1
|
Benítez-Castañeda A, Anaya-Martínez V, Espadas-Alvarez ADJ, Gutierrez-Váldez AL, Razgado-Hernández LF, Reyna-Velazquez PE, Quintero-Macias L, Martínez-Fong D, Florán-Garduño B, Aceves J. Transfection of the BDNF Gene in the Surviving Dopamine Neurons in Conjunction with Continuous Administration of Pramipexole Restores Normal Motor Behavior in a Bilateral Rat Model of Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:3885451. [PMID: 38419644 PMCID: PMC10901579 DOI: 10.1155/2024/3885451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
In Parkinson's disease (PD), progressive degeneration of nigrostriatal innervation leads to atrophy and loss of dendritic spines of striatal medium spiny neurons (MSNs). The loss disrupts corticostriatal transmission, impairs motor behavior, and produces nonmotor symptoms. Nigral neurons express brain-derived neurotropic factor (BDNF) and dopamine D3 receptors, both protecting the dopamine neurons and the spines of MSNs. To restore motor and nonmotor symptoms to normality, we assessed a combined therapy in a bilateral rat Parkinson's model, with only 30% of surviving neurons. The preferential D3 agonist pramipexole (PPX) was infused for four ½ months via mini-osmotic pumps and one month after PPX initiation; the BDNF-gene was transfected into the surviving nigral cells using the nonviral transfection NTS-polyplex vector. Overexpression of the BDNF-gene associated with continuous PPX infusion restored motor coordination, balance, normal gait, and working memory. Recovery was also related to the restoration of the average number of dendritic spines of the striatal projection neurons and the number of TH-positive neurons of the substantia nigra and ventral tegmental area. These positive results could pave the way for further clinical research into this promising therapy.
Collapse
Affiliation(s)
- Alina Benítez-Castañeda
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | | | | | | | | | - Liz Quintero-Macias
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Daniel Martínez-Fong
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Benjamín Florán-Garduño
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jorge Aceves
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
2
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
3
|
Dopaminergic Receptors as Neuroimmune Mediators in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2021; 58:5971-5985. [PMID: 34432265 DOI: 10.1007/s12035-021-02507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
The dopaminergic system plays an essential role in maintaining homeostasis between the central nervous system (CNS) and the immune system. Previous studies have associated imbalances in the dopaminergic system to the pathogenesis of multiple sclerosis (MS). Here, we examined the protein levels of dopaminergic receptors (D1R and D2R) in different phases of the experimental autoimmune encephalomyelitis (EAE) model. We also investigated if the treatment with pramipexole (PPX)-a dopamine D2/D3 receptor-preferring agonist-would be able to prevent EAE-induced motor and mood dysfunction, as well as its underlying mechanisms of action. We report that D2R immunocontent is upregulated in the spinal cord of EAE mice 14 days post-induction. Moreover, D1R and D2R immunocontents in lymph nodes and the oxidative damage in the spinal cord and striatum of EAE animals were significantly increased during the chronic phase. Also, during the pre-symptomatic phase, axonal damage in the spinal cord of EAE mice could already be found. Surprisingly, therapeutic treatment with PPX failed to inhibit the progression of EAE. Of note, PPX treatment inhibited EAE-induced depressive-like while failed to inhibit anhedonic-like behaviors. We observed that PPX treatment downregulated IL-1β levels and increased BNDF content in the spinal cord after EAE induction. Herein, we show that a D2/D3 receptor-preferred agonist mitigated EAE-induced depressive-like behavior, which could serve as a new possibility for further clinical trials on treating depressive symptoms in MS patients. Thus, we infer that D2R participates in the crosstalk between CNS and immune system during autoimmune and neuroinflammatory response induced by EAE, mainly in the acute and chronic phase of the disease.
Collapse
|
4
|
Do Small Molecules Activate the TrkB Receptor in the Same Manner as BDNF? Limitations of Published TrkB Low Molecular Agonists and Screening for Novel TrkB Orthosteric Agonists. Pharmaceuticals (Basel) 2021; 14:ph14080704. [PMID: 34451801 PMCID: PMC8398766 DOI: 10.3390/ph14080704] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
TrkB is a tyrosine kinase receptor that is activated upon binding to brain-derived neurotrophic factor (BDNF). To date, the search for low-molecular-weight molecules mimicking BDNF’s action has been unsuccessful. Several molecules exerting antidepressive effects in vivo, such as 7,8-DHF, have been suggested to be TrkB agonists. However, more recent publications question this hypothesis. In this study, we developed a set of experimental procedures including the evaluation of direct interactions, dimerization, downstream signaling, and cytoprotection in parallel with physicochemical and ADME methods to verify the pharmacology of 7,8-DHF and other potential reference compounds, and perform screening for novel TrkB agonists. 7,8 DHF bound to TrkB with Kd = 1.3 μM; however, we were not able to observe any other activity against the TrkB receptor in SN56 T48 and differentiated SH-SY5Y cell lines. Moreover, the pharmacokinetic and pharmacodynamic effects of 7,8-DHF at doses of 1 and 50 mg/kg were examined in mice after i.v and oral administration, respectively. The poor pharmacokinetic properties and lack of observed activation of TrkB-dependent signaling in the brain confirmed that 7,8-DHF is not a relevant tool for studying TrkB activation in vivo. The binding profile for 133 molecular targets revealed a significant lack of selectivity of 7,8-DHF, suggesting a distinct functional profile independent of interaction with TrkB. Additionally, a compound library was screened in search of novel low-molecular-weight orthosteric TrkB agonists; however, we were not able to identify reliable drug candidates. Our results suggest that published reference compounds including 7,8-DHF do not activate TrkB, consistent with canonical dogma, which indicates that the reported pharmacological activity of these compounds should be interpreted carefully in a broad functional context.
Collapse
|
5
|
El Manaa W, Duplan E, Goiran T, Lauritzen I, Vaillant Beuchot L, Lacas-Gervais S, Morais VA, You H, Qi L, Salazar M, Ozcan U, Chami M, Checler F, Alves da Costa C. Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy 2021; 17:4363-4385. [PMID: 34030589 PMCID: PMC8726674 DOI: 10.1080/15548627.2021.1917129] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease (PD)-affected brains show consistent endoplasmic reticulum (ER) stress and mitophagic dysfunctions. The mechanisms underlying these perturbations and how they are directly linked remain a matter of questions. XBP1 is a transcription factor activated upon ER stress after unconventional splicing by the nuclease ERN1/IREα thereby yielding XBP1s, whereas PINK1 is a kinase considered as the sensor of mitochondrial physiology and a master gatekeeper of mitophagy process. We showed that XBP1s transactivates PINK1 in human cells, primary cultured neurons and mice brain, and triggered a pro-mitophagic phenotype that was fully dependent of endogenous PINK1. We also unraveled a PINK1-dependent phosphorylation of XBP1s that conditioned its nuclear localization and thereby, governed its transcriptional activity. PINK1-induced XBP1s phosphorylation occurred at residues reminiscent of, and correlated to, those phosphorylated in substantia nigra of sporadic PD-affected brains. Overall, our study delineated a functional loop between XBP1s and PINK1 governing mitophagy that was disrupted in PD condition.Abbreviations: 6OHDA: 6-hydroxydopamine; baf: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CCCP: carbonyl cyanide chlorophenylhydrazone; COX8A: cytochrome c oxidase subunit 8A; DDIT3/CHOP: DNA damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FACS: fluorescence-activated cell sorting; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN2: mitofusin 2; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN-induced kinase 1; PCR: polymerase chain reaction:; PRKN: parkin RBR E3 ubiquitin protein ligase; XBP1s [p-S61A]: XBP1s phosphorylated at serine 61; XBP1s [p-T48A]: XBP1s phosphorylated at threonine 48; shRNA: short hairpin RNA, SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TM: tunicamycin; TMRM: tetramethyl rhodamine methylester; TOMM20: translocase of outer mitochondrial membrane 20; Toy: toyocamycin; TP: thapsigargin; UB: ubiquitin; UB (S65): ubiquitin phosphorylated at serine 65; UPR: unfolded protein response, XBP1: X-box binding protein 1; XBP1s: spliced X-box binding protein 1.
Collapse
Affiliation(s)
- Wejdane El Manaa
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Eric Duplan
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Thomas Goiran
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Inger Lauritzen
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Loan Vaillant Beuchot
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | | | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ling Qi
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, NY, USA
| | - Mario Salazar
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mounia Chami
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Frédéric Checler
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Cristine Alves da Costa
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
6
|
Yang P, Knight WC, Li H, Guo Y, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D1 + D3 receptor density may correlate with parkinson disease clinical features. Ann Clin Transl Neurol 2020; 8:224-237. [PMID: 33348472 PMCID: PMC7818081 DOI: 10.1002/acn3.51274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Dopamine D2‐like receptors – mainly dopamine D2 receptors (D2R) and dopamine D3 receptors (D3R) – are believed to be greatly involved in the pathology of Parkinson disease (PD) progression. However, these receptors have not been precisely examined in PD patients. Our aim was to quantitatively calculate the exact densities of dopamine D1 receptors (D1R), D2R, and D3R in control, Alzheimer disease (AD), and Lewy body disease (LBD) patients (including PD, Dementia with Lewy bodies, and Parkinson disease dementia); and analyze the relationship between dopamine receptors and clinical PD manifestations. Methods We analyzed the densities of D1R, D2R, and D3R in the striatum and substantia nigra (SN) using a novel quantitative autoradiography procedure previously developed by our group. We also examined the expression of D2R and D3R mRNA in the striatum by in situ hybridization. Results The results showed that although no differences of striatal D1R were found among all groups; D2R was significantly decreased in the striatum of PD patients when compared with control and AD patients. Some clinical manifestations: age of onset, PD stage, dopamine responsiveness, and survival time after onset; showed a better correlation with striatal D1R + D3R densities combined compared to D1R or D3R alone. Interpretation There is a possibility that we may infer the results in diagnosis, treatment, and prognosis of PD by detecting D1R + D3R as opposed to using dopamine D1 or D3 receptors alone. This is especially true for elderly patients with low D2R expression as is common in this disease.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - William C Knight
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Huifangjie Li
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Yingqiu Guo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|
7
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Ko KR, Tam NW, Teixeira AG, Frampton JP. SH-SY5Y and LUHMES cells display differential sensitivity to MPP+, tunicamycin, and epoxomicin in 2D and 3D cell culture. Biotechnol Prog 2019; 36:e2942. [PMID: 31756288 DOI: 10.1002/btpr.2942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
Abstract
SH-SY5Y and LUHMES cell lines are widely used as model systems for studying neurotoxicity. Most of the existing data regarding the sensitivity of these cell lines to neurotoxicants have been recorded from cells growing as two-dimensional (2D) cultures on the surface of glass or plastic. With the emergence of 3D culture platforms designed to better represent native tissue, there is a growing need to compare the toxicology of neurons grown in 3D environments to those grown in 2D to better understand the impact that culture environment has on toxicant sensitivity. Here, a simple 3D culture method was used to assess the impact of growth environment on the sensitivity of SH-SY5Y cells and LUHMES cells to MPP+, tunicamycin, and epoxomicin, three neurotoxicants that have been previously used to generate experimental models for studying Parkinson's disease pathogenesis. SH-SY5Y cell viability following treatment with these three toxicants was significantly lower in 2D cultures as compared to 3D cultures. On the contrary, LUHMES cells did not show significant differences between growth conditions for any of the toxicants examined. However, LUHMES cells were more sensitive to MPP+, tunicamycin, and epoxomicin than SH-SY5Y cells. Thus, both the choice of cell line and the choice of growth environment must be considered when interpreting in vitro neurotoxicity data.
Collapse
Affiliation(s)
- Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicky W Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alyne G Teixeira
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Huang C, Ma J, Li BX, Sun Y. Wnt1 silencing enhances neurotoxicity induced by paraquat and maneb in SH-SY5Y cells. Exp Ther Med 2019; 18:3643-3649. [PMID: 31602242 DOI: 10.3892/etm.2019.7963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Wingless (Wnt) signaling regulates the proliferation and differentiation of midbrain dopamine (DA) neurons. Paraquat (PQ) and maneb (MB) are environmental pollutants that can be used to model Parkinson's disease (PD) in rodents. A previous study demonstrated that developmental exposure to PQ and MB affects the expression of Wnt1, Wnt5a, nuclear receptor-related factor 1 (NURR1) and tyrosine hydroxylase (TH). However, how Wnt signaling regulates these developmental factors in vitro is yet to be determined. To explore this, SH-SY5Y cells were exposed to PQ and MB. The results of the current study indicated that exposure to PQ and MB decreased Wnt1, β-catenin, NURR1 and TH levels and increased Wnt5a levels. Furthermore, Wnt1 silencing has the same effect as exposure to PQ and MB. Additionally, the neurotoxicity induced by PQ and MB is more severe in siWnt1-SH-SY5Y cells compared with normal SH-SY5Y cells. Therefore, Wnt1 may serve an important role in regulating developmental DA factors, and may be a candidate gene for PD diagnosis or gene therapy.
Collapse
Affiliation(s)
- Cui Huang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bai-Xiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Sun
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
10
|
Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018; 135:139-150. [DOI: 10.1016/j.neuropharm.2018.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
|
11
|
Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson's disease research: a systematic review. Mol Neurodegener 2017; 12:10. [PMID: 28118852 PMCID: PMC5259880 DOI: 10.1186/s13024-017-0149-0] [Citation(s) in RCA: 627] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/05/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons, the cells mainly affected in PD, are difficult to obtain and maintain as primary cells, current PD research is mostly performed with permanently established neuronal cell models, in particular the neuroblastoma SH-SY5Y lineage. This cell line is frequently chosen because of its human origin, catecholaminergic (though not strictly dopaminergic) neuronal properties, and ease of maintenance. However, there is no consensus on many fundamental aspects that are associated with its use, such as the effects of culture media composition and of variations in differentiation protocols. Here we present the outcome of a systematic review of scientific articles that have used SH-SY5Y cells to explore PD. We describe the cell source, culture conditions, differentiation protocols, methods/approaches used to mimic PD and the preclinical validation of the SH-SY5Y findings by employing alternative cellular and animal models. Thus, this overview may help to standardize the use of the SH-SY5Y cell line in PD research and serve as a future user’s guide.
Collapse
Affiliation(s)
- Helena Xicoy
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboudumc, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboudumc, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Zhang Y, Liu F, Zhang X, Xu T, Quan W, Wang H, Shi J, Dai Z, Wu B, Wu Q. Recognition and identification of active components from Radix Bupleuri using human neuroblastoma SH-SY5Y cells. Biomed Chromatogr 2015; 30:440-6. [DOI: 10.1002/bmc.3567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/26/2015] [Accepted: 07/10/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Yan Zhang
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Feihu Liu
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Xiaohong Zhang
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Tanghui Xu
- The Affiliated No. 1 hospital of Xi'an School of Medicine; Xian Shaanxi China
| | - Wei Quan
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Hui Wang
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Jianguo Shi
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Zunxiao Dai
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Bin Wu
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| | - Qiangju Wu
- Xian Mental Health Center; Xian Shaanxi China
- The Affiliated Mental Health Center of Xi'an School of Medicine; Xian Shaanxi China
| |
Collapse
|
13
|
Long-term treatment with l-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease. Neuropharmacology 2015; 95:367-76. [DOI: 10.1016/j.neuropharm.2015.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
|
14
|
Knaryan VH, Samantaray S, Sookyoung P, Azuma M, Inoue J, Banik NL. SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP(+) and rotenone. J Neurochem 2014; 130:280-90. [PMID: 24341912 PMCID: PMC4038676 DOI: 10.1111/jnc.12629] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022]
Abstract
Complex pathophysiology of Parkinson's disease involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in Parkinson's disease and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood. To unravel these mechanisms SH-SY5Y neuroblastoma cells were differentiated into dopaminergic and cholinergic phenotypes, respectively, and used as cell culture model following exposure to two parkinsonian neurotoxicants MPP(+) and rotenone. SNJ-1945, a cell-permeable calpain inhibitor was tested for its neuroprotective efficacy. MPP(+) and rotenone dose-dependently elevated the levels of intracellular free Ca(2+) and induced a concomitant rise in the levels of active calpain. SNJ-1945 pre-treatment significantly protected cell viability and preserved cellular morphology following MPP(+) and rotenone exposure. The neurotoxicants elevated the levels of reactive oxygen species more profoundly in SH-SY5Y cells differentiated into dopaminergic phenotype, and this effect could be attenuated with SNJ-1945 pre-treatment. In contrast, significant levels of inflammatory mediators cyclooxygenase-2 (Cox-2 and cleaved p10 fragment of caspase-1) were up-regulated in the cholinergic phenotype, which could be dose-dependently attenuated by the calpain inhibitor. Overall, SNJ-1945 was efficacious against MPP(+) or rotenone-induced reactive oxygen species generation, inflammatory mediators, and proteolysis. A post-treatment regimen of SNJ-1945 was also examined in cells and partial protection was attained with calpain inhibitor administration 1-3 h after exposure to MPP(+) or rotenone. Taken together, these results indicate that calpain inhibition is a valid target for protection against parkinsonian neurotoxicants, and SNJ-1945 is an efficacious calpain inhibitor in this context. SH-SY5Y cells, differentiated as dopaminergic (TH positive) and cholinergic (ChAT positive), were used as in vitro models for Parkinson's disease. MPP+ and rotenone induced up-regulation of calpain, expression, and activity as a common mechanism of neurodegeneration. SNJ-1945, a novel calpain inhibitor, protected both the cell phenotypes against MPP+ and rotenone.
Collapse
Affiliation(s)
- Varduhi H. Knaryan
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Supriti Samantaray
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Park Sookyoung
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mitsuyoshi Azuma
- Kobe Creative Center, Senju Pharmaceutical Corporation Limited, Kobe 651-2241, Japan
| | - Jun Inoue
- Kobe Creative Center, Senju Pharmaceutical Corporation Limited, Kobe 651-2241, Japan
| | - Naren L. Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Abstract
Dopamine agonists are highly effective as adjunctive therapy to levodopa in advanced Parkinson's disease and have rapidly gained popularity as a monotherapy in the early stages of Parkinson's disease for patients less than 65-70 years old. In the latter case, dopamine agonists are about as effective as levodopa but patients demonstrate a lower tendency to develop motor complications. However, dopamine agonists lose efficacy over time and the number of patients remaining on agonist monotherapy decreases to less than 50% after 3 years of treatment. Thus, after a few years of treatment the majority of patients who started on dopamine agonists will be administered levodopa, in a combined dopaminergic therapy, in order to achieve a better control of motor symptoms.
Collapse
Affiliation(s)
- Ubaldo Bonuccelli
- Department of Neuroscience, University of Pisa, (56126) Pisa, Italy.
| | | |
Collapse
|
16
|
Blandini F, Armentero MT. Dopamine receptor agonists for Parkinson's disease. Expert Opin Investig Drugs 2013; 23:387-410. [PMID: 24313341 DOI: 10.1517/13543784.2014.869209] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Prolonged administration of l-3,4-dihydroxyphenylalanine (l-DOPA) for Parkinson's disease (PD) is hampered by motor complications related to the progressive incapacity of residual nigrostriatal neurons to properly utilize the drug. Direct stimulation of dopaminergic (DAergic) receptors with specific compounds (DA agonists) has, therefore, become an additional therapeutic tool for PD. AREAS COVERED DA agonists have considerable anti-parkinsonian symptomatic efficacy, although they are less potent than l-DOPA. This review summarizes pre-clinical and clinical data on DA agonists and their role in treating PD. Specific focus was put on second-generation, first-line non-ergolinic DA agonists and their motor, non-motor and putative neuroprotective effects. The anti-parkinsonian potential of recently developed DA agonists that reached Phase II and III clinical trials was also addressed. EXPERT OPINION DA agonists can be useful along the whole natural course of PD, as monotherapy in the initial phase or combined with l-DOPA in advanced PD. Extended-release formulations have been developed for second-generation DA agonists, which are better appreciated by patients. Neuroprotective properties have been proposed for DA agonists, based on pre-clinical studies, but never convincingly demonstrated in patients. New DA agonists, with better symptomatic efficacy and devoid of the side effects that characterize current compounds, are needed.
Collapse
Affiliation(s)
- Fabio Blandini
- IRCCS National Neurological Institute C. Mondino, Center for Research in Neurodegenerative Diseases , Via Mondino 2, 27100 Pavia , Italy +39 0382 380416 ; +39 0382 380448 ;
| | | |
Collapse
|
17
|
Pandya CD, Hoda MN, Kutiyanawalla A, Buckley PF, Pillai A. Differential effects upon brain and serum BDNF levels in rats as response to continuous and intermittent administration strategies of two second generation antipsychotics. Schizophr Res 2013; 151:287-8. [PMID: 24135222 DOI: 10.1016/j.schres.2013.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Chirayu D Pandya
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
18
|
Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:407152. [PMID: 26316987 PMCID: PMC4437329 DOI: 10.1155/2013/407152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 11/17/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson's disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen.
Collapse
|
19
|
Chau KY, Cooper JM, Schapira AHV. Pramipexole reduces phosphorylation of α-synuclein at serine-129. J Mol Neurosci 2013; 51:573-80. [PMID: 23681749 PMCID: PMC3779594 DOI: 10.1007/s12031-013-0030-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/06/2013] [Indexed: 11/15/2022]
Abstract
α-Synuclein is a central component of the pathogenesis of Parkinson’s disease (PD). Phosphorylation at serine-129 represents an important post-translational modification and constitutes the major form of the protein in Lewy bodies. Several kinases have been implicated in the phosphorylation of α-synuclein. The targeting of kinase pathways as a potential to influence the pathogenesis of PD is an important focus of attention, given that mutations of specific kinases (LRRK2 and PINK1) are causes of familial PD. Pramipexole (PPX) is a dopamine agonist developed for the symptomatic relief of PD. Several in vitro and in vivo laboratory studies have demonstrated that PPX exerts neuroprotective properties in model systems of relevance to PD. The present study demonstrates that PPX inhibits the phosphorylation of α-synuclein and that this is independent of dopamine receptor activation. PPX blocks the increase in phosphorylated α-synuclein induced by inhibition of the ubiquitin proteasomal system. The phosphorylation of α-synuclein occurs in part at least through casein kinase 2, and PPX in turn reduces the phosphorylation of this enzyme, thereby inhibiting its activity. Thus, PPX decreases the phosphorylation of α-synuclein, and this mechanism may contribute to its protective properties in PD models.
Collapse
Affiliation(s)
- Kai-Yin Chau
- Department of Clinical Neurosciences, Institute of Neurology, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | | | | |
Collapse
|
20
|
Park G, Park YJ, Yang HO, Oh MS. Ropinirole protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice via anti-apoptotic mechanism. Pharmacol Biochem Behav 2013; 104:163-8. [DOI: 10.1016/j.pbb.2013.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
|
21
|
Tasaki Y, Yamamoto J, Omura T, Noda T, Kamiyama N, Yoshida K, Satomi M, Sakaguchi T, Asari M, Ohkubo T, Shimizu K, Matsubara K. Oxicam structure in non-steroidal anti-inflammatory drugs is essential to exhibit Akt-mediated neuroprotection against 1-methyl-4-phenyl pyridinium-induced cytotoxicity. Eur J Pharmacol 2012; 676:57-63. [DOI: 10.1016/j.ejphar.2011.11.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 12/17/2022]
|
22
|
Greene LA, Levy O, Malagelada C. Akt as a victim, villain and potential hero in Parkinson's disease pathophysiology and treatment. Cell Mol Neurobiol 2011; 31:969-78. [PMID: 21547489 PMCID: PMC3678379 DOI: 10.1007/s10571-011-9671-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/24/2011] [Indexed: 12/25/2022]
Abstract
There are two major purposes of this essay. The first is to summarize existing evidence that irrespective of the initiating causes, neuron death and degeneration in Parkinson's disease (PD) are due to the common feature of failure of signaling by Akt, a kinase involved in neuron survival and maintenance of synaptic contacts. The second is to consider possible means by which such a failure of Akt signaling might be benignly prevented or reversed in neurons affected by PD, so as to treat PD symptoms, block disease progression, and potentially, promote recovery.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630W. 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
23
|
Distinct effects of pramipexole on the proliferation of adult mouse sub-ventricular zone-derived cells and the appearance of a neuronal phenotype. Neuropharmacology 2011; 60:892-900. [PMID: 21272591 DOI: 10.1016/j.neuropharm.2011.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 11/23/2022]
Abstract
Pramipexole (PPX) is a dopamine agonist with an 8-fold higher affinity for D3 than D2 receptor, whose efficacy in the treatment of Parkinson's disease is based on dopamine agonistic activity. PPX has also been recently shown to be endowed with neuroprotective activity and neurogenic potential. The aim of this study was a more detailed characterization of PPX-induced neurogenesis. Both D2 and D3 receptors are expressed in floating and differentiated neurospheres obtained from the sub-ventricular zone (SVZ) of adult mice. Treatment of secondary neurospheres with 10 μM PPX causes a marked induction of cell proliferation, assessed by enhanced cell number and S phase population at cell cycle analysis. Stimulation of proliferation by PPX is still detectable in plated neurospheres before the onset of migration and differentiation, as by enhanced BrdU incorporation. This effect is sensitive to the selective D3 dopamine receptor antagonist U99194A, as well as to sulpiride. A 24 h treatment with PPX does not modify the morphology of neurosphere-derived cells, but causes an increase of glial fibrillary acidic protein (GFAP)-positive cells, an effect sensitive to both D2 and D3 antagonism. Differentiation toward the neuronal lineage is increased by PPX as shown by enhancement of the cell population positive to the early neuronal marker doublecortin (DCX) at 24 h and the mature neuronal marker microtubule associated protein (MAP2) at 72 h. This effect is not modified by treatment with U99194A and is mimicked by BDNF. Accordingly, PPX increases BDNF release with a mechanism involving D2 but not D3 receptors.
Collapse
|
24
|
Li C, Biswas S, Li X, Dutta AK, Le W. Novel D3 dopamine receptor-preferring agonist D-264: Evidence of neuroprotective property in Parkinson's disease animal models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lactacystin. J Neurosci Res 2010; 88:2513-23. [PMID: 20623619 DOI: 10.1002/jnr.22405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative movement disorder, is known to be caused by diverse pathological conditions resulting from dysfunction of the ubiquitin-proteasome system (UPS), mitochondria, and oxidative stress leading to preferential nigral dopamine (DA) neuron degeneration in the substantia nigra. In the present study, we evaluated the novel D3 receptor-preferring agonist D-264 in a mouse model of PD to evaluate its neuroprotective properties against both the nigrostriatal dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and the proteasome inhibitor lactacystin-induced dopaminergic degeneration. C57BL/6 male mice either were given MPTP by intraperitoneal injection twice per day for 2 successive days at a dose 20 mg/kg or were microinjected with lactacystin bilaterally (1.25 microg/side) into the medial forebrain bundle (MFB). Pretreatment with D-264 (1 mg/kg and 5 mg/kg, intraperitoneally, once per day), started 7 days before administration of MPTP or lactacystin. We found that D-264 significantly improved behavioral performance, attenuated both MPTP- and lactacystin-induced DA neuron loss, and blocked proteasomal inhibition and microglial activation in the substantia nigra (SN). Furthermore, D-264 treatment was shown to increase the levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived factor (GDNF) in MPTP- and lactacystin-treated mice, possibly indicating, at least in part, the mechanism of neuroprotection by D-264. Furthermore, pretreatment with the D3 receptor antagonist U99194 significantly altered the effect of neuroprotection conferred by D-264. Collectively, our study demonstrates that D-264 can prevent neurodegeneration induced by the selective neurotoxin MPTP and the UPS inhibitor lactacystin. The results indicate that D-264 could potentially serve as a symptomatic and neuroprotective treatment agent for PD.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Millan MJ. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther 2010; 128:229-73. [PMID: 20600305 DOI: 10.1016/j.pharmthera.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other antiparkinson agents, and for optimizing their clinical exploitation.
Collapse
Affiliation(s)
- Mark J Millan
- Dept of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine (Paris), France.
| |
Collapse
|
26
|
Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, Nehama D, Rajadas J, Longo FM. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 2010; 120:1774-85. [PMID: 20407211 DOI: 10.1172/jci41356] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/17/2010] [Indexed: 02/01/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) activates the receptor tropomyosin-related kinase B (TrkB) with high potency and specificity, promoting neuronal survival, differentiation, and synaptic function. Correlations between altered BDNF expression and/or function and mechanism(s) underlying numerous neurodegenerative conditions, including Alzheimer disease and traumatic brain injury, suggest that TrkB agonists might have therapeutic potential. Using in silico screening with a BDNF loop-domain pharmacophore, followed by low-throughput in vitro screening in mouse fetal hippocampal neurons, we have efficiently identified small molecules with nanomolar neurotrophic activity specific to TrkB versus other Trk family members. Neurotrophic activity was dependent on TrkB and its downstream targets, although compound-induced signaling activation kinetics differed from those triggered by BDNF. A selected prototype compound demonstrated binding specificity to the extracellular domain of TrkB. In in vitro models of neurodegenerative disease, it prevented neuronal degeneration with efficacy equal to that of BDNF, and when administered in vivo, it caused hippocampal and striatal TrkB activation in mice and improved motor learning after traumatic brain injury in rats. These studies demonstrate the utility of loop modeling in drug discovery and reveal what we believe to be the first reported small molecules derived from a targeted BDNF domain that specifically activate TrkB.We propose that these compounds constitute a novel group of tools for the study of TrkB signaling and may provide leads for developing new therapeutic agents for neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephen M Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, UCSF, San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND The death of dopaminergic neurons in Parkinson's disease (PD) appears to have various causes, including oxidative stress, excitotoxicity, mitochondrial dysfunction (and associated apoptosis), ubiquitin/proteasomal dysfunction, and inflammation, any of which could in principle be the therapeutic target of a neuroprotective drug. The biology of dopaminergic neurons offers further potential targets, involving neurotrophic factors, dopamine-neuron genes, and even neurogenesis. OBJECTIVE To outline each hypothetical neuroprotective mechanism, the evidence suggesting its relevance to PD, and the research on pharmacologic intervention. METHODS A PubMed search was conducted to identify relevant preclinical and clinical literature published between 1989 and 2009. Additional articles were identified by reviewing the reference lists of papers selected in the original search. To circumscribe the survey and facilitate consideration of the conditions required for a neuroprotective effect, emphasis was placed on a single drug class, dopamine agonists, and in particular pramipexole. REVIEW OF THE FIELD: In a variety of in vitro and in vivo PD models, pramipexole exhibited preclinical evidence of neuroprotective actions of all hypothesized types, and in human neuroimaging studies it slowed the rate of loss of markers of dopaminergic function, consistent with drug-conferred neuroprotection in PD itself. Interpretation of the preclinical data was hampered by differences among models and by uncertainties concerning each model's mimicry of PD. Overall, the identified neuroprotection almost always required pretreatment (i.e., before insult) and high drug concentration. Interpretation of the clinical data was hampered by absence of placebo control and of a direct measure of neuroprotection. CONCLUSIONS Although the evidence is promising, neuroprotection in PD remains an elusive goal. In whatever form it emerges, neuroprotective therapy would be a strong argument against deferring PD treatment until symptoms are a significant life impediment, and thus would add urgency to early PD identification.
Collapse
|
28
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Imamura K, Takeshima T, Nakaso K, Ito S, Nakashima K. Pramipexole has astrocyte-mediated neuroprotective effects against lactacystin toxicity. Neurosci Lett 2008; 440:97-102. [DOI: 10.1016/j.neulet.2008.05.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/03/2008] [Accepted: 05/17/2008] [Indexed: 12/21/2022]
|
30
|
Abstract
Slowing or aborting the progress of neurodegeneration in Parkinson's disease (PD) remains the most important unmet need of this disorder. There are several recent developments in trial design and also in drugs under investigation for possible neuroprotective effect. Emphasis has been placed on clinical as opposed to imaging end-points and these include change in a clinical rating scale, e.g. United Parkinson's disease Rating Scale (UPDRS), or time to additional therapy. The introduction of the delayed-start, or wash-in, trial design adds an additional dimension to drug evaluation for neuroprotection. Compounds that have been recently tested in clinical trial include the monoamine oxidase-B inhibitor rasagiline, the anti-apoptotic agents TCH346 and CEP1347, and the promitochondrial agent creatine. The dopamine agonists have been evaluated for a neuroprotective effect using imaging end-points. Perhaps the most important and simplest concept for neuroprotection has been the theory that early dopaminergic support for the degenerating dopaminergic system per se provides significant long-term clinical benefit for PD patients.
Collapse
Affiliation(s)
- A H V Schapira
- University Department of Clinical Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
31
|
A dopamine receptor antagonist L-745,870 suppresses microglia activation in spinal cord and mitigates the progression in ALS model mice. Exp Neurol 2008; 211:378-86. [DOI: 10.1016/j.expneurol.2008.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 12/13/2022]
|
32
|
Iravani MM, Sadeghian M, Leung CCM, Tel BC, Rose S, Schapira AH, Jenner P. Continuous subcutaneous infusion of pramipexole protects against lipopolysaccharide-induced dopaminergic cell death without affecting the inflammatory response. Exp Neurol 2008; 212:522-31. [PMID: 18571649 DOI: 10.1016/j.expneurol.2008.04.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/02/2008] [Accepted: 04/30/2008] [Indexed: 12/27/2022]
Abstract
The D2/D3 dopamine receptor agonist pramipexole, protects against toxin-induced dopaminergic neuronal destruction but its mechanism of action is unknown. Inflammation following glial cell activation contributes to cell death in Parkinson's disease and we now report on the effects of acute or chronic administration of pramipexole on lipopolysaccharide (LPS) induced inflammation and nigral dopaminergic cell death in the rat. At 48 h and 30 days following supranigral administration of LPS, approximately 70% of tyrosine hydroxylase (TH) immunoreactive (-ir) cells in substantia nigra had degenerated with a corresponding loss of TH-ir terminals in the striatum. In rats acutely treated with pramipexole (2x1 mg/kg; s.c.) 48 h following LPS application, there was no difference in the number of TH-ir cells or terminals compared to LPS-treated rats receiving vehicle. However, the continuous subcutaneous infusion of pramipexole for 7 days prior to LPS and 21 days subsequently, produced a marked preservation of both TH-ir cells and terminals. At 48 h or 30 days, LPS induced an up-regulation of ubiquitin-ir within the nigral TH-ir neurones, which was reduced by pramipexole treatment. Thirty days following supranigral LPS administration (9 days after the end of infusion), (+)-amphetamine (5 mg/kg, i.p.) caused robust ipsiversive rotation. In rats treated with LPS but receiving continuous subcutaneous administration of pramipexole, (+)-amphetamine-induced rotation was markedly reduced. LPS-induced increase in the levels of inflammatory markers, were not affected by either acute administration or continuous infusion of pramipexole. Continuous infusion of pramipexole protected dopaminergic neurones against inflammation induced degeneration but without modification of the inflammatory response.
Collapse
Affiliation(s)
- Mahmoud M Iravani
- Neurodegenerative Disease Research Centre, School of Health and Biomedical Sciences, King's College, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Riveles K, Huang LZ, Quik M. Cigarette smoke, nicotine and cotinine protect against 6-hydroxydopamine-induced toxicity in SH-SY5Y cells. Neurotoxicology 2008; 29:421-7. [PMID: 18359086 PMCID: PMC2486261 DOI: 10.1016/j.neuro.2008.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/23/2008] [Accepted: 02/05/2008] [Indexed: 11/22/2022]
Abstract
Epidemiological studies consistently demonstrate a reduced incidence of Parkinson's disease in smokers. As an approach to evaluate whether nicotine in tobacco may be involved in this apparent protective effect, we compared the effect of mainstream 1R4F cigarette smoke solutions, which contain chemicals inhaled by active smokers, and nicotine against 6-hydroxydopamine (6-OHDA)-induced toxicity in an in vitro cell culture system. For this purpose we used terminally differentiated SH-SY5Y neuroblastoma cells that exhibit a catecholaminergic phenotype and express nicotinic receptors. Cells were pre-incubated for 24 h in mainstream-cigarette smoke solutions (0.06, 0.2, or 0.6 cigarette puffs/ml) made from University of Kentucky 1R4F research brand cigarettes, followed by the addition of 6-OHDA for another 24-48 h. The 0.2, but not 0.06, puffs/ml dose, significantly protected against 6-OHDA-induced toxicity in SH-SY5Y cells. This dose yielded final nicotine concentrations of approximately 5 x 10(-7) M, which is similar to plasma smoking levels. Although the 0.6 puffs/ml dose caused significant toxicity on its own, it also appeared to protect against 6-OHDA-induced damage. We next tested the effect of nicotine, as well as its metabolite cotinine. These agents protected against the toxic effects of 6-OHDA in SH-SY5Y cells at concentrations ranging from 10(-7) to 10(-5) M. These combined results support the idea that nicotine is one of the components in cigarette smoke that has a protective effect against neurotoxic insults. These data suggest that nicotine may be of potential therapeutic value for Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Maryka Quik
- The Parkinson’s Institute, Sunnyvale, CA 94085
| |
Collapse
|
34
|
Biswas S, Hazeldine S, Ghosh B, Parrington I, Kuzhikandathil E, Reith MEA, Dutta AK. Bioisosteric Heterocyclic Versions of 7-{[2-(4-Phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: Identification of Highly Potent and Selective Agonists for Dopamine D3 Receptor with Potent in Vivo Activity. J Med Chem 2008; 51:3005-19. [DOI: 10.1021/jm701524h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Swati Biswas
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Stuart Hazeldine
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Balaram Ghosh
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Ingrid Parrington
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Eldo Kuzhikandathil
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Maarten E. A. Reith
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
35
|
Nair VD, Olanow CW. Differential modulation of Akt/glycogen synthase kinase-3beta pathway regulates apoptotic and cytoprotective signaling responses. J Biol Chem 2008; 283:15469-78. [PMID: 18387957 DOI: 10.1074/jbc.m707238200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have previously reported that specific dopamine agonists mediate protection against apoptosis induced by oxidative stress by activating the D2 receptor-coupled phosphoinositide 3-kinase (PI-3K)/Akt pathway. In the present study we examined the downstream effectors of PI-3K/Akt signaling and their role in cell death after oxidative stress and protection provided by ropinirole, a D2 receptor agonist in PC12 cells and primary cultures of dopamine neurons. Ropinirole treatment was associated with rapid translocation and phosphorylation of the PI-3K substrate Akt and phosphorylation of Akt substrates. One of these Akt downstream substrates was identified as the pro-apoptotic factor glycogen synthase kinase-3beta (GSK-3beta). Ropinirole-induced protection was associated with phosphorylation of GSK-3beta (inactivation). In contrast, inhibition of PI-3K blocked the phosphorylation of Akt and GSK-3beta (activation) and prevented the protection mediated by ropinirole. Suppression of Akt with specific short hairpin RNA in normal PC12 cells caused cell death, which was associated with reduced phosphorylation of GSK-3beta and reduced levels of beta-catenin, a transcriptional activator that is regulated by GSK-3beta. Knock-out of GSK-3beta expression with a short hairpin RNA alone was itself sufficient to cause cell death. We further demonstrated that oxidative stress induced by hydrogen peroxide (H2O2) dephosphorylates Akt and GSK-3beta, increases GSK-3beta activity, and promotes an interaction with beta-catenin and its degradation. Inhibition of GSK-3beta activity by inhibitor VIII protects cells from H2O2 similar to ropinirole. These results indicate that GSK-3beta downstream of Akt plays a critical role in cell death and survival in these models.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
36
|
Abstract
Pramipexole is a non-ergot dopamine agonist shown to be efficacious in the treatment of Parkinson's disease (PD). This review addresses the literature concerning pramipexole's efficacy in treating motor and non-motor symptoms in PD, its impact on the development of dyskinesias and response fluctuations, the issue of neuroprotection, and the risk for developing adverse events such as increased somnolence, attacks of sudden onset of sleep, cardiac valvulopathy and impulse control disturbances.
Collapse
Affiliation(s)
- Radu Constantinescu
- Department of Neurology, Sahlgrenska University Hospital 413 45 Göteborg, Sweden.
| |
Collapse
|
37
|
Millan MJ, Iob L, Péglion JL, Dekeyne A. Discriminative stimulus properties of S32504, a novel D3/D2 receptor agonist and antiparkinson agent, in rats: attenuation by the antipsychotics, aripiprazole, bifeprunox, N-desmethylclozapine, and by selective antagonists at dopamine D2 but not D3 receptors. Psychopharmacology (Berl) 2007; 191:767-82. [PMID: 17047933 DOI: 10.1007/s00213-006-0567-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 08/13/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Drug-discrimination studies have proven instructive in the characterization of psychotropic agents, a procedure applied herein to the novel antiparkinson agent, S32504. This highly selective agonist at dopamine D(3) and (less potently) D(2) receptors displays potent antiparkinson, neuroprotective and antidepressant properties (Millan et al., J Pharmacol Exp Ther 309:936-950, 2004a; Millan et al., J Pharmacol Exp Ther 309:903-920, 2004b; Millan et al., J Pharmacol Exp Ther 309:921-935, 2004c). OBJECTIVES To generate a discriminative stimulus (DS) with S32504 and undertake substitution/antagonism studies with diverse antiparkinson and antipsychotic agents. MATERIALS AND METHODS Using a two-lever, fixed-ratio 10 schedule, rats were trained to recognize S32504 (0.04 mg/kg, s.c.) from saline. RESULTS S32504 displayed dose-dependent and stereospecific substitution in comparison to its less active racemic form, (+/-) S31411, and to its inactive (-) distomer, S32601. Apomorphine, and the selective D(3)/D(2) receptor agonists, ropinirole, PD128,907, 7-OH-DPAT and CGS15855A, fully (=80%) substituted for S32504, whereas D(4) and D(1)/D(5) receptor agonists were ineffective. The selective D(3) vs D(2) receptor partial agonist, BP897, did not substitute for S32504 and the selective D(3) receptor antagonists, S33084, SB277,011, GR218,231, PNU99194A and S14297, did not block its DS properties. By contrast, S32504 lever selection was blocked by the preferential D(2) vs D(3) receptor antagonists, L741,626 and S23199, and by the D(2)/D(3) antagonists, raclopride and haloperidol. The D(2)/D(3) receptor partial agonists and antipsychotics, aripiprazole, bifeprunox, N-desmethylclozapine and preclamol did not substitute for S32504: indeed, they dose-dependently attenuated its DS properties. CONCLUSION The antiparkinson agent, S32504, displays DS properties principally mediated by high-efficacy activation of D(2) receptors Antipsychotics known to act as partial agonists at D(2)/D(3) receptors attenuate DS properties of S32504, actions reflecting their low efficacy at these sites.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Neuropharmacology, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, Paris, France.
| | | | | | | |
Collapse
|
38
|
Hill MP, Ravenscroft P, McGuire SG, Brotchie JM, Crossman AR, Rochat C, Millan MJ. Antiparkinsonian effects of the novel D3/D2 dopamine receptor agonist, S32504, in MPTP-lesioned marmosets: Mediation by D2, not D3, dopamine receptors. Mov Disord 2007; 21:2090-5. [PMID: 16991143 DOI: 10.1002/mds.21106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
L-dopa remains the most common treatment for Parkinson's disease. However, there is considerable interest in D3/D2 receptor agonists such as the novel agent S32504, since they exert antiparkinsonian properties in the absence of dyskinesia. An important question concerns the roles of D2 vs. D3 receptors, an issue we addressed with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned nonhuman primate model of Parkinson's disease. In L-dopa-primed animals, S32504 (0.16-2.5 mg/kg p.o.) dose-dependently enhanced locomotor activity. This action was abolished by the D2 antagonist, L741,626 (2.5 mg/kg), but potentiated by the D3 antagonist, S33084 (0.63 mg/kg). Both antagonists were inactive alone. In drug-naive animals, a maximally effective dose of S32504 (2.5 mg/kg p.o.) displayed pronounced antiparkinsonian properties from the third day of administration, and its actions were expressed rapidly and durably. Thus, on day 33, antiparkinsonian properties of S32504 were apparent within 5 minutes and present for > 4 hours. Moreover, they were associated with neither wearing off nor significant dyskinesia. In conclusion, the novel D3/D2 agonist S32504 may offer advantages over L-dopa in the treatment of newly diagnosed parkinsonian patients. Its actions are expressed primarily by activation of D2, not D3, receptors.
Collapse
|
39
|
O'Neill MJ, Messenger MJ, Lakics V, Murray TK, Karran EH, Szekeres PG, Nisenbaum ES, Merchant KM. Neuroreplacement, Growth Factor, and Small Molecule Neurotrophic Approaches for Treating Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:179-217. [PMID: 17178475 DOI: 10.1016/s0074-7742(06)77006-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael J O'Neill
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham Surrey GU20 6PH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Falkenburger BH, Schulz JB. Limitations of cellular models in Parkinson's disease research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:261-8. [PMID: 17017539 DOI: 10.1007/978-3-211-45295-0_40] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell cultures for Parkinson's disease research have the advantage of virtually unlimited access, they allow rapid screening for disease pathogenesis and drug candidates, and they restrict the necessary number of animal experiments. Limitations of cell cultures, include that the survival of neurons is dependent upon the culture conditions; that the cells do not develop their natural neuronal networks. In most cases, neurons are deprived from the physiological afferent and efferent connections. In Parkinson's disease research, mesencephalic slice cultures, primary immature dopaminergic neurons and immortalized cell lines--either in a proliferating state or in a differentiated state--are used. Neuronal cultures may be plated in the presence or absence of glial cells and serum. These different culture conditions as well as the selection of outcome parameters (morphological evaluation, viability assays, biochemical assays, metabolic assays) have a strong influence on the results of the experiments and the conclusions drawn from them. A primary example is the question of whether L-Dopa is toxic to dopaminergic neurons or whether it provides neurotrophic effects: In pure, neuronal-like cultures, L-Dopa provides toxicity, whereas in the presence of glial cells, it provides trophic effects when applied. The multitude of factors that influence the data generated from cell culture experiments indicates that in order to obtain clear-cut and unambiguous results, investigators need to choose their model carefully and are encouraged to verify their main results with different models.
Collapse
Affiliation(s)
- B H Falkenburger
- Department of Neurodegeneration and Restorative Research, Center of Neurology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
41
|
Brocco M, Dekeyne A, Papp M, Millan MJ. Antidepressant-like properties of the anti-Parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors. Behav Pharmacol 2006; 17:559-72. [PMID: 17021388 DOI: 10.1097/01.fbp.0000236267.41806.5b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dopamine D2/D3 receptor agonist and alpha2 adrenergic receptor antagonist, piribedil, is used clinically as monotherapy and as an adjunct to L-3,4-dihydroxyphenylalanine in the treatment of Parkinson's disease. As it appears to improve mood, we examined its actions in rodent models of antidepressant properties, in comparison with the prototypical anti-Parkinson agent, apomorphine, the D2/D3 receptor agonist, quinpirole, and the antidepressants, imipramine and fluvoxamine. In the mouse forced-swim test, acute administration of imipramine, fluvoxamine, apomorphine or quinpirole decreased immobility time, actions dose dependently mimicked by piribedil (2.5-10.0 mg/kg, subcutaneously). In rats, acute and subchronic administration of piribedil similarly reduced immobility (0.63-10.0 mg/kg, subcutaneously) and apomorphine, quinpirole and imipramine were also active in this test, whereas fluvoxamine was inactive. Both in mice and in rats, the D2/D3 receptor antagonist, raclopride, and the D2 receptor antagonist, L741,626, dose dependently blocked the antidepressant properties of piribedil, whereas the selective D3 receptor antagonists, S33084 and SB277,011, were ineffective. In a chronic mild stress model in rats, piribedil (2.5-40.0 mg/kg, subcutaneously) restored sucrose intake in stressed animals exerting its actions more rapidly (by week 1) than imipramine. Imipramine, fluvoxamine, apomorphine, quinpirole and piribedil dose dependently (0.63-10.0 mg/kg, subcutaneously) suppressed aggressive and marble-burying behaviour in mice. In the latter procedure, raclopride and L741,626, but not S33084, attenuated the actions of piribedil. Over a dose range (0.63-10.0 mg/kg, subcutaneously) equivalent to those active in models of antidepressant activity, piribedil did not stimulate locomotor behaviour. In conclusion, principally via recruitment of D2 receptors, piribedil exerts robust and specific antidepressant-like actions in diverse rodent models.
Collapse
MESH Headings
- Aggression/drug effects
- Animals
- Antidepressive Agents
- Antidepressive Agents, Second-Generation/pharmacology
- Antidepressive Agents, Tricyclic/pharmacology
- Antiparkinson Agents/pharmacology
- Behavior, Animal/drug effects
- Chronic Disease
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists
- Dose-Response Relationship, Drug
- Fluvoxamine/pharmacology
- Imipramine/pharmacology
- Male
- Mice
- Motor Activity/drug effects
- Piribedil/pharmacology
- Quinpirole/pharmacology
- Raclopride/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Social Isolation/psychology
- Stress, Psychological/psychology
- Sucrose/pharmacology
- Swimming/psychology
Collapse
Affiliation(s)
- Mauricette Brocco
- Psychopharmacology Department, Servier Research Institute, Croissy Research Center, Paris, France.
| | | | | | | |
Collapse
|
42
|
Chiasson K, Daoust B, Levesque D, Martinoli MG. Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+ -induced toxicity in PC12 cells. Neurotox Res 2006; 10:31-42. [PMID: 17000468 DOI: 10.1007/bf03033332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dopaminergic cell loss in the mesencephalic substantia nigra is the hallmark of Parkinson's disease and may be associated with abnormal oxidative metabolic activity. However, the delicate balance underlying dopamine decline and oxidative stress is still a matter of debate. The aim of this study was to analyze the possible modulation of D2 agonists and antagonists on MPP+ (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion) -induced cellular death in differentiated and undifferentiated PC12 cells. Using colorimetric assays, western blots and reverse transcriptase-PCR, we demonstrated that two D2 agonists, bromocriptine and quinpirole, consistently increased MPP+ -induced cytotoxicity in both differentiated and undifferentiated PC12 cells, whereas D2 antagonists do not modulate cell death. However, this increase in cellular death was reversed when bromocriptine or quinpirole were used in presence of D2 antagonists. On the other hand, 1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine (GBR 12909), a potent inhibitor of the dopamine transporter, partially reversed MPP+ -induced cellular death and completely abolished the increase of cellular death induced by bromocriptine. Dopamine agonists and antagonists also modulate the expression of the dopamine transporter in PC12 cells; in particular, bromocriptine may alter MPP+ uptake by increasing DAT expression We also show that, in our cellular paradigm, D2 receptor mRNA levels are more abundant that D3 mRNA levels and MPP+ and /or bromocriptine could not modulate D2 gene expression while D3 gene expression clearly decrease after MPP+ and /or bromocriptine treatment.
Collapse
Affiliation(s)
- Keith Chiasson
- Department of Biochemistry and Groupe de Recherche en Neurosciences, Université du Québec á Trois-Riviéres, Trois-Riviéres, Québec, Canada
| | | | | | | |
Collapse
|
43
|
Abstract
During the past decade, there has been a remarkable progress in our understanding of the biology of Parkinson disease (PD), which has been translated into searching for novel therapy for PD. Much focus is shifted from the development of drugs that only relieve PD symptoms to new generation of remedies that can potentially protect dopaminergic neurons and modify the disease course. Several novel therapeutic approaches have been tested in preclinical experiments and in clinical trials, including molecules targeting on genes involved in the pathogenesis of the disease, neurotrophic factors critical for dopaminergic neuron survival and function, new generation of dopamine receptor agonists that may possess neuroprotective effects, and agents of antioxidation, antiinflammation, and antiapoptosis. The results of these studies will shed new light to our hope that PD can be cured in the future.
Collapse
Affiliation(s)
- Sheng Chen
- Institute of Neurology, Ruijin Hospital, Shanghai 2nd Medical University, Shanghai, China
| | | |
Collapse
|
44
|
Boeckler F, Gmeiner P. The structural evolution of dopamine D3 receptor ligands: structure-activity relationships and selected neuropharmacological aspects. Pharmacol Ther 2006; 112:281-333. [PMID: 16905195 DOI: 10.1016/j.pharmthera.2006.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 01/13/2023]
Abstract
"Evolution consists largely of molecular tinkering."-Following the famous concept of the molecular geneticist and medicine Nobel laureate François Jacob, in this review we describe the structural evolution of dopamine D3 receptor ligands from the natural agonist dopamine (DA) to highly potent and subtype selective new agents by bioisosteric tinkering with well-established and privileged or novel and fancy chemical functionalities and scaffolds. Some of the more than 200 ligands presented herein have already achieved therapeutic or scientific value up to now, some will most likely achieve it in the future. Hence, great importance is not only attached to the relationship between structure and activity of the ligands, but also to their utility as pharmacological tools in animal models or as therapeutics in patients with neurological diseases or other disorders.
Collapse
Affiliation(s)
- Frank Boeckler
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany.
| | | |
Collapse
|
45
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
46
|
Fumagalli F, Racagni G, Riva MA. Shedding light into the role of BDNF in the pharmacotherapy of Parkinson's disease. THE PHARMACOGENOMICS JOURNAL 2006; 6:95-104. [PMID: 16402079 DOI: 10.1038/sj.tpj.6500360] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative disease with a 1% incidence in the population over 55 years of age. Movement impairments represent undoubtedly the hallmark of the disorder; however, extensive evidence implicates cognitive deficits as concomitant peculiar features. Brain-derived neurotrophic factor (BDNF) colocalizes with dopamine neurons in the substantia nigra, where dopaminergic cell bodies are located, and it has recently garnered attention as a molecule crucial for cognition, a function that is also compromised in PD patients. Thus, due to its colocalization with dopaminergic neurons and its role in cognition, BDNF might possess a dual role in PD, both as a neuroprotective molecule, since its inhibition leads to loss of nigral dopaminergic neurons, and as a neuromodulator, as its enhanced expression ameliorates cognitive processes. In this review, we discuss the mechanism of action of established as well as novel drugs for PD with a particular emphasis to those interfering with BDNF biosynthesis.
Collapse
Affiliation(s)
- F Fumagalli
- Department of Pharmacological Sciences, Center of Neuropharmacology, Milan, Italy.
| | | | | |
Collapse
|
47
|
Danzeisen R, Schwalenstoecker B, Gillardon F, Buerger E, Krzykalla V, Klinder K, Schild L, Hengerer B, Ludolph AC, Dorner-Ciossek C, Kussmaul L. Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-amino-4,5,6,7-tetrahydro-6-Lpropylamino-benzathiazole dihydrochloride]. J Pharmacol Exp Ther 2006; 316:189-99. [PMID: 16188953 DOI: 10.1124/jpet.105.092312] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pramipexole has been shown to possess neuroprotective properties in vitro that are partly independent of its dopaminergic agonism. The site of neuroprotective action is still unknown. Using [(3)H]pramipexole, we show that the drug enters and accumulates in cells and mitochondria. Detoxification of reactive oxygen species (ROS) by pramipexole is shown in vitro and in vivo by evaluating mitochondrial ROS release and aconitase-2 activity, respectively. Pramipexole and its (+)-enantiomer SND919CL2X [low-affinity dopamine agonist; (+)2-amino-4,5,6,7-tetrahydro-6-l-propylamino-benzathiazole dihydrochloride] possess equipotent efficacy toward hydrogen peroxide and nitric oxide generated in vitro and inhibit cell death in glutathione-depleted neuroblastoma cells. IC(50) values ranged from 15 to 1000 microM, consistent with the reactivity of the respective radical and the compartmentalization of ROS generation and ROS detoxification. Finally, both compounds were tested in superoxide dismutase 1-G93A mice, a model of familial amyotrophic lateral sclerosis. SND919CL2X (100 mg/kg) prolongs survival time and preserves motor function in contrast to pramipexole (3 mg/kg), which shows an increase in running wheel activity before disease onset, presumably caused by the dopaminergic agonism. We conclude that both enantiomers, in addition to their dopaminergic activity, are able to confer neuroprotective effects by their ability to accumulate in brain, cells, and mitochondria where they detoxify ROS. However, a clinical use of pramipexole as a mitochondria-targeted antioxidant is unlikely, because the high doses needed for antioxidative action in vitro are not accessible in vivo due to dopaminergic side effects. In contrast, SND919CL2X may represent the prototype of a mitochondria-targeted neuroprotectant because it has the same antioxidative properties without causing adverse effects.
Collapse
Affiliation(s)
- R Danzeisen
- Department of Central Nervous System Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Du F, Li R, Huang Y, Li X, Le W. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci 2005; 22:2422-30. [PMID: 16307585 DOI: 10.1111/j.1460-9568.2005.04438.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection.
Collapse
Affiliation(s)
- Fang Du
- Joint Laboratory of Institutes of Biomedical Sciences, Ruijin Hospital, Jiao Tong University Medical School, and Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, P. R. China
| | | | | | | | | |
Collapse
|