF-α reduced cell viability, upregulated mRNA abundance of Caspase 3 (CASP3), an apoptosis marker, and increased activity of Caspase 3. In addition, increased phosphorylation of NF-κB and JNK, upregulation of mRNA abundance of interleukin-6 (IL-6), TNFA, and suppressor of cytokine signaling 3 (SOCS3) suggested that TNF-α activated NF-κB and JNK signaling pathways. Furthermore, ISO plus TNF-α-activated NF-κB and JNK signaling pathway to a greater extent than TNF-α alone. Combining TNF-α and ISO aggravated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. In the absence of TNF-α, inhibition of NF-κB and JNK did not alter glycerol content in supernatant, triglyceride content or insulin-stimulated phosphorylation of protein kinase B. In the presence of TNF-α, inhibition of NF-κB and JNK alleviated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. Overall, TNF-α impairs insulin sensitivity and induces lipolysis and apoptosis in bovine adipocytes, which may be partly mediated by activation of NF-κB and JNK. Thus, the data suggested that NF-κB and JNK are potential therapeutic targets for alleviating lipolysis dysregulation and insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Wenjun Tai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xue Hao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinxing Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Minghe Fan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
8
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
9
|
Yuan X, Li L, Liu H, Luo J, Zhao Y, Pan C, Zhang X, Chen Y, Gou M. Strategies for improving adipose-derived stem cells for tissue regeneration. BURNS & TRAUMA 2022; 10:tkac028. [PMID: 35992369 PMCID: PMC9382096 DOI: 10.1093/burnst/tkac028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Adipose-derived stem cells (ADSCs) have promising applications in tissue regeneration. Currently, there are only a few ADSC products that have been approved for clinical use. The clinical application of ADSCs still faces many challenges. Here, we review emerging strategies to improve the therapeutic efficacy of ADSCs in tissue regeneration. First, a great quantity of cells is often needed for the stem cell therapies, which requires the advanced cell expansion technologies. In addition cell-derived products are also required for the development of ‘cell-free’ therapies to overcome the drawbacks of cell-based therapies. Second, it is necessary to strengthen the regenerative functions of ADSCs, including viability, differentiation and paracrine ability, for the tissue repair and regeneration required for different physiological and pathophysiological conditions. Third, poor delivery efficiency also restricts the therapeutic effect of ADSCs. Effective methods to improve cell delivery include alleviating harsh microenvironments, enhancing targeting ability and prolonging cell retention. Moreover, we also point out some critical issues about the sources, effectiveness and safety of ADSCs. With these advanced strategies to improve the therapeutic efficacy of ADSCs, ADSC-based treatment holds great promise for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yongchao Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Cheng Pan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Xue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University , Chengdu, 610041, China
| |
Collapse
|
10
|
Park SS, Park M, Lee BT. Autologous stromal vascular fraction-loaded hyaluronic acid/gelatin-biphasic calcium phosphate scaffold for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112533. [DOI: 10.1016/j.msec.2021.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
|
11
|
Quality and Quantity-Cultured Human Mononuclear Cells Improve Human Fat Graft Vascularization and Survival in an In Vivo Murine Experimental Model. Plast Reconstr Surg 2021; 148:1058e-1059e. [PMID: 34662325 DOI: 10.1097/prs.0000000000008544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
13
|
Kishta MS, Ahmed HH, Ali MAM, Aglan HA, Mohamed MR. Mesenchymal stem cells seeded onto nanofiber scaffold for myocardial regeneration. Biotech Histochem 2021; 97:322-333. [PMID: 34607472 DOI: 10.1080/10520295.2021.1979251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cardiac disease is the leading cause of mortality and disability worldwide. We investigated the role of undifferentiated adipose tissue-derived mesenchymal stem cells (ADMSC) alone and ADMSC seeded onto the electro-spun nanofibers (NF) for reconstructing damaged cardiac tissue in isoprenaline-induced myocardial infarction (MI) in rats. ADMSC were sorted by morphological appearance and by detection of cluster of differentiation (CD) surface antigens. The therapeutic potential of ADMSC for treating MI was evaluated by electrocardiogram (ECG), biochemical analysis, molecular genetic analysis and histological examination. Treatment of MI-challenged rats with ADMSC improved ECG findings, which were corroborated by significant decreases in serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzyme activities together with reduced serum troponin T (cTnT) and connexin 43 (Cx43) levels. MI model rats treated with ADMSC exhibited a significant increase in serum alpha sarcomeric actin (Actn) and GATA binding protein 4 (GATA4), and NK2 homeobox 5 (NKX2.5) gene expression was decreased following treatment with ADMSC. ADMSC also ameliorated damage to cardiac tissue. The effects of ADMSC seeded onto NF were superior to those of ADMSC alone. ADMSC may be useful for mitigation of MI.
Collapse
Affiliation(s)
- Mohamed S Kishta
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mohamed A M Ali
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | | |
Collapse
|
14
|
Wang X, Zhou C, Liu J, Yang T, Mao L, Hong X, Jiang N, Jia R. Administration of Donor-Derived Nonexpanded Adipose Stromal Vascular Fraction Attenuates Ischemia-Reperfusion Injury in Donation After Cardiac Death Rat Renal Transplantation. Transplant Proc 2021; 53:2070-2081. [PMID: 34266654 DOI: 10.1016/j.transproceed.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Donation after cardiac death (DCD) has become a potential source for transplantation organs. However, ischemia/reperfusion injury (IRI) induced by cardiac arrest has limited the use of DCD organs. Stromal vascular fraction (SVF) without the culturing step has been proposed as a safer and easier source for stem cell therapy, which has emerged as an attractive technology that could facilitate the recovery of renal function and structure from acute kidney injury induced by IRI after DCD renal transplantation. In this study, freshly isolated donor-derived SVF was identified and then delivered intra-arterially into the grafts in DCD rat renal transplantation. Administration of freshly isolated donor-derived SVF could significantly alleviate the IRI of renal grafts and enhance graft reparation by promoting graft cell proliferation and microvascularization in DCD renal transplantation. Moreover, results revealed that the oxidative stress in grafts was significantly alleviated with SVF treatment, and this might be attributed to the overexpression of antioxidative molecules including nuclear factor erythroid-related factor 2, superoxide dismutase-1, and heme oxygenase-1. In conclusion, our study demonstrated that the administration of freshly isolated donor-derived nonexpanded adipose SVF could attenuate IRI and protect the grafts after DCD rat renal transplantation.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Jiang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Sharun K, Pawde AM, Kumar R, Kalaiselvan E, Kinjavdekar P, Dhama K, Pal A. Standardization and characterization of adipose-derived stromal vascular fraction from New Zealand white rabbits for bone tissue engineering. Vet World 2021; 14:508-514. [PMID: 33776318 PMCID: PMC7994125 DOI: 10.14202/vetworld.2021.508-514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 01/03/2023] Open
Abstract
Background and Aim: Adipose tissue-derived stromal vascular fraction (SVF) contains a heterogeneous cell population comprising multipotent adipose-derived stem cells. Regenerative therapy using adipose-derived SVF has broad applications in bone tissue engineering due to the superior osteogenic potential of SVF. This study was designed to standardize and characterize adipose-derived SVF obtained from New Zealand white rabbits for bone tissue engineering and other potential applications. Materials and Methods: Ten skeletally mature and clinically healthy adult New Zealand white rabbits were used in this study. The SVF was prepared using surgically resected interscapular adipose tissue following enzymatic digestion with 0.1% collagenase type I solution. The SVF pellet obtained after the final centrifugation step was suspended in a 0.5 mL control solution to obtain ready-to-use adipose-derived SVF. The freshly prepared SVF was characterized based on the total SVF cell count and cell yield per gram of adipose tissue. The SVF cells were enumerated using a hemocytometer. Results: Interscapular adipose tissue depots are ideal for preparing autologous adipose-derived SVF due to the ease of access. The interscapular adipose-derived SVF prepared by enzymatic digestion had an average cell yield of 3.15±0.09×106 cells/g adipose tissue. Freshly prepared SVF had a total cell count of 3.15±0.09×104 cells/μL. Conclusion: The enzymatic digestion of adipose tissue using 0.1% collagenase resulted in better cell yield per gram than methods previously reported in rabbits. The use of adipose-derived SVF can preclude the requirement for an additional culture period. In addition, it may also reduce the risk of extensive cell contamination, which makes it a safe and cost-effective strategy for bone tissue engineering applications.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - E Kalaiselvan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
16
|
Pagano PJ, Cifuentes-Pagano E. The Enigmatic Vascular NOX: From Artifact to Double Agent of Change: Arthur C. Corcoran Memorial Lecture - 2019. Hypertension 2021; 77:275-283. [PMID: 33390049 DOI: 10.1161/hypertensionaha.120.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NOXs (NADPH oxidases) comprise a family of proteins whose primary function is the production of reactive oxygen species, namely, superoxide anion and hydrogen peroxide. The prototype first being discovered and characterized in neutrophils, multiple NOXs are now known to be broadly expressed in cell and organ systems and whose phylogeny spans countless life forms beginning with prokaryotes. This long-enduring evolutionary conservation underscores the importance of fundamental NOX functions. This review chronicles a personal perspective of the field beginning with the discovery of NOXs in the vasculature and the advances achieved through the years as to our understanding of their mechanisms of action and role in oxidative stress and disease. Furthermore, applications of isoform-selective inhibitors to dissect the role of NOX isozymes in vascular biology, focusing on inflammation, pulmonary hypertension, and aging are described.
Collapse
Affiliation(s)
- Patrick J Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
17
|
Cui Q, Zhang D, Kong D, Tang J, Liao X, Yang Q, Ren J, Gong Y, Wu G. Co-transplantation with adipose-derived cells to improve parathyroid transplantation in a mice model. Stem Cell Res Ther 2020; 11:200. [PMID: 32456711 PMCID: PMC7249357 DOI: 10.1186/s13287-020-01733-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Accidentally removed parathyroid glands are still challenging in neck surgery, leading to hypoparathyroidism characterized with abnormally low levels of parathyroid hormone. Parathyroid auto-transplantation is usually applied in compensation. To improve the efficiency of parathyroid transplantation, we introduced a method by co-transplanting with adipose-derived cells, including stromal vascular fractions (SVFs) and adipose-derived stem cells (ADSCs), and investigated the underlying molecular mechanisms involved in parathyroid transplantation survival. Methods Rat and human parathyroid tissues were transplanted into nude mice as parathyroid transplantation model to examine the effects of SVFs and ADSCs on grafts angiogenesis and survival rates, including blood vessel assembly and parathyroid hormone levels. Several angiogenic factors, such as vascular endothelial growth factor (VEGF)-A and fibroblast growth factor (FGF) 2, were assessed in parathyroid grafts. The effects of hypoxia were investigated on ADSCs. The modulatory roles of the eyes absent homolog 1 (EYA1), which is vital in parathyroid development, was also investigated on angiogenic factor production and secretion by ADSCs. All experimental data were statistically processed. Student’s t test was used to assess significant differences between 2 groups. For multiple comparisons with additional interventions, two-way ANOVA followed by Tukey’s post hoc test was performed. P < 0.05 was considered as significant. Results SVFs improve rat parathyroid transplantation survival and blood vessel assembly, as well as FGF2 and VEGF-A expression levels in parathyroid transplantation mice. Functional human parathyroid grafts have higher microvessel density and increased VEGF-A expression. The supernatant of ADSCs induced tubule formation and migration of human endothelial cells in vitro. Hypoxia had no effect on proliferation and apoptosis of human ADSCs but induced higher angiogenic factor levels of VEGF-A and FGF2, modulated by EYA1, which was confirmed by parathyroid glands transplantation in mice. Conclusions Adipose-derived cells, including ADSCs and SVFs, improve parathyroid transplantation survival via promoting angiogenesis through EYA1-regulating angiogenetic factors in vitro and in vivo. Our studies proved an effective method to improve the parathyroid autotransplantation, which is promising for clinical patients with hypoparathyroidism when parathyroid glands were accidentally injured, removed, or devascularized.
Collapse
Affiliation(s)
- Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Dan Zhang
- Department of Anesthesiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Deguang Kong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China.
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China.
| |
Collapse
|
18
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Boissier R, François P, Gondran Tellier B, Meunier M, Lyonnet L, Simoncini S, Magalon J, Legris T, Arnaud L, Giraudo L, Dignat George F, Karsenty G, Burtey S, Lechevallier E, Sabatier F, Paul P. Perirenal Adipose Tissue Displays an Age-Dependent Inflammatory Signature Associated With Early Graft Dysfunction of Marginal Kidney Transplants. Front Immunol 2020; 11:445. [PMID: 32256495 PMCID: PMC7089962 DOI: 10.3389/fimmu.2020.00445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Better understanding of the contribution of donor aging and comorbidity factors of expanded criteria donors (ECD) to the clinical outcome of a transplant is a challenge in kidney transplantation. We investigated whether the features of donor-derived stromal vascular fraction of perirenal adipose tissue (PRAT-SVF) could be indicative of the deleterious impact of the ECD microenvironment on a renal transplant. Methods: A comparative analysis of cellular components, transcriptomic and vasculogenic profiles was performed in PRAT-SVF obtained from 22 optimal donors and 31 ECD deceased donors. We then investigated whether these parameters could be associated with donor aging and early allograft dysfunction. Results: When compared with the PRAT-SVF of non-ECD donors, ECD PRAT-SVF displayed a lower proportion of stromal cells, a higher proportion of inflammatory NK cells. The global RNA sequencing approach indicated a differential molecular signature in the PRAT-SVF of ECD donors characterized by the over-expression of CXCL1 and IL1-β inflammatory transcripts. The vasculogenic activity of PRAT-SVF was highly variable but was not significantly affected in marginal donors. Periorgan recruitment of monocytes/macrophages and NK cells in PRAT-SVF was associated with donor aging. The presence of NK cell infiltrates was associated with lower PRAT-SVF angiogenic activity and with early allograft dysfunction evaluated on day 7 and at 1 month post-transplant. Conclusions: Our results indicate that human NK cell subsets are differentially recruited in the periorgan environment of aging kidney transplants. We provide novel evidence that PRAT-SVF represents a non-invasive and timely source of donor material with potential value to assess inflammatory features that impact organ quality and function.
Collapse
Affiliation(s)
- Romain Boissier
- Department of Urology and Renal Transplantation, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix-Marseille Univ., Marseille, France.,C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France
| | - Pauline François
- C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France.,Cell Therapy Department, La Conception University Hospital APHM, Aix-Marseille Univ., INSERM CIC 1409, Marseille, France
| | - Bastien Gondran Tellier
- Department of Urology and Renal Transplantation, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix-Marseille Univ., Marseille, France.,C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France
| | - Maité Meunier
- Department of Nephrology and Renal Transplantation, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix-Marseille Univ., Marseille, France
| | - Luc Lyonnet
- Department of Hematology and Vascular biology, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix Marseille Univ., Marseille, France
| | | | - Jeremy Magalon
- C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France.,Cell Therapy Department, La Conception University Hospital APHM, Aix-Marseille Univ., INSERM CIC 1409, Marseille, France
| | - Tristan Legris
- Department of Nephrology and Renal Transplantation, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix-Marseille Univ., Marseille, France
| | - Laurent Arnaud
- Department of Hematology and Vascular biology, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix Marseille Univ., Marseille, France
| | - Laurent Giraudo
- Cell Therapy Department, La Conception University Hospital APHM, Aix-Marseille Univ., INSERM CIC 1409, Marseille, France
| | - Françoise Dignat George
- C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France.,Department of Hematology and Vascular biology, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix Marseille Univ., Marseille, France
| | - Gilles Karsenty
- Department of Urology and Renal Transplantation, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix-Marseille Univ., Marseille, France
| | - Stéphane Burtey
- C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France.,Department of Nephrology and Renal Transplantation, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix-Marseille Univ., Marseille, France
| | - Eric Lechevallier
- Department of Urology and Renal Transplantation, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix-Marseille Univ., Marseille, France
| | - Florence Sabatier
- C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France.,Cell Therapy Department, La Conception University Hospital APHM, Aix-Marseille Univ., INSERM CIC 1409, Marseille, France
| | - Pascale Paul
- C2VN, INSERM 1263, Aix-Marseille Univ, INRAE, Marseille, France.,Department of Hematology and Vascular biology, La Conception University Hospital, Assistance Publique-Hôpitaux Marseille (APHM), Aix Marseille Univ., Marseille, France
| |
Collapse
|
20
|
Kemilew J, Sobczyńska-Rak A, Żylińska B, Szponder T, Nowicka B, Urban B. The Use of Allogenic Stromal Vascular Fraction (SVF) Cells in Degenerative Joint Disease of the Spine in Dogs. In Vivo 2019; 33:1109-1117. [PMID: 31280199 DOI: 10.21873/invivo.11580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Stem cells are widely used in regenerative medicine and in clinical practice for the treatment of damaged nerve tissue, myocytes, tendons, and ligaments. The aim of the study was to monitor VEGF levels after the administration of allogenic cellular material (SVF) in the course of treatment of dogs suffering from degenerative joint disease in the spinal region. MATERIALS AND METHODS The study was conducted on 10 dogs of both genders, aged between 6 and 13 years in which allogenic stromal vascular fraction of stem cells (SVF) was administered intravenously. The control group was composed of 10 clinically healthy dogs. Before treatment and after 2- and 8-week intervals blood samples were obtained from the study group dogs in order to determine VEGF levels via immunoenzymatic test. RESULTS in a few days after the therapy, alleviation of pain symptoms and reduction of lameness were noticed. The VEGF level in 2 weeks after the therapy was significantly elevated (median: 38.77 pg/ml), while in 8 weeks a decrease was observed (median: 18.37 pg/ml). Conlusion: Administration of allogenic stem cells has a positive influence on elevation of the VEGF levels in the blood serum of affected animals as well as their regeneration capacity.
Collapse
Affiliation(s)
- Jerzy Kemilew
- "Kemilew Stem Cells for Animals" Company, Warsaw, Poland
| | - Aleksandra Sobczyńska-Rak
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Żylińska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Tomasz Szponder
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Nowicka
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | | |
Collapse
|
21
|
Increasing number of fibroblast, capillary and collagen amount in Achilles tendons of rats with diabetic mellitus after application of stromal vascular fraction derived from adipose tissue. CURRENT ORTHOPAEDIC PRACTICE 2019. [DOI: 10.1097/bco.0000000000000789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Rowe G, Kelm NQ, Beare JE, Tracy E, Yuan F, LeBlanc AJ. Enhanced beta-1 adrenergic receptor responsiveness in coronary arterioles following intravenous stromal vascular fraction therapy in aged rats. Aging (Albany NY) 2019; 11:4561-4578. [PMID: 31296794 PMCID: PMC6660031 DOI: 10.18632/aging.102069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 04/30/2023]
Abstract
Our past study showed that a single tail vein injection of adipose-derived stromal vascular fraction (SVF) into old rats was associated with improved dobutamine-mediated coronary flow reserve. We hypothesize that i.v. injection of SVF improves coronary microvascular function in aged rats via alterations in beta adrenergic microvascular signaling. Female Fischer-344 rats aged young (3 months, n=32) and old (24 months, n=30) were utilized, along with two cell therapies intravenously injected in old rats four weeks prior to sacrifice: 1x107 green fluorescent protein (GFP+) SVF cells (O+SVF, n=21), and 5x106 GFP+ bone-marrow mesenchymal stromal cells (O+BM, n=6), both harvested from young donors. Cardiac ultrasound and pressure-volume measurements were obtained, and coronary arterioles were isolated from each group for microvessel reactivity studies and immunofluorescence staining. Coronary flow reserve decreased with advancing age, but this effect was rescued by the SVF treatment in the O+SVF group. Echocardiography showed an age-related diastolic dysfunction that was improved with SVF to a greater extent than with BM treatment. Coronary arterioles isolated from SVF-treated rats showed amelioration of the age-related decrease in vasodilation to a non-selective β-AR agonist. I.v. injected SVF cells improved β-adrenergic receptor-dependent coronary flow and microvascular function in a model of advanced age.
Collapse
Affiliation(s)
- Gabrielle Rowe
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| | - Natia Q. Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - Jason E. Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA
| | - Evan Tracy
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| | - Fangping Yuan
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
23
|
Magalon J, Velier M, Simoncini S, François P, Bertrand B, Daumas A, Benyamine A, Boissier R, Arnaud L, Lyonnet L, Fernandez S, Dignat-George F, Casanova D, Guillet B, Granel B, Paul P, Sabatier F. Molecular profile and proangiogenic activity of the adipose-derived stromal vascular fraction used as an autologous innovative medicinal product in patients with systemic sclerosis. Ann Rheum Dis 2019; 78:391-398. [PMID: 30612118 DOI: 10.1136/annrheumdis-2018-214218] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The autologous stromal vascular fraction (SVF) from adipose tissue is an alternative to cultured adipose-derived stem cells for use in regenerative medicine and represents a promising therapy for vasculopathy and hand disability in systemic sclerosis (SSc). However, the bioactivity of autologous SVF is not documented in this disease context. This study aimed to compare the molecular and functional profiles of the SVF-based medicinal product obtained from SSc and healthy subjects. METHODS Good manufacturing practice (GMP)-grade SVF from 24 patients with SSc and 12 healthy donors (HD) was analysed by flow cytometry to compare the distribution of the CD45- and CD45+ haematopoietic cell subsets. The ability of SVF to form a vascular network was assessed using Matrigel in vivo assay. The transcriptomic and secretory profiles of the SSc-SVF were assessed by RNA sequencing and multiplex analysis, respectively, and were compared with the HD-SVF. RESULTS The distribution of the leucocyte, endothelial, stromal, pericyte and transitional cell subsets was similar for SSc-SVF and HD-SVF. SSc-SVF retained its vasculogenic capacity, but the density of neovessels formed in SVF-loaded Matrigel implanted in nude mice was slightly decreased compared with HD-SVF. SSc-SVF displayed a differential molecular signature reflecting deregulation of angiogenesis, endothelial activation and fibrosis. CONCLUSIONS Our study provides the first evidence that SSc does not compromise the vascular repair capacity of SVF, supporting its use as an innovative autologous biotherapy. The characterisation of the specific SSc-SVF molecular profile provides new perspectives for delineating markers of the potency of SVF and its targets for the treatment of SSc.
Collapse
Affiliation(s)
- Jérémy Magalon
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
| | - Mélanie Velier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
| | | | - Pauline François
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
| | - Baptiste Bertrand
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Aurélie Daumas
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, Marseille, France
| | - Audrey Benyamine
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, Marseille, France
| | - Romain Boissier
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
- Urology Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Laurent Arnaud
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Luc Lyonnet
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | | | - Françoise Dignat-George
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
- Vascular Biology Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Dominique Casanova
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, Marseille, France
| | - Benjamin Guillet
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
- CERIMED, Aix-Marseille University, AP-HM, Marseille, France
| | - Brigitte Granel
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, Marseille, France
| | - Pascale Paul
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- INSERM, INRA, C2VN, Aix-Marseille University, Marseille, France
| |
Collapse
|
24
|
Sheu JJ, Lee MS, Wallace CG, Chen KH, Sung PH, Chua S, Lee FY, Chung SY, Chen YL, Li YC, Yip HK. Therapeutic effects of adipose derived fresh stromal vascular fraction-containing stem cells versus cultured adipose derived mesenchymal stem cells on rescuing heart function in rat after acute myocardial infarction. Am J Transl Res 2019; 11:67-86. [PMID: 30787970 PMCID: PMC6357301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
We tested the hypothesis that adipose-derived fresh stromal vascular fraction (SVF) is non-inferior to conventional adipose-derived mesenchymal stem cell (ADMSC) therapy for improving left-ventricular ejection fraction (LVEF) in rat after acute myocardial infarction (AMI). Male-adult SD rats (n = 48) were categorized into group 1 (sham control), AMI, AMI + ADMSCs (1.2 × 106) cells] and AMI + SVF (1.2 × 106) cells]. Flow cytometric and qPCR analyses showed that the expressions of surface biomarkers for endothelial progenitor cells, and cardiac-stem cells were significantly higher in the SVF population than in the ADMSC population, whereas MSCs showed a reversed pattern between these two groups (all P < 0.001). By day-42 after AMI, LVEF was highest in SC, lowest in AMI, and significantly higher in AMI + SVF than in AMI + ADMSCs (P < 0.0001). Protein expression indicating angiogenesis, anti-inflammatory/anti-apoptotic, mitochondrial/bioenergy-integrity and antifibrotic biomarkers showed an identical pattern, whereas protein expressions for inflammatory, apoptotic and pressure-overload/heart failure biomarkers exhibited an opposite pattern to LVEF among the four groups (all P < 0.001). Histopathology displayed that LV infarction/fibrotic area/collagen-deposition areas, cellular expressions of DNA-damage, and inflammatory biomarkers exhibited an opposite pattern, whereas cellular expressions of endothelial/gap-junction biomarkers showed an identical pattern to LVEF among the four groups (all P < 0.0001). Cellular expression of angiogenesis biomarkers significantly and progressively increased from groups 1 to 4 (all P < 0.0001). In conclusion, SVF may be better than ADMSC at improving LVEF in rat after AMI.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | | | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Sarah Chua
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei 11490, Taiwan
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
- Department of Nursing, Asia UniversityTaichung 41354, Taiwan
| |
Collapse
|
25
|
Kelm NQ, Beare JE, Yuan F, George M, Shofner CM, Keller BB, Hoying JB, LeBlanc AJ. Adipose-derived cells improve left ventricular diastolic function and increase microvascular perfusion in advanced age. PLoS One 2018; 13:e0202934. [PMID: 30142193 PMCID: PMC6108481 DOI: 10.1371/journal.pone.0202934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
An early manifestation of coronary artery disease in advanced age is the development of microvascular dysfunction leading to deficits in diastolic function. Our lab has previously shown that epicardial treatment with adipose-derived stromal vascular fraction (SVF) preserves microvascular function following coronary ischemia in a young rodent model. Follow-up studies showed intravenous (i.v.) delivery of SVF allows the cells to migrate to the walls of small vessels and reset vasomotor tone. Therefore we tested the hypothesis that the i.v. cell injection of SVF would reverse the coronary microvascular dysfunction associated with aging in a rodent model. Fischer 344 rats were divided into 4 groups: young control (YC), old control (OC), old + rat aortic endothelial cells (O+EC) and old + GFP+ SVF cells (O+SVF). After four weeks, cardiac function and coronary flow reserve (CFR) were measured via echocardiography, and hearts were explanted either for histology or isolation of coronary arterioles for vessel reactivity studies. In a subgroup of animals, microspheres were injected during resting and dobutamine-stimulated conditions to measure coronary blood flow. GFP+ SVF cells engrafted and persisted in the myocardium and coronary vasculature four weeks following i.v. injection. Echocardiography showed age-related diastolic dysfunction without accompanying systolic dysfunction; diastolic function was improved in old rats after SVF treatment. Ultrasound and microsphere data both showed increased stimulated coronary blood flow in O+SVF rats compared to OC and O+EC, while isolated vessel reactivity was mostly unchanged. I.v.-injected SVF cells were capable of incorporating into the vasculature of the aging heart and are shown in this study to improve CFR and diastolic function in a model of advanced age. Importantly, SVF injection did not lead to arrhythmias or increased mortality in aged rats. SVF cells provide an autologous cell therapy option for treatment of microvascular and cardiac dysfunction in aged populations.
Collapse
Affiliation(s)
- Natia Q. Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Jason E. Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States of America
| | - Fangping Yuan
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Monika George
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Charles M. Shofner
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - James B. Hoying
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
26
|
Ramakrishnan VM, Boyd NL. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:289-299. [PMID: 28316259 PMCID: PMC6080106 DOI: 10.1089/ten.teb.2017.0061] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022]
Abstract
A major challenge in tissue engineering is the generation of sufficient volumes of viable tissue for organ transplant. The development of a stable, mature vasculature is required to sustain the metabolic and functional activities of engineered tissues. Adipose stromal vascular fraction (SVF) cells are an easily accessible, heterogeneous cell system comprised of endothelial cells, macrophages, pericytes, and various stem cell populations. Collectively, SVF has been shown to spontaneously form vessel-like networks in vitro and robust, patent, and functional vasculatures in vivo. Capitalizing on this ability, we and others have demonstrated adipose SVF's utility in generating and augmenting engineered liver, cardiac, and vascular tissues, to name a few. This review highlights the scientific origins of SVF, the use of SVF as a clinically relevant vascular source, various SVF constituents and their roles, and practical considerations associated with isolating SVF for various tissue engineering applications.
Collapse
Affiliation(s)
- Venkat M. Ramakrishnan
- Cardiovascular Innovation Institute, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Nolan L. Boyd
- Cardiovascular Innovation Institute, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
27
|
Zhu R, Cheng M, Lu T, Yang N, Ye S, Pan YH, Hong T, Dang S, Zhang W. A Disintegrin and Metalloproteinase with Thrombospondin Motifs 18 Deficiency Leads to Visceral Adiposity and Associated Metabolic Syndrome in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:461-473. [PMID: 29169989 DOI: 10.1016/j.ajpath.2017.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Visceral adiposity is of greater risk than obesity in s.c. adipose tissue for diabetes and cardiovascular disease. Its pathogenesis remains unclear, but it is associated with extracellular matrix (ECM) remodeling. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) are a family of secreted zinc-dependent metalloproteinases that play crucial roles in development and various diseases because of their ECM remodeling activity. ADAMTS18 is an orphan ADAMTS whose function and substrate remain unclear. Herein, we showed that Adamts18 mRNA was abundantly expressed in visceral (gonadal) white adipose tissue (vWAT) during the early stage of development after birth. Adamts18 knockout (KO) mice showed increased body fat percentage and larger adipocyte size in vWAT relative to wild-type littermates. These findings may be partly attributed to ECM remodeling, especially increased expression of laminin 1 and adipokine thrombospondin 1 in vWAT. Attenuated extracellular signal-regulated kinase 1 and 2 activity, along with increased expression of adipocyte-specific transcription factors peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein β, and marker gene Fabp4, was detected in vWAT of Adamts18 KO mice. Furthermore, Adamts18 KO mice showed early metabolic syndrome, including hyperlipidemia, blood glucose metabolic disorder, and hypertension. ADAMTS18 deficiency promotes atherosclerosis in apolipoprotein E-deficient mice. These results indicate a novel function of ADAMTS18 in vWAT development and associated metabolic disorders.
Collapse
Affiliation(s)
- Rui Zhu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Mengting Cheng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Shuai Ye
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Tao Hong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, Republic of China; Shanghai Research Center for Model Organisms, Shanghai, Republic of China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, Republic of China.
| |
Collapse
|
28
|
Comparison of Stromal Vascular Fraction with or Without a Novel Bioscaffold to Fibrin Glue in a Porcine Model of Mechanically Induced Anorectal Fistula. Inflamm Bowel Dis 2017; 23:1962-1971. [PMID: 28945635 DOI: 10.1097/mib.0000000000001254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Anorectal fistulas (ARFs) are a common, devastating, event in the life of a patient with Crohn's disease. ARFs occur in up to 50% of patients with Crohn's disease. Treatment begins with surgical drainage of the initial abscess, followed by antibiotic therapy, then anti-inflammatory medications. If medical therapy fails to close the fistula tract, surgical intervention is often pursued. Surgery incurs risk of incontinence because of sphincter injury. Increasingly, the role of cell-based therapy is being investigated in ARFs. We evaluated the role a bioabsorbable scaffold plays in delivering cell-based therapy using a porcine model of AFR. METHODS ARFs were mechanically created and matured by setons. After 28 days, setons were removed; periaortic fat was harvested and processed for stromal vascular fraction (SVF). The cells were labeled with a membrane stain for later identification, then injected into the fistula or implanted through scaffold. Fistulas not treated with cells were injected with fibrin glue. Animals were monitored visually for healing at weeks 2 and 4, then euthanized to evaluate fistulas for histologic healing. RESULTS All fistulas (6/6) treated with SVF + scaffolds healed by week 2, compared with only 4/6 with just SVF and 0/5 treated with fibrin glue. Scaffolds retained SVF within the fistula tract more readily than injection method and SVF+scaffold treatment accelerated the healing process. Robust neovascularization was also seen in fistulas treated with SVF+scaffold. No adverse events occurred. CONCLUSIONS Scaffold technology may improve cell-based therapy healing rates for Crohn's ARFs. This advance should be investigated by human trials.
Collapse
|
29
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
LeBlanc AJ, Kelm NQ. Thrombospondin-1, Free Radicals, and the Coronary Microcirculation: The Aging Conundrum. Antioxid Redox Signal 2017; 27:785-801. [PMID: 28762749 PMCID: PMC5647494 DOI: 10.1089/ars.2017.7292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Successful matching of cardiac metabolism to perfusion is accomplished primarily through vasodilation of the coronary resistance arterioles, but the mechanism that achieves this effect changes significantly as aging progresses and involves the contribution of reactive oxygen species (ROS). Recent Advances: A matricellular protein, thrombospondin-1 (Thbs-1), has been shown to be a prolific contributor to the production and modulation of ROS in large conductance vessels and in the peripheral circulation. Recently, the presence of physiologically relevant circulating Thbs-1 levels was proven to also disrupt vasodilation to nitric oxide (NO) in coronary arterioles from aged animals, negatively impacting coronary blood flow reserve. CRITICAL ISSUES This review seeks to reconcile how ROS can be successfully utilized as a substrate to mediate vasoreactivity in the coronary microcirculation as "normal" aging progresses, but will also examine how Thbs-1-induced ROS production leads to dysfunctional perfusion and eventual ischemia and why this is more of a concern in advancing age. FUTURE DIRECTIONS Current therapies that may effectively disrupt Thbs-1 and its receptor CD47 in the vascular wall and areas for future exploration will be discussed. Antioxid. Redox Signal. 27, 785-801.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Natia Q Kelm
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| |
Collapse
|
31
|
Lee C, Jang MJ, Kim BH, Park JY, You D, Jeong IG, Hong JH, Kim CS. Recovery of renal function after administration of adipose-tissue-derived stromal vascular fraction in rat model of acute kidney injury induced by ischemia/reperfusion injury. Cell Tissue Res 2017; 368:603-613. [PMID: 28283911 DOI: 10.1007/s00441-017-2585-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/09/2017] [Indexed: 12/26/2022]
Abstract
Acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) injury is a major challenge in critical care medicine. The purpose of this study is to determine the therapeutic effects of the adipose-tissue-derived stromal vascular fraction (SVF) and the optimal route for SVF delivery in a rat model of AKI induced by I/R injury. Fifty male Sprague-Dawley rats were randomly divided into five groups (10 animals per group): sham, nephrectomy control, I/R injury control, renal arterial SVF infusion and subcapsular SVF injection. To induce AKI by I/R injury, the left renal artery was clamped with a nontraumatic vascular clamp for 40 min, and the right kidney was removed. Rats receiving renal arterial infusion of SVF had a significantly reduced increase in serum creatinine compared with the I/R injury control group at 4 days after I/R injury. The glomerular filtration rate of the renal arterial SVF infusion group was maintained at a level similar to that of the sham and nephrectomy control groups at 14 days after I/R injury. Masson's trichrome staining showed significantly less fibrosis in the renal arterial SVF infusion group compared with that in the I/R injury control group in the outer stripe (P < 0.001). TUNEL labeling showed significantly decreased apoptosis in both the renal arterial SVF infusion and subcapsular SVF injection groups compared with the I/R injury control group in the outer stripe (P < 0.001). Thus, renal function is effectively rescued from AKI induced by I/R injury through the renal arterial administration of SVF in a rat model.
Collapse
Affiliation(s)
- Chunwoo Lee
- Department of Urology, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, South Korea
| | - Myoung Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bo Hyun Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jin Young Park
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Dalsan You
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - In Gab Jeong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jun Hyuk Hong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
32
|
Hanke A, Prantl L, Wenzel C, Nerlich M, Brockhoff G, Loibl M, Gehmert S. Semi-automated extraction and characterization of Stromal Vascular Fraction using a new medical device. Clin Hemorheol Microcirc 2017; 64:403-412. [PMID: 27886006 DOI: 10.3233/ch-168124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The stem cell rich Stromal Vascular Fraction (SVF) can be harvested by processing lipo-aspirate or fat tissue with an enzymatic digestion followed by centrifugation. To date neither a standardised extraction method for SVF nor a generally admitted protocol for cell application in patients exists. A novel commercially available semi-automated device for the extraction of SVF promises sterility, consistent results and usability in the clinical routine. The aim of this work was to compare the quantity and quality of the SVF between the new system and an established manual laboratory method. MATERIAL AND METHODS SVF was extracted from lipo-aspirate both by a prototype of the semi-automated UNiStation™ (NeoGenesis, Seoul, Korea) and by hand preparation with common laboratory equipment. Cell composition of the SVF was characterized by multi-parametric flow-cytometry (FACSCanto-II, BD Biosciences). The total cell number (quantity) of the SVF was determined as well the percentage of cells expressing the stem cell marker CD34, the leucocyte marker CD45 and the marker CD271 for highly proliferative stem cells (quality). RESULTS Lipo-aspirate obtained from six patients was processed with both the novel device (d) and the hand preparation (h) which always resulted in a macroscopically visible SVF. However, there was a tendency of a fewer cell yield per gram of used lipo-aspirate with the device (d: 1.1×105±1.1×105 vs. h: 2.0×105±1.7×105; p = 0.06). Noteworthy, the percentage of CD34+ cells was significantly lower when using the device (d: 57.3% ±23.8% vs. h: 74.1% ±13.4%; p = 0.02) and CD45+ leukocyte counts tend to be higher when compared to the hand preparation (d: 20.7% ±15.8% vs. h: 9.8% ±7.1%; p = 0.07). The percentage of highly proliferative CD271+ cells was similar for both methods (d:12.9% ±9.6% vs. h: 13.4% ±11.6%; p = 0.74) and no differences were found for double positive cells of CD34+/CD45+ (d: 5.9% ±1.7% vs. h: 1.7% ±1.1%; p = 0.13), CD34+/CD271+ (d: 24.1% ±12.0% vs. h: 14.2% ±8.5%; p = 0.07). DISCUSSION The semi-automated closed system provides a considerable amount of sterile SVF with high reproducibility. Furthermore, the SVF extracted by both methods showed a similar cell composition which is in accordance with the data from literature. This semi-automated device offers an opportunity to take research and application of the SVF one step further to the clinic.
Collapse
Affiliation(s)
- Alexander Hanke
- Department of Plastic Surgery, University Medical Center Regensburg, Germany.,Applied Stem Cell Research Center, University Medical Center Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic Surgery, University Medical Center Regensburg, Germany.,Applied Stem Cell Research Center, University Medical Center Regensburg, Germany
| | - Carina Wenzel
- Department of Plastic Surgery, University Medical Center Regensburg, Germany.,Applied Stem Cell Research Center, University Medical Center Regensburg, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Medical Center Regensburg, Germany
| | - Gero Brockhoff
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Regensburg, Germany
| | - Markus Loibl
- Applied Stem Cell Research Center, University Medical Center Regensburg, Germany.,Department of Trauma Surgery, University Medical Center Regensburg, Germany
| | - Sebastian Gehmert
- Applied Stem Cell Research Center, University Medical Center Regensburg, Germany.,Department of Orthopaedics and Trauma Surgery, University Hospital Basel, Switzerland
| |
Collapse
|
33
|
Song MG, Lee HJ, Jin BY, Gutierrez-Aguilar R, Shin KH, Choi SH, Um SH, Kim DH. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity. Mol Metab 2016; 5:1113-1120. [PMID: 27818937 PMCID: PMC5081408 DOI: 10.1016/j.molmet.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 08/27/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Adipose tissue (AT) expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC) of subcutaneous and visceral fats in lean and obese mice. Methods We compared the AC of epididymal fat (EF) and inguinal fat (IF) using an angiogenesis assay in diet-induced obese (DIO) mice and diet-resistant (DR) mice fed a high-fat diet (HFD). Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD), DIO mice, and DR mice fed a HFD. Results DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a, Vegfa, Fgf1, Kdr, and Pecam1), macrophage recruitment, and inflammation (including Emr1, Ccr2, Itgax, Ccl2, Tnf, and Il1b) correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. Conclusions These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity. Angiogenic capacity (AC) of visceral fat is greater in DIO mice than in DR mice. AC of subcutaneous fat is not different between DIO and DR mice. AC of visceral fat correlated more strongly with body weight than subcutaneous fat. Fat depot-specific differences in AC exist in mice. The depot specificity may differentially contribute to the susceptibility to obesity.
Collapse
Affiliation(s)
- Mun-Gyu Song
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bo-Yeong Jin
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ruth Gutierrez-Aguilar
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico; Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México "Federico Gómez", Mexico City, Mexico
| | - Kyung-Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Quaade ML, Jensen CH, Andersen DC, Sheikh SP. A 3-month age difference profoundly alters the primary rat stromal vascular fraction phenotype. Acta Histochem 2016; 118:513-8. [PMID: 27265810 DOI: 10.1016/j.acthis.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/01/2023]
Abstract
The stromal vascular fraction (SVF) is a heterogeneous population obtained from collagenase digestion of adipose tissue. When cultured the population becomes more homogeneous and the cells are then termed adipose stromal/stem cells (ASCs). Both the freshly isolated primary SVF population and the cultured ASC population possess regenerative abilities suggested to be mediated by paracrine mechanisms mainly. The use of ASCs and SVF cells, both in animal studies and human clinical studies, has dramatically increased during recent years. However, more knowledge regarding optimal donor characteristics such as age is demanded. Here we report that even a short age difference has an impact on the phenotype of primary SVF cells. We observed that a 3-month difference in relatively young adult rats affects the expression pattern of several mesenchymal stem cell markers in their primary SVF. The younger animals had significantly more CD90+/CD44+/CD29+/PDGFRα+primary cells, than the aged rats, suggesting an age dependent shift in the relative cell type distribution within the population. Taken together with recent studies of much more pronounced age differences, our data strongly suggest that donor age is a very critical parameter that should be taken into account in future stem cell studies, especially when using primary cells.
Collapse
Affiliation(s)
- Marlene Louise Quaade
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Department of Cardiovascular and Renal Research, Denmark.
| | - Charlotte Harken Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Søren Paludan Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; Department of Cardiovascular and Renal Research, Denmark.
| |
Collapse
|
35
|
LeBlanc AJ, Hoying JB. Adaptation of the Coronary Microcirculation in Aging. Microcirculation 2016; 23:157-67. [DOI: 10.1111/micc.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Amanda J. LeBlanc
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| | - James B. Hoying
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| |
Collapse
|
36
|
Hunter RK, Nevitt CD, Gaskins JT, Keller BB, Bohler HCL, LeBlanc AJ. Adipose-Derived Stromal Vascular Fraction Cell Effects on a Rodent Model of Thin Endometrium. PLoS One 2015; 10:e0144823. [PMID: 26657744 PMCID: PMC4684382 DOI: 10.1371/journal.pone.0144823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/24/2015] [Indexed: 12/26/2022] Open
Abstract
Endometrial dysfunction affects approximately 1% of infertile women, and there is currently no standard therapy for improving fertility treatment outcomes in these patients. In our study, we utilized a rodent model of thin endometrium to test whether intrauterine application of adipose-derived stromal vascular fraction cells (SVF) could improve morphological and physiological markers of endometrial receptivity. Using anhydrous ethanol, endometrial area and gland density were significantly reduced in our model of thin endometrium. Application of SVF was associated with a 29% reduction in endometrial vascular endothelial growth factor (VEGF) expression and significant increases in uterine artery systolic/diastolic velocity ratios and resistance index values, suggesting reduced diastolic microvascular tone. However, no significant improvements in endometrial area or gland density were observed following SVF treatment. 3D confocal imaging demonstrated poor engraftment of SVF cells into recipient tissue, which likely contributed to the negative results of this study. We suspect modified treatment protocols utilizing adjuvant estrogen and/or tail vein cell delivery may improve SVF retention and therapeutic response in subsequent studies. SVF is an easily-obtainable cell product with regenerative capability that may have a future role in the treatment of infertile women with endometrial dysfunction.
Collapse
Affiliation(s)
- Robert K. Hunter
- Department of Obstetrics, Gynecology and Women’s Health, Division of Reproductive Endocrinology and Infertility, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Chris D. Nevitt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jeremy T. Gaskins
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Cardiovascular Innovation Institute, Louisville, Kentucky, United States of America
| | - Henry C. L. Bohler
- Department of Obstetrics, Gynecology and Women’s Health, Division of Reproductive Endocrinology and Infertility, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|