1
|
Higa M, Naito K, Sato T, Tomii A, Hitsuda Y, Tahara M, Ishii K, Ichisaka Y, Sugiyama H, Kobayashi R, Sakamoto F, Watanabe K, Yoshikiyo K, Shimizu H. Hexaraphane Affects the Activation of Hepatic PPARα Signaling: Impact on Plasma Triglyceride Levels and Hepatic Senescence with Aging. Nutrients 2025; 17:1768. [PMID: 40507037 PMCID: PMC12158025 DOI: 10.3390/nu17111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025] Open
Abstract
Background/Objectives: Hexaraphane, also known as 6-methylsulfinylhexyl isothiocyanate, derived from wasabi (Eutrema japonicum), increases heme oxygenase-1 (HO-1) and aldehyde dehydrogenase 2 (ALDH2) mRNA expression by activating nuclear factor erythroid 2-related factor 2 (Nrf2) in both HepG2 cells and the mouse liver. Given the presence of a peroxisome proliferator-activated receptor (PPAR) response element (PPRE) in the HO-1 and ALDH2 promoters, the present study aimed to determine the effects of hexaraphane on PPARα-associated genes, age-related weight gain, plasma triglyceride levels, and hepatic senescence. Methods: HepG2 cells were treated with hexaraphane to evaluate PPARα target gene expression and PPRE transcriptional activity. Male C57BL/6J young control, aged control, and aged mice administered with hexaraphane for 16 weeks were assessed for food and water intake, body and tissue weights, plasma parameters, and hepatic PPARα-related gene expression. Results: Hexaraphane increased HO-1 mRNA expression levels in HepG2 cells, which was inhibited by GW6471, a PPARα antagonist. It elevated PPRE transcriptional activity and increased carnitine palmitoyltransferase 1A (CPT1A) mRNA expression levels, indicating PPARα activation. In aged mice, hexaraphane intake reduced body weight gain by decreasing the adipose tissue weight. Increased CPT1A expression levels and a tendency toward increased acyl-CoA oxidase 1 (ACOX1) expression levels in the liver of aged mice administered hexaraphane were associated with reduced plasma triglyceride levels and body weight gain. Increased hepatic Sirt1 expression levels in aged mice administered hexaraphane was associated with lower plasma triglyceride levels. Increased hepatic PPARα mRNA expression levels in aged mice administered hexaraphane suggest a positive feedback loop between PPARα and Sirt1. The expression levels of hepatic p21 mRNA, a senescence marker regulated by Sirt1, were upregulated in aged mice but suppressed by hexaraphane intake. Conclusions: Hexaraphane may prevent age-related body weight gain, elevated plasma triglyceride levels, and hepatic senescence by activating PPARα, potentially contributing to longevity.
Collapse
Affiliation(s)
- Manami Higa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Kazuma Naito
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
| | - Takenari Sato
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Ayame Tomii
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Yuuka Hitsuda
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Miyu Tahara
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Katsunori Ishii
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Yu Ichisaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Hikaru Sugiyama
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Rin Kobayashi
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Fuzuki Sakamoto
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Kazuhisa Watanabe
- Faculty of Nutrition, Tokyo Kasei University, 1-18-1 Kaga, Itabashi 173-8602, Tokyo, Japan
| | - Keisuke Yoshikiyo
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Hidehisa Shimizu
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| |
Collapse
|
2
|
Liu X, Guan K, Ma Y, Jiang L, Li Q, Liu Y, Mao K, Wang R. Probiotic Combination of Limosilactobacillus fermentum HF07 and Lactococcus lactis HF08 Targeting Gut Microbiota-Secondary Bile Acid Metabolism Ameliorates Inflammation and Intestinal Barrier Dysfunction in Aging Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40391947 DOI: 10.1021/acs.jafc.4c12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
This study investigated the intestinal protective effects of a probiotic mixture (PM) composed of Limosilactobacillus fermentum HF07 and Lactococcus lactis HF08 on d-gal/DSS-induced aging colitis in mice. The PM alleviated age-related colitis symptoms including weight loss, increased disease activity index scores, colonic shortening, and tissue damage. PM supplementation reshaped the gut microbiota by restoring the relative abundances of Lactobacillus, Dubosiella, Odoribacter, and Clostridia_UCG-014, thereby enhancing levels of bile acids (BAs) such as alpha-muricholic acid, isolithocholic acid, and ursodeoxycholic acid. Moreover, transcriptomic analysis revealed that PM administration activated the cAMP pathway through the gut microbiota-secondary BAs axis. Western blot analysis further demonstrated that the effects of anti-inflammatory and intestinal barrier repair induced by PM were associated with downregulation of key proteins in the NLRP3 and RhoA/ROCK pathways, both of which are downstream of the cAMP pathway. Additionally, the role of gut metabolites in mediating these effects via G protein-coupled receptor 5 (TGR5) activation was confirmed through in vitro experiments using Caco-2 cells. These findings provided a comprehensive understanding of how probiotics target intestinal metabolites and leverage the gut microbiota-BAs axis to mitigate age-related gastrointestinal diseases.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Kaifang Guan
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lin Jiang
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu 610023, China
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, Chengdu, Sichuan 610000, China
| | - Yuxuan Liu
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu 610023, China
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Company Limited, Shanghai 310000, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
3
|
Dey P. Comparable hepatocellular metabolomic signatures under glucose and palmitic acid treatment relative to butyrate in relation to metabolic dysfunction-associated fatty liver disease. Arch Physiol Biochem 2025:1-11. [PMID: 40372011 DOI: 10.1080/13813455.2025.2500651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Among the dietary factors, glucose, and fatty acids are known to trigger fatty liver disease, while butyrate attenuates steatosis. OBJECTIVE To decipher the hepatocellular altered metabolome under nutrient perturbation relevant to fatty liver disease. METHODS HepG2 cells were cultured under the influence of sub-lethal doses of glucose, palmitic acid (PA), and butyrate. Following the treatment, intracellular metabolites were extracted and derivatized for GCMS analysis. Chemical class enrichment, metabolic pathway analysis, and metabolomic interactome analysis were undertaken. RESULTS Glucose, PA and butyrate caused loss of cell viability at 160 mM, 1600 µM, and 40 mM concentration, respectively. A total of 39, 47, 52, and 51 metabolites were identified in control, glucose, PA, and butyrate, respectively, among which 2-ethylhexanoic acid in control and 2-ethylhexan-1-ol in glucose, PA and butyrate were the most abundant metabolites. Pathways related to the mitochondrial electron transport chain were highly enriched in glucose and PA treatments, leading to increased free radicals. The metabolites identified under glucose and PA treatment were linked to the metabolomic markers of metabolic liver diseases. CONCLUSION Our data showed that the hepatocellular metabolome of HepG2 cells under glucose and PA treatment is closely related, while the metabolome and pathways associated with butyrate treatment are associated with energy metabolism and alleviation of fatty liver.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
4
|
Yao YQ, Cao QY, Li Z. Delaying liver aging: Analysis of structural and functional alterations. World J Gastroenterol 2025; 31:103773. [PMID: 40309235 PMCID: PMC12038549 DOI: 10.3748/wjg.v31.i15.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/23/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
This article is based on a recent bibliometric analysis of research progress on liver aging. The liver is notable for its extraordinary ability to rejuvenate, thereby safeguarding and maintaining the organism's integrity. With advancing age, there is a noteworthy reduction in both the liver's size and blood circulation. Furthermore, the wide range of physiological alterations driven on by aging may foster the development of illnesses. Previous studies indicate that liver aging is linked to impaired lipid metabolism and abnormal gene expression associated with chronic inflammation. Factors such as mitochondrial dysfunction and telomere shortening accumulate, which may result in increased hepatic steatosis, which impacts liver regeneration, metabolism, and other functions. Knowing the structural and functional changes could help elderly adults delay liver aging. Increasing public awareness of anti-aging interventions is essential. Besides the use of dietary supplements, alterations in lifestyle, including changes in dietary habits and physical exercise routines, are the most efficacious means to decelerate the aging process of the liver. This article highlights recent advances in the mechanism research of liver aging and summarizes the promising intervention options to delay liver aging for preventing related diseases.
Collapse
Affiliation(s)
- Yu-Qin Yao
- College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| | - Qiong-Yue Cao
- College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| | - Zheng Li
- College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
5
|
Shi L, Ding Z, Chen J. Deciphering the role of IGFBP5 in delaying fibrosis and sarcopenia in aging skeletal muscle: therapeutic implications and molecular mechanisms. Front Pharmacol 2025; 16:1557703. [PMID: 40144669 PMCID: PMC11937025 DOI: 10.3389/fphar.2025.1557703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Sarcopenia is a condition characterized by the loss of muscle fibers and excessive deposition of extracellular matrix proteins. The interplay between muscle atrophy and fibrosis is a central feature of sarcopenia. While the mechanisms underlying skeletal muscle aging and fibrosis remain incompletely understood, cellular senescence has emerged as a key contributor. This study investigates the role of D-galactose (D-gal) in inducing fibroblasts senescence and skeletal muscle fibrosis, and aims to find the key regulator of the process to serve as a therapeutical target. Methods To discover the role of D-gal in inducing cellular senescence and fibrosis, the senescence markers and the expression of fibrosis-related proteins were assessed after introducing D-gal among fibroblasts, and muscle strength and mass. The severity of muscle atrophy and fibrosis were also verified by using H&E staining and Masson trichrome staining after D-gal treatment via subcutaneous injection among mice. Subsequently, mRNA sequencing (RNA-seq) was performed and the differential expressed genes were identified between under D-gal or control treatment, to discover the key regulator of D-GAL-driven fibroblasts senescence and fibrosis. The role of the key regulator IGFBP5 were then validated in D-GAL treated IGFBP5-knockdown fibroblasts in vitro by analyzing the level of senescence and fibrosis-related markers. And the results were further confirmed in vivo in IGFBP5-knockdown SAMP8 mice with histological examinations. Results D-gal treatment effectively induced cellular senescence and fibrosis in fibroblasts, as well as skeletal muscle atrophy, fibrosis and loss in muscle mass and function in mice. IGFBP5 was identified as a key regulator of D-GAL induced senescence and fibrosis among fibroblasts using RNA-seq. And further validation tests showed that IGFBP5-knockdown could alleviate D-GAL-induced fibroblast cellular senescence and fibrosis, as well as the severity of muscle atrophy and fibrosis in SAMP8 mice. Discussion IGFBP5 emerging as a key regulator of D-GAL-induced fibroblast cellular senescence and fibrosis. The findings provide new insights into the molecular mechanisms underlying age-related skeletal muscle fibrosis and highlight IGFBP5 as a potential therapeutic target. Further research is needed to validate these findings and explore related clinical applications.
Collapse
Affiliation(s)
| | - Zheci Ding
- *Correspondence: Zheci Ding, ; Jiwu Chen,
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Li T, Huang N, Chen H, Yang Y, Zhang J, Xu W, Gong H, Gong C, Yang M, Zhao T, Wang F, Xiao H. Daytime-Restricted Feeding Alleviates D-Galactose-Induced Aging in Mice and Regulates the AMPK and mTORC1 Activities. J Cell Physiol 2025; 240:e70020. [PMID: 40070151 DOI: 10.1002/jcp.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/17/2025]
Abstract
Time-restricted feeding (TRF) is a distinct regimen of intermittent fasting advocated for health improving. Although nighttime TRF (NRF) in rodents is analogous to daytime TRF (DRF) in humans and has health benefits, the effects of DRF on rodent's health remain uncertain. The adverse health effects of DRF in rodents are primarily attributed to its implementation-induced temporal shift in the expression of circadian rhythm-related genes. However, studies also demonstrate the health-beneficial effect of restricted feeding itself on metabolic homeostasis, particularly in periphery tissues. Moreover, the direct effects of DRF on aging progression in rodents are underexplored, highlighting a gap in current research. To explore the overall health effects of long-term DRF in rodents, especially its influence on aging progression, we investigated the impact of long-term DRF on mice under a progeric aging condition. Results showed that both 4-h and 8-h DRF regimens exerted positive effects on aging retardation; these effects were manifested as improved physical and memory capacities, enhanced liver and kidney functions, and reduced oxidative damage and inflammatory response. These DRF regimens also lowered the manifestation of aging-related markers in peripheral tissues, with decreased SA-β-gal staining and p16 expression. Mechanistically, DRF regimens, especially DRF8, upregulated AMPK signaling and downregulated mTORC1 signaling. Interestingly, the health benefits of DRF are similar to those of metformin intervention. In conclusion, our study demonstrates for the first time that DRF effectively counteracts oxidative stress-induced aging progression in mice, supporting the viewpoint that TRF as a promising strategy for preventing aging and aging-related disorders.
Collapse
Affiliation(s)
- Tiepeng Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Huang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Honghan Chen
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weitong Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Yang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zhao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfang Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Martinovic J, Gusevac Stojanovic I, Nesic S, Todorovic A, Bobic K, Stankovic S, Drakulic D. Chronic Oral D-Galactose Induces Oxidative Stress but Not Overt Organ Dysfunction in Male Wistar Rats. Curr Issues Mol Biol 2025; 47:161. [PMID: 40136415 PMCID: PMC11941312 DOI: 10.3390/cimb47030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
D-galactose (d-gal) plays numerous roles in the organism as an energy-providing nutrient and also an important constituent of the complex glycoconjugates. However, excessive amounts of d-gal activate alternative metabolic pathways that can lead to the development of a pro-oxidative environment. This feature is used in numerous aging studies which implied intraperitoneal (i.p.) or subcutaneous (s.c.) administration of d-gal for a prolonged time. The present study aims to investigate the systemic effects of orally administered d-gal (200 mg/kg and 500 mg/kg, dissolved in tap water, for 6 weeks) by analyzing oxidative stress parameters in the liver, kidney, and heart. For comparison with natural aging, the effects were studied in rats aged 12, 18, 24, and 30 months. In addition, histopathologic analyzes and serum biochemical measurements were performed to investigate the potential structural and functional organ damage induced by d-gal administration. Our findings show that chronic oral administration of d-gal induces oxidative stress in rat organs and mimics some aspects of natural aging similar to those of 30-month-old rats. Consistent with its primary role in galactose metabolism, the liver exhibited the most pronounced oxidative damage. However, despite the increased oxidative stress, only minor histopathological changes were observed, while organ function remained largely unaffected. Oral intake of d-gal was found to have milder effects compared to i.p. or s.c. injections, suggesting that this model may induce some features of natural aging but without overt organ dysfunction.
Collapse
Affiliation(s)
- Jelena Martinovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.S.); (A.T.); (K.B.); (D.D.)
| | - Ivana Gusevac Stojanovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.S.); (A.T.); (K.B.); (D.D.)
| | - Sladjan Nesic
- Department of Pathology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Todorovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.S.); (A.T.); (K.B.); (D.D.)
| | - Katarina Bobic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.S.); (A.T.); (K.B.); (D.D.)
| | - Sanja Stankovic
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dunja Drakulic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.S.); (A.T.); (K.B.); (D.D.)
| |
Collapse
|
8
|
Wei Y, Zhang Y, Cao W, Cheng N, Xiao Y, Zhu Y, Xu Y, Zhang L, Guo L, Song J, Sha SH, Shao B, Ma F, Yang J, Ying Z, He Z, Chai R, Fang Q, Yang J. RONIN/HCF1-TFEB Axis Protects Against D-Galactose-Induced Cochlear Hair Cell Senescence Through Autophagy Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407880. [PMID: 39985193 DOI: 10.1002/advs.202407880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/17/2025] [Indexed: 02/24/2025]
Abstract
Age-related hearing loss is characterized by senescent inner ear hair cells (HCs) and reduced autophagy. Despite the improved understanding of these processes, detailed molecular mechanisms underlying cochlear HC senescence remain unclear. Transcription Factor EB (TFEB), a key regulator of genes associated with autophagy and lysosomes, crucially affects aging-related illnesses. However, intricate regulatory networks that influence TFEB activity remain to be thoroughly elucidated. The findings revealed that RONIN (THAP11), through its interaction with host cell factor C1 (HCF1/HCFC1), modulated the transcriptional activity of Tfeb, thus contributing to the mitigation (D-galatactose [D-gal]) senescent HC loss. Specifically, RONIN overexpression improved autophagy levels and lysosomal activity and attenuated changes associated with the senescence of HCs triggered by D-gal. These findings highlight the possibility of using RONIN as a viable therapeutic target to ameliorate presbycusis by enhancing the TFEB function.
Collapse
Affiliation(s)
- Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Nan Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lingna Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun Song
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Fang Ma
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China
| | - Jingwen Yang
- International Department of Hefei 168 High School, Hefei, 230601, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
9
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
10
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Singh A, Soni U, Varadwaj PK, Misra K, Rizvi SI. Anti-inflammatory effect of curcumin in an accelerated senescence model of Wistar rat: an in vivo and in-silico study. J Biomol Struct Dyn 2025; 43:1459-1470. [PMID: 38088364 DOI: 10.1080/07391102.2023.2291832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
Curcumin, a biphenolic substance derived from turmeric (Curcuma longa), offers a number of health-beneficial effects, including anti-inflammatory, cardiovascular protection, anti-cancerous, and anti-angiogenic. By interacting with the PPARγ (Peroxisome Proliferator-Activated Receptor-γ), curcumin inhibits NF-κB. These biological outcomes seem to be the outcome of NF-κB inhibition mediated by curcumin. The current study explores the in vivo impact of curcumin on several inflammatory parameters during aging in Wistar rats. An in-silico docking simulation study using Maestro and Desmond, Schrödinger, was carried out to further validate the experimental findings. According to our observation, rats given curcumin supplementation had a considerably (p ≤ 0.05) reduced level of inflammation. By generating numerous polar and hydrophobic interactions and exhibiting little conformational deviation throughout the simulation, in silico investigations showed that the proposed ligand curcumin had a high affinity for the enzyme COX-2. During simulation, protein-ligand complexes of curcumin with the other targets viz. 5-LOX, TNF-α and IL-6 also demonstrated improved binding and minimal fluctuation. The COX-2 and 5-LOX enzymes and the cytokines (TNF-α and IL-6) implicated in inflammation may have been inhibited by curcumin, highlighting its function as a multi-target inhibitor. Our study provides convincing support for the idea that eating a diet high in curcumin may help to reduce inflammation and help to explain some of its health-beneficial effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| | - Unnati Soni
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| |
Collapse
|
12
|
Li H, Zhou Y, Cai C, Liang H, Li X, Huang M, Fan S, Bi H. Fenofibrate induces liver enlargement in aging mice via activating the PPARα-YAP signaling pathway. Chem Biol Interact 2025; 405:111286. [PMID: 39442682 DOI: 10.1016/j.cbi.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fenofibrate is a clinically prescribed drug for treating hypertriglyceridemia, which is also a classic peroxisome proliferator-activated receptor α (PPARα) agonist. We previously reported that fenofibrate induced liver enlargement in adult mice partially through activation of the yes-associated protein (YAP) signaling pathway. However, the effects of fenofibrate on liver enlargement and the YAP signaling pathway in aging mice remain unclear. In this study, D-galactose-induced aging mice, naturally aging mice, and senescence-accelerated mice P8 (SAMP8) were used to investigate the effects of aging on fenofibrate-induced liver enlargement and YAP signaling activation. The results showed that fenofibrate-induced liver enlargement in aging mice was consistent with that of adult mice. The effects of fenofibrate on hepatocyte enlargement around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area were comparable between adult and aging mice. There was no significant difference in the upregulation of PPARα downstream proteins between the two groups following fenofibrate treatment. Fenofibrate treatment also increased the expression of proliferation-related proteins and activated the YAP signaling pathway to a similar degree in both groups. In summary, these results demonstrate that the fenofibrate-induced liver enlargement and activation of the YAP pathway are consistent between adult and aging mice, indicating that the effects of fenofibrate on promoting liver enlargement and its activation of the PPARα and YAP pathway were independent of aging. These findings offer a new perspective for the clinical use of fenofibrate in elderly patients and provide a new insight for the role of PPARα in liver enlargement.
Collapse
Affiliation(s)
- Huilin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chenghui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hangfei Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Wang X, Jia Q, Yao X, Yang L, Pei K, Guo L, Guo Y, Yang Y, Qin N. Analysis of Forsythia suspensa fruit and leaf extracts using UHPLC-Q-Exactive-Orbitrap/MS: In vivo antioxidant activity on D-galactose-induced aging mice. Food Chem 2025; 462:141002. [PMID: 39216371 DOI: 10.1016/j.foodchem.2024.141002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Making health-enhancing tea from Forsythia suspensa leaves has been a tradition of Chinese folk culture for centuries. However, these leaves were not officially recognized as a new food source until 2017 by the Chinese government. In this study, ethyl acetate fractions from Forsythia suspensa fruit and leaves exhibited excellent antioxidant activity in vitro antioxidant assays and in vivo D-galactose-induced aging mice model. The antioxidant activity of the leaves was higher than that of fruit both in vitro and in vivo. The chemical constituents present in these ethyl acetate fractions were comprehensively analyzed using UHPLC-Q-Exactive-Orbitrap/MS. A total of 20 compounds were identified, among which forsythoside E, (+)-epipinoresinol, dihydromyricetin, chlorogenic acid, and ursolic acid were exclusively detected in the ethyl acetate fraction of Forsythia suspensa leaves, but absent in the ethyl acetate fraction derived from its fruit. This study provides theoretical support for the utilization of Forsythia suspensa fruit and leaves.
Collapse
Affiliation(s)
- Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Qiwen Jia
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Xiangyu Yao
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Lanqing Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Lili Guo
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China
| | - Yu Guo
- Shanxi Agricultural Products Quality and Safety Center, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China.
| | - Nan Qin
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China.
| |
Collapse
|
14
|
Yan M, Cong X, Wang H, Qin K, Tang Y, Xu X, Wang D, Cheng S, Liu Y, Zhu H. Dietary Se-enrich Cardamine violifolia supplementation decreases lipid deposition and improves antioxidant status in the liver of aging laying hens. Poult Sci 2025; 104:104620. [PMID: 39647356 PMCID: PMC11666952 DOI: 10.1016/j.psj.2024.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024] Open
Abstract
Aging-related lipid metabolic disorder is related to oxidative stress. Selenium (Se)-enriched Cardamine violifolia (SEC) is known for its excellent antioxidant function. The objective of this study was to evaluate the effects of SEC on antioxidant capacity and lipid metabolism in the liver of aged laying hens. A total of 450 sixty-five-wk-old Roman laying hens were randomly divided into 5 treatments: a basal diet (without Se supplementation, CON) and basal diets supplemented with 0.3 mg/kg Se from sodium selenite (SS), 0.3 mg/kg Se from Se-enriched yeast (SEY), 0.3 mg/kg Se from SEC (SEC), or 0.3 mg/kg Se from SEC and 0.3 mg/kg Se from SEY (SEC + SEY). The experiment lasted for 8 wk. The results showed that dietary SEC + SEY supplementation decreased (P < 0.05) triglyceride (in the plasma and liver) and total cholesterol levels (in the plasma), and increased (P < 0.05) HDL-C concentration in plasma compared to CON diet. Compared with CON diet, SEC and/or SEY supplementation decreased (P < 0.05) the mRNA expression of hepatic ACC, FAS and HMGCR, and increased (P < 0.05) PPARα, VTG-II, Apo-VLDL II and ApoB expression. Dietary SEC + SEY and SEY supplementation increased (P < 0.05) Se content in egg yolk and breast muscle compared to CON diet. Dietary SEC, SEY or SEC + SEY supplementation increased (P < 0.05) the activity of antioxidant enzymes (GSH-PX, T-AOC and T-SOD) in the plasma and liver and decreased (P < 0.05) MDA content in the plasma compared to CON diet. Dietary Se supplementation promoted (P < 0.05) mRNA expression of Nrf2 in the liver. In contrast, dietary SEY and SEC supplementation resulted in a decrease (P < 0.05) of hepatic Keap1 mRNA expression compared to CON diet. Dietary SEC + SEY and/or SEC supplementation increased (P < 0.05) mRNA expression of Selenof, GPX1 and GPX4 in the liver compared with CON diet. In conclusion, dietary SEC (0.3 mg/kg Se) or SEC (0.3 mg/kg Se) + SEY (0.3 mg/kg Se) improved the antioxidant capacity and the lipid metabolism in the liver of aged laying hens, which might be associated with regulating Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Mengke Yan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Xin Cong
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Hui Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Kun Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Yuhui Tang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China.
| |
Collapse
|
15
|
Jiménez R, Zúñiga-Muñoz A, Álvarez-León E, García-Niño WR, Navarrete-Anastasio G, Soria-Castro E, Pérez-Torres I, Lira-Silva E, Pavón N, Cruz-Gregorio A, López-Marure R, Zazueta C, Silva-Palacios A. Quercetin preserves mitochondria-endoplasmic reticulum contact sites improving mitochondrial dynamics in aged myocardial cells. Biogerontology 2024; 26:29. [PMID: 39704870 DOI: 10.1007/s10522-024-10174-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Cardiomyocyte senescence plays a crucial role in the pathophysiology of age-related cardiovascular disease. Senescent cells with impaired contractility, mitochondrial dysfunction, and hypertrophic growth accumulate in the heart during aging, contributing to cardiac dysfunction and remodeling. Mitochondrial dynamics is altered in aging cells, leading to changes in their function and morphology. Such rearrangements can affect the spatially restricted region of the mitochondrial membrane that interacts with reticulum membrane fragments, termed mitochondria-endoplasmic reticulum (ER) contact sites (MERCs). Besides, oxidative stress associated with inefficient organelle turnover can drive cellular senescence. Therefore, in this study, we evaluated the possible association between the senolytic effect of the antioxidant quercetin (Q) and MERCs preservation in a D-galactose-induced cellular senescence model. We found that Q ameliorates the senescent phenotype of H9c2 cells in association with increased mitochondria-ER colocalization, reduced distance between both organelles, and lower ROS production. Moreover, regulation of fusion and fission processes was related with increased mitochondrial ATP production and enhanced transmembrane potential. Overall, our data provide evidence that the inhibitory effect of Q on cellular senescence is associated with preserved MERCs and improved mitochondrial function and morphology, which might contribute to the attenuation of cardiac dysfunction.
Collapse
Affiliation(s)
- Ray Jiménez
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Alejandra Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Edith Álvarez-León
- Basic and Technological Research Subdirection, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Gabriela Navarrete-Anastasio
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Elizabeth Lira-Silva
- Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Natalia Pavón
- Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Rebeca López-Marure
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
16
|
Cho KH, Lee Y, Bahuguna A, Lee SH, Yang CE, Kim JE, Kwon HS. The Consumption of Beeswax Alcohol (BWA, Raydel ®) Improved Zebrafish Motion and Swimming Endurance by Protecting the Brain and Liver from Oxidative Stress Induced by 24 Weeks of Supplementation with High-Cholesterol and D-Galactose Diets: A Comparative Analysis Between BWA and Coenzyme Q 10. Antioxidants (Basel) 2024; 13:1488. [PMID: 39765817 PMCID: PMC11672924 DOI: 10.3390/antiox13121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
The prolonged consumption of D-galactose (Gal) has been associated with severe damage in the liver and brain via exacerbation of oxidative stress, non-enzymatic glycation, and the aging process. The current study was initiated for a comparative assessment of beeswax alcohol (BWA, final 0.5% and 1.0% w/w) and coenzyme Q10 (CoQ10, final 0.5% and 1.0% w/w) against high-cholesterol (HC, final 4%, w/w) and -galactose (Gal, final 30%, w/w)-induced adverse events in zebrafish during 24 weeks of consumption. The survivability of zebrafish decreased to 82.1% due to HC+Gal exposure, but this was substantially improved (91.0%) with the consumption of 0.5% and 1.0% BWA. In contrast, no protective effect of CoQ10 consumption (1.0%) was observed on the survivability of zebrafish. Nevertheless, both BWA and CoQ10 displayed a significant (p < 0.001) preventive effect against HC+Gal-induced body weight enhancement. The HC+Gal-induced cognitive changes, marked by staggered and confused swimming behavior, and retarded swimming speed and motion patterns (restricted to the bottom of the tank), were efficiently restored by BWA. A significantly higher residence time in the upper half of the tank, 3.1-and 4.5-fold reduced latency time along with 3.5-fold and 4.1-fold higher swimming distance, was logged in the 0.5% and 1.0% BWA groups, respectively, than the zebrafish that consumed HC+Gal. In addition, BWA effectively enhanced plasma ferric ion reduction (FRA) and paraoxonase (PON) activity and alleviated the total cholesterol (TC), triglyceride (TG), and blood glucose levels disrupted by the consumption of HC+Gal. Also, the HC+Gal-alleviated plasma high-density lipoprotein-cholesterol (HDL-C) was 2.6-fold (p < 0.001) enhanced in the group that consumed 1.0% BWA, which was significantly 1.5-fold (p < 0.001) better than the effect of 1.0% CoQ10. Similarly, BWA displayed a superior impact over CoQ10 to mitigate HC+Gal-induced plasma AST and ALT levels, hepatic IL-6 production, generation of oxidized species, cellular senescence, and fatty liver changes. Moreover, BWA protects the brain against HC+Gal-induced oxidative stress, apoptosis, and myelin sheath degeneration. Conclusively, compared to CoQ10, BWA efficiently can the HC+Gal-impaired brain and liver functionality to subside and improves the dyslipidemia and cognitive behavior of zebrafish.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
de Almeida Feitosa MS, de Almeida AJPO, Dantas SH, de Lourdes Assunção Araújo de Azevedo F, de Souza Júnior JF, Gonçalves TAF, de Lima Silva S, Soares EMC, Alves HF, Lima TT, da Silva Pontes LV, Guerra RR, Araújo IGA, de Medeiros IA. Carvacrol prevents D-( +)-galactose-induced aging-associated erectile dysfunction by improving endothelial dysfunction and oxidative stress in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10061-10073. [PMID: 38967826 DOI: 10.1007/s00210-024-03264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Aging is one of the risk factors involved in the development of erectile dysfunction (ED). Growing evidence suggests that oxidative stress is the critical mediator of changes in endothelial function and penile vascular tone in the aging process. Thus, reducing reactive oxygen species (ROS) levels may preserve the bioactivity of the penile vasculature. Antioxidant compounds, such as carvacrol, limit the damage caused by ROS and, therefore, benefit the treatment of ED. Thus, this study aims to evaluate the effects of carvacrol on ED using the D-( +)-galactose aging model. The animals were divided into five groups: control, D-( +)-galactose 150 mg/kg, carvacrol 50 mg/kg or 100 mg/kg, and sildenafil 1.5 mg/kg treated daily for 8 weeks. The physiological, functional, and morphological characteristics of aging-associated ED were evaluated after treatment with carvacrol. Carvacrol prevented ED in a D-( +)-galactose-induced aging model by reducing hypercontractility, enhancing endothelial dysfunction in the rat corpus cavernosum, and improving endothelial health of rat cavernous endothelial cells. In addition, carvacrol prevented the destruction of erectile components essential for penile erection and promoted a reduction of penile tissue senescence, probably through mechanisms that involve the harmful modulation of oxidative stress. Carvacrol significantly improved the erectile function of rats in a D-( +)-galactose-induced aging model and has excellent potential as a new therapeutic alternative in treating erectile dysfunction.
Collapse
Affiliation(s)
| | | | - Sabine Helena Dantas
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Tays Amanda Felisberto Gonçalves
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sonaly de Lima Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Evyllen Myllena Cardoso Soares
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Hayaly Felinto Alves
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Thais Trajano Lima
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Ricardo Romão Guerra
- Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Isac Almeida de Medeiros
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
18
|
Zhao F, Gao J, Li H, Huang S, Wang S, Liu X. Identification of Peptides from Edible Pleurotus eryngii Mushroom Feet and the Effect of Delaying D-Galactose-Induced Senescence of PC12 Cells Through TLR4/NF-κB/MAPK Signaling Pathways. Foods 2024; 13:3668. [PMID: 39594083 PMCID: PMC11593523 DOI: 10.3390/foods13223668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Pleurotus eryngii mushroom has been proven to have anti-aging bioactivities. However, few studies have focused on edible Pleurotus eryngii mushroom feet peptides (PEMFPeps). In this paper, the effects of delaying the senescence of D-Galactose-induced PC12 cells were evaluated, and the mechanisms were also investigated. PEMFPeps were prepared by alkaline protease enzymolysis of edible Pleurotus eryngii mushroom feet protein (PEMFP), which mainly consisted of a molecular weight of less than 1000 Da peptides, primarily occupying 89.15% of the total. Simulated digestion in vitro of Pleurotus eryngii mushroom feet peptides (SID-PEMFPeps) was obtained in order to further evaluate the bioactivity after digestion. The peptide sequences of PEMFPeps and SID-PEMFPeps were detected by LC-MS/MS subsequently. Five new peptides of PEMFPeps and one new peptide of SID-PEMFPeps were identified. The effects of PEMFP, PEMFPeps, and SID-PEMFPeps on D-Galactose-induced senescence of PC12 cells were evaluated. PEMFP, PEMFPeps, and SID-PEMFPeps could all enhance antioxidant enzyme activities significantly, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT); decrease the intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS); and inhibit the senescence-associated β-galactosidase (SA-β-gal) activity, among which SID-PEMFPeps showed the best effects. Western blotting analysis confirmed that SID-PEMFPeps significantly regulated the expressions of key proteins such as TLR4, IKKα, IκBα, p65, ERK, and JNK1/2/3, which indicated that SID-PEMFPeps could delay D-Gal-induced senescence of PC12 cells through TLR4/NF-κB/MAPK signaling pathways. This is the first time to investigate PEMFPeps and SID-PEMFPeps protective effects and mechanisms. Our study could lay a solid foundation for PEMFPeps to be used as nutritional supplementation to reduce aging-related damage. And the application of PEMFPeps could also provide optional solutions in exploring more edible protein resources for human beings.
Collapse
Affiliation(s)
- Fen Zhao
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | | | | | | | | | | |
Collapse
|
19
|
Jia X, Liu H, Yin G, Xiang W, Zhao H, Zhang X, Tang X, Cheng X, Kuo CF, Liu C, Wang W, Lu N. Arctium lappaL. polysaccharides alleviate oxidative stress and inflammation in the liver and kidney of aging mice by regulating intestinal homeostasis. Int J Biol Macromol 2024; 280:135802. [PMID: 39306181 DOI: 10.1016/j.ijbiomac.2024.135802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 11/20/2024]
Abstract
Arctium lappa L. polysaccharide (ALP) is a prominent bioactive compound renowned for its multifaceted functional properties, including anti-inflammatory, antioxidant, antifibrotic, immunomodulatory, and pro-apoptotic effects. This study evaluated the aging-delaying effect of ALP and its mechanisms using a D-galactose (D-gal)-induced aging model. After an 8-week treatment, ALP significantly ameliorated D-gal-induced inflammation and oxidative stress in the liver, kidneys, and intestines. Notably, ALP administration led to a marked reduction of the pathogenic bacterium Desulfovibrio and a substantial increase in the beneficial bacterium Muribaculum. These microbial shifts were associated with upregulated expression of intestinal tight junction proteins and intestinal mucins, leading to enhanced intestinal barrier integrity. Consequently, the leakage of enterotoxins and inflammatory mediators was effectively reduced. The findings indicate that ALP alleviates tissue inflammation and oxidative stress, while also delaying aging in mice. This effect is achieved through the regulation of intestinal ecological homeostasis and the repair of the intestinal immune barrier.
Collapse
Affiliation(s)
- Xueyan Jia
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haoming Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guoliang Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen Xiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Haotian Zhao
- Sports & Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Sports & Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Xiangrong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Sports & Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Chia-Feng Kuo
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 222, Taiwan
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Wei Wang
- Beiler Anti-aging, Wuxi Xinbiao Medical Examination Co., Ltd, Wuxi 214091, China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Sports & Health Research Institute, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Ji X, Luo H, Li X, Wang S, Xia L, Ni M, Wang J, Peng C, Wu X, Tan R, Zhang X, Jiang H. Structural characterization, anti-aging activity and mechanisms investigation in vivo of a polysaccharide from Anthriscus sylvestris. Int J Biol Macromol 2024; 279:135256. [PMID: 39233161 DOI: 10.1016/j.ijbiomac.2024.135256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Anthriscus sylvestris (L.) Hoffm has a long history of use for anti-aging, although the anti-aging properties of its decoction ingredients have been seldom explored. This study marks the first detailed examination of the in vivo anti-aging activity of A. sylvestris roots polysaccharide (AP). Structural analyses revealed that AP is a neutral heteropolysaccharide with an average molecular weight (Mw) of 34.17 kDa, comprising glucose, xylose, galactose, mannose, and arabinose, with a backbone primarily of 1,4-α-D-Glc and minor branching at 1,4,6-α-D-Man. Its advanced structure is characterized by stable triple-helical chains and nanoscale agglomerated spherical particles. Using a D-gal-induced aging mouse model, further investigation showed that AP boosts the activity of various antioxidant enzymes via the Nrf2/HO-1/NQO1 signaling pathway. Aging-related immune decline was also mitigated by an increase in lymphocyte production in thymus. Moreover, AP reduced inflammation and downregulated aging genes p53 and p21 in hippocampus and liver tissues, enhanced the cholinergic system, and improved liver functions and lipid metabolism. The collective impact of these mechanisms underscores the robust anti-aging properties of AP. These findings highlight the anti-aging and immunomodulatory potential of A. sylvestris polysaccharide, broadening the understanding of its active components.
Collapse
Affiliation(s)
- Xiaoyun Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Haimeng Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xianyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Siwei Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lijun Xia
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Maojun Ni
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Jingxia Wang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Chaorong Peng
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610100, PR China.
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
21
|
Liu F, Yao Y, Huang Y, Luo L, Wang Q, Chen B, Hu H. Gut microbiota and metabolic profile changes unveil the deterioration of alveolar bone inflammatory resorption with aging induced by D-galactose. Sci Rep 2024; 14:26135. [PMID: 39477973 PMCID: PMC11526011 DOI: 10.1038/s41598-024-75941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
The global aging population has led to a rise in age-related health issues, such as malnutrition, metabolic disorders, and even immune decline. Among these concerns, periodontitis holds particular significance for the well-being of the elderly. This study aimed to investigate the impact of aging on inflammatory resorption of alveolar bone in mice with periodontitis, with a specific focus on alterations in the intestinal microenvironment. To achieve this, we established a D-galactose (D-gal)-induced aging mouse model with periodontitis and employed histopathological staining, oxidative stress, and inflammatory factors analyses to assess the severity of periodontitis and the health status. Additionally, the 16S rRNA sequencing and untargeted metabolomics analysis were employed to investigate alterations in the intestinal microbiota and metabolites. Our results showed that D-gal-induced aging mice with periodontitis experienced more pronounced alveolar bone inflammatory resorption and disruptions in the gut barrier, accompanied by an overall decline in physical condition. The microbial composition and structure of aged mice also underwent significant modifications, with a decreased Firmicutes/Bacteroidetes (F/B) ratio. Furthermore, metabolomics analysis demonstrated that D-gal-induced aging primarily influenced lipids and lipid-like molecules metabolism, and enrichment observed in the rheumatoid arthritis and histidine metabolism pathways. These findings provide further evidence that the aging process exacerbates age-related alveolar bone loss (ABL) through disturbances in intestinal homeostasis.
Collapse
Affiliation(s)
- Fangzhou Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Yanzi Yao
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Stomatology, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Yue Huang
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Liangliang Luo
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Bin Chen
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, China.
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
22
|
Tan X, Wang B, Zhou X, Liu C, Wang C, Bai J. Fecal fermentation behaviors of Konjac glucomannan and its impacts on human gut microbiota. Food Chem X 2024; 23:101610. [PMID: 39071938 PMCID: PMC11282934 DOI: 10.1016/j.fochx.2024.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Dietary fiber targets the regulation of the intestinal flora and thus affects host health, however, the complex relationship between these factors lacks direct evidence. In this study, the regulatory effects of Konjac glucomannan (KGM) on key metabolites of host intestinal flora were examined by using in vitro fermentation. The results showed that KGM could be utilized by the intestinal flora, which inhibited the relative abundance of Paeniclostridium, Lachnoclostridium, Phascolarctobacterium, and Bacteroides and enriched the relative abundance of Desulfovibrio, Sutterella, etc. Fermentation is accompanied by the production of short-chain acids, including acetic and propionic acids. Metabolomics revealed that KGM significantly promoted amino acid metabolism, lipid metabolism, and the biosynthesis of other secondary metabolites. Correlation analysis results showed that the increase of panose and N-(1-carboxy-3-carboxanilidopropyl) alanylproline content was positively correlated with the relative abundance of Megamonas. These results provide evidence that KGM affects host health by regulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong, 250000, China
| | - Xu Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| |
Collapse
|
23
|
Song H, Han MG, Lee R, Park HJ. Neonatal exposure to high D-galactose affects germ cell development in neonatal testes organ culture. Sci Rep 2024; 14:24029. [PMID: 39402149 PMCID: PMC11473950 DOI: 10.1038/s41598-024-74895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Excess exogenous supplementation of D-galactose (D-gal), a monosaccharide and reducing sugar, generates reactive oxygen species (ROS), leading to cell damage and death. ROS accumulation is critical in aging. Therefore, D-gal-induced aging mouse models are used in aging studies. Herein, we evaluated D-gal's effect on neonatal testis development using an in vitro organ culture method. Mouse testicular fragments (MTFs) derived from neonatal testes (postnatal day 5) were cultured with 500 mM D-gal for 5 days. D-gal-treated MTFs showed a significantly increased and decreased expression of undifferentiated and differentiated germ cell markers, respectively, with a substantial reduction in meiotic cells. In D-gal-exposed MTFs, expression levels of Sertoli cell markers (Sox9 and Wt1) increased, while those of StAR and 17β-HSD3, whose expressions are abundant in D-Gal treated adult Leydig cells, decreased. Additionally, the enzyme 3 β-HSD1, essential for steroidogenesis in Leydig cells, was significantly reduced in D-gal-exposed MTFs compared to that in controls.D-gal significantly increased the expression of Bad, Bax, and cleaved caspase-3 and -8. Via oxidative stress in MTF. Overall, D-gal negatively regulates germ cell and Leydig cell development in neonatal testes through pro-apoptotic mechanisms and ROS.
Collapse
Affiliation(s)
- Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul, 05029, Republic of Korea
| | - Min-Gi Han
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ran Lee
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
24
|
Liu Q, Li X, Luo Y. Tanshinone IIA delays liver aging by modulating oxidative stress. Front Pharmacol 2024; 15:1434024. [PMID: 39415831 PMCID: PMC11480062 DOI: 10.3389/fphar.2024.1434024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Organ-specific aging is increasingly recognized for its research significance, with liver aging demonstrating particular relevance due to its central role in metabolism. We have pioneered the discovery that the expression of ESRRG in the liver positively correlates with age and have established its association with clinical characteristics, including hepatic edema. Our findings link liver aging to a shift in oxidative stress states, where ESRRG, a crucial nuclear receptor responsive to oxidative stress, may be modulated by various small molecules. Through virtual screening of a natural medicinal molecule database followed by further validation, we confirmed that the natural compound Tanshinone IIA mitigates oxidative stress-induced damage in the liver via the ESRRG/Cyp2e1 pathway, thus decelerating liver aging. Importantly, our study also explores the dynamic impact of Tanshinone IIA on ESRRG conformation, providing a profound understanding of its molecular interactions with ESRRG and laying a foundation for the rational design of small molecules based on natural compounds.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu Li
- School of Basic Medicine, Zhejiang University, Hangzhou, China
| | - Yi Luo
- Research Center for Life and Health Sciences, Binjiang Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Cho KH, Bahuguna A, Kim JE, Lee Y, Lee SH. Comparative Assessment of Beeswax Alcohol and Coenzyme Q 10 (CoQ 10) to Prevent Liver Aging, Organ Damage, and Oxidative Stress in Hyperlipidemic Zebrafish Exposed to D-Galactose: A 12-Week Dietary Intervention. Pharmaceuticals (Basel) 2024; 17:1250. [PMID: 39338412 PMCID: PMC11435097 DOI: 10.3390/ph17091250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The current study was designed to compare in vivo efficacy between beeswax alcohol (BWA) and coenzyme Q10 (CoQ10) to treat fatty liver changes, oxidative stress, and damages in major organs of zebrafish by 12 weeks with high-cholesterol (HC) and galactose (Gal) supplementation. At week 12, the HC control and HC+Gal control groups showed 96% and 92% survivability, respectively, while co-supplementation of the 0.5% BWA and 1.0% BWA groups exhibited 96% and 100% survivability. However, co-supplementation of the 0.5% CoQ10 and 1.0% CoQ10 groups revealed the lowest survivability, around 92% and 89%, respectively. The 0.5% BWA and 1.0% BWA groups showed 21% (p < 0.001) and 41% (p < 0.001), respectively, lower total cholesterol (TC) than the HC+Gal control, while the 1.0% CoQ10 group showed only 15% lower TC than the control. Interestingly, the 0.5% BWA and 1.0% BWA groups showed 22% (p < 0.001) and 38% (p < 0.001), respectively, lower triglyceride (TG) than the HC+Gal control. However, both the 0.5% CoQ10 and 1.0% CoQ10 groups showed similar TG levels as the control, suggesting that CoQ10 supplementation had no effect on lowering serum TG. The 1.0% BWA group showed the highest plasma HDL-C and HDL-C/TC (%) up to 3.2-fold and 5.5-fold, respectively, higher than those of the HC+Gal control, while the 1.0% CoQ10 group showed 2.4-fold and 2.8-fold higher plasma HDL-C and HDL-C/TC (%), respectively, than the control. The plasma aspartate transaminase (AST) and alanine transaminase (ALT) levels were lowest in the 1.0% BWA group, 51% and 72%, respectively, lower than HC+Gal control, suggesting the lowest extent of hepatic damage. In hepatic tissue, neutrophil infiltration and interleukin (IL)-6 production were the lowest in the 1.0% BWA group, around 67% and 85%, respectively, lower than the HC+Gal control. Fatty liver change, cellular apoptosis, and cell senescence in hepatic tissue were remarkably lowered in the 1.0% BWA group, while the CoQ10 group showed much less effect than the BWA group. In kidney, ovary, and testis tissue, the 1.0% BWA group showed the lowest production of reactive oxygen species, the extent of cellular senescence, and cellular apoptosis with the healthiest cell morphology. In conclusion, supplementation of BWA remarkably protected the liver, kidney, ovary, and testis from oxidative damage by cholesterol and galactose consumption, with the least serum AST and ALT levels, inflammatory parameters, and senescence markers.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ashutosh Bahuguna
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ji-Eun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Yunki Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Sang Hyuk Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| |
Collapse
|
26
|
Sahu Y, Jamadade P, Ch Maharana K, Singh S. Role of mitochondrial homeostasis in D-galactose-induced cardiovascular ageing from bench to bedside. Mitochondrion 2024; 78:101923. [PMID: 38925493 DOI: 10.1016/j.mito.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India.
| |
Collapse
|
27
|
Wang W, Qian J, Shang M, Qiao Y, Huang J, Gao X, Ye Z, Tong X, Xu K, Li X, Liu Z, Zhou L, Zheng S. Integrative analysis of the transcriptome and metabolome reveals the importance of hepatokine FGF21 in liver aging. Genes Dis 2024; 11:101161. [PMID: 39022127 PMCID: PMC11252782 DOI: 10.1016/j.gendis.2023.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 07/20/2024] Open
Abstract
Aging is a contributor to liver disease. Hence, the concept of liver aging has become prominent and has attracted considerable interest, but its underlying mechanism remains poorly understood. In our study, the internal mechanism of liver aging was explored via multi-omics analysis and molecular experiments to support future targeted therapy. An aged rat liver model was established with d-galactose, and two other senescent hepatocyte models were established by treating HepG2 cells with d-galactose and H2O2. We then performed transcriptomic and metabolomic assays of the aged liver model and transcriptome analyses of the senescent hepatocyte models. In livers, genes related to peroxisomes, fatty acid elongation, and fatty acid degradation exhibited down-regulated expression with aging, and the hepatokine Fgf21 expression was positively correlated with the down-regulation of these genes. In senescent hepatocytes, similar to the results found in aged livers, FGF21 expression was also decreased. Moreover, the expressions of cell cycle-related genes were significantly down-regulated, and the down-regulated gene E2F8 was the key cell cycle-regulating transcription factor. We then validated that FGF21 overexpression can protect against liver aging and that FGF21 can attenuate the declines in the antioxidant and regenerative capacities in the aging liver. We successfully validated the results from cellular and animal experiments using human liver and blood samples. Our study indicated that FGF21 is an important target for inhibiting liver aging and suggested that pharmacological prevention of the reduction in FGF21 expression due to aging may be used to treat liver aging-related diseases.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Mingge Shang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinxin Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhou Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinyu Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
28
|
Lei Y, Meng J, Shi H, Shi C, Li C, Yang Z, Zhang W, Zuo D, Wang F, Wang M. Mannan-binding lectin inhibits oxidative stress-induced senescence via the NAD+/Sirt1 pathway. Int Immunopharmacol 2024; 137:112468. [PMID: 38906004 DOI: 10.1016/j.intimp.2024.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Prolonged or excessive oxidative stress can lead to premature cellular and body aging. Mannan-binding lectin (MBL) is synthesized by the liver and plays an important role in innate immunity, anti-inflammation, and anti-oxidation, and has a positive impact on health and longevity. To date, few studies investigated the role of MBL in attenuating oxidative stress-induced senescence. In this study, we evaluated the role of MBL in oxidative stress-induced premature aging and explored its underlying mechanism in C57BL/6 mice and mouse embryonic fibroblasts (NIH/3T3). First, we established an oxidative premature senescence model induced by D-galactose in C57BL/6 mice. We found that MBL-deficient mice had a marked aging-like appearance, reduced learning and spatial exploration abilities, severe liver pathological damage, and significantly upregulated expression of Senescence-associated proteins (p53 and p21), inflammatory kinesins (IL-1β and IL-6), and the senescence β-galactosidase (SA-β-Gal) positive rate as compared with WT mice. In the H2O2-induced oxidative senescence model of NIH/3T3 cells, consistent results were obtained after MBL intervention. In addition, MBL effectively inhibited G1 phase arrest, ROS levels, DNA damage, and mitochondrial dysfunction in premature senescent cells. Mechanistically, we found that oxidative stress inhibited the nicotinamide adenine dinucleotide (NAD+)/ silent information regulator 1 (Sirt1) signaling pathway, while MBL activated the NAD+/Sirt1 signaling pathway inhibited by oxidative stress. In addition, MBL could activate the NAD+/Sirt1 pathway by upregulating NAMPT, which in turn inhibited p38 phosphorylation by activating the NAD+/Sirt1 pathway. In conclusion, MBL inhibits oxidative aging, which may facilitate the development of therapeutics to delay oxidative aging.
Collapse
Affiliation(s)
- Yiming Lei
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Meng
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Haiqiang Shi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chenchen Shi
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chao Li
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziyi Yang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Fanping Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; School of Medical Technology, Shangqiu Medical College, Shangqiu 476100, China.
| |
Collapse
|
29
|
Wei C, Li X, Jin Y, Zhang Y, Yuan Q. Does the liver facilitate aging-related cognitive impairment: Conversation between liver and brain during exercise? J Cell Physiol 2024; 239:e31287. [PMID: 38704693 DOI: 10.1002/jcp.31287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Liver, an important regulator of metabolic homeostasis, is critical for healthy brain function. In particular, age-related neurodegenerative diseases seriously reduce the quality of life for the elderly. As population aging progresses rapidly, unraveling the mechanisms that effectively delay aging has become critical. Appropriate exercise is reported to improve aging-related cognitive impairment. Whereas current studies focused on exploring the effect of exercise on the aging brain itself, ignoring the persistent effects of peripheral organs on the brain through the blood circulation. The aim of this paper is to summarize the communication and aging processes of the liver and brain and to emphasize the metabolic mechanisms of the liver-brain axis about exercise ameliorating aging-related neurodegenerative diseases. A comprehensive understanding of the potential mechanisms about exercise ameliorating aging is critical for improving adaptation to age-related brain changes and formulating effective interventions against age-related cognitive decline.
Collapse
Affiliation(s)
- Changling Wei
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yuanting Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Qiongjia Yuan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Shen L, Fan L, Luo H, Li W, Cao S, Yu S. Cow placenta extract ameliorates d-galactose-induced liver damage by regulating BAX/CASP3 and p53/p21/p16 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117685. [PMID: 38171467 DOI: 10.1016/j.jep.2023.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Placenta is a kind of traditional Chinese medicine, known as "Ziheche", which has the function of tonifying qi and blood, nourishing liver and kidney. Placenta extract (PE) has been used for delaying organismal aging and treating various liver diseases. Cow placenta is a rich natural resource with large mass. Its composition is similar to that of human placenta, but it has not been effectively utilized. However, little is known about the effect of CPE on the liver of aging mice. AIM OF THE STUDY The aim of this study is to explore the protective effect and mechanism of CPE on the liver of d-galactose (D-gal) induced aging mice. MATERIALS AND METHODS Statistical methods were used to calculate mouse body weight and liver index. Hematoxylin-eosin (H&E) and transmission electron microscopy (TEM) were used to detect the morphological structure of the liver. Automatic biochemical analyzer was used to measure serum biochemical indicators. Three special staining methods were used to observe hepatocytes apoptosis, senescence and proliferation respectively. Relative kits were used to detect oxidative, inflammatory, and aging markers in the liver. Finally, real-time quantitative polymerase chain reaction and western-blot were used to detect aging related signaling pathways. RESULTS CPE significantly improved the morphological damage and dysfunction of liver, restored the activities of liver enzymes in serum, and alleviated liver oxidative stress and inflammatory response in D-gal induced aging mice. Furthermore, CPE inhibited hepatocyte apoptosis and senescence, and promoted hepatocyte proliferation by regulating BAX/CASP3 and p53/p21/p16 signaling pathways, ultimately reduced the effects of aging on the liver. CONCLUSION CPE effectively ameliorated the impact of aging on the liver by inhibiting free radical production or scavenging excessive free radicals, and its mechanism is associated to the regulation of apoptosis and proliferation-related factors.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiyao Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
31
|
Wang W, Li K, Xiao W. The pharmacological role of Ginsenoside Rg3 in liver diseases: A review on molecular mechanisms. J Ginseng Res 2024; 48:129-139. [PMID: 38465219 PMCID: PMC10920009 DOI: 10.1016/j.jgr.2023.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 03/12/2024] Open
Abstract
Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.
Collapse
Affiliation(s)
- Wenhong Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ke Li
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
32
|
Zhang Y, Gao C, Zhu M, Chen F, Sun Y, Jiang Y, Zhou Q, Gao X. Astaxanthin, Haematococcus pluvialis and Haematococcus pluvialis Residue Alleviate Liver Injury in D-Galactose-induced Aging Mice through Gut-liver Axis. J Oleo Sci 2024; 73:729-742. [PMID: 38692895 DOI: 10.5650/jos.ess24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.
Collapse
Affiliation(s)
| | - Chunhao Gao
- College of Life Sciences, Qingdao University
| | - Mengjia Zhu
- College of Life Sciences, Qingdao University
| | - Fangtian Chen
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Yongye Sun
- Institute of Nutrition and Health, College of Public Health, Qingdao University
| | - Yu Jiang
- Experimental Animal Platform, Biomedical Center of Qingdao University, Qingdao University
| | - Qingxin Zhou
- Department of Marine Technology, Rizhao Polytechnic; Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization; Shandong Engineering Laboratory of Efficient Utilization Technology of Marine Food Resources; Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources
| | - Xiang Gao
- College of Life Sciences, Qingdao University
- Shandong Hongzai Biotechnology Co., LTD
| |
Collapse
|
33
|
Pantiya P, Thonusin C, Chunchai T, Pintana H, Ongnok B, Nawara W, Arunsak B, Kongkaew A, Chattipakorn N, Chattipakorn SC. Long-term lifestyle intervention is superior to transient modification for neuroprotection in D-galactose-induced aging rats. Life Sci 2023; 334:122248. [PMID: 37940069 DOI: 10.1016/j.lfs.2023.122248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
AIMS To investigate whether transient dietary restriction or aerobic exercise in young adulthood exert long-lasting protection against brain aging later in life. MAIN METHODS Seven-week-old male Wistar rats were divided into 2 groups and given either normal saline as a vehicle (n = 8) or 150 mg/kg/day of D-galactose (n = 40) for 28 weeks, the D-galactose being used to induce aging. At week 13 of the experiment, D-galactose-treated rats were further divided into 5 groups, 1) no intervention, 2) transient dietary restriction for 6 weeks (week 13-18), 3) transient exercise for 6 weeks (week 13-18), 4) long-term dietary restriction for 16 weeks (week 13-28), and 5) long-term exercise for 16 weeks (week 13-28). At the end of week 28, cognitive function was examined, followed by molecular studies in the hippocampus. KEY FINDINGS Our results showed that either long-term dietary restriction or aerobic exercise effectively attenuated cognitive function in D-galactose-treated rats via the attenuation of oxidative stress, cellular senescence, Alzheimer's-like pathology, neuroinflammation, and improvements in mitochondria, brain metabolism, adult neurogenesis, and synaptic integrity. Although transient interventions provided benefits in some brain parameters in D-galactose-treated rats, an improvement in cognitive function was not observed. SIGNIFICANCE Our findings suggested that transient lifestyle interventions failed to exert a long-lasting protective effect against brain aging. Hence, novel drugs mimicking the neuroprotective effect of long-term dietary restriction or exercise and the combination of the two since young age appear to be more appropriate treatments for the elderly who are unable to engage in long-term dietary restriction or exercise.
Collapse
Affiliation(s)
- Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
34
|
Zhou X, Tan B, Gui W, Zhou C, Zhao H, Lin X, Li H. IGF2 deficiency promotes liver aging through mitochondrial dysfunction and upregulated CEBPB signaling in D-galactose-induced aging mice. Mol Med 2023; 29:161. [PMID: 38017373 PMCID: PMC10685569 DOI: 10.1186/s10020-023-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Liver aging, marked by cellular senescence and low-grade inflammation, heightens susceptibility to chronic liver disease and worsens its prognosis. Insulin-like growth factor 2 (IGF2) has been implicated in numerous aging-related diseases. Nevertheless, its role and underlying molecular mechanisms in liver aging remain largely unexplored. METHODS The expression of IGF2 was examined in the liver of young (2-4 months), middle-aged (9-12 months), and old (24-26 months) C57BL/6 mice. In vivo, we used transgenic IGF2f/f; Alb-Cre mice and D-galactose-induced aging model to explore the role of IGF2 in liver aging. In vitro, we used specific short hairpin RNA against IGF2 to knock down IGF2 in AML12 cells. D-galactose and hydrogen peroxide treatment were used to induce AML12 cell senescence. RESULTS We observed a significant reduction of IGF2 levels in the livers of aged mice. Subsequently, we demonstrated that IGF2 deficiency promoted senescence phenotypes and senescence-associated secretory phenotypes (SASPs), both in vitro and in vivo aging models. Moreover, IGF2 deficiency impaired mitochondrial function, reducing mitochondrial respiratory capacity, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD)+/NADH ratio, increasing intracellular and mitochondrial reactive oxygen species levels, and disrupting mitochondrial membrane structure. Additionally, IGF2 deficiency markedly upregulated CCAAT/enhancer-binding protein beta (CEBPB). Notably, inhibiting CEBPB reversed the senescence phenotypes and reduced SASPs induced by IGF2 deficiency. CONCLUSIONS In summary, our findings strongly suggest that IGF2 deficiency promotes liver aging through mitochondrial dysfunction and upregulated CEBPB signaling. These results provide compelling evidence for considering IGF2 as a potential target for interventions aimed at slowing down the process of liver aging.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bowen Tan
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Gui
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caiping Zhou
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanxin Zhao
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xihua Lin
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Li
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Lee R, Lee WY, Park HJ. Effects of Melatonin on Liver of D-Galactose-Induced Aged Mouse Model. Curr Issues Mol Biol 2023; 45:8412-8426. [PMID: 37886973 PMCID: PMC10604925 DOI: 10.3390/cimb45100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Melatonin, a hormone secreted by the pineal gland of vertebrates, regulates sleep, blood pressure, and circadian and seasonal rhythms, and acts as an antioxidant and anti-inflammatory agent. We investigated the protective effects of melatonin against markers of D-galactose (D-Gal)-induced hepatocellular aging, including liver inflammation, hepatocyte structural damage, and non-alcoholic fatty liver. Mice were divided into four groups: phosphate-buffered saline (PBS, control), D-Gal (200 mg/kg/day), melatonin (20 mg/kg), and D-Gal (200 mg/kg) and melatonin (20 mg) cotreatment. The treatments were administered once daily for eight consecutive weeks. Melatonin treatment alleviated D-Gal-induced hepatocyte impairment. The AST level was significantly increased in the D-Gal-treated groups compared to that in the control group, while the ALT level was decreased compared to the melatonin and D-Gal cotreated group. Inflammatory genes, such as IL1-β, NF-κB, IL-6, TNFα, and iNOS, were significantly increased in the D-Gal aging model, whereas the expression levels of these genes were low in the D-Gal and melatonin cotreated group. Interestingly, the expression levels of hepatic steatosis-related genes, such as LXRα, C/EBPα, PPARα, ACC, ACOX1, and CPT-1, were markedly decreased in the D-Gal and melatonin cotreated group. These results suggest that melatonin suppresses hepatic steatosis and inflammation in a mouse model of D-Gal-induced aging.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Yong Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea; (R.L.); (W.-Y.L.)
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
36
|
Chen P, Chen F, Lei J, Zhou B. Pomegranate polyphenol punicalagin improves learning memory deficits, redox homeostasis, and neuroinflammation in aging mice. Phytother Res 2023; 37:3655-3674. [PMID: 37092799 DOI: 10.1002/ptr.7848] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive brain disorder characterized by loss of memory and cognitive dysfunction in the aged. Despite remarkable advances in drug therapy, effective pharmacological interventions are rare. Punicalagin (PU) is an active antioxidant polyphenol found in pomegranates, raspberries, blueberries, and chestnuts that has attracted considerable attention owing to its strong antioxidant and anti-inflammatory properties. The current study focused on the neuroprotective effect of PU on aging mice and its potential mechanisms. In this study, we first evaluated the protective effect of PU on neuro-2a (N2a) cell damage mediated by BV2 microglia-induced neuroinflammation. The in vivo D-galactose (D-gal)-induced brain aging model demonstrated that PU ameliorated deficits in learning and memory and prevented neuroinflammation, which was evident from the decrease in microglial activation and astrocytosis. Furthermore, PU reduced the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) and inhibited NLRP3 inflammasome activation, reducing the levels of inflammatory cytokines, such as interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a), interleukin-18 (IL-18), and interleukin-1 beta (IL-1β) in both accelerated aging and naturally senescent mouse models. PU effectively improved neuroinflammation, learning and memory deficits, and redox homeostasis in aging mice, and it could be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
37
|
Lee WY, Sim HW, Park HJ. Effects of melatonin on a d-galactose-induced male reproductive aging mouse model. Theriogenology 2023; 206:181-188. [PMID: 37224707 DOI: 10.1016/j.theriogenology.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Understanding the aging mechanism of the male reproductive system and developing anti-aging interventions are essential for preventing age-related male infertility. The pineal hormone melatonin has been effectively used as an antioxidant and anti-apoptotic molecule in various cells and tissues. However, the effects of melatonin on d-galactose (D-gal)-induced aging have not been studied with regards to testicular function. Thus, we investigated whether melatonin suppresses the dysfunction of male reproductive function induced by D-gal treatment. The mice were divided into the following four groups receiving treatments for six weeks: phosphate-buffered saline (PBS) group, d-galactose (200 mg/kg) group, melatonin (20 mg/kg) group, and d-galactose (200 mg/kg)+ melatonin (20 mg/kg) group. At six weeks of treatments, sperm parameters, body and testes weight, gene and protein expression of germ cell and spermatozoa marker were analyzed. Our results showed that melatonin suppressed the decrease in body weight, sperm vitality, motility, and gene expression levels of spermatozoa markers such as Protamine 1, PGK2, Camk4, TP1, and Crem in the testis of D-gal-induced aging models. However, the gene expression levels of the pre-meiotic and meiotic markers in the testes did not change in the D-gal-injected model. The injection of D-gal impaired the decreased expression of steroidogenic enzyme genes, such as HSD3b1, Cyp17a1, and Cyp11a1, but melatonin inhibited the decrease in the expression of these genes. In addition, protein levels of spermatozoa and germ cell markers were evaluated by immunostaining and immunoblotting. Consistent with the qPCR results, PGK2 protein levels were decreased by d-galactose treatment. A decrease in PGK2 protein levels by D-gal was inhibited by melatonin treatment. In conclusion, melatonin administration improves testicular function with age.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si, 54874, Republic of Korea
| | - Heyon Woo Sim
- Department of Animal Biotechnology, Sangji University, Wonju-Si, 26339, Republic of Korea
| | - Hyun Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-Si, 26339, Republic of Korea.
| |
Collapse
|
38
|
Fan S, Yan Y, Xia Y, Zhou Z, Luo L, Zhu M, Han Y, Yao D, Zhang L, Fang M, Peng L, Yu J, Liu Y, Gao X, Guan H, Li H, Wang C, Wu X, Zhu H, Cao Y, Huang C. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions. Nat Commun 2023; 14:3368. [PMID: 37291126 PMCID: PMC10250385 DOI: 10.1038/s41467-023-39118-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Citrus fruit has long been considered a healthy food, but its role and detailed mechanism in lifespan extension are not clear. Here, by using the nematode C. elegans, we identified that nomilin, a bitter-taste limoloid that is enriched in citrus, significantly extended the animals' lifespan, healthspan, and toxin resistance. Further analyses indicate that this ageing inhibiting activity depended on the insulin-like pathway DAF-2/DAF-16 and nuclear hormone receptors NHR-8/DAF-12. Moreover, the human pregnane X receptor (hPXR) was identified as the mammalian counterpart of NHR-8/DAF-12 and X-ray crystallography showed that nomilin directly binds with hPXR. The hPXR mutations that prevented nomilin binding blocked the activity of nomilin both in mammalian cells and in C. elegans. Finally, dietary nomilin supplementation improved healthspan and lifespan in D-galactose- and doxorubicin-induced senescent mice as well as in male senescence accelerated mice prone 8 (SAMP8) mice, and induced a longevity gene signature similar to that of most longevity interventions in the liver of bile-duct-ligation male mice. Taken together, we identified that nomilin may extend lifespan and healthspan in animals via the activation of PXR mediated detoxification functions.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xia
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
39
|
Gieseler RK, Schreiter T, Canbay A. The Aging Human Liver: The Weal and Woe of Evolutionary Legacy. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:83-94. [PMID: 36623546 DOI: 10.1055/a-1955-5297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is characterized by the progressive decline of biological integrity and its compensatory mechanisms as well as immunological dysregulation. This goes along with an increasing risk of frailty and disease. Against this background, we here specifically focus on the aging of the human liver. For the first time, we shed light on the intertwining evolutionary underpinnings of the liver's declining regenerative capacity, the phenomenon of inflammaging, and the biotransformation capacity in the process of aging. In addition, we discuss how aging influences the risk for developing nonalcoholic fatty liver disease, hepatocellular carcinoma, and/or autoimmune hepatitis, and we describe chronic diseases as accelerators of biological aging.
Collapse
Affiliation(s)
- Robert K Gieseler
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Thomas Schreiter
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Ali Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| |
Collapse
|
40
|
Ye M, Liu J, Deng G, Cai X, Zhang X, Yao L, Wu J, He X, Peng D, Yu N. Protective effects of Dendrobium huoshanense polysaccharide on D-gal induced PC12 cells and aging mice, in vitro and in vivo studies. J Food Biochem 2022; 46:e14496. [PMID: 36350934 DOI: 10.1111/jfbc.14496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022]
Abstract
Dendrobium huoshanense C. Z. Tang et S. J. Cheng polysaccharide (DHP) is the essential active ingredient of D.huoshanense and has high medicinal value. A high dose of D-galactose (D-gal) is commonly utilized in the aging model establishment. In this study, we explored whether DHP shields PC12 cells and aging mice from D-gal caused damage and the possible mechanism. In vitro experiments, D-gal induced PC12 cells were used to investigate, and then DHP was used for treatment. In vivo experiments, 72 SPF ICR male mice were randomly divided into six groups (control: normal saline; model: D-gal (400 mg/kg); VE group: VE (50 μg/ml); DHP groups: D-gal + DHP (15.6 mg/ml; 31.2 mg/ml; 62.4 mg/ml)). The results showed that DHP could enhance the viability of D-gal injured PC12 cells and prevent cell apoptosis. DHP effectively promoted the transition from phase G0/G1 to phase S and inhibited cell cycle arrest. DHP has a potential neuroprotective effect on D-gal caused cognitive and memory disorders in mice. On the one hand, DHP protects the antioxidant enzymes SOD, GSH-PX, and CAT from excessive ROS buildup. On the other hand, DHP was demonstrated to block the expression of the P53/P21 signaling pathway-related proteins P53, P21, and P16. These results imply that DHP could be a potential neuroprotective agent against aging. PRACTICAL APPLICATIONS: Cognitive and memory decline caused by aging problems has become a problem in recent years. There are many theories about aging, among which oxidative stress is considered to be one of the important pathophysiological parts of various diseases in the aging process. In this study, DHP could not only improve the damage of D-Gal to PC12 cells, but also improve the cognitive and memory impairment caused by D-Gal in mice. In conclusion, this study verified the anti-aging effect of DHP from in vitro and in vivo experiments, and its mechanism may involve the P53/P21 pathway. Therefore, this study indicated that polysaccharides from Dendrobium huoshanense, a traditional Chinese medicine of homologous medicine and food, had potential and industrial value as potential anti-aging drugs.
Collapse
Affiliation(s)
- Mengjuan Ye
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Junlin Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Guanghui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xianglin He
- Anhui Huoshan Changchong Chinese Herbal Medicine Co. Ltd, Huoshan, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China.,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China.,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
41
|
Shen LH, Fan L, Zhang Y, Zhu YK, Zong XL, Peng GN, Cao SZ. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients 2022; 14:nu14235071. [PMID: 36501102 PMCID: PMC9737791 DOI: 10.3390/nu14235071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The placenta contains multiple biologically active substances, which exert antioxidation, anti-inflammatory, immunomodulatory, and delayed aging effects. Its extract can improve hepatic morphology and function: on the one hand, it can reduce liver interstitial collagen deposition, lipogenesis, and inflammatory cell infiltration and improve fibrosis; on the other hand, it can prevent hepatocellular degeneration by scavenging reactive oxygen species (ROS) and inhibiting inflammatory cytokine production, further improve hepatocyte apoptosis and necrosis, and promote hepatocyte regeneration, making it a promising liver-protective agent. Current research on placenta extract (PE) mainly focuses on treating a specific type of liver injury, and there are no systematic reports. Therefore, this review comprehensively summarizes the treatment reports of PE on liver injury and analyzes its mechanism of action.
Collapse
Affiliation(s)
- Liu-Hong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-181-0901-7590
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying-Kun Zhu
- School of Agriculture & Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xiao-Lan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guang-Neng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sui-Zhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
42
|
Vitheejongjaroen P, Kasorn A, Puttarat N, Loison F, Taweechotipatr M. Bifidobacterium animalis MSMC83 Improves Oxidative Stress and Gut Microbiota in D-Galactose-Induced Rats. Antioxidants (Basel) 2022; 11:2146. [PMID: 36358518 PMCID: PMC9686799 DOI: 10.3390/antiox11112146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2023] Open
Abstract
The development of many chronic diseases is associated with an excess of free radicals leading to harmful oxidative stress. Certain probiotic strains have been shown to have antioxidant and anti-aging properties and are an important resource for development of microbial antioxidants. The present study aimed to explore the protection offered by Bifidobacterium animalis strain MSMC83 in a model of oxidative stress induced by D-galactose (D-gal). Male Sprague Dawley rats were randomly allocated to four groups: a control group injected with saline, a group injected subcutaneously with D-galactose, a probiotic group injected with D-galactose and administered B. animalis MSMC83 (109 CFU/mL) via daily oral gavage, and an ascorbic acid group. The probiotics significantly increased the superoxide dismutase, catalase, and glutathione peroxidase and significantly decreased the malondialdehyde in the plasma and livers of D-galactose-treated rats. Moreover, tumor necrosis factor-alpha level in the liver was significantly decreased. Furthermore, the treatment with B. animalis MSMC83 restored the microbiota diversity after D-galactose injection. Therefore, our results supported a beneficial role of B. animalis MSMC83 in alleviating oxidative stress through the increased expression of antioxidant enzymes and reduction of pro-inflammatory cytokines in rats. Our study suggests that B. animalis MSMC83 may be part of a healthy diet to prevent oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Porntipha Vitheejongjaroen
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Anongnard Kasorn
- Department of Biomedical Science, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Narathip Puttarat
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
43
|
Wang SS, Zhang X, Ke ZZ, Wen XY, Li WD, Liu WB, Zhuang XD, Liao LZ. D-galactose-induced cardiac ageing: A review of model establishment and potential interventions. J Cell Mol Med 2022; 26:5335-5359. [PMID: 36251271 PMCID: PMC9639053 DOI: 10.1111/jcmm.17580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is highly prevalent in an ageing society. The increased incidence and mortality rates of CVD are global issues endangering human health. There is an urgent requirement for understanding the aetiology and pathogenesis of CVD and developing possible interventions for preventing CVD in ageing hearts. It is necessary to select appropriate models and treatment methods. The D‐galactose‐induced cardiac ageing model possesses the advantages of low mortality, short time and low cost and has been increasingly used in the study of cardiovascular diseases in recent years. Therefore, understanding the latest progress in D‐galactose‐induced cardiac ageing is valuable. This review highlights the recent progress and potential therapeutic interventions used in D‐galactose‐induced cardiac ageing in recent years by providing a comprehensive summary of D‐galactose‐induced cardiac ageing in vivo and in vitro. This review may serve as reference literature for future research on age‐related heart diseases.
Collapse
Affiliation(s)
- Sui-Sui Wang
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xu Zhang
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ze-Zhi Ke
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiu-Yun Wen
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Dong Li
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Bin Liu
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Dong Zhuang
- Cardiology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Zhen Liao
- Guangdong Engineering Research Center for Light and Health, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
44
|
Lu S, Zhou J, Yang C, Zhang X, Shi Y, Liu J, Yan X, Liang J, Liu X, Luo L, Zhou D, Yin Z. γ-Glutamylcysteine ameliorates D-gal-induced senescence in PC12 cells and mice via activating AMPK and SIRT1. Food Funct 2022; 13:7560-7571. [PMID: 35815429 DOI: 10.1039/d2fo01246d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aging is a natural process accompanied by inflammation and oxidative stress and is closely associated with age-related diseases. As a direct precursor of glutathione, γ-glutamylcysteine (γ-GC) possesses antioxidant and anti-inflammatory properties; however, whether γ-GC plays an important role in anti-aging remains unknown. Here, we investigated the protective effects and mechanisms of γ-GC in D-galactose (D-gal)-induced senescence in PC12 cells and aging mice. Our results showed that γ-GC treatment significantly reduced the percentage of senescence-associated-β-galactosidase (SA-β-Gal)-positive cells and inhibited D-gal-induced cell cycle arrest in PC12 cells. The results of Nissl and hematoxylin and eosin (H&E) staining in mouse brain showed that γ-GC treatment markedly reversed the damage in the hippocampus of D-gal-induced aging mice. Moreover, γ-GC increased the phosphorylation of AMP-activated protein kinase (AMPK) to promote the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) while inhibiting the nuclear translocation of deleted in breast cancer 1 (DBC1), which leads to the activation of sirtuin 1 (SIRT1) and deacetylation of p53 in the nucleus. Therefore, γ-GC may be a potential therapeutic candidate compound for the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Chen Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Xiaoxue Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Jie Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Xianli Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Kumar A, Mahajan A, Kumari P, Singh J, Raik S, Saha L, Pal A, Medhi B, Rattan V, Bhattacharyya S. Dental pulp stem cell secretome ameliorates
d
‐galactose induced accelerated aging in rat model. Cell Biochem Funct 2022; 40:535-545. [DOI: 10.1002/cbf.3723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Ajay Kumar
- Department of Biophysics PGIMER Chandigarh India
| | | | - Puja Kumari
- Department of Pharmacology PGIMER Chandigarh India
| | - Jagjit Singh
- Department of Pharmacology PGIMER Chandigarh India
| | - Shalini Raik
- Department of Biophysics PGIMER Chandigarh India
| | - Lekha Saha
- Department of Pharmacology PGIMER Chandigarh India
| | - Arnab Pal
- Department of Biochemistry PGIMER Chandigarh India
| | - Bikash Medhi
- Department of Pharmacology PGIMER Chandigarh India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Department of Oral Health Sciences PGIMER Chandigarh India
| | | |
Collapse
|
46
|
Antioxidative potential of Lactobacillus sp. in ameliorating D-galactose-induced aging. Appl Microbiol Biotechnol 2022; 106:4831-4843. [PMID: 35781838 PMCID: PMC9329405 DOI: 10.1007/s00253-022-12041-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
Aging is a progressive, unalterable physiological degradation process of living organisms, which leads to deterioration of biological function and eventually to senescence. The most prevalent factor responsible for aging is the accumulation of damages resulting from oxidative stress and dysbiosis. D-galactose-induced aging has become a hot topic, and extensive research is being conducted in this area. Published literature has reported that the continuous administration of D-galactose leads to the deterioration of motor and cognitive skills, resembling symptoms of aging. Hence, this procedure is employed as a model for accelerated aging. This review aims to emphasize the effect of D-galactose on various bodily organs and underline the role of the Lactobacillus sp. in the aging process, along with its anti-oxidative potential. A critical consideration to the literature describing animal models that have used the Lactobacillus sp. in amending D-galactose-induced aging is also given. KEY POINTS: • D-Galactose induces the aging process via decreasing the respiratory chain enzyme activity as well as ATP synthesis, mitochondrial dysfunction, and increased ROS production. • D-Galactose induced aging primarily affects the brain, heart, lung, liver, kidney, and skin. • The anti-oxidative potential of Lactobacillus sp. in improving D-galactose-induced aging in animal models via direct feeding and feeding of Lactobacillus-fermented food.
Collapse
|
47
|
Su YL, Liu D, Liu YJ, Ji YL, Liu GS, Wang JLT, Wang B, Wang H. Phlorizin alleviates cholinergic memory impairment and regulates gut microbiota in d-galactose induced mice. Exp Gerontol 2022; 165:111863. [PMID: 35660419 DOI: 10.1016/j.exger.2022.111863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
We explored the effect of phlorizin against cholinergic memory impairment and dysbacteriosis in D-galactose induced ICR mice. The control (CON) group, D-galactose model (DGM) group, and three groups (DG-PL, DG-PM, DG-PH) treated with phlorizin at 0.01%, 0.02%, and 0.04% (w/w) in diets were raised for 12 weeks. Supplementing with phlorizin reversed the loss of organ coefficient and body weight caused by D-galactose. The functional abilities of phlorizin on hippocampal-dependent spatial learning and memory, anti-oxidation, anti-inflammation were also observed. Meanwhile, phlorizin intervention upregulated the gene expression of Nrf2, GSH-PX, SOD1, decreased the gene expression of NF-κB, TLR-4, TNF-α, and IL-1β in the hippocampus, while enhanced the gene expression of JAM-A, Mucin2, Occludin in the caecum. Furthermore, a neurotransmitter of acetylcholine (ACh) was enhanced, while acetylcholinesterase (AChE) activity was inhibited by phlorizin administration. Moreover, phlorizin administration increased short-chain fatty acids (SCFAs) content, and reduced lipopolysaccharides (LPS) levels, which may relate to the rebuilding of gut microbiota homeostasis. Treatment with phlorizin may be an effective intervention for alleviating cognitive decline and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yan-Ling Su
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yao-Jie Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang-Lin Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Gui-Shan Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Inner Mongolia, Bayannur 015000, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
48
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
49
|
HAN S. Aging and gender-related effects of tauroursodeoxycholic acid treatment on liver functions, plasma lipid profile, and oxidative stress. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1023909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Sodium arsenite accelerates D-galactose-induced aging in the testis of the rat: Evidence for mitochondrial oxidative damage, NF-kB, JNK, and apoptosis pathways. Toxicology 2022; 470:153148. [DOI: 10.1016/j.tox.2022.153148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
|