1
|
Hall T, Mehmood R, Sá da Bandeira D, Cotton A, Klein J, Pruett-Miller SM, Izraeli S, Clements WK, Crispino JD. Modeling GATA2 deficiency in mice: the R396Q mutation disrupts normal hematopoiesis. Leukemia 2025; 39:734-747. [PMID: 39774796 PMCID: PMC11879863 DOI: 10.1038/s41375-024-02508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
GATA2 deficiency is an autosomal dominant germline disorder of immune dysfunction and bone marrow failure with a high propensity for leukemic transformation. While sequencing studies have identified several secondary mutations thought to contribute to malignancy, the mechanisms of disease progression have been difficult to identify due to a lack of disease-specific experimental models. Here, we describe a murine model of one of the most common GATA2 mutations associated with leukemic progression in GATA2 deficiency, Gata2R396Q/+. While mutant mice exhibit mild defects in peripheral blood, they display significant hematopoietic abnormalities in the bone marrow, including a reduction in hematopoietic stem cell (HSC) function and intrinsic biases toward specific stem cell subsets that differ from previous models of GATA2 loss. Supporting this observation, single-cell RNA sequencing of hematopoietic progenitors revealed a loss of stemness, myeloid-bias, and indications of accelerated aging. Importantly, we show that Gata2R396Q/+ exerts effects early in hematopoietic development, as mutant mice generate fewer HSCs in the aorta gonad mesonephros, and fetal liver HSCs have reduced function. This reduced and altered pool of HSCs could be potential contributors to leukemic transformation in patients, and our model provides a useful tool to study the mechanisms of malignant transformation in GATA2 deficiency.
Collapse
Affiliation(s)
- Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rashid Mehmood
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diana Sá da Bandeira
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anitria Cotton
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shai Izraeli
- Department of Pediatric Hematology/Oncology, Schneider Children's Medical Center of Israel, Tel Aviv University, Petah Tikva, Israel
| | - Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Williams MJ, Wang X, Bastos HP, Grondys-Kotarba G, Wu Q, Jin S, Johnson C, Mende N, Calderbank E, Wantoch M, Park HJ, Mantica G, Hannah R, Wilson NK, Pask DC, Hamilton TL, Kinston SJ, Asby R, Sneade R, Baxter EJ, Campbell P, Vassiliou GS, Laurenti E, Li J, Göttgens B, Green AR. Maintenance of hematopoietic stem cells by tyrosine-unphosphorylated STAT5 and JAK inhibition. Blood Adv 2025; 9:291-309. [PMID: 39374575 PMCID: PMC7617191 DOI: 10.1182/bloodadvances.2024014046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT Adult hematopoietic stem cells (HSCs) are responsible for the lifelong production of blood and immune cells, a process regulated by extracellular cues, including cytokines. Many cytokines signal through the conserved Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in which tyrosine-phosphorylated STATs (pSTATs) function as transcription factors. STAT5 is a pivotal downstream mediator of several cytokines known to regulate hematopoiesis, but its function in the HSC compartment remains poorly understood. In this study, we show that STAT5-deficient HSCs exhibit an unusual phenotype, including reduced multilineage repopulation and self-renewal, combined with reduced exit from quiescence and increased differentiation. This was driven not only by the loss of canonical pSTAT5 signaling, but also by the loss of distinct transcriptional functions mediated by STAT5 that lack canonical tyrosine phosphorylation (uSTAT5). Consistent with this concept, expression of an unphosphorylatable STAT5 mutant constrained wild-type HSC differentiation, promoted their maintenance, and upregulated transcriptional programs associated with quiescence and stemness. The JAK1/2 inhibitor, ruxolitinib, which increased the uSTAT5:pSTAT5 ratio, had similar effects on murine HSC function; it constrained HSC differentiation and proliferation, promoted HSC maintenance, and upregulated transcriptional programs associated with stemness. Ruxolitinib also enhanced serial replating of normal human hematopoietic stem and progenitor cells (HSPCs), calreticulin-mutant murine HSCs, and HSPCs obtained from patients with myelofibrosis. Our results therefore reveal a previously unrecognized interplay between pSTAT5 and uSTAT5 in the control of HSC function and highlight JAK inhibition as a potential strategy for enhancing HSC function during ex vivo culture. Increased levels of uSTAT5 may also contribute to the failure of JAK inhibitors to eradicate myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Matthew J. Williams
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Department of Public Health, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hugo P. Bastos
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Qin Wu
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shucheng Jin
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Carys Johnson
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Mende
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Emily Calderbank
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michelle Wantoch
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Hyun Jung Park
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Giovanna Mantica
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Hannah
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K. Wilson
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dean C. Pask
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Tina L. Hamilton
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Kinston
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Asby
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Sneade
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - E. Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Campbell
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Cancer Genomics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - George S. Vassiliou
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Laurenti
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Department of Haematology, Wellcome–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Liang G, Liu S, Zhou C, Liu M, Zhang Y, Ma D, Wang L, Han JDJ, Liu F. Conversion of placental hemogenic endothelial cells to hematopoietic stem and progenitor cells. Cell Discov 2025; 11:9. [PMID: 39875377 PMCID: PMC11775181 DOI: 10.1038/s41421-024-00760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are critical for the treatment of blood diseases in clinic. However, the limited source of HSPCs severely hinders their clinical application. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelial (HE) cells lining the major arteries in vivo. In this work, by engineering vascular niche endothelial cells (VN-ECs), we generated functional HSPCs in vitro from ECs at various sites, including the aorta-gonad-mesonephros (AGM) region and the placenta. Firstly, we converted mouse embryonic HE cells from the AGM region (aHE) into induced HSPCs (iHSPCs), which have the abilities for multilineage differentiation and self-renewal. Mechanistically, we found that VN-ECs can promote the generation of iHSPCs via secretion of CX3CL1 and IL1A. Next, through VN-EC co-culture, we showed that placental HE (pHE) cells, a type of extra-embryonic HE cells, were successfully converted into iHSPCs (pHE-iHSPCs), which have multilineage differentiation capacity, but exhibit limited self-renewal ability. Furthermore, comparative transcriptome analysis of aHE-iHSPCs and pHE-iHSPCs showed that aHE-iHSPCs highly expressed HSC-specific and self-renewal-related genes. Moreover, experimental validation showed that retinoic acid (RA) treatment promoted the transformation of pHE cells into iHSPCs that have self-renewal ability. Collectively, our results suggested that pHE cells possess the potential to transform into self-renewing iHSPCs through RA treatment, which will facilitate the clinical application of placental endothelial cells in hematopoietic cell generation.
Collapse
Affiliation(s)
- Guixian Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shicheng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yifan Zhang
- School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Dongyuan Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China.
| | - Feng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Villegas-Valverde CA, Bencomo-Hernandez AA, Castillo-Aleman YM, Ventura-Carmenate Y, Casado-Hernandez I, Rivero-Jimenez RA. Application of mass cytometry to characterize hematopoietic stem cells in apheresis products of patients with hematological malignancies. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S59-S70. [PMID: 38177056 PMCID: PMC11726105 DOI: 10.1016/j.htct.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 10/20/2023] [Indexed: 01/06/2024] Open
Abstract
INTRODUCTION Hematopoietic stem cell transplantation (HSCT) is a widely used therapy, but its success largely depends on the number and quality of stem cells collected. Current evidence shows the complexity of the hematopoietic system, which implies that, in the quality assurance of the apheresis product, the hematopoietic stem cells are adequately characterized and quantified, in which mass cytometry (MC) can provide its advantages in high-dimensional analysis. OBJECTIVE This research aimed to characterize and enumerate CD45dim/CD34+ stem cells using the MC in apheresis product yields from patients with chronic lymphoid malignant diseases undergoing autologous transplantation at the Abu Dhabi Stem Cells Center. METHODS An analytical and cross-sectional study was performed on 31 apheresis products from 15 patients diagnosed with multiple myeloma (n = 9) and non-Hodgkin lymphomas (n = 6) eligible for HSCT. The MC was employed using the MaxPar Kit for stem cell immunophenotyping. The analysis was performed manually in the Kaluza and unsupervised by machine learning in Cytobank Premium. RESULTS An excellent agreement was found between mass and flow cytometry for the relative and absolute counts of CD45dim/CD34+ cells (Bland-Altman bias: -0.029 and -64, respectively), seven subpopulations were phenotyped and no lineage bias was detected for any of the methods used in the pool of collected cells. A CD34+/CD38+/CD138+ population was seen in the analyses performed on four patients with multiple myeloma. CONCLUSIONS The MC helps to characterize subpopulations of stem cells in apheresis products. It also allows cell quantification by double platform. Unsupervised analysis allows results completion and validation of the manual strategy. The proposed methodology can be extended to apheresis products for purposes other than HSCT.
Collapse
|
5
|
Su TY, Hauenstein J, Somuncular E, Dumral Ö, Leonard E, Gustafsson C, Tzortzis E, Forlani A, Johansson AS, Qian H, Månsson R, Luc S. Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets. Nat Commun 2024; 15:7966. [PMID: 39261515 PMCID: PMC11391069 DOI: 10.1038/s41467-024-52318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Age is a risk factor for hematologic malignancies. Attributes of the aging hematopoietic system include increased myelopoiesis, impaired adaptive immunity, and a functional decline of the hematopoietic stem cells (HSCs) that maintain hematopoiesis. Changes in the composition of diverse HSC subsets have been suggested to be responsible for age-related alterations, however, the underlying regulatory mechanisms are incompletely understood in the context of HSC heterogeneity. In this study, we investigated how distinct HSC subsets, separated by CD49b, functionally and molecularly change their behavior with age. We demonstrate that the lineage differentiation of both lymphoid-biased and myeloid-biased HSC subsets progressively shifts to a higher myeloid cellular output during aging. In parallel, we show that HSCs selectively undergo age-dependent gene expression and gene regulatory changes in a progressive manner, which is initiated already in the juvenile stage. Overall, our studies suggest that aging intrinsically alters both cellular and molecular properties of HSCs.
Collapse
Affiliation(s)
- Tsu-Yi Su
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Hauenstein
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ece Somuncular
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Özge Dumral
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elory Leonard
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Efthymios Tzortzis
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aurora Forlani
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine, Stockholm, Sweden.
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Zhang Y, Kang Z, Liu M, Wang L, Liu F. Single-cell omics identifies inflammatory signaling as a trans-differentiation trigger in mouse embryos. Dev Cell 2024; 59:961-978.e7. [PMID: 38508181 DOI: 10.1016/j.devcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhixin Kang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Kucinski I, Campos J, Barile M, Severi F, Bohin N, Moreira PN, Allen L, Lawson H, Haltalli MLR, Kinston SJ, O'Carroll D, Kranc KR, Göttgens B. A time- and single-cell-resolved model of murine bone marrow hematopoiesis. Cell Stem Cell 2024; 31:244-259.e10. [PMID: 38183977 PMCID: PMC7615671 DOI: 10.1016/j.stem.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
The paradigmatic hematopoietic tree model is increasingly recognized to be limited, as it is based on heterogeneous populations largely defined by non-homeostatic assays testing cell fate potentials. Here, we combine persistent labeling with time-series single-cell RNA sequencing to build a real-time, quantitative model of in vivo tissue dynamics for murine bone marrow hematopoiesis. We couple cascading single-cell expression patterns with dynamic changes in differentiation and growth speeds. The resulting explicit linkage between molecular states and cellular behavior reveals widely varying self-renewal and differentiation properties across distinct lineages. Transplanted stem cells show strong acceleration of differentiation at specific stages of erythroid and neutrophil production, illustrating how the model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from snapshot measurements is akin to how a kinetoscope allows sequential images to merge into a movie. We posit that this approach is generally applicable to understanding tissue-scale dynamics at high resolution.
Collapse
Affiliation(s)
- Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Joana Campos
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Cancer Research, London SM2 5NG, UK
| | - Melania Barile
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Francesco Severi
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Natacha Bohin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Pedro N Moreira
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Lewis Allen
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Cancer Research, London SM2 5NG, UK
| | - Hannah Lawson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Cancer Research, London SM2 5NG, UK
| | - Myriam L R Haltalli
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Kamil R Kranc
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute of Cancer Research, London SM2 5NG, UK.
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Ng A, Lovat F, Shih AJ, Ma Y, Pekarsky Y, DiCaro F, Crichton L, Sharma E, Yan XJ, Sun D, Song T, Zou YR, Will B, Croce CM, Chiorazzi N. Complete miRNA-15/16 loss in mice promotes hematopoietic progenitor expansion and a myeloid-biased hyperproliferative state. Proc Natl Acad Sci U S A 2023; 120:e2308658120. [PMID: 37844234 PMCID: PMC10614620 DOI: 10.1073/pnas.2308658120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
Dysregulated apoptosis and proliferation are fundamental properties of cancer, and microRNAs (miRNA) are critical regulators of these processes. Loss of miR-15a/16-1 at chromosome 13q14 is the most common genomic aberration in chronic lymphocytic leukemia (CLL). Correspondingly, the deletion of either murine miR-15a/16-1 or miR-15b/16-2 locus in mice is linked to B cell lymphoproliferative malignancies. However, unexpectedly, when both miR-15/16 clusters are eliminated, most double knockout (DKO) mice develop acute myeloid leukemia (AML). Moreover, in patients with CLL, significantly reduced expression of miR-15a, miR-15b, and miR-16 associates with progression of myelodysplastic syndrome to AML, as well as blast crisis in chronic myeloid leukemia. Thus, the miR-15/16 clusters have a biological relevance for myeloid neoplasms. Here, we demonstrate that the myeloproliferative phenotype in DKO mice correlates with an increase of hematopoietic stem and progenitor cells (HSPC) early in life. Using single-cell transcriptomic analyses, we presented the molecular underpinning of increased myeloid output in the HSPC of DKO mice with gene signatures suggestive of dysregulated hematopoiesis, metabolic activities, and cell cycle stages. Functionally, we found that multipotent progenitors (MPP) of DKO mice have increased self-renewing capacities and give rise to significantly more progeny in the granulocytic compartment. Moreover, a unique transcriptomic signature of DKO MPP correlates with poor outcome in patients with AML. Together, these data point to a unique regulatory role for miR-15/16 during the early stages of hematopoiesis and to a potentially useful biomarker for the pathogenesis of myeloid neoplasms.
Collapse
Affiliation(s)
- Anita Ng
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Andrew J. Shih
- Boas Center for Human Genetics and Genomics, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Yuri Pekarsky
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Frank DiCaro
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Lita Crichton
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Esha Sharma
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Xiao Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Tengfei Song
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yong-Rui Zou
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| |
Collapse
|
9
|
Bostanci E, Kocak E, Unal M, Guzel MS, Acici K, Asuroglu T. Machine Learning Analysis of RNA-seq Data for Diagnostic and Prognostic Prediction of Colon Cancer. SENSORS (BASEL, SWITZERLAND) 2023; 23:3080. [PMID: 36991790 PMCID: PMC10052105 DOI: 10.3390/s23063080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Data from omics studies have been used for prediction and classification of various diseases in biomedical and bioinformatics research. In recent years, Machine Learning (ML) algorithms have been used in many different fields related to healthcare systems, especially for disease prediction and classification tasks. Integration of molecular omics data with ML algorithms has offered a great opportunity to evaluate clinical data. RNA sequence (RNA-seq) analysis has been emerged as the gold standard for transcriptomics analysis. Currently, it is being used widely in clinical research. In our present work, RNA-seq data of extracellular vesicles (EV) from healthy and colon cancer patients are analyzed. Our aim is to develop models for prediction and classification of colon cancer stages. Five different canonical ML and Deep Learning (DL) classifiers are used to predict colon cancer of an individual with processed RNA-seq data. The classes of data are formed on the basis of both colon cancer stages and cancer presence (healthy or cancer). The canonical ML classifiers, which are k-Nearest Neighbor (kNN), Logistic Model Tree (LMT), Random Tree (RT), Random Committee (RC), and Random Forest (RF), are tested with both forms of the data. In addition, to compare the performance with canonical ML models, One-Dimensional Convolutional Neural Network (1-D CNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) DL models are utilized. Hyper-parameter optimizations of DL models are constructed by using genetic meta-heuristic optimization algorithm (GA). The best accuracy in cancer prediction is obtained with RC, LMT, and RF canonical ML algorithms as 97.33%. However, RT and kNN show 95.33% performance. The best accuracy in cancer stage classification is achieved with RF as 97.33%. This result is followed by LMT, RC, kNN, and RT with 96.33%, 96%, 94.66%, and 94%, respectively. According to the results of the experiments with DL algorithms, the best accuracy in cancer prediction is obtained with 1-D CNN as 97.67%. BiLSTM and LSTM show 94.33% and 93.67% performance, respectively. In classification of the cancer stages, the best accuracy is achieved with BiLSTM as 98%. 1-D CNN and LSTM show 97% and 94.33% performance, respectively. The results reveal that both canonical ML and DL models may outperform each other for different numbers of features.
Collapse
Affiliation(s)
- Erkan Bostanci
- Department of Computer Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Turkey
| | - Engin Kocak
- Department of Analytical Chemistry, Faculty of Gülhane Pharmacy, University of Health Sciences, 06018 Ankara, Turkey
| | - Metehan Unal
- Department of Computer Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Turkey
| | - Mehmet Serdar Guzel
- Department of Computer Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Turkey
| | - Koray Acici
- Department of Artificial Intelligence and Data Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Turkey
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
10
|
Lenaerts A, Kucinski I, Deboutte W, Derecka M, Cauchy P, Manke T, Göttgens B, Grosschedl R. EBF1 primes B-lymphoid enhancers and limits the myeloid bias in murine multipotent progenitors. J Exp Med 2022; 219:e20212437. [PMID: 36048017 PMCID: PMC9437269 DOI: 10.1084/jem.20212437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) generate all cells of the blood system. Despite their multipotency, MPPs display poorly understood lineage bias. Here, we examine whether lineage-specifying transcription factors, such as the B-lineage determinant EBF1, regulate lineage preference in early progenitors. We detect low-level EBF1 expression in myeloid-biased MPP3 and lymphoid-biased MPP4 cells, coinciding with expression of the myeloid determinant C/EBPα. Hematopoietic deletion of Ebf1 results in enhanced myelopoiesis and reduced HSC repopulation capacity. Ebf1-deficient MPP3 and MPP4 cells exhibit an augmented myeloid differentiation potential and a transcriptome with an enriched C/EBPα signature. Correspondingly, EBF1 binds the Cebpa enhancer, and the deficiency and overexpression of Ebf1 in MPP3 and MPP4 cells lead to an up- and downregulation of Cebpa expression, respectively. In addition, EBF1 primes the chromatin of B-lymphoid enhancers specifically in MPP3 cells. Thus, our study implicates EBF1 in regulating myeloid/lymphoid fate bias in MPPs by constraining C/EBPα-driven myelopoiesis and priming the B-lymphoid fate.
Collapse
Affiliation(s)
- Aurelie Lenaerts
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ward Deboutte
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marta Derecka
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
11
|
Hérault L, Poplineau M, Duprez E, Remy É. A novel Boolean network inference strategy to model early hematopoiesis aging. Comput Struct Biotechnol J 2022; 21:21-33. [PMID: 36514338 PMCID: PMC9719905 DOI: 10.1016/j.csbj.2022.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging is a multifactorial event leading to changes in HSC properties and functions, which are intrinsically coordinated and affect the early hematopoiesis. To better understand the mechanisms and factors controlling these changes, we developed an original strategy to construct a Boolean model of HSC differentiation. Based on our previous scRNA-seq data, we exhaustively characterized active transcription modules or regulons along the differentiation trajectory and constructed an influence graph between 15 selected components involved in the dynamics of the process. Then we defined dynamical constraints between observed cellular states along the trajectory and using answer set programming with in silico perturbation analysis, we obtained a Boolean model explaining the early priming of HSCs. Finally, perturbations of the model based on age-related changes revealed important deregulations, such as the overactivation of Egr1 and Junb or the loss of Cebpa activation by Gata2. These new regulatory mechanisms were found to be relevant for the myeloid bias of aged HSC and explain the decreased transcriptional priming of HSCs to all mature cell types except megakaryocytes.
Collapse
Affiliation(s)
- Léonard Hérault
- Aix Marseille Université, CNRS, Marseille I2M, France,Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Élisabeth Remy
- Aix Marseille Université, CNRS, Marseille I2M, France,Corresponding author.
| |
Collapse
|
12
|
Ganuza M, Hall T, Myers J, Nevitt C, Sánchez-Lanzas R, Chabot A, Ding J, Kooienga E, Caprio C, Finkelstein D, Kang G, Obeng E, McKinney-Freeman S. Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nat Cell Biol 2022; 24:1475-1486. [PMID: 36202972 PMCID: PMC10026622 DOI: 10.1038/s41556-022-00999-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Current dogma asserts that the foetal liver (FL) is an expansion niche for recently specified haematopoietic stem cells (HSCs) during ontogeny. Indeed, between embryonic day of development (E)12.5 and E14.5, the number of transplantable HSCs in the murine FL expands from 50 to about 1,000. Here we used a non-invasive, multi-colour lineage tracing strategy to interrogate the embryonic expansion of murine haematopoietic progenitors destined to contribute to the adult HSC pool. Our data show that this pool of fated progenitors expands only two-fold during FL ontogeny. Although Histone2B-GFP retention in vivo experiments confirmed substantial proliferation of phenotypic FL-HSC between E12.5 and E14.5, paired-daughter cell assays revealed that many mid-gestation phenotypic FL-HSCs are biased to differentiate, rather than self-renew, relative to phenotypic neonatal and adult bone marrow HSCs. In total, these data support a model in which the FL-HSC pool fated to contribute to adult blood expands only modestly during ontogeny.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacquelyn Myers
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chris Nevitt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raúl Sánchez-Lanzas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Juan Ding
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emilia Kooienga
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Claire Caprio
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Esther Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
13
|
Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nat Commun 2022; 13:5403. [PMID: 36109585 PMCID: PMC9477881 DOI: 10.1038/s41467-022-33092-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
While adult bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) and their extrinsic regulation is well studied, little is known about the composition, function, and extrinsic regulation of the first HSPCs to enter the BM during development. Here, we functionally interrogate murine BM HSPCs from E15.5 through P0. Our work reveals that fetal BM HSPCs are present by E15.5, but distinct from the HSPC pool seen in fetal liver, both phenotypically and functionally, until near birth. We also generate a transcriptional atlas of perinatal BM HSPCs and the BM niche in mice across ontogeny, revealing that fetal BM lacks HSPCs with robust intrinsic stem cell programs, as well as niche cells supportive of HSPCs. In contrast, stem cell programs are preserved in neonatal BM HSPCs, which reside in a niche expressing HSC supportive factors distinct from those seen in adults. Collectively, our results provide important insights into the factors shaping hematopoiesis during this understudied window of hematopoietic development. Relatively little is known about the first hematopoietic stem and progenitor cells to arrive in the fetal bone marrow. Here they characterize the frequency, function, and molecular identity of fetal BM HSPCs and their bone marrow niche, and show that most BM HSPCs have little hematopoietic function until birth.
Collapse
|
14
|
Gruber E, So J, Lewis AC, Franich R, Cole R, Martelotto LG, Rogers AJ, Vidacs E, Fraser P, Stanley K, Jones L, Trigos A, Thio N, Li J, Nicolay B, Daigle S, Tron AE, Hyer ML, Shortt J, Johnstone RW, Kats LM. Inhibition of mutant IDH1 promotes cycling of acute myeloid leukemia stem cells. Cell Rep 2022; 40:111182. [PMID: 35977494 DOI: 10.1016/j.celrep.2022.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Approximately 20% of acute myeloid leukemia (AML) patients carry mutations in IDH1 or IDH2 that result in over-production of the oncometabolite D-2-hydroxyglutarate (2-HG). Small molecule inhibitors that block 2-HG synthesis can induce complete morphological remission; however, almost all patients eventually acquire drug resistance and relapse. Using a multi-allelic mouse model of IDH1-mutant AML, we demonstrate that the clinical IDH1 inhibitor AG-120 (ivosidenib) exerts cell-type-dependent effects on leukemic cells, promoting delayed disease regression. Although single-agent AG-120 treatment does not fully eradicate the disease, it increases cycling of rare leukemia stem cells and triggers transcriptional upregulation of the pyrimidine salvage pathway. Accordingly, AG-120 sensitizes IDH1-mutant AML to azacitidine, with the combination of AG-120 and azacitidine showing vastly improved efficacy in vivo. Our data highlight the impact of non-genetic heterogeneity on treatment response and provide a mechanistic rationale for the observed combinatorial effect of AG-120 and azacitidine in patients.
Collapse
Affiliation(s)
- Emily Gruber
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Joan So
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Rheana Franich
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Rachel Cole
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Luciano G Martelotto
- The University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Amy J Rogers
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Eva Vidacs
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Peter Fraser
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kym Stanley
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lisa Jones
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Anna Trigos
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Niko Thio
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jason Li
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | | | - Scott Daigle
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139, USA; Servier Pharmaceuticals, Boston, MA 02210, USA
| | - Adriana E Tron
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139, USA; Servier Pharmaceuticals, Boston, MA 02210, USA
| | - Marc L Hyer
- Agios Pharmaceuticals, Inc., Cambridge, MA 02139, USA; Servier Pharmaceuticals, Boston, MA 02210, USA
| | - Jake Shortt
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3068, Australia; Monash Haematology, Monash Health, Clayton, VIC 3068, Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
15
|
El Alaoui Y, Elomri A, Qaraqe M, Padmanabhan R, Yasin Taha R, El Omri H, El Omri A, Aboumarzouk O. A Review of Artificial Intelligence Applications in Hematology Management: Current Practices and Future Prospects. J Med Internet Res 2022; 24:e36490. [PMID: 35819826 PMCID: PMC9328784 DOI: 10.2196/36490] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/14/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Machine learning (ML) and deep learning (DL) methods have recently garnered a great deal of attention in the field of cancer research by making a noticeable contribution to the growth of predictive medicine and modern oncological practices. Considerable focus has been particularly directed toward hematologic malignancies because of the complexity in detecting early symptoms. Many patients with blood cancer do not get properly diagnosed until their cancer has reached an advanced stage with limited treatment prospects. Hence, the state-of-the-art revolves around the latest artificial intelligence (AI) applications in hematology management. Objective This comprehensive review provides an in-depth analysis of the current AI practices in the field of hematology. Our objective is to explore the ML and DL applications in blood cancer research, with a special focus on the type of hematologic malignancies and the patient’s cancer stage to determine future research directions in blood cancer. Methods We searched a set of recognized databases (Scopus, Springer, and Web of Science) using a selected number of keywords. We included studies written in English and published between 2015 and 2021. For each study, we identified the ML and DL techniques used and highlighted the performance of each model. Results Using the aforementioned inclusion criteria, the search resulted in 567 papers, of which 144 were selected for review. Conclusions The current literature suggests that the application of AI in the field of hematology has generated impressive results in the screening, diagnosis, and treatment stages. Nevertheless, optimizing the patient’s pathway to treatment requires a prior prediction of the malignancy based on the patient’s symptoms or blood records, which is an area that has still not been properly investigated.
Collapse
Affiliation(s)
- Yousra El Alaoui
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Adel Elomri
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Marwa Qaraqe
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Regina Padmanabhan
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Ruba Yasin Taha
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Halima El Omri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Omar Aboumarzouk
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,College of Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Embryonic Origins of the Hematopoietic System: Hierarchies and Heterogeneity. Hemasphere 2022; 6:e737. [PMID: 35647488 PMCID: PMC9132533 DOI: 10.1097/hs9.0000000000000737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
The hierarchical framework of the adult blood system as we know it from current medical and hematology textbooks, displays a linear branching network of dividing and differentiated cells essential for the growth and maintenance of the healthy organism. This view of the hierarchy has evolved over the last 75 years. An amazing increase in cellular complexity has been realized; however, innovative single-cell technologies continue to uncover essential cell types and functions in animal models and the human blood system. The most potent cell of the hematopoietic hierarchy is the hematopoietic stem cell. Stem cells for adult tissues are the long-lived self-renewing cellular component, which ensure that differentiated tissue-specific cells are maintained and replaced through the entire adult lifespan. Although much blood research is focused on hematopoietic tissue homeostasis, replacement and regeneration during adult life, embryological studies have widened and enriched our understanding of additional developmental hierarchies and interacting cells of this life-sustaining tissue. Here, we review the current state of knowledge of the hierarchical organization and the vast heterogeneity of the hematopoietic system from embryonic to adult stages.
Collapse
|
17
|
Hassan M, Awan FM, Naz A, deAndrés-Galiana EJ, Alvarez O, Cernea A, Fernández-Brillet L, Fernández-Martínez JL, Kloczkowski A. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int J Mol Sci 2022; 23:4645. [PMID: 35563034 PMCID: PMC9104788 DOI: 10.3390/ijms23094645] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Big data in health care is a fast-growing field and a new paradigm that is transforming case-based studies to large-scale, data-driven research. As big data is dependent on the advancement of new data standards, technology, and relevant research, the future development of big data applications holds foreseeable promise in the modern day health care revolution. Enormously large, rapidly growing collections of biomedical omics-data (genomics, proteomics, transcriptomics, metabolomics, glycomics, etc.) and clinical data create major challenges and opportunities for their analysis and interpretation and open new computational gateways to address these issues. The design of new robust algorithms that are most suitable to properly analyze this big data by taking into account individual variability in genes has enabled the creation of precision (personalized) medicine. We reviewed and highlighted the significance of big data analytics for personalized medicine and health care by focusing mostly on machine learning perspectives on personalized medicine, genomic data models with respect to personalized medicine, the application of data mining algorithms for personalized medicine as well as the challenges we are facing right now in big data analytics.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore 54590, Pakistan;
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur, Haripur 22620, Pakistan;
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore 54590, Pakistan;
| | - Enrique J. deAndrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning, University of Oviedo, 33003 Oviedo, Spain; (E.J.d.-G.); (J.L.F.-M.)
| | - Oscar Alvarez
- DeepBioInsights, 38311 La Florida, Spain; (O.A.); (A.C.); (L.F.-B.)
| | - Ana Cernea
- DeepBioInsights, 38311 La Florida, Spain; (O.A.); (A.C.); (L.F.-B.)
| | | | - Juan Luis Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning, University of Oviedo, 33003 Oviedo, Spain; (E.J.d.-G.); (J.L.F.-M.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
18
|
Nicora G, Rios M, Abu-Hanna A, Bellazzi R. Evaluating Pointwise Reliability of Machine Learning prediction. J Biomed Inform 2022; 127:103996. [PMID: 35041981 DOI: 10.1016/j.jbi.2022.103996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Interest in Machine Learning applications to tackle clinical and biological problems is increasing. This is driven by promising results reported in many research papers, the increasing number of AI-based software products, and by the general interest in Artificial Intelligence to solve complex problems. It is therefore of importance to improve the quality of machine learning output and add safeguards to support their adoption. In addition to regulatory and logistical strategies, a crucial aspect is to detect when a Machine Learning model is not able to generalize to new unseen instances, which may originate from a population distant to that of the training population or from an under-represented subpopulation. As a result, the prediction of the machine learning model for these instances may be often wrong, given that the model is applied outside its "reliable" space of work, leading to a decreasing trust of the final users, such as clinicians. For this reason, when a model is deployed in practice, it would be important to advise users when the model's predictions may be unreliable, especially in high-stakes applications, including those in healthcare. Yet, reliability assessment of each machine learning prediction is still poorly addressed. Here, we review approaches that can support the identification of unreliable predictions, we harmonize the notation and terminology of relevant concepts, and we highlight and extend possible interrelationships and overlap among concepts. We then demonstrate, on simulated and real data for ICU in-hospital death prediction, a possible integrative framework for the identification of reliable and unreliable predictions. To do so, our proposed approach implements two complementary principles, namely the density principle and the local fit principle. The density principle verifies that the instance we want to evaluate is similar to the training set. The local fit principle verifies that the trained model performs well on training subsets that are more similar to the instance under evaluation. Our work can contribute to consolidating work in machine learning especially in medicine.
Collapse
Affiliation(s)
- Giovanna Nicora
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia (Italy)
| | - Miguel Rios
- Department of Medical Informatics, Amsterdam UMC, University of Amsterdam (The Netherlands)
| | - Ameen Abu-Hanna
- Department of Medical Informatics, Amsterdam UMC, University of Amsterdam (The Netherlands)
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia (Italy)
| |
Collapse
|
19
|
AIM in Haematology. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Gao S, Shi Q, Zhang Y, Liang G, Kang Z, Huang B, Ma D, Wang L, Jiao J, Fang X, Xu CR, Liu L, Xu X, Göttgens B, Li C, Liu F. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res 2022; 32:38-53. [PMID: 34341490 PMCID: PMC8724330 DOI: 10.1038/s41422-021-00540-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Limited knowledge of cellular and molecular mechanisms underlying hematopoietic stem cell and multipotent progenitor (HSC/MPP) expansion within their native niche has impeded the application of stem cell-based therapies for hematological malignancies. Here, we constructed a spatiotemporal transcriptome map of mouse fetal liver (FL) as a platform for hypothesis generation and subsequent experimental validation of novel regulatory mechanisms. Single-cell transcriptomics revealed three transcriptionally heterogeneous HSC/MPP subsets, among which a CD93-enriched subset exhibited enhanced stem cell properties. Moreover, by employing integrative analysis of single-cell and spatial transcriptomics, we identified novel HSC/MPP 'pocket-like' units (HSC PLUS), composed of niche cells (hepatoblasts, stromal cells, endothelial cells, and macrophages) and enriched with growth factors. Unexpectedly, macrophages showed an 11-fold enrichment in the HSC PLUS. Functionally, macrophage-HSC/MPP co-culture assay and candidate molecule testing, respectively, validated the supportive role of macrophages and growth factors (MDK, PTN, and IGFBP5) in HSC/MPP expansion. Finally, cross-species analysis and functional validation showed conserved cell-cell interactions and expansion mechanisms but divergent transcriptome signatures between mouse and human FL HSCs/MPPs. Taken together, these results provide an essential resource for understanding HSC/MPP development in FL, and novel insight into functional HSC/MPP expansion ex vivo.
Collapse
Affiliation(s)
- Suwei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Shi
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guixian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Kang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baofeng Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianwei Jiao
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Science & Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Longqi Liu
- BGI-ShenZhen, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xun Xu
- BGI-ShenZhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Berthold Göttgens
- Department of Haematology, Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Pathan N, Govardhane S, Shende P. Stem Cell Progression for Transplantation. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
De novo generation of macrophage from placenta-derived hemogenic endothelium. Dev Cell 2021; 56:2121-2133.e6. [PMID: 34197725 DOI: 10.1016/j.devcel.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/31/2023]
Abstract
Macrophages play pivotal roles in immunity, hematopoiesis, and tissue homeostasis. In mammals, macrophages have been shown to originate from yolk-sac-derived erythro-myeloid progenitors and aorta-gonad-mesonephros (AGM)-derived hematopoietic stem cells. However, whether macrophages can arise from other embryonic sites remains unclear. Here, using single-cell RNA sequencing, we profile the transcriptional landscape of mouse fetal placental hematopoiesis. We uncover and experimentally validate that a CD44+ subpopulation of placental endothelial cells (ECs) exhibits hemogenic potential. Importantly, lineage tracing using the newly generated Hoxa13 reporter line shows that Hoxa13-labeled ECs can produce placental macrophages, named Hofbauer cell (HBC)-like cells. Furthermore, we identify two subtypes of HBC-like cells, and cell-cell interaction analysis identifies their potential roles in angiogenesis and antigen presentation, separately. Our study provides a comprehensive understanding of placental hematopoiesis and highlights the placenta as a source of macrophages, which has important implications for both basic and translational research.
Collapse
|
23
|
Oedekoven CA, Belmonte M, Bode D, Hamey FK, Shepherd MS, Che JLC, Boyd G, McDonald C, Belluschi S, Diamanti E, Bastos HP, Bridge KS, Göttgens B, Laurenti E, Kent DG. Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports 2021; 16:1614-1628. [PMID: 33961793 PMCID: PMC8190576 DOI: 10.1016/j.stemcr.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.
Collapse
Affiliation(s)
- Caroline A Oedekoven
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Fiona K Hamey
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - James Lok Chi Che
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Grace Boyd
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Serena Belluschi
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Evangelia Diamanti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hugo P Bastos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Katherine S Bridge
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
24
|
A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood 2021; 138:439-451. [PMID: 33876187 DOI: 10.1182/blood.2020009729] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using two independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp, the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics, and deletion of Dnmt3a/b, molecularly resembles HSC rejuvenation or aging, respectively.
Collapse
|
25
|
Hérault L, Poplineau M, Mazuel A, Platet N, Remy É, Duprez E. Single-cell RNA-seq reveals a concomitant delay in differentiation and cell cycle of aged hematopoietic stem cells. BMC Biol 2021; 19:19. [PMID: 33526011 PMCID: PMC7851934 DOI: 10.1186/s12915-021-00955-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) are the guarantor of the proper functioning of hematopoiesis due to their incredible diversity of potential. During aging, heterogeneity of HSCs changes, contributing to the deterioration of the immune system. In this study, we revisited mouse HSC compartment and its transcriptional plasticity during aging at unicellular scale. RESULTS Through the analysis of 15,000 young and aged transcriptomes, we identified 15 groups of HSCs revealing rare and new specific HSC abilities that change with age. The implantation of new trajectories complemented with the analysis of transcription factor activities pointed consecutive states of HSC differentiation that were delayed by aging and explained the bias in differentiation of older HSCs. Moreover, reassigning cell cycle phases for each HSC clearly highlighted an imbalance of the cell cycle regulators of very immature aged HSCs that may contribute to their accumulation in an undifferentiated state. CONCLUSIONS Our results establish a new reference map of HSC differentiation in young and aged mice and reveal a potential mechanism that delays the differentiation of aged HSCs and could promote the emergence of age-related hematologic diseases.
Collapse
Affiliation(s)
- Léonard Hérault
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Adrien Mazuel
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nadine Platet
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Élisabeth Remy
- Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
26
|
Pathan N, Govardhane S, Shende P. Stem Cell Progression for Transplantation. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Davids J, Ashrafian H. AIM in Haematology. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Dingler FA, Wang M, Mu A, Millington CL, Oberbeck N, Watcham S, Pontel LB, Kamimae-Lanning AN, Langevin F, Nadler C, Cordell RL, Monks PS, Yu R, Wilson NK, Hira A, Yoshida K, Mori M, Okamoto Y, Okuno Y, Muramatsu H, Shiraishi Y, Kobayashi M, Moriguchi T, Osumi T, Kato M, Miyano S, Ito E, Kojima S, Yabe H, Yabe M, Matsuo K, Ogawa S, Göttgens B, Hodskinson MRG, Takata M, Patel KJ. Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans. Mol Cell 2020; 80:996-1012.e9. [PMID: 33147438 PMCID: PMC7758861 DOI: 10.1016/j.molcel.2020.10.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023]
Abstract
Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.
Collapse
Affiliation(s)
- Felix A Dingler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | | | - Nina Oberbeck
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sam Watcham
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Lucas B Pontel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | | | - Frederic Langevin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Camille Nadler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rebecca L Cordell
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Paul S Monks
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Rui Yu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Section of Genome Analysis Platform, Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Hematology, Kyoto Katsura Hospital, Kyoto, Japan
| | | | - Tomoo Osumi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Analytical Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Sweden; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | | | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan; Department of Genome Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK; MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
29
|
Haltalli MLR, Watcham S, Wilson NK, Eilers K, Lipien A, Ang H, Birch F, Anton SG, Pirillo C, Ruivo N, Vainieri ML, Pospori C, Sinden RE, Luis TC, Langhorne J, Duffy KR, Göttgens B, Blagborough AM, Lo Celso C. Manipulating niche composition limits damage to haematopoietic stem cells during Plasmodium infection. Nat Cell Biol 2020; 22:1399-1410. [PMID: 33230302 PMCID: PMC7611033 DOI: 10.1038/s41556-020-00601-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
Severe infections are a major stress on haematopoiesis, where the consequences for haematopoietic stem cells (HSCs) have only recently started to emerge. HSC function critically depends on the integrity of complex bone marrow (BM) niches; however, what role the BM microenvironment plays in mediating the effects of infection on HSCs remains an open question. Here, using a murine model of malaria and combining single-cell RNA sequencing, mathematical modelling, transplantation assays and intravital microscopy, we show that haematopoiesis is reprogrammed upon infection, whereby the HSC compartment turns over substantially faster than at steady-state and HSC function is drastically affected. Interferon is found to affect both haematopoietic and mesenchymal BM cells and we specifically identify a dramatic loss of osteoblasts and alterations in endothelial cell function. Osteo-active parathyroid hormone treatment abolishes infection-triggered HSC proliferation and-coupled with reactive oxygen species quenching-enables partial rescuing of HSC function.
Collapse
Affiliation(s)
- Myriam L R Haltalli
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Samuel Watcham
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Kira Eilers
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexander Lipien
- Department of Life Sciences, Imperial College London, London, UK
| | - Heather Ang
- Department of Life Sciences, Imperial College London, London, UK
| | - Flora Birch
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Sara Gonzalez Anton
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Chiara Pirillo
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Nicola Ruivo
- Department of Life Sciences, Imperial College London, London, UK
| | - Maria L Vainieri
- Department of Life Sciences, Imperial College London, London, UK
- AO Research Institute, Davos Platz, Switzerland
| | - Constandina Pospori
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Tiago C Luis
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | | | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
30
|
Kucinski I, Gottgens B. Advancing Stem Cell Research through Multimodal Single-Cell Analysis. Cold Spring Harb Perspect Biol 2020; 12:a035725. [PMID: 31932320 PMCID: PMC7328456 DOI: 10.1101/cshperspect.a035725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Technological advances play a key role in furthering our understanding of stem cell biology, and advancing the prospects of regenerative therapies. Highly parallelized methods, developed in the last decade, can profile DNA, RNA, or proteins in thousands of cells and even capture data across two or more modalities (multiomics). This allows unbiased and precise definition of molecular cell states, thus allowing classification of cell types, tracking of differentiation trajectories, and discovery of underlying mechanisms. Despite being based on destructive techniques, novel experimental and bioinformatic approaches enable embedding and extraction of temporal information, which is essential for deconvolution of complex data and establishing cause and effect relationships. Here, we provide an overview of recent studies pertinent to stem cell biology, followed by an outlook on how further advances in single-cell molecular profiling and computational analysis have the potential to shape the future of both basic and translational research.
Collapse
Affiliation(s)
- Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, United Kingdom
| | - Berthold Gottgens
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, United Kingdom
| |
Collapse
|
31
|
Vink CS, Calero-Nieto FJ, Wang X, Maglitto A, Mariani SA, Jawaid W, Göttgens B, Dzierzak E. Iterative Single-Cell Analyses Define the Transcriptome of the First Functional Hematopoietic Stem Cells. Cell Rep 2020; 31:107627. [PMID: 32402290 PMCID: PMC7225750 DOI: 10.1016/j.celrep.2020.107627] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/18/2020] [Accepted: 04/18/2020] [Indexed: 01/06/2023] Open
Abstract
Whereas hundreds of cells in the mouse embryonic aorta transdifferentiate to hematopoietic cells, only very few establish hematopoietic stem cell (HSC) identity at a single time point. The Gata2 transcription factor is essential for HSC generation and function. In contrast to surface-marker-based cell isolation, Gata2-based enrichment provides a direct link to the internal HSC regulatory network. Here, we use iterations of index-sorting of Gata2-expressing intra-aortic hematopoietic cluster (IAHC) cells, single-cell transcriptomics, and functional analyses to connect HSC identity to specific gene expression. Gata2-expressing IAHC cells separate into 5 major transcriptomic clusters. Iterative analyses reveal refined CD31, cKit, and CD27 phenotypic parameters that associate specific molecular profiles in one cluster with distinct HSC and multipotent progenitor function. Thus, by iterations of single-cell approaches, we identify the transcriptome of the first functional HSCs as they emerge in the mouse embryo and localize them to aortic clusters containing 1-2 cells.
Collapse
Affiliation(s)
- Chris Sebastiaan Vink
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK
| | - Fernando Jose Calero-Nieto
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Xiaonan Wang
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Antonio Maglitto
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK
| | - Samanta Antonella Mariani
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK
| | - Wajid Jawaid
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, Cambridgeshire, England CB2 0AW, UK
| | - Elaine Dzierzak
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland EH16 4TJ, UK.
| |
Collapse
|