1
|
Chen Y, Yang MJ, Huang H, Fang Y, Zhou X, Yu Z, Wang M, Bohnet-Joschko S, Luo X. Associations between white matter hyperintensities and physical activity: A sectional study in UK Biobank participants. J Clin Neurosci 2025; 135:111181. [PMID: 40117767 DOI: 10.1016/j.jocn.2025.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
White matter hyperintensities (WMH) are key markers of cerebral small vessel disease (CSVD) linked to increased risks of stroke, dementia, and cognitive decline. Physical activity (PA) has been hypothesized to reduce WMH burden and preserve brain health, yet findings across studies remain mixed. This study examines the association between PA and WMH burden, as well as white matter integrity using diffusion tensor imaging (DTI) metrics, in a cohort of 10,868 participants from the UK Biobank. Participants were categorized into low, intermediate, and high PA tertiles based on accelerometer data. WMH volumes, normalized for head size, were classified into quintiles. Multilevel ordered logistic regression models revealed that high PA levels were significantly associated with reduced WMH burden (OR = 0.956, p = 0.026), while low PA levels increased the likelihood of higher WMH burden (OR = 1.148, p < 0.001). Subtype analyses indicated stronger associations between PA and periventricular WMH compared to deep WMH. Furthermore, DTI metrics demonstrated that higher PA levels were correlated with improved fractional anisotropy (FA) and reduced mean diffusivity (MD) in key white matter tracts, such as the corpus callosum and fornix, suggesting better white matter integrity. Our findings emphasize the potential neuroprotective effects of PA, particularly in mitigating WMH progression and preserving cognitive and motor functions. These results underscore the importance of promoting PA, especially in older adults, as a strategy to reduce the burden of CSVD and support brain health. Future longitudinal studies are needed to confirm causality and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Yucun Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mia Jiming Yang
- Chair of Management and Innovation in Health Care, Faculty of Management, Economics, and Society, Witten/Herdecke University, 58448 Witten, Germany
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - YuanYuan Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xirui Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Sabine Bohnet-Joschko
- Chair of Management and Innovation in Health Care, Faculty of Management, Economics, and Society, Witten/Herdecke University, 58448 Witten, Germany
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China.
| |
Collapse
|
2
|
Feter N, Ligeza TS, Bashir N, Shanmugam RJ, Montero Herrera B, Aldabbagh T, Usman AF, Yonezawa A, McCarthy S, Herrera D, Vargas D, Mir EM, Syed T, Desai S, Shi H, Kim W, Puhar N, Gowda K, Nowak O, Kuang J, Quiroz F, Caputo EL, Yu Q, Pionke JJ, Zou L, Raine LB, Gratton G, Fabiani M, Lubans DR, Hallal PC, Pindus DM. Effects of reducing sedentary behaviour by increasing physical activity, on cognitive function, brain function and structure across the lifespan: a systematic review and meta-analysis. Br J Sports Med 2024; 58:1295-1306. [PMID: 39197948 DOI: 10.1136/bjsports-2024-108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE To examine the acute and chronic effects of reducing prolonged sedentary time (ST) with physical activity (PA) on cognitive and brain health. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, Scopus, CINAHL, PsycINFO, SPORTDiscus, Web of Science, and ProQuest Dissertation and Theses. ELIGIBILITY CRITERIA Randomised controlled trials (RCTs) published from inception to 17 June 2024, with healthy participants without cognitive impairment or neurological conditions that affect cognitive functioning, aged ≥4 years, testing acute and chronic effects of reducing ST and/or prolonged ST by reallocating ST to PA on cognitive function, brain function, and structure. RESULTS We included 25 RCTs (n=1289) investigating acute (21 studies) and chronic (4 studies) effects on cognitive function (acute: n=20, chronic: n=4) and brain function (acute: n=7, chronic: n=1); there were no studies on brain structure. Acutely interrupting continuous ST with either multiple or a single PA bout improved cognitive function measured from 3 hours to three consecutive days based on 91 effect sizes (g=0.17, 95% CI: 0.05 to 0.29, p=0.005, I 2=45.5%). When comparing single versus multiple PA bouts, only multiple PA bouts yielded a positive effect on cognitive function based on 72 effect sizes (g=0.20, 95% CI: 0.06 to 0.35, p=0.006; I 2=48.8%). Chronic studies reported null findings on cognitive function (n=4), with some evidence of improved neural efficiency of the hippocampus (n=1). CONCLUSION Interrupting ST with PA acutely improves cognitive function. The evidence from chronic studies remains inconclusive. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020200998.
Collapse
Affiliation(s)
- Natan Feter
- Postgraduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tomasz S Ligeza
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Neha Bashir
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The School of Cellular and Molecular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ramiya J Shanmugam
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The School of Cellular and Molecular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Bryan Montero Herrera
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Tamara Aldabbagh
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Anne-Farah Usman
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The School of Cellular and Molecular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ayumi Yonezawa
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The School of Cellular and Molecular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Shane McCarthy
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Danielle Herrera
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Surgery, Ann and Robert Lurie Children's Hospital, Chicago, Illinois, USA
| | - Denise Vargas
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The School of Cellular and Molecular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Emaad M Mir
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The School of Cellular and Molecular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Talha Syed
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sanam Desai
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Hector Shi
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - William Kim
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Economics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Natalie Puhar
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kushi Gowda
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- College of Medicine Peoria, University of Illinois, Peoria, Illinois, USA
| | - Olivia Nowak
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Research & Development Solutions, IQVIA, Overland Park, Kansas, USA
| | - Jin Kuang
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- School of Psychology, Shenzhen University, Shenzhen, People's Republic of China
| | - Flor Quiroz
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Eduardo L Caputo
- School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Qian Yu
- School of Psychology, Shenzhen University, Shenzhen, People's Republic of China
| | - J J Pionke
- iSchool, Syracuse University, Syracuse, New York, USA
| | - Liye Zou
- School of Psychology, Shenzhen University, Shenzhen, People's Republic of China
| | - Lauren B Raine
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Medical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Gabriele Gratton
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Monica Fabiani
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David R Lubans
- College of Human and Social Futures, University of Newcastle Australia, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Pedro C Hallal
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Dominika M Pindus
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Chen HY, Hung CS, Wu TT, Ren FF, Chang YK, Chen FT. The Combined Impact of Physical Activity and Sedentary Behavior on Executive Functions in Older Adults: A Cross-Sectional Study. Psychol Res Behav Manag 2024; 17:3851-3861. [PMID: 39529867 PMCID: PMC11552394 DOI: 10.2147/prbm.s486089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background The interplay between physical activity (PA) and sedentary behavior (SB) significantly influences cognitive health in older adults, with executive functions (EFs) being particularly vulnerable to lifestyle factors. However, previous research on older adults focused mainly on PA and is limited due to the lack of comprehensive consideration of other factors that influence EFs. Current guidelines suggest an association between sedentary behavior (SB) and EFs, yet few studies have examined the combined effects of PA and SB on EFs. Objective This cross-sectional study aimed to explore the relationship between PA, SB, and EFs in older adults. Methods A total of 116 healthy older adults aged ≥65 years were recruited and categorized into four groups based on activity lifestyles: higher PA and higher SB (PHSH); higher PA and lower SB (PHSL); lower PA and higher SB (PLSH); and lower PA and lower SB (PLSL). EFs were assessed using the Tower of London (TOL) task and the Stroop test, which measure high-order EFs (planning and problem-solving) and core EFs (inhibitory control), respectively. Results The PHSL group performed better on the TOL task, with lower total move scores and shorter total problem-solving times, compared to the PLSH group. The total move score of the PLSL group was better, and the total problem-solving time of the PHSH group was shorter than those of the PLSH group. However, the Stroop test scores did not differ between the four groups. Conclusion These findings suggest that increasing PA or reducing SB selectively enhances executive functions, particularly in planning and problem-solving, while less impacting inhibitory control in older adults. This highlights the importance of considering the nuanced effects of PA and SB on different aspects of executing functioning in older adults.
Collapse
Affiliation(s)
- Hung-Yu Chen
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Chen-Sin Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Ting-Ting Wu
- Department of Kinesiology, National Tsing Hua University, Hsinchu, Taiwan
| | - Fei-Fei Ren
- Department of Physical Education, Beijing Language and Culture University, Beijing, People’s Republic of China
| | - Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Social Emotional Education and Development Center, National Taiwan Normal University, Taipei, Taiwan
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Feng-Tzu Chen
- Department of Kinesiology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Chen X, Hu N, Han H, Cai G, Qin Y. Effects of high-intensity interval training in a cold environment on arterial stiffness and cerebral hemodynamics in sedentary Chinese college female students post-COVID-19. Front Neurol 2024; 15:1466549. [PMID: 39563778 PMCID: PMC11573531 DOI: 10.3389/fneur.2024.1466549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 11/21/2024] Open
Abstract
Many patients with COVID-19 experience increased arterial stiffness and abnormal cerebral hemodynamics. Although previous studies have explored the effects of cold environments on cardiovascular health and cerebral hemodynamics, there is still no research on the changes in cardiovascular and cerebral hemodynamics in sedentary female students recovering from COVID-19 while performing high-intensity interval training (HIIT) in cold environments. This study investigates the effects of 1 week of HIIT in a cold environment on cerebral hemodynamics and arterial stiffness (AS) in sedentary female college students, providing new insights into the pathophysiological mechanisms in this specific context. Thirty-six participants were randomly divided into a control group (n = 12), a room temperature (RE) group (n = 12), and a cold environment (CE) group (n = 12). HIIT was performed for four 4-min running training sessions, with a 4-min interval between each training session, The training duration was 1 week, with a frequency of 2 sessions per day, while the control group did not undergo any training. After training, the AS in the CE group significantly decreased (p < 0.05), with an average reduction of 11% in brachial-ankle pulse wave velocity, showing a significantly greater improvement compared to the RE group and the control group (p < 0.05), while no significant changes were observed in the RE group (p > 0.05). In the Y-Balance Tests (YBTs), the concentrations of cerebral oxygenated hemoglobin and total hemoglobin significantly increased (p < 0.05) during unilateral leg support tests in both the CE and RE groups, and the increase of CE group is greater than that of RE group. In contrast, in the control group, the concentrations of cerebral oxygenated hemoglobin and total hemoglobin significantly decreased during left leg support (p < 0.05). Our study found that performing HIIT in a cold environment not only effectively reduces AS in sedentary female college students after COVID-19, improves cardiovascular function, but also significantly enhances cerebral hemodynamics, helping them alleviate the negative impacts of post-COVID-19 sequelae and sedentary behavior on health. Future research should further explore the mechanisms by which sedentary behavior, post-COVID-19 recovery status, and adaptation to cold environments collectively influence cardiovascular function and cerebral hemodynamics, providing a more comprehensive understanding of these factors.
Collapse
Affiliation(s)
- Xiangyuan Chen
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Niyuan Hu
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Huifeng Han
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Guoliang Cai
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Ying Qin
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| |
Collapse
|
5
|
Feron J, Segaert K, Rahman F, Fosstveit SH, Joyce KE, Gilani A, Lohne-Seiler H, Berntsen S, Mullinger KJ, Lucas SJE. Determinants of cerebral blood flow and arterial transit time in healthy older adults. Aging (Albany NY) 2024; 16:12473-12497. [PMID: 39302230 PMCID: PMC11466485 DOI: 10.18632/aging.206112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Cerebral blood flow (CBF) and arterial transit time (ATT), markers of brain vascular health, worsen with age. The primary aim of this cross-sectional study was to identify modifiable determinants of CBF and ATT in healthy older adults (n = 78, aged 60-81 years). Associations between cardiorespiratory fitness and CBF or ATT were of particular interest because the impact of cardiorespiratory fitness is not clear within existing literature. Secondly, this study assessed whether CBF or ATT relate to cognitive function in older adults. Multiple post-labelling delay pseudo-continuous arterial spin labelling estimated resting CBF and ATT in grey matter. Results from multiple linear regressions found higher BMI was associated with lower global CBF (β = -0.35, P = 0.008) and a longer global ATT (β = 0.30, P = 0.017), global ATT lengthened with increasing age (β = 0.43, P = 0.004), and higher cardiorespiratory fitness was associated with longer ATT in parietal (β = 0.44, P = 0.004) and occipital (β = 0.45, P = 0.003) regions. Global or regional CBF or ATT were not associated with processing speed, working memory, or attention. In conclusion, preventing excessive weight gain may help attenuate age-related declines in brain vascular health. ATT may be more sensitive to age-related decline than CBF, and therefore useful for early detection and management of cerebrovascular impairment. Finally, cardiorespiratory fitness appears to have little effect on CBF but may induce longer ATT in specific regions.
Collapse
Affiliation(s)
- Jack Feron
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Foyzul Rahman
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- College of Psychology, Birmingham City University, Birmingham, UK
| | - Sindre H. Fosstveit
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Kelsey E. Joyce
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ahmed Gilani
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Hilde Lohne-Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Sveinung Berntsen
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karen J Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Liang YT, Wang C, Hsiao CK. Data Analytics in Physical Activity Studies With Accelerometers: Scoping Review. J Med Internet Res 2024; 26:e59497. [PMID: 39259962 PMCID: PMC11425027 DOI: 10.2196/59497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Monitoring free-living physical activity (PA) through wearable devices enables the real-time assessment of activity features associated with health outcomes and provision of treatment recommendations and adjustments. The conclusions of studies on PA and health depend crucially on reliable statistical analyses of digital data. Data analytics, however, are challenging due to the various metrics adopted for measuring PA, different aims of studies, and complex temporal variations within variables. The application, interpretation, and appropriateness of these analytical tools have yet to be summarized. OBJECTIVE This research aimed to review studies that used analytical methods for analyzing PA monitored by accelerometers. Specifically, this review addressed three questions: (1) What metrics are used to describe an individual's free-living daily PA? (2) What are the current analytical tools for analyzing PA data, particularly under the aims of classification, association with health outcomes, and prediction of health events? and (3) What challenges exist in the analyses, and what recommendations for future research are suggested regarding the use of statistical methods in various research tasks? METHODS This scoping review was conducted following an existing framework to map research studies by exploring the information about PA. Three databases, PubMed, IEEE Xplore, and the ACM Digital Library, were searched in February 2024 to identify related publications. Eligible articles were classification, association, or prediction studies involving human PA monitored through wearable accelerometers. RESULTS After screening 1312 articles, 428 (32.62%) eligible studies were identified and categorized into at least 1 of the following 3 thematic categories: classification (75/428, 17.5%), association (342/428, 79.9%), and prediction (32/428, 7.5%). Most articles (414/428, 96.7%) derived PA variables from 3D acceleration, rather than 1D acceleration. All eligible articles (428/428, 100%) considered PA metrics represented in the time domain, while a small fraction (16/428, 3.7%) also considered PA metrics in the frequency domain. The number of studies evaluating the influence of PA on health conditions has increased greatly. Among the studies in our review, regression-type models were the most prevalent (373/428, 87.1%). The machine learning approach for classification research is also gaining popularity (32/75, 43%). In addition to summary statistics of PA, several recent studies used tools to incorporate PA trajectories and account for temporal patterns, including longitudinal data analysis with repeated PA measurements and functional data analysis with PA as a continuum for time-varying association (68/428, 15.9%). CONCLUSIONS Summary metrics can quickly provide descriptions of the strength, frequency, and duration of individuals' overall PA. When the distribution and profile of PA need to be evaluated or detected, considering PA metrics as longitudinal or functional data can provide detailed information and improve the understanding of the role PA plays in health. Depending on the research goal, appropriate analytical tools can ensure the reliability of the scientific findings.
Collapse
Affiliation(s)
- Ya-Ting Liang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charlotte Wang
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chuhsing Kate Hsiao
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Raichlen DA, Ally M, Aslan DH, Sayre MK, Bharadwaj PK, Maltagliati S, Lai MHC, Wilcox RR, Habeck CG, Klimentidis YC, Alexander GE. Associations between accelerometer-derived sedentary behavior and physical activity with white matter hyperintensities in middle-aged to older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70001. [PMID: 39183745 PMCID: PMC11342350 DOI: 10.1002/dad2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION We examined the relationship between sedentary behavior (SB), moderate-to-vigorous physical activity (MVPA), and white matter hyperintensity (WMH) volumes, a common magnetic resonance imaging (MRI) marker associated with risk of neurodegenerative disease in middle-aged to older adults. METHODS We used data from the UK Biobank (n = 14,415; 45 to 81 years) that included accelerometer-derived measures of SB and MVPA, and WMH volumes from MRI. RESULTS Both MVPA and SB were associated with WMH volumes (βMVPA = -0.03 [-0.04, -0.01], p < 0.001; βSB = 0.02 [0.01, 0.03], p = 0.007). There was a significant interaction between SB and MVPA on WMH volumes (βSB×MVPA = -0.015 [-0.028, -0.001], p SB×MVPA = 0.03) where SB was positively associated with WMHs at low MVPA, and MVPA was negatively associated with WMHs at high SB. DISCUSSION While this study cannot establish causality, the results highlight the potential importance of considering both MVPA and SB in strategies aimed at reducing the accumulation of WMH volumes in middle-aged to older adults. Highlights SB is associated with greater WMH volumes and MVPA is associated with lower WMH volumes.Relationships between SB and WMH are strongest at low levels of MVPA.Associations between MVPA and WMH are strongest at high levels of SB.Considering both SB and MVPA may be effective strategies for reducing WMHs.
Collapse
Affiliation(s)
- David A. Raichlen
- Human and Evolutionary Biology SectionDepartment of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of AnthropologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Madeline Ally
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
| | - Daniel H. Aslan
- Human and Evolutionary Biology SectionDepartment of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | | - Silvio Maltagliati
- Human and Evolutionary Biology SectionDepartment of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mark H. C. Lai
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rand R. Wilcox
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian G. Habeck
- Cognitive Neuroscience DivisionDepartment of Neurology and Taub InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Yann C. Klimentidis
- Department of Epidemiology and BiostatisticsMel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| | - Gene E. Alexander
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizonaUSA
- Department of PsychiatryUniversity of ArizonaTucsonArizonaUSA
- Neuroscience Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
- Physiological Sciences Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
- Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
| |
Collapse
|
8
|
Linhares M, Oliveira GTA, Cabral DAR, Rêgo MLM, Araújo ADO, Silva RDM, Silva LRFD, Lima MNMD, Neto LDO, Cureau FV, Elsangedy HM. Sit less and move more! A cross-sectional study of the associations between physical activity and sedentary behaviors with inhibitory control in Brazilian adults. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 73:102643. [PMID: 38593966 DOI: 10.1016/j.psychsport.2024.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the independent and joint associations between sedentary behaviors (SB) and physical activity (PA) with inhibitory control (IC) in adults. METHODS A total of 111 participants (median age = 30 years; 60% women), completed the Stroop Color-Words test to assess IC. They also wore accelerometers for seven days to measure SB, light PA, moderate-to-vigorous PA (MVPA), and daily steps. We previously set cutoff points for SB and PA measurements and tested them to determine their association with IC. All analyses were adjusted for potential confounding factors including age, gender, post-secondary education, income, body mass index, and accelerometer wear time. RESULTS Low SB, high MVPA, and high daily steps were independently associated with a better IC compared to their respective counterparts. Adults with low levels of SB and light PA demonstrated better IC performance (β = -227.67, 95%CI = -434.14 to -21.20) compared to those with high SB and low light PA. Conversely, individuals with high SB and high light PA exhibited worse performance (β = 126.80, 95%CI = 2.11 to 251.50) than those in the high SB and low light PA group. Furthermore, the joint association of low SB with high MVPA (β = -491.12, 95%CI = -689.23 to -293.01) or low SB with high daily steps (β = -254.29, 95%CI = -416.41 to -92.16) demonstrated better IC performance compared to those with high SB and low MVPA or low daily steps. CONCLUSION Our findings highlight independent and joint associations between low SB, high MVPA, and high daily steps with enhanced IC in adults.
Collapse
Affiliation(s)
- Maristela Linhares
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | - Raíssa de Melo Silva
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Leônidas de Oliveira Neto
- Department of Arts, Postgraduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Felipe Vogt Cureau
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Hassan Mohamed Elsangedy
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
9
|
Zou L, Herold F, Cheval B, Wheeler MJ, Pindus DM, Erickson KI, Raichlen DA, Alexander GE, Müller NG, Dunstan DW, Kramer AF, Hillman CH, Hallgren M, Ekelund U, Maltagliati S, Owen N. Sedentary behavior and lifespan brain health. Trends Cogn Sci 2024; 28:369-382. [PMID: 38431428 PMCID: PMC11778811 DOI: 10.1016/j.tics.2024.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Higher levels of physical activity are known to benefit aspects of brain health across the lifespan. However, the role of sedentary behavior (SB) is less well understood. In this review we summarize and discuss evidence on the role of SB on brain health (including cognitive performance, structural or functional brain measures, and dementia risk) for different age groups, critically compare assessment approaches to capture SB, and offer insights into emerging opportunities to assess SB via digital technologies. Across the lifespan, specific characteristics of SB (particularly whether they are cognitively active or cognitively passive) potentially act as moderators influencing the associations between SB and specific brain health outcomes. We outline challenges and opportunities for future research aiming to provide more robust empirical evidence on these observations.
Collapse
Affiliation(s)
- Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China.
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, 14476 Potsdam, Germany
| | - Boris Cheval
- Department of Sport Sciences and Physical Education, Ecole Normale Supérieure Rennes, Bruz, France; Laboratory VIPS2, University of Rennes, Rennes, France
| | - Michael J Wheeler
- Physical Activity Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Dominika M Pindus
- Kinesiology and Community Health, University of Illinois at Chicago, Chicago, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Department of Neuroscience, AdventHealth, Orlando, FL, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Anthropology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gene E Alexander
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA; Department of Psychology, University of Arizona, Tucson, AZ 85721, USA; Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, USA; Department of Psychiatry, University of Arizona, Tucson, AZ 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA; Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ85721, USA
| | - Notger G Müller
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, 14476 Potsdam, Germany
| | - David W Dunstan
- Physical Activity Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA; Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA; Department of Psychology, Northeastern University, Boston, MA, 02115, USA; Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Mats Hallgren
- Epidemiology of Psychiatric Conditions, Substance Use and Social Environment (EPiCSS), Department of Public Health Sciences, Karolinska Institutet, Solna, Sweden
| | - Ulf Ekelund
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway; Department of Chronic Diseases and Ageing, The Norwegian Institute for Public Health, Oslo, Norway
| | - Silvio Maltagliati
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Neville Owen
- Physical Activity Laboratory, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Cheong SM, Gaynanova I. Sensing the impact of extreme heat on physical activity and sleep. Digit Health 2024; 10:20552076241241509. [PMID: 38528970 PMCID: PMC10962040 DOI: 10.1177/20552076241241509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction This study assesses the person-specific impact of extreme heat on low-income households using wearable sensors. The focus is on the intensive and longitudinal assessment of physical activity and sleep with the rising person-specific ambient temperature. Methods This study recruited 30 participants in a low-income and predominantly Black community in Houston, Texas in August and September of 2022. Each participant wore on his/her wrist an accelerometer that recorded person-specific ambient temperature, sedentary behavior, physical activity intensity (low and moderate to vigorous), and sleep efficiency 24 h over 14 days. Mixed effects models were used to analyze associations among physical activity, sleep, and person-specific ambient temperature. Results The main findings include increased sedentary time, sleep impairment with the rise of person-level ambient temperature, and the mitigating role of AC. Conclusions Extreme heat negatively affects physical activity and sleep. The negative consequences are especially critical for those with limited use of AC in lower-income neighborhoods of color. Staying home with a high indoor temperature during hot days can lead to various adverse health outcomes including accelerated cognitive decline, higher cancer risk, and social isolation.
Collapse
Affiliation(s)
- So-Min Cheong
- Department of Public Service & Administration, Texas A&M University, College Station, TX, USA
| | - Irina Gaynanova
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Carson Smith J, Callow DD, Pena GS, Kommula Y, Arnold-Nedimala N, Won J, Nielson KA. Exercise and Protection from Age-Related Cognitive Decline. Curr Top Behav Neurosci 2024; 67:263-280. [PMID: 39080244 DOI: 10.1007/7854_2024_501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this chapter, we review the cross-sectional evidence in healthy human subjects for physical activity and cardiorespiratory fitness to offer neuroprotection and moderate cognitive decline in older age. The role of exercise training on cognition in healthy older adults and those diagnosed with mild cognitive impairment (MCI) is also discussed, including the evidence from neuroimaging studies that document changes to brain structure and function after a period of exercise training and improved fitness. Finally, in reference to animal models, the potential neurophysiological mechanisms for physical activity and exercise to impact human brain health are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Junyeon Won
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | | |
Collapse
|
12
|
Nakhla MZ, Bangen KJ, Schiehser DM, Roesch S, Zlatar ZZ. Greater subjective cognitive decline severity is associated with worse memory performance and lower entorhinal cerebral blood flow in healthy older adults. J Int Neuropsychol Soc 2024; 30:1-10. [PMID: 36781410 PMCID: PMC10423746 DOI: 10.1017/s1355617723000115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
OBJECTIVE Subjective cognitive decline (SCD) is a potential early risk marker for Alzheimer's disease (AD), but its utility may vary across individuals. We investigated the relationship of SCD severity with memory function and cerebral blood flow (CBF) in areas of the middle temporal lobe (MTL) in a cognitively normal and overall healthy sample of older adults. Exploratory analyses examined if the association of SCD severity with memory and MTL CBF was different in those with lower and higher cardiovascular disease (CVD) risk status. METHODS Fifty-two community-dwelling older adults underwent magnetic resonance imaging, neuropsychological testing, and were administered the Everyday Cognition Scale (ECog) to measure SCD. Regression models investigated whether ECog scores were associated with memory performance and MTL CBF, followed by similar exploratory regressions stratified by CVD risk status (i.e., lower vs higher stroke risk). RESULTS Higher ECog scores were associated with lower objective memory performance and lower entorhinal cortex CBF after adjusting for demographics and mood. In exploratory stratified analyses, these associations remained significant in the higher stroke risk group only. CONCLUSIONS Our preliminary findings suggest that SCD severity is associated with cognition and brain markers of preclinical AD in otherwise healthy older adults with overall low CVD burden and that this relationship may be stronger for individuals with higher stroke risk, although larger studies with more diverse samples are needed to confirm these findings. Our results shed light on individual characteristics that may increase the utility of SCD as an early risk marker of cognitive decline.
Collapse
Affiliation(s)
- Marina Z. Nakhla
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, San Diego, CA
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Katherine J. Bangen
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Dawn M. Schiehser
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Research Service, VA San Diego Healthcare System, La Jolla, California, 3350 La Jolla Village Dr., San Diego, CA 92161
| | - Scott Roesch
- Department of Psychology, San Diego State University, 5500 Campanile Dr., San Diego, 92182
| | - Zvinka Z. Zlatar
- Department of Psychiatry; University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
13
|
Bhatia U, Bond D, Gunstad J, Carroll I, Crosby R, Mitchell JE, Peat CM, Steffen K, Heinberg L. Examining sex differences in the association between sedentary behavior and cognitive function in bariatric surgery patients. Surg Obes Relat Dis 2023; 19:1368-1374. [PMID: 37482449 PMCID: PMC10753032 DOI: 10.1016/j.soard.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Obesity is associated with cognitive impairment. A potential contributor to these deficits is sedentary behavior (SB), which is linked to poorer cognitive functioning in other populations. Little is known about the association between SB and cognitive function in bariatric surgery populations. OBJECTIVES This cross-sectional study examined the association between SB and cognitive function in preoperative bariatric surgery patients, as well as possible sex differences in this relationship. SETTING Data were collected at 2 health centers in the United States. METHODS A total of 121 participants (43.2 ± 10.3 yr of age) scheduled for Roux-en-Y gastric bypass or sleeve gastrectomy completed the National Institute of Health (NIH) Toolbox for the Assessment of Neurological and Behavioral Function Cognition Domain, a computerized neuropsychological assessment battery. Participants wore a waist-mounted accelerometer for 7 consecutive days to measure SB and light-intensity physical activity (LPA). RESULTS Pearson and partial correlations found no significant relationships between cognitive function and SB or LPA in the full sample. However, partial correlations controlling for LPA found that greater SB was associated with poorer performance on List Sorting Working Memory Test in women (r = -.28; P = .006), whereas there was a positive relationship between SB and Dimensional Change Card Sort for men (r = .51; P = .015; 95% CI [.25, .73]). CONCLUSIONS These results showed that greater SB, independent of LPA, is associated with poorer working memory in women and better set shifting ability in men. Future studies should examine the possibility of domain-specific cognitive effects associated with SB in bariatric surgery samples and clarify possible sex differences.
Collapse
Affiliation(s)
- Urja Bhatia
- Department of Psychological Sciences, Kent State University, Kent, Ohio.
| | - Dale Bond
- Departments of Surgery and Research, Hartford Hospital/Hartford HealthCare, Hartford, Connecticut
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, Ohio
| | - Ian Carroll
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ross Crosby
- Sanford Research, Sanford Health, Sioux Falls, South Dakota; Department of Psychiatry and Behavioral Science, University of North Dakota, Fargo, North Dakota
| | - James E Mitchell
- Department of Psychiatry and Behavioral Science, University of North Dakota, Fargo, North Dakota
| | - Christine M Peat
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kristine Steffen
- School of Pharmacy, North Dakota State University, Fargo, North Dakota
| | - Leslie Heinberg
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
14
|
Bangen KJ, Calcetas AT, Thomas KR, Wierenga C, Smith CN, Bordyug M, Brenner EK, Wing D, Chen C, Liu TT, Zlatar ZZ. Greater accelerometer-measured physical activity is associated with better cognition and cerebrovascular health in older adults. J Int Neuropsychol Soc 2023; 29:859-869. [PMID: 36789631 PMCID: PMC10425574 DOI: 10.1017/s1355617723000140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and regional cerebral blood flow (CBF) in older adults. METHOD Forty-three older adults without cognitive impairment underwent magnetic resonance imaging (MRI) and comprehensive neuropsychological assessment. Waist-worn accelerometers objectively measured PA for approximately one week. RESULTS Higher time spent in moderate to vigorous PA (MVPA) was uniquely associated with better memory and executive functioning after adjusting for all light PA. Higher MVPA was also uniquely associated with lower frontal WMH volume although the finding was no longer significant after additionally adjusting for age and accelerometer wear time. MVPA was not associated with CBF. Higher time spent in all light PA was uniquely associated with higher CBF but not with cognitive performance or WMH volume. CONCLUSIONS Engaging in PA may be beneficial for cerebrovascular health, and MVPA in particular may help preserve memory and executive function in otherwise cognitively healthy older adults. There may be differential effects of engaging in lighter PA and MVPA on MRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda T Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christine N Smith
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Einat K Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Oliveira JJD, Ribeiro AGSV, de Oliveira Silva JA, Barbosa CGR, Silva ADSE, Dos Santos GM, Verlengia R, Pertille A. Association between physical activity measured by accelerometry and cognitive function in older adults: a systematic review. Aging Ment Health 2023; 27:2089-2101. [PMID: 37667883 DOI: 10.1080/13607863.2023.2248477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVE To analyze studies that investigated the association between physical activity assessed by accelerometry and cognitive function in older people. METHODS A systematic review was carried out in four electronic databases (PubMed, Web of Science, Scopus, and SportsDiscus). RESULTS In total, 195 records were identified. Fifty-two studies were selected for a full evaluation; 23 were selected according to the inclusion criteria adopted and divided into four chapters (characteristics of the studies, the association between physical activity level and cognitive function decline, effects of physical activity in reducing the chances of cognitive function decline and effects of physical activity on brain plasticity. The cross-sectional studies had an average score of 7 points, and the cohort studies obtained 10 points, indicating the high quality of the selected studies. Seven studies indicated an association between Moderate to vigorous physical activities (MVPA) and cognitive function, two specifically indicated a reduction in the chances of cognitive function decline according to the interquartile of MVPA, and three studies indicated improvements in MVPA in brain plasticity. CONCLUSION Measured by accelerometry, seems to be favorably associated with important outcomes in cognitive function assessed through questionnaires, imaging analyses, and biochemical markers with older adults.
Collapse
Affiliation(s)
- José Jonas de Oliveira
- Physical Education Department, Centro Universitário de Itajubá - FEPI, Minas Gerais, Brazil
- Universidade Metodista de Piracicaba, Post-graduate Program in Human Movement Sciences, São Paulo, Brazil
| | - Anna Gabriela Silva Vilela Ribeiro
- Physical Education Department, Centro Universitário de Itajubá - FEPI, Minas Gerais, Brazil
- Universidade Metodista de Piracicaba, Post-graduate Program in Human Movement Sciences, São Paulo, Brazil
| | | | | | | | | | - Rozangela Verlengia
- Universidade Metodista de Piracicaba, Post-graduate Program in Human Movement Sciences, São Paulo, Brazil
| | - Adriana Pertille
- Faculdade de Americana - FAM, Physiotherapy Department, São Paulo, Brazil
| |
Collapse
|
16
|
Naugle KM, Naugle KE, Teegardin M, Kaleth AS. Physical Activity to Prevent the Age-Related Decline of Endogenous Pain Modulation. Exerc Sport Sci Rev 2023; 51:169-175. [PMID: 37462564 DOI: 10.1249/jes.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
As humans age, the capacity of the central nervous system to endogenously modulate pain significantly deteriorates, thereby increasing the risk for the development of chronic pain. Older adults are the least physically active cohort of all age groups. We hypothesize that a sedentary lifestyle and decreased physical activity may contribute to the decline of endogenous pain modulation associated with aging.
Collapse
Affiliation(s)
- Kelly M Naugle
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN
| | | | | | | |
Collapse
|
17
|
Collins AM, Molina-Hidalgo C, Aghjayan SL, Fanning J, Erlenbach ED, Gothe NP, Velazquez-Diaz D, Erickson KI. Differentiating the influence of sedentary behavior and physical activity on brain health in late adulthood. Exp Gerontol 2023; 180:112246. [PMID: 37356467 DOI: 10.1016/j.exger.2023.112246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Public health messaging calls for individuals to be more physically active and less sedentary, yet these lifestyle behaviors have been historically studied independently. Both physical activity (PA) and sedentary behavior (SB) are linked through time-use in a 24-hour day and are related to health outcomes, such as neurocognition. While the benefits of PA on brain health in late adulthood have been well-documented, the influence of SB remains to be understood. The purpose of this paper was to critically review the evolving work on SB and brain health in late adulthood and emphasize key areas of consideration to inform potential research. Overall, the existing literature studying the impact of SB on the components and mechanisms of brain health are mixed and inconclusive, provided largely by cross-sectional and observational work employing a variety of measurement techniques of SB and brain health outcomes. Further, many studies did not conceptually or statistically account for the role of PA in the proposed relationships. Therefore, our understanding of the way in which SB may influence neurocognition in late adulthood is limited. Future efforts should include more prospective longitudinal and randomized clinical trials with intentional methodological approaches to better understand the relationships between SB and the brain in late adulthood, and how these potential links are differentiated from PA.
Collapse
Affiliation(s)
- Audrey M Collins
- AdventHealth Research Institute, Department of Neuroscience, AdventHealth, Orlando, FL, USA.
| | | | - Sarah L Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Emily D Erlenbach
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Neha P Gothe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Daniel Velazquez-Diaz
- AdventHealth Research Institute, Department of Neuroscience, AdventHealth, Orlando, FL, USA; Exphy Research Group, Department of Physical Education, Faculty of Education Sciences, University Hospital, University of Cadiz, 11009 Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
| | - Kirk I Erickson
- AdventHealth Research Institute, Department of Neuroscience, AdventHealth, Orlando, FL, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Schock S, Hakim A. The Physiological and Molecular Links Between Physical Activity and Brain Health: A Review. Neurosci Insights 2023; 18:26331055231191523. [PMID: 37600456 PMCID: PMC10436988 DOI: 10.1177/26331055231191523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
There is currently an epidemic of sedentary behavior throughout the world, leading to negative impacts on physical health and contributing to both mortality and burden of disease. The consequences of this also impact the brain, where increased levels of cognitive decline are observed in individuals who are more sedentary. This review explores the physiological and molecular responses to our sedentary propensity, its contribution to several medical conditions and cognitive deficits, and the benefits of moderate levels of physical activity and exercise. Also presented is the recommended level of activity for overall physical health improvement.
Collapse
Affiliation(s)
- Sarah Schock
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Antoine Hakim
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Sanders AM, Richard G, Kolskår K, Ulrichsen KM, Alnaes D, Beck D, Dørum ES, Engvig A, Lund MJ, Nordhøy W, Pedersen ML, Rokicki J, Nordvik JE, Westlye LT. Associations between everyday activities and arterial spin labeling-derived cerebral blood flow: A longitudinal study in community-dwelling elderly volunteers. Hum Brain Mapp 2023; 44:3377-3393. [PMID: 36947581 PMCID: PMC10171542 DOI: 10.1002/hbm.26287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cerebral blood flow (CBF) is critical for brain metabolism and function. Age-related changes in CBF are associated with increased risk of neurocognitive disorders and vascular events such as stroke. Identifying correlates and positive modifiers of age-related changes in CBF before the emergence of incipient clinical decline may inform public health advice and clinical practice. Former research has been inconclusive regarding the association between regular physical activity and CBF, and there is a lack of studies on the association between level of everyday activities and CBF, in older adults. To investigate these relationships, 118 healthy community-dwelling adults (65-89 years) underwent pseudo-continuous arterial spin labeling (ASL) MRI, neurocognitive, physical, and activity assessments at baseline. Eighty-six participants completed a follow-up ASL MRI, on average 506 (SD = 113) days after the baseline scan. Cross-sectional analysis revealed credible evidence for positive associations between time spent on low intensity physical activity and CBF in multiple cortical and subcortical regions, time spent on moderate to vigorous intensity physical activity and accumbens CBF, participation in social activity and CBF in multiple cortical regions, and between reading and thalamic CBF, indicating higher regional CBF in more active adults. Longitudinal analysis revealed anecdotal evidence for an interaction between time and baseline level of gardening on occipital and parietal CBF, and baseline reading on pallidum CBF, indicating more change in CBF in adults with lower level of activity. The findings support that malleable lifestyle factors contribute to healthy brain aging, with relevance for public health guidelines.
Collapse
Affiliation(s)
- Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Dag Alnaes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo New University College, Oslo, Norway
| | - Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Andreas Engvig
- Section for Preventive Cardiology, Department of Endocrinology, Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Martina Jonette Lund
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Div. of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mads L Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Jan Egil Nordvik
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- Norwegian Directorate of Health, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Dillon K, Morava A, Prapavessis H, Grigsby-Duffy L, Novic A, Gardiner PA. Total Sedentary Time and Cognitive Function in Middle-Aged and Older Adults: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:127. [PMID: 36224459 PMCID: PMC9556686 DOI: 10.1186/s40798-022-00507-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022]
Abstract
Background An estimated 47 million people have dementia globally, and around 10 million new cases are diagnosed each year. Many lifestyle factors have been linked to cognitive impairment; one emerging modifiable lifestyle factor is sedentary time. Objective To conduct a systematic review and meta-analysis of peer-reviewed literature examining the association between total sedentary time with cognitive function in middle-aged and older adults under the moderating conditions of (a) type of sedentary time measurement; (b) the cognitive domain being assessed; (c) looking at sedentary time using categorical variables (i.e., high versus low sedentary time); and (d) the pattern of sedentary time accumulation (e.g., longer versus shorter bouts). We also aimed to examine the prevalence of sedentary time in healthy versus cognitively impaired populations and to explore how experimental studies reducing or breaking up sedentary time affect cognitive function. Lastly, we aimed to conduct a quantitative pooled analysis of all individual studies through meta-analysis procedures to derive conclusions about these relationships. Methods Eight electronic databases (EMBASE; Web of Science; PsycINFO; CINAHL; SciELO; SPORTDiscus; PubMed; and Scopus) were searched from inception to February 2021. Our search included terms related to the exposure (i.e., sedentary time), the population (i.e., middle-aged and older adults), and the outcome of interest (i.e., cognitive function). PICOS framework used middle-aged and older adults where there was an intervention or exposure of any sedentary time compared to any or no comparison, where cognitive function and/or cognitive impairment was measured, and all types of quantitative, empirical, observational data published in any year were included that were published in English. Risk of bias was assessed using QualSyst. Results Fifty-three studies including 83,137 participants met the inclusion criteria of which 23 studies had appropriate data for inclusion in the main meta-analysis. The overall meta-analysis suggested that total sedentary time has no association with cognitive function (r = −0.012 [95% CI − 0.035, 0.011], p = 0.296) with marked heterogeneity (I2 = 89%). Subgroup analyses demonstrated a significant negative association for studies using a device to capture sedentary time r = −0.035 [95% CI − 0.063, − 0.008], p = 0.012). Specifically, the domains of global cognitive function (r = −0.061 [95% CI − 0.100, − 0.022], p = 0.002) and processing speed (r = −0.067, [95% CI − 0.103, − 0.030], p < 0.001). A significant positive association was found for studies using self-report (r = 0.037 [95% CI − 0.019, 0.054], p < 0.001). Specifically, the domain of processing speed showed a significant positive association (r = 0.057 [95% CI 0.045, 0.069], p < 0.001). For prevalence, populations diagnosed with cognitive impairment spent significantly more time sedentary compared to populations with no known cognitive impairments (standard difference in mean = −0.219 [95% CI − 0.310, − 0.128], p < 0.001). Conclusions The association of total sedentary time with cognitive function is weak and varies based on measurement of sedentary time and domain being assessed. Future research is needed to better categorize domains of sedentary behaviour with both a validated self-report and device-based measure in order to improve the strength of this relationship. PROSPERO registration number: CRD42018082384. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00507-x.
Collapse
Affiliation(s)
- Kirsten Dillon
- grid.39381.300000 0004 1936 8884Faculty of Health Sciences, The University of Western Ontario, Kinesiology, London, ON Canada
| | - Anisa Morava
- grid.39381.300000 0004 1936 8884Faculty of Health Sciences, The University of Western Ontario, Kinesiology, London, ON Canada
| | - Harry Prapavessis
- grid.39381.300000 0004 1936 8884Faculty of Health Sciences, The University of Western Ontario, Kinesiology, London, ON Canada
| | - Lily Grigsby-Duffy
- grid.1003.20000 0000 9320 7537The University of Queensland, Brisbane, Australia ,grid.1021.20000 0001 0526 7079Global Obesity Centre (GLOBE), Institute for Health Transformation, Deakin University, Geelong, VIC 3220 Australia
| | - Adam Novic
- grid.1003.20000 0000 9320 7537The University of Queensland, Brisbane, Australia ,grid.1022.10000 0004 0437 5432School of Applied Psychology, Griffith University, Brisbane, Australia
| | - Paul A. Gardiner
- grid.39381.300000 0004 1936 8884Faculty of Health Sciences, The University of Western Ontario, Kinesiology, London, ON Canada ,grid.1003.20000 0000 9320 7537The University of Queensland, Brisbane, Australia ,grid.1048.d0000 0004 0473 0844Faculty of Health, Engineering and Sciences, The University of Southern Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Soldan A, Alfini A, Pettigrew C, Faria A, Hou X, Lim C, Lu H, Spira AP, Zipunnikov V, Albert M. Actigraphy-estimated physical activity is associated with functional and structural brain connectivity among older adults. Neurobiol Aging 2022; 116:32-40. [PMID: 35551019 PMCID: PMC10167793 DOI: 10.1016/j.neurobiolaging.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/04/2022] [Accepted: 04/09/2022] [Indexed: 12/20/2022]
Abstract
Higher physical activity levels are associated with reduced cognitive decline among older adults; however, current understanding of underlying brain mechanisms is limited. This cross-sectional study investigated the relationship between actigraphy-estimated total volume of physical activity (TVPA) and magnetic resonance imaging (MRI) measures of white matter hyperintensities (WMH), and functional and structural brain connectivity, measured by resting-state functional MRI and diffusion tensor imaging. Study participants (N = 156, mean age = 71 years) included 136 with normal cognition and 20 with Mild Cognitive Impairment. Higher TVPA was associated with greater functional connectivity within the default-mode network and greater network modularity (a measure of network specialization), as well as with greater anisotropy and lower radial diffusion in white matter, suggesting better structural connectivity. These associations with functional and structural connectivity were independent of one another and independent of the level of vascular risk, APOE-ε4 status, cognitive reserve, and WMH volume, which were not associated with TVPA. Findings suggest that physical activity is beneficial for brain connectivity among older individuals with varying levels of risk for cognitive decline.
Collapse
Affiliation(s)
- Anja Soldan
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alfonso Alfini
- National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Corinne Pettigrew
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andreia Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chantelle Lim
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marilyn Albert
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Maasakkers CM, Weijs RWJ, Dekkers C, Gardiner PA, Ottens R, Olde Rikkert MGM, Melis RJF, Thijssen DHJ, Claassen JAHR. Sedentary behaviour and brain health in middle-aged and older adults: a systematic review. Neurosci Biobehav Rev 2022; 140:104802. [PMID: 35908592 DOI: 10.1016/j.neubiorev.2022.104802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Sedentary behaviour may increase the risk of dementia. Studying physiological effects of sedentary behaviour on cerebral health may provide new insights into the nature of this association. Accordingly, we reviewed if and how acute and habitual sedentary behaviour relate to brain health factors in middle-aged and older adults (≥45 years). Four databases were searched. Twenty-nine studies were included, with mainly cross-sectional designs. Nine studies examined neurotrophic factors and six studied functional brain measures, with the majority of these studies finding no associations with sedentary behaviour. The results from studies on sedentary behaviour and cerebrovascular measures were inconclusive. There was a tentative association between habitual sedentary behaviour and structural white matter health. An explanatory pathway for this effect might relate to the immediate vascular effects of sitting, such as elevation of blood pressure. Nevertheless, due to the foremost cross-sectional nature of the available evidence, reverse causality could also be a possible explanation. More prospective studies are needed to understand the potential of sedentary behaviour as a target for brain health.
Collapse
Affiliation(s)
- Carlijn M Maasakkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Ralf W J Weijs
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Philips van Leydenlaan 15, 6500 HB Nijmegen, the Netherlands
| | - Claudia Dekkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Paul A Gardiner
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, 34 Cornwall Street, 4102 Brisbane, Australia; School of Kinesiology, The University of Western Ontario, 1151 Richmond Street, N6A 3K7 London, Canada
| | - Romy Ottens
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, the Netherlands
| | - René J F Melis
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Reinier Postlaan 4, 6500 HB Nijmegen, the Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Philips van Leydenlaan 15, 6500 HB Nijmegen, the Netherlands; Research Institute for Sport and Exercise Science, Liverpool John Moores University, Byrom Street, L3 3AF Liverpool, United Kingdom
| | - Jurgen A H R Claassen
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Rodrigues GD, Gurgel JL, da Nobrega ACL, Soares PPDS. Orthostatic intolerance: a handicap of aging or physical deconditioning? Eur J Appl Physiol 2022; 122:2005-2018. [PMID: 35716190 DOI: 10.1007/s00421-022-04978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Despite several studies that have been investigated physical inactivity and age-related effects on orthostatic tolerance, impaired hemodynamics and postural balance responses to orthostatic stress are incorrectly attributed to aging or sedentarism alone. The isolated effects from aging and sedentarism should be investigated through comparative studies between senior athletes and age-matched controls, and physical activity assessments on aging follow-up studies. On the other hand, bed rest and space flight studies mimic accelerated physical inactivity or disuse, which is not the same physiological decline provoked by aging alone. Thus, the elementary question is: could orthostatic intolerance be attributed to aging or physical inactivity? The main purpose of this review is to provide an overview of possible mechanisms underlying orthostatic tolerance contrasting the paradigm of aging and/or physical inactivity. The key points of this review are the following: (1) to counterpoint all relevant literature on physiological aspects of orthostatic tolerance; (2) to explore the mechanistic aspects underneath the cerebrovascular, cardiorespiratory, and postural determinants of orthostatic tolerance; and (3) examine non-pharmacological interventions with the potential to counterbalance the physical inactivity and aging effects. To date, the orthostatic intolerance cannot be attributed exclusively with aging since physical inactivity plays an important role in postural balance, neurovascular and cardiorespiratory responses to orthostatic stress. These physiological determinates should be interpreted within an integrative approach of orthostatic tolerance, that considers the interdependence between physiological systems in a closed-loop model. Based on this multisystem approach, acute and chronic countermeasures may combat aging and sedentarism effects on orthostatic tolerance.
Collapse
Affiliation(s)
- Gabriel Dias Rodrigues
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,National Institute for Science & Technology - INCT, (In)activity & Exercise, CNPq-Niterói (RJ), Rio de Janeiro, Brazil
| | - Jonas Lírio Gurgel
- Department of Physical Education and Sports, Fluminense Federal University, Niterói, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, CNPq-Niterói (RJ), Rio de Janeiro, Brazil
| | - Pedro Paulo da Silva Soares
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil. .,National Institute for Science & Technology - INCT, (In)activity & Exercise, CNPq-Niterói (RJ), Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Tallon CM, Smith KJ, Nowak-Flück D, Koziol AV, Rieger MG, Lutes LD, Green DJ, Tremblay MS, Ainslie PN, McManus AM. The influence of sex and maturation on carotid and vertebral artery hemodynamics and associations with free-living (in)activity in 6-17-year-olds. J Appl Physiol (1985) 2021; 131:1575-1583. [PMID: 34617820 DOI: 10.1152/japplphysiol.00537.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explored the influence of sex and maturation on resting cervical artery hemodynamics (common carotid artery, CCA; internal carotid artery, ICA; and vertebral artery, VA), free-living physical activity, and sedentary behavior in children 6-17 yr of age. In addition, we investigated the relationship between physical activity, sedentary behavior, and cervical artery hemodynamics. Seventy-eight children and adolescents, girls (n = 42; mean age, 11.4 ± 2.5 yr) and boys (n = 36; mean age, 11.0 ± 2.6 yr), completed anthropometric measures, duplex ultrasound assessment of the cervical arteries, and wore an activPAL accelerometer to assess physical activity (indexed by steps/day) and sedentary behavior for 7 days. The ICA and VA diameters were similar between prepubertal and pubertal groups, as was volumetric blood flow (Q); however, the CCA diameter was significantly larger in the pubertal group (P < 0.05). Boys were found to have larger diameters in all cervical arteries than girls, as well as higher QCCA, QICA, and global cerebral blood flow (P < 0.05). The pubertal group was more sedentary (100 min/day more; P < 0.05) and took 3,500 fewer steps/day than the prepubertal group (P < 0.05). Shear rate (SR) and Q of the cervical arteries showed no relationship to physical activity or prolonged bouts of sedentary behavior; however, a significant negative relationship was apparent between total sedentary time and internal carotid artery shear rate (ICASR) after covarying for steps/day and maturation (P < 0.05). These findings provide novel insight into the potential influence sedentary behavior may have on cerebrovascular blood flow in healthy girls and boys.NEW & NOTEWORTHY Cerebral blood flow is known to change with age; however, assessing these age-related changes is complex and requires consideration of pubertal status. This, to our knowledge, is the first study to investigate the influence of sex and maturation on resting cervical artery hemodynamics and subsequently explore associations with physical activity and sedentary behavior in healthy children and adolescents. Our findings suggest that habitual sedentary behavior may influence cervical artery hemodynamics in youth, independent of physical activity, maturation, and sex.
Collapse
Affiliation(s)
- Christine M Tallon
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kurt J Smith
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory, School of Exercise Science and Physical Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alyssa V Koziol
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mathew G Rieger
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Lesley D Lutes
- Department of Psychology, Centre for Obesity and Well-Being Research Excellence, University of British Columbia, Kelowna, British Columbia, Canada
| | - Daniel J Green
- School of Human Science (Sport and Exercise Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Mark S Tremblay
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ali M McManus
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
25
|
Maasakkers CM, Thijssen DH, Knight SP, Newman L, O'Connor JD, Scarlett S, Carey D, Buckley A, McMorrow JP, Leidhin CN, Feeney J, Melis RJ, Kenny RA, Claassen JA, Looze CD. Hemodynamic and structural brain measures in high and low sedentary older adults. J Cereb Blood Flow Metab 2021; 41:2607-2616. [PMID: 33866848 PMCID: PMC8504407 DOI: 10.1177/0271678x211009382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to its cardiovascular effects sedentary behaviour might impact cerebrovascular function in the long term, affecting cerebrovascular regulatory mechanisms and perfusion levels. Consequently this could underly potential structural brain abnormalities associated with cognitive decline. We therefore assessed the association between sedentary behaviour and brain measures of cerebrovascular perfusion and structural abnormalities in community-dwelling older adults. Using accelerometery (GENEActiv) data from The Irish Longitudinal Study on Ageing (TILDA) we categorised individuals by low- and high-sedentary behaviour (≤8 vs >8 hours/day). We examined prefrontal haemoglobin oxygenation levels using Near-Infrared Spectroscopy during rest and after an orthostatic challenge in 718 individuals (66 ± 8 years, 52% female). Global grey matter cerebral blood flow, total grey and white matter volume, total and subfield hippocampal volumes, cortical thickness, and white matter hyperintensities were measured using arterial spin labelling, T1, and FLAIR MRI in 86 individuals (72 ± 6 years, 55% female). While no differences in prefrontal or global cerebral hemodynamics were found between groups, high-sedentary individuals showed lower hippocampal volumes and increased white matter hyperintensities compared to their low-sedentary counterparts. Since these structural cerebral abnormalities are associated with cognitive decline and Alzheimer's disease, future work exploring the causal pathways underlying these differences is needed.
Collapse
Affiliation(s)
- Carlijn M Maasakkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Dick Hj Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Silvin P Knight
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Louise Newman
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - John D O'Connor
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Scarlett
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Anne Buckley
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Jason P McMorrow
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Caoilfhionn Ní Leidhin
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Joanne Feeney
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - René Jf Melis
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.,Department of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| | - Jurgen Ahr Claassen
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Céline De Looze
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 434] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
27
|
Dougherty RJ, Hoang TD, Launer LJ, Jacobs DR, Sidney S, Yaffe K. Long-term television viewing patterns and gray matter brain volume in midlife. Brain Imaging Behav 2021; 16:637-644. [PMID: 34487279 DOI: 10.1007/s11682-021-00534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate whether long-term television viewing patterns, a common sedentary behavior, in early to mid-adulthood is associated with gray matter brain volume in midlife and if this is independent of physical activity. We evaluated 599 participants (51% female, 44% black, mean age 30.3 ± 3.5 at baseline and 50.2 ± 3.5 years at follow-up and MRI) from the prospective Coronary Artery Risk Development in Young Adults (CARDIA) study. We assessed television patterns with repeated interviewer-administered questionnaire spanning 20 years. Structural MRI (3T) measures of frontal cortex, entorhinal cortex, hippocampal, and total gray matter volumes were assessed at midlife. Over the 20 years, participants reported viewing an average of 2.5 ± 1.7 h of television per day (range: 0-10 h). After multivariable adjustment, greater television viewing was negatively associated with gray matter volume in the frontal (β = - 0.77; p = 0.01) and entorhinal cortex (β = - 23.83; p = 0.05) as well as total gray matter (β = - 2.09; p = 0.003) but not hippocampus. These results remained unchanged after additional adjustment for physical activity. For each one standard deviation increase in television viewing, the difference in gray matter volume z-score was approximately 0.06 less for each of the three regions (p < 0.05). Among middle-aged adults, greater television viewing in early to mid-adulthood was associated with lower gray matter volume. Sedentariness or other facets of television viewing may be important for brain aging even in middle age.
Collapse
Affiliation(s)
- Ryan J Dougherty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 2024 E. Monument St., Suite 2-700, Baltimore, MD, 21205, USA.
| | - Tina D Hoang
- San Francisco VA Health Care System, San Francisco, CA, USA
| | | | | | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Kristine Yaffe
- San Francisco VA Health Care System, San Francisco, CA, USA.,University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Soldan A, Pettigrew C, Zhu Y, Wang MC, Bilgel M, Hou X, Lu H, Miller MI, Albert M. Association of Lifestyle Activities with Functional Brain Connectivity and Relationship to Cognitive Decline among Older Adults. Cereb Cortex 2021; 31:5637-5651. [PMID: 34184058 DOI: 10.1093/cercor/bhab187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
This study examines the relationship of engagement in different lifestyle activities to connectivity in large-scale functional brain networks, and whether network connectivity modifies cognitive decline, independent of brain amyloid levels. Participants (N = 153, mean age = 69 years, including N = 126 with amyloid imaging) were cognitively normal when they completed resting-state functional magnetic resonance imaging, a lifestyle activity questionnaire, and cognitive testing. They were followed with annual cognitive tests up to 5 years (mean = 3.3 years). Linear regressions showed positive relationships between cognitive activity engagement and connectivity within the dorsal attention network, and between physical activity levels and connectivity within the default-mode, limbic, and frontoparietal control networks, and global within-network connectivity. Additionally, higher cognitive and physical activity levels were independently associated with higher network modularity, a measure of functional network specialization. These associations were largely independent of APOE4 genotype, amyloid burden, global brain atrophy, vascular risk, and level of cognitive reserve. Moreover, higher connectivity in the dorsal attention, default-mode, and limbic networks, and greater global connectivity and modularity were associated with reduced cognitive decline, independent of APOE4 genotype and amyloid burden. These findings suggest that changes in functional brain connectivity may be one mechanism by which lifestyle activity engagement reduces cognitive decline.
Collapse
Affiliation(s)
- Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuxin Zhu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
29
|
Hakim AM. A Proposed Hypothesis on Dementia: Inflammation, Small Vessel Disease, and Hypoperfusion Is the Sequence That Links All Harmful Lifestyles to Cognitive Impairment. Front Aging Neurosci 2021; 13:679837. [PMID: 33994998 PMCID: PMC8116506 DOI: 10.3389/fnagi.2021.679837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
There is growing consensus that certain lifestyles can contribute to cognitive impairment and dementia, but the physiological steps that link a harmful lifestyle to its negative impact are not always evident. It is also unclear whether all lifestyles that contribute to dementia do so through the same intermediary steps. This article will focus on three lifestyles known to be risk factors for dementia, namely obesity, sedentary behavior, and insufficient sleep, and offer a unifying hypothesis proposing that lifestyles that negatively impact cognition do so through the same sequence of events: inflammation, small vessel disease, decline in cerebral perfusion, and brain atrophy. The hypothesis will then be tested in a recently identified risk factor for dementia, namely hearing deficit. If further studies confirm this sequence of events leading to dementia, a significant change in our approach to this debilitating and costly condition may be necessary, possible, and beneficial.
Collapse
Affiliation(s)
- Antoine M. Hakim
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
30
|
Erlenbach E, McAuley E, Gothe NP. The Association Between Light Physical Activity and Cognition Among Adults: A Scoping Review. J Gerontol A Biol Sci Med Sci 2021; 76:716-724. [PMID: 33438006 DOI: 10.1093/gerona/glab013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The physical and cognitive benefits of moderate-vigorous intensity physical activity (MVPA) for adults have been well documented. Recently, there has been increasing interest in the independent health benefits of light-intensity physical activity (LPA). This research has primarily focused on the relationship between LPA and morbidity and mortality risk, with few studies investigating cognitive associations. The purpose of this scoping review was to catalog existing evidence on the association between device-based or technologically measured LPA and cognition among adults, identify trends in the literature, and recommend future areas for research. METHODS Six electronic databases were searched between January and June 2020. Forty published studies met the inclusion criteria, which included both healthy and clinical young and older adult populations. Among the 40 articles were 14 acute exercise studies, 4 randomized control trials (RCTs), 18 cross-sectional studies, and 4 longitudinal studies. RESULTS 7/14 (50%) acute, 3/4 (75%) RCT, 10/18 (56%) cross-sectional, and 2/4 (50%) longitudinal studies reported a significant, positive relationship between LPA and one or more cognitive outcomes. These heterogeneous findings can largely be attributed to the diverse study designs and populations, as well as the numerous assessments used to test the cognitive domains. CONCLUSION These collective findings suggest LPA may be a potential lifestyle intervention to improve cognition across adulthood. However, the inconsistent approaches used among these studies suggest a more concerted, unified scientific approach is needed to further understand the LPA-cognition relationship.
Collapse
Affiliation(s)
- Emily Erlenbach
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, USA
| | - Edward McAuley
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, USA
| | - Neha P Gothe
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, USA
| |
Collapse
|
31
|
Williams JS, Dunford EC, Cheng JL, Moncion K, Valentino SE, Droog CA, Cherubini JM, King TJ, Noguchi KS, Wiley E, Turner JR, Tang A, Al-Khazraji BK, MacDonald MJ. The impact of the 24-h movement spectrum on vascular remodeling in older men and women: a review. Am J Physiol Heart Circ Physiol 2021; 320:H1136-H1155. [PMID: 33449851 DOI: 10.1152/ajpheart.00754.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aging is associated with increased risk of cardiovascular and cerebrovascular events, which are preceded by early, negative remodeling of the vasculature. Low physical activity is a well-established risk factor associated with the incidence and development of disease. However, recent physical activity literature indicates the importance of considering the 24-h movement spectrum. Therefore, the purpose of this review was to examine the impact of the 24-h movement spectrum, specifically physical activity (aerobic and resistance training), sedentary behavior, and sleep, on cardiovascular and cerebrovascular outcomes in older adults, with a focus on recent evidence (<10 yr) and sex-based considerations. The review identifies that both aerobic training and being physically active (compared with sedentary) are associated with improvements in endothelial function, arterial stiffness, and cerebrovascular function. Additionally, there is evidence of sex-based differences in endothelial function: a blunted improvement in aerobic training in postmenopausal women compared with men. While minimal research has been conducted in older adults, resistance training does not appear to influence arterial stiffness. Poor sleep quantity or quality are associated with both impaired endothelial function and increased arterial stiffness. Finally, the review highlights mechanistic pathways involved in the regulation of vascular and cerebrovascular function, specifically the balance between pro- and antiatherogenic factors, which mediate the relationship between the 24-h movement spectrum and vascular outcomes. Finally, this review proposes future research directions: examining the role of duration and intensity of training, combining aerobic and resistance training, and exploration of sex-based differences in cardiovascular and cerebrovascular outcomes.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Emily C Dunford
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin Moncion
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sydney E Valentino
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Connor A Droog
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua M Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Trevor J King
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth S Noguchi
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elise Wiley
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joshua R Turner
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Ada Tang
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Nagai Ocamoto G, Spavieri Junior DL, Matos Ribeiro JA, Frigieri Vilela GH, Catai AM, Russo TL. Noninvasive Intracranial Pressure Monitoring in Chronic Stroke Patients with Sedentary Behavior: A Pilot Study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:55-58. [PMID: 33839818 DOI: 10.1007/978-3-030-59436-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study aimed to correlate the P2/P1 ratio of intracranial pressure waveforms with sedentary behavior during the chronic stage of stroke. MATERIALS AND METHODS Eight patients from São Carlos, Brazil, who had hemiparesis and stroke onset within the previous 6 months, participated in this study. To monitor their intracranial pressure, we used noninvasive Brain4Care® intracranial pressure monitoring during a postural change maneuver involving 15 min in a supine position and 15 min in an orthostatic position. The patients' sedentary behavior was continually monitored at home using a StepWatch Activity Monitor™ for 1 week. Moreover, the patients completed the International Physical Activity Questionnaire before and after using the StepWatch Activity Monitor™. RESULTS In the supine and orthostatic positions, the P2/P1 ratios were 0.84 ± 0.14 and 0.98 ± 0.17, respectively. The percentage of time spent in inactivity was 71 ± 11%, and the number of steps walked per day was 4220 ± 2239. We found a high positive correlation (r = 0.881, p = 0.004) between the P2/P1 ratio and the percentage of time spent in inactivity. CONCLUSION This preliminary study showed a correlation between sedentary behavior and cerebral compliance. Thus, monitoring of intracranial pressure during the late stage of a stroke could guide the clinician's treatment to reduce sedentary behavior and the risks of recurrent stroke and cardiovascular diseases.
Collapse
Affiliation(s)
- Gabriela Nagai Ocamoto
- Department of Physical Therapy, Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
| | | | - Jean Alex Matos Ribeiro
- Department of Physical Therapy, Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
| | | | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil
| | - Thiago Luiz Russo
- Department of Physical Therapy, Federal University of São Carlos-UFSCar, São Carlos, São Paulo, Brazil.
| |
Collapse
|
33
|
Maasakkers CM, Melis RJF, Kessels RPC, Gardiner PA, Olde Rikkert MGM, Thijssen DHJ, Claassen JAHR. The short-term effects of sedentary behaviour on cerebral hemodynamics and cognitive performance in older adults: a cross-over design on the potential impact of mental and/or physical activity. ALZHEIMERS RESEARCH & THERAPY 2020; 12:76. [PMID: 32571399 PMCID: PMC7310280 DOI: 10.1186/s13195-020-00644-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sedentary behaviour might be a potential risk factor for cognitive decline. However, the short-term effects of sedentary behaviour on (cerebro) vascular and cognitive performance in older people are unknown. METHODS We used a cross-over design with 22 older adults (78 years, 9 females) to assess the short-term hemodynamic and cognitive effects of three hours uninterrupted sitting and explored if these effects can be counteracted with regular (every 30 min) two-minute walking breaks. In addition, we investigated if low versus high mental activity during the three hours of sitting modified these effects. Before and after each condition, alertness, executive functioning, and working memory were assessed with the Test of Attentional Performance battery. Additionally, cerebral blood flow velocity (Transcranial Doppler) and blood pressure (Finapres) were measured in rest, and during sit-to-stand and CO2 challenges to assess baroreflex sensitivity, cerebral autoregulation, and cerebral vasomotor reactivity. RESULTS No short-term differences were observed in cognitive performance, cerebral blood flow velocity, baroreflex sensitivity, cerebral autoregulation, or cerebral vasomotor reactivity across time, or between conditions. Blood pressure and cerebrovascular resistance increased over time (8.6 mmHg (5.0;12.1), p < 0.001), and 0.23 in resistance (0.01;0.45), p = 0.04). However, these effects were not mitigated by mental activity or by short walking breaks to interrupt sitting. CONCLUSIONS In older individuals, three hours of sitting did not influence cognitive performance or cerebral perfusion. However, the sitting period increased blood pressure and cerebrovascular resistance, which are known to negatively impact brain health in the long-term. Importantly, we found that these effects in older individuals cannot be mitigated by higher mental activity and/or regular walking breaks. TRIAL REGISTRATION Clinical trial registration URL: https://www.toetsingonline.nl/. Unique identifier: NL64309.091.17. Date of registration: 06-02-2018.
Collapse
Affiliation(s)
- Carlijn M Maasakkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J F Melis
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology/Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Paul A Gardiner
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marcel G M Olde Rikkert
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Jurgen A H R Claassen
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Olanrewaju O, Stockwell S, Stubbs B, Smith L. Sedentary behaviours, cognitive function, and possible mechanisms in older adults: a systematic review. Aging Clin Exp Res 2020; 32:969-984. [PMID: 32026419 DOI: 10.1007/s40520-019-01457-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Physical activity can improve cognitive function of older adults, but the influence of sedentary behaviour on cognition is less clear. This systematic review investigated associations between sedentary behaviour and cognitive function in older adults without dementia, and possible mechanisms involved. METHODS Major databases were searched for studies in English between 01/01/1999 and 31/10/2019. The systematic review followed COSMOS-E guideline and a pre-registered protocol (CRD42019122229). Risk of bias was assessed using NICE Quality appraisal checklist. Findings were narratively synthesized and presented. FINDINGS Eighteen studies comprised of 13 cross-sectional and five longitudinal analyses (n = 40,228). Evidence suggested varied associations between varied sedentary behaviours and cognitive function in older adults. 50% of study analyses did not control for physical activity. 3/18 studies demonstrated associations between higher sedentary levels and lower levels of brain biomarkers, while 1/18 showed auto-regulatory effect in the left hippocampus. Conducting a meta-analysis was not justifiable due to considerable methodological, participant, outcome and exposure heterogeneity. CONCLUSION There is a lack of clarity about the overall and independent association between sedentary behaviour and cognition in older age. Underlying mechanisms are similar to physical activity and probably multi-modal. More studies with robust designs and methodology are needed to confirm effect of sedentary behaviour on cognition.
Collapse
Affiliation(s)
| | | | - B Stubbs
- Positive Ageing Research Institute, FHSCME, Anglia Ruskin University, South London and Maudsley Foundation NHS Trust, London, UK
| | - L Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|