1
|
Yao SQ, Ye Y, Li Q, Wang XY, Yan L, Huo XM, Pan CS, Fu Y, Liu J, Han JY. YangXueQingNaoWan attenuated blood brain barrier disruption after thrombolysis with tissue plasminogen activator in ischemia stroke. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117024. [PMID: 37572928 DOI: 10.1016/j.jep.2023.117024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT YangXueQingNaoWan (YXQNW), a compound Chinese medicine, has been widely used for dizziness, irritability, insomnia, and dreaminess caused by blood deficiency and liver hyperactivity in China. However, whether YXQNW can inhibit cerebral microvascular exudation and cerebral hemorrhage (CH) caused by blood brain barrier (BBB) damage after tissue plasminogen activator (tPA) still unknown. AIM OF THE RESEARCH To observe the effect of YXQNW on cerebral microvascular exudation and CH after tPA and investigate its mechanism in protecting BBB. MATERIALS AND METHODS Male C57BL/6 N mice suffered from ischemia stroke by mechanical detachment of carotid artery thrombi with the stimulation of ferric chloride. Then mice were treated with tPA (10 mg/kg) and/or YXQNW (0.72 g/kg) at 4.5 h. Cerebral blood flow (CBF), infarct size, survival rate, neurological scores, gait analysis, Evans blue extravasation, cerebral water content, fluorescein isothiocyanate-labeled albumin leakage, hemorrhage, junction and basement membrane proteins expression, leukocyte adhesion and matrix metalloproteinases (MMPs) expression were evaluated 24 h after tPA. Proteomics was used to identify target proteins. RESULTS YXQNW inhibited cerebral infarction, neurobehavioral deficits, decreased survival, Evans blue leakage, albumin leakage, cerebral water content and CH after tPA thrombolysis; improved CBF, low-expression and degradation of junction proteins, basement membrane proteins, Arhgap21 and its downstream α-catenin and β-catenin proteins expression; and suppressed the increase of adherent leukocytes and the release of MMP-9 derived from macrophage. CONCLUSION YXQNW relieved BBB damage and attenuated cerebral microvascular exudation and CH after tPA thrombolysis. The effect of YXQNW on cerebral microvascular exudation was associated with the inhibition of the low-expression of junction proteins, especially AJs mediated by Rho GTPase-activating protein 21 (Arhgap21), while the effect on CH was associated with the inhibition of leukocyte adhesion, the release of MMP-9 derived from macrophage, and low-expression and degradation of collagen IV and laminin in the vascular basement membrane.
Collapse
Affiliation(s)
- Shu-Qi Yao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China.
| |
Collapse
|
2
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Yang W, Wu W, Zhao Y, Li Y, Zhang C, Zhang J, Chen C, Cui S. Caveolin-1 suppresses hippocampal neuron apoptosis via the regulation of HIF1α in hypoxia in naked mole-rats. Cell Biol Int 2022; 46:2060-2074. [PMID: 36054154 PMCID: PMC9826031 DOI: 10.1002/cbin.11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are highly social and subterranean rodents with large communal colonies in burrows containing low oxygen levels. The inhibition of severe hypoxic conditions is of particular interest to this study. To understand the mechanisms that facilitate neuronal preservation during hypoxia, we investigated the proteins regulating hypoxia tolerance in NMR hippocampal neurons. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, confers prosurvival signalling in the central nervous system. The present study aimed to investigate the role of Cav-1 in hypoxia-induced neuronal injury. Western blotting analysis and immunocytochemistry showed that Cav-1 expression was significantly upregulated in NMR hippocampal neurons under 8% O2 conditions for 8 h. Cav-1 alleviates apoptotic neuronal death from hypoxia. Downregulation of Cav-1 by lentiviral vectors suggested damage to NMR hippocampal neurons under hypoxic conditions in vitro and in vivo. Overexpression of Cav-1 by LV-Cav-1 enhanced hypoxic tolerance of NMR hippocampal neurons in vitro and in vivo. Mechanistically, the levels of hypoxia inducible factor-1α (HIF-1α) are also increased under hypoxic conditions. After inhibiting the binding of HIF-1α to hypoxia response elements in the DNA by echinomycin, Cav-1 levels were downregulated significantly. Furthermore, chromatin immunoprecipitation assays showed the direct role of HIF1α in regulating the expression levels of Cav-1 in NMR hippocampal neurons under hypoxic conditions. These findings suggest that Cav-1 plays a critical role in modulating the apoptosis of NMR hippocampal neurons and warrant further studies targeting Cav-1 to treat hypoxia-associated brain diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Wenqing Wu
- Department of Laboratory Animal CenterAcademy of Military Medical SciencesBeijingChina
| | - Ying Zhao
- Shanghai Laboratory Animal Research CenterShanghaiChina
| | - Yu Li
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chengcai Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Chao Chen
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
6
|
Siddiqui EM, Mehan S, Bhalla S, Shandilya A. Potential role of IGF-1/GLP-1 signaling activation in intracerebral hemorrhage. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100055. [PMID: 36685765 PMCID: PMC9846475 DOI: 10.1016/j.crneur.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
IGF-1 and GLP-1 receptors are essential in all tissues, facilitating defense by upregulating anabolic processes. They are abundantly distributed throughout the central nervous system, promoting neuronal proliferation, survival, and differentiation. IGF-1/GLP-1 is a growth factor that stimulates neurons' development, reorganization, myelination, and survival. In primary and secondary brain injury, the IGF-1/GLP-1 receptors are impaired, resulting in further neuro complications such as cerebral tissue degradation, neuroinflammation, oxidative stress, and atrophy. Intracerebral hemorrhage (ICH) is a severe condition caused by a stroke for which there is currently no effective treatment. While some pre-clinical studies and medications are being developed as symptomatic therapies in clinical trials, there are specific pharmacological implications for improving post-operative conditions in patients with intensive treatment. Identifying the underlying molecular process and recognizing the worsening situation can assist researchers in developing effective therapeutic solutions to prevent post-hemorrhagic symptoms and the associated neural dysfunctions. As a result, in the current review, we have addressed the manifestations of the disease that are aggravated by the downregulation of IGF-1 and GLP-1 receptors, which can lead to ICH or other neurodegenerative disorders. Our review summarizes that IGF-1/GLP-1 activators may be useful for treating ICH and its related neurodegeneration.
Collapse
Affiliation(s)
- Ehraz Mehmood Siddiqui
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ambika Shandilya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
7
|
Liu JX, Zheng XY, Zhang YH, Song WT, Chang D. Research progress on the pharmacological mechanisms of chinese medicines that tonify Qi and activate blood against cerebral ischemia/reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_21_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
9
|
Zhou M, Shi SX, Liu N, Jiang Y, Karim MS, Vodovoz SJ, Wang X, Zhang B, Dumont AS. Caveolae-Mediated Endothelial Transcytosis across the Blood-Brain Barrier in Acute Ischemic Stroke. J Clin Med 2021; 10:jcm10173795. [PMID: 34501242 PMCID: PMC8432094 DOI: 10.3390/jcm10173795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. Brain endothelial cells form a para and transcellular barrier to most blood-borne solutes via tight junctions (TJs) and rare transcytotic vesicles. The prevailing view attributes the destruction of TJs to the resulting BBB damage following IS. Recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, precedes and is independent of TJs disintegration. Thus, our understanding of post stroke BBB deficits needs to be revised. These recent findings could provide a conceptual basis for the development of alternative treatment strategies. Presently, our concept of how BBB endothelial transcytosis develops is incomplete, and treatment options remain limited. This review summarizes the cellular structure and biological classification of endothelial transcytosis at the BBB and reviews related molecular mechanisms. Meanwhile, relevant transcytosis-targeted therapeutic strategies for IS and research entry points are prospected.
Collapse
Affiliation(s)
- Min Zhou
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (M.Z.); (S.X.S.); Tel.: +86-22-6036-2762 (M.Z.); +60-2323-7432 (S.X.S.)
| | - Samuel X. Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
- Correspondence: (M.Z.); (S.X.S.); Tel.: +86-22-6036-2762 (M.Z.); +60-2323-7432 (S.X.S.)
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Mardeen S. Karim
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Samuel J. Vodovoz
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Aaron S. Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| |
Collapse
|
10
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
11
|
Luo T, Liu H, Chen B, Liu H, Abdel-Latif A, Kitakaze M, Wang X, Wu Y, Chou D, Kim JK. A novel role of claudin-5 in prevention of mitochondrial fission against ischemic/hypoxic stress in cardiomyocytes. Can J Cardiol 2021; 37:1593-1606. [PMID: 33838228 DOI: 10.1016/j.cjca.2021.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Downregulation of claudin-5 in the heart is associated with the end-stage heart failure. However, the underlying mechanism of claudin-5 is unclear. Here we investigated the molecular actions of claudin-5 in perspective of mitochondria in cardiomyocytes to better understand the role of claudin-5 in cardioprotection during ischemia. METHODS AND RESULTS Claudin-5 was detected in the murine heart tissue and the neonatal rat cardiomyocytes (NRCM). Its protein level was severely decreased after myocardial ischemia/reperfusion (I/R; 30 min/24 h) or hypoxia/reoxygenation (H/R; 24 h/4 h). Claudin-5 was present in the mitochondria of NRCM as determined by confocal microscopy. H/R-induced downregulation of claudin-5 was accompanied by mitochondrial fragmentation. The protein level of mitofusin 2 (Mfn2) was dramatically decreased while the expression of dynamin-related protein (Drp) 1 was significantly increased after H/R. H/R-induced mitochondrial swelling and fission were observed by transmission electron microscope (TEM). Overexpression of claudin-5 by adenoviral infection reversed these structural disintegration of mitochondria. The mitochondria-centered intrinsic pathway of apoptosis triggered by H/R and indicated by the expression of cytochrome c and cleaved caspase 3 in the cytoplasm of NRCMs was also reduced by overexpressing claudin-5. Overexpression of claudin-5 in mouse heart also significantly decreased cleaved caspase 3 expression and the infarct size in ischemic heart with improved systolic function. CONCLUSION We demonstrated for the first time the presence of claudin-5 in the mitochondria in cardiomyocytes and provided the firm evidence for the cardioprotective role of claudin-5 in the preservation of mitochondrial dynamics and cell fate against hypoxia- or ischemia-induced stress.
Collapse
Affiliation(s)
- Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China; Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Haiqiong Liu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Baihe Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China; Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Han Liu
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, 40536-0509, USA
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, 5675-8565, Japan
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuanzhou Wu
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Dylan Chou
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Jin Kyung Kim
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
13
|
Eser Ocak P, Ocak U, Sherchan P, Gamdzyk M, Tang J, Zhang JH. Overexpression of Mfsd2a attenuates blood brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury. Exp Neurol 2020; 326:113203. [PMID: 31954682 PMCID: PMC7038791 DOI: 10.1016/j.expneurol.2020.113203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Disruption of the blood brain barrier (BBB) and subsequent cerebral edema formation is one of the major adverse effects of brain surgery, leading to postoperative neurological dysfunction. Recently, Mfsd2a has been shown to have a crucial role for the maintenance of BBB functions. In this study, we aimed to evaluate the role of Mfsd2a on BBB disruption following surgical brain injury (SBI) in rats. MATERIALS AND METHODS Rats were subjected to SBI by partial resection of the right frontal lobe. To evaluate the effect of Mfsd2a on BBB permeability and neurobehavior outcome following SBI, Mfsd2a was either overexpressed or downregulated in the brain by administering Mfsd2a CRISPR activation or knockout plasmids, respectively. The potential mechanism of Mfsd2a-mediated BBB protection through the cav-1/Nrf-2/HO-1 signaling pathway was evaluated. RESULTS Mfsd2a levels were significantly decreased while cav-1, Nrf-2 and HO-1 levels were increased in the right frontal perisurgical area following SBI. When overexpressed, Mfsd2a attenuated brain edema and abolished neurologic impairment caused by SBI while downregulation of Mfsd2a expression further deteriorated BBB functions and worsened neurologic performance following SBI. The beneficial effect of Mfsd2a overexpression on BBB functions was associated with diminished expression of cav-1, increased Keap-1/Nrf-2 dissociation and further augmented levels of Nrf-2 and HO-1 in the right frontal perisurgical area, leading to enhanced levels of tight junction proteins following SBI. The BBB protective effect of Mfsd2a was blocked by selective inhibitors of Nrf-2 and HO-1. CONCLUSIONS Mfsd2a attenuates BBB disruption through cav-1/Nrf-2/HO-1 signaling pathway in rats subjected to experimental SBI.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurosurgery, Uludag University School of Medicine, Bursa 16120, Turkey
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa 16310, Turkey; Department of Emergency Medicine, Bursa City Hospital, Bursa 16110, Turkey
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
14
|
Wang HM, Huang P, Li Q, Yan LL, Sun K, Yan L, Pan CS, Wei XH, Liu YY, Hu BH, Wang CS, Fan JY, Han JY. Post-treatment With Qing-Ying-Tang, a Compound Chinese Medicine Relives Lipopolysaccharide-Induced Cerebral Microcirculation Disturbance in Mice. Front Physiol 2019; 10:1320. [PMID: 31708795 PMCID: PMC6823551 DOI: 10.3389/fphys.2019.01320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: Lipopolysaccharide (LPS) causes microvascular dysfunction, which is a key episode in the pathogenesis of endotoxemia. This work aimed to investigate the effect of Qing-Ying-Tang (QYT), a compound Chinese medicine in cerebral microcirculation disturbance and brain damage induced by LPS. Methods: Male C57/BL6 mice were continuously transfused with LPS (7.5 mg/kg/h) through the left femoral vein for 2 h. QYT (14.3 g/kg) was given orally 2 h after LPS administration. The dynamics of cerebral microcirculation were evaluated by intravital microscopy. Brain tissue edema was assessed by brain water content and Evans Blue leakage. Cytokines in plasma and brain were evaluated by flow cytometry. Confocal microscopy and Western blot were applied to detect the expression of junction and adhesion proteins, and signaling proteins concerned in mouse brain tissue. Results: Post-treatment with QYT significantly ameliorated LPS-induced leukocyte adhesion to microvascular wall and albumin leakage from cerebral venules and brain tissue edema, attenuated the increase of MCP-1, MIP-1α, IL-1α, IL-6, and VCAM-1 in brain tissue and the activation of NF-κB and expression of MMP-9 in brain. QYT ameliorated the downregulation of claudin-5, occludin, JAM-1, ZO-1, collagen IV as well as the expression and phosphorylation of VE-cadherin in mouse brain. Conclusions: This study demonstrated that QYT protected cerebral microvascular barrier from disruption after LPS by acting on the transcellular pathway mediated by caveolae and paracellular pathway mediated by junction proteins. This result suggests QYT as a potential strategy to deal with endotoxemia.
Collapse
Affiliation(s)
- Hao-Min Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Lu-Lu Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
15
|
Jiao YQ, Huang P, Yan L, Sun K, Pan CS, Li Q, Fan JY, Ma ZZ, Han JY. YangXue QingNao Wan, a Compound Chinese Medicine, Attenuates Cerebrovascular Hyperpermeability and Neuron Injury in Spontaneously Hypertensive Rat: Effect and Mechanism. Front Physiol 2019; 10:1246. [PMID: 31632292 PMCID: PMC6779832 DOI: 10.3389/fphys.2019.01246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Objective The purpose of the study was to explore the effect of YangXue QingNao Wan (YXQNW), a compound Chinese medicine, on cerebrovascular hyperpermeability, neuronal injury, and related mechanisms in spontaneously hypertensive rat (SHR). Methods Fourteen-week-old male SHR were used, with Wistar Kyoto (WKY) rats as control. YXQNW (0.5 g/kg/day), enalapril (EN, 8 mg/kg/day), and nifedipine (NF, 7.1 mg/kg/day) were administrated orally for 4 weeks. To assess the effects of the YXQNW on blood pressure, the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) were measured. After administering the drugs for 4 weeks, the cerebral blood flow (CBF), albumin leakage from microvessels in middle cerebral artery (MCA)-dominated area, and the number and morphology of microvessels were assessed in the hippocampus area and cortex. Neuronal damage and apoptosis were assessed by Nissl staining and TUNEL staining. To assess the mechanisms of cerebrovascular hyperpermeability, we performed immunofluorescence and Western blot to assess the expression and integrity of cerebral microvascular tight junction (TJ) and caveolin-1 (Cav-1) in cortex. Energy metabolism and Src-MLC-MLCK pathway in cortex were assessed then for elucidating the underlying mechanism of the observed effect of YXQNW. Results Spontaneously hypertensive rat exhibited higher blood pressure, Evans blue (EB) extravasation, albumin leakage, increased brain water content, decreased CBF, perivascular edema, and neuronal apoptosis in the hippocampus and cortex, all of which were attenuated by YXQNW treatment. YXQNW inhibited the downregulation of TJ proteins, mitochondrial Complex I, Complex II, and Complex V, and upregulation of caveolin-1, inhibiting Src/MLCK/MLC signaling in SHR. YXQNW combined with EN + NF revealed a better effect for some outcomes compared with either YXQNW or EN + NF alone. Conclusion The overall result shows the potential of YXQNW to attenuate blood–brain barrier (BBB) breakdown in SHR, which involves regulation of energy metabolism and Src/MLCK/MLC signaling. This result provides evidence supporting the application of YXQNW as an adjuvant management for hypertensive patients to prevent hypertensive encephalopathy.
Collapse
Affiliation(s)
- Ying-Qian Jiao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Li DT, Sun K, Huang P, Pan CS, Yan L, Ayan A, Liu YY, Fan JY, Fang WG, Han JY. Yiqifumai injection and its main ingredients attenuate lipopolysaccharide-induced cerebrovascular hyperpermeability through a multi-pathway mode. Microcirculation 2019; 26:e12553. [PMID: 31059171 DOI: 10.1111/micc.12553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Yiqifumai injection is a compound Chinese medicine used to treat microcirculatory disturbance-related diseases clinically. Our previous study proved that Yiqifumai injection pretreatment inhibited lipopolysaccharide-induced venular albumin leakage in rat mesentery. This study aimed to investigate whether Yiqifumai injection attenuated cerebral microvascular hyperpermeability and corresponding contribution of its main ingredients. METHODS Rats were challenged by lipopolysaccharide infusion (5 mg/kg/h) for 90 minutes. Yiqifumai injection (160 mg/kg/h), Rb1 (5 mg/kg/h), Sch (2.5 mg/kg/h), and Rb1 (5 mg/kg/h) + Sch (2.5 mg/kg/h) were infused 30 minutes before (pretreatment) or after (post-treatment) lipopolysaccharide administration. RESULTS Both pretreatment and post-treatment with Yiqifumai injection attenuated cerebral venular albumin leakage during lipopolysaccharide infusion and cerebrovascular hyperpermeability at 72 hours after lipopolysaccharide infusion. Yiqifumai injection restrained the decreased junction protein expression, adenosine triphosphate content, and mitochondria complex I, II, IV, and V activities. Moreover, Yiqifumai injection inhibited toll-like receptor-4 expression, Src phosphorylation, and caveolin-1 expression. Its main ingredients Rb1 and Sch alone worked differently, with Rb1 being more effective for enhancing energy metabolism, while Sch attenuating toll-like receptor-4 expression and Src activation. CONCLUSION Yiqifumai injection exerts a protective and ameliorated effect on cerebral microvascular hyperpermeability, which is more effective than any of its ingredients, possibly due to the interaction of its main ingredients through a multi-pathway mode.
Collapse
Affiliation(s)
- Dan-Tong Li
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ayididaer Ayan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Wei-Gang Fang
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
17
|
Two Diverse Hemodynamic Forces, a Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm Formation. Transl Stroke Res 2019; 11:80-92. [DOI: 10.1007/s12975-019-0690-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023]
|
18
|
de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26:5. [PMID: 30621719 PMCID: PMC6325740 DOI: 10.1186/s12929-019-0499-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Rosmarinus officinalis L. (rosemary) is a medicinal plant native to the Mediterranean region and cultivated around the world. Besides the therapeutic purpose, it is commonly used as a condiment and food preservative. R. officinalis L. is constituted by bioactive molecules, the phytocompounds, responsible for implement several pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, antiproliferative, antitumor and protective, inhibitory and attenuating activities. Thus, in vivo and in vitro studies were presented in this Review, approaching the therapeutic and prophylactic effects of R. officinalis L. on some physiological disorders caused by biochemical, chemical or biological agents. In this way, methodology, mechanisms, results, and conclusions were described. The main objective of this study was showing that plant products could be equivalent to the available medicines.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | | | - Luciane Dias de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
19
|
Huang Q, Zhong W, Hu Z, Tang X. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J Neuroinflammation 2018; 15:348. [PMID: 30572925 PMCID: PMC6302517 DOI: 10.1186/s12974-018-1387-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke starts a series of pathophysiological processes that cause brain injury. Caveolin-1 (cav-1) is an integrated protein and locates at the caveolar membrane. It has been demonstrated that cav-1 can protect blood–brain barrier (BBB) integrity by inhibiting matrix metalloproteases (MMPs) which degrade tight junction proteins. This article reviews recent developments in understanding the mechanisms underlying BBB dysfunction, neuroinflammation, and oxidative stress after ischemic stroke, and focuses on how cav-1 modulates a series of activities after ischemic stroke. In general, cav-1 reduces BBB permeability mainly by downregulating MMP9, reduces neuroinflammation through influencing cytokines and inflammatory cells, promotes nerve regeneration and angiogenesis via cav-1/VEGF pathway, reduces apoptosis, and reduces the damage mediated by oxidative stress. In addition, we also summarize some experimental results that are contrary to the above and explore possible reasons for these differences.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
20
|
Miyajima N, Ito M, Rokugawa T, Iimori H, Momosaki S, Omachi S, Shimosegawa E, Hatazawa J, Abe K. Detection of neuroinflammation before selective neuronal loss appearance after mild focal ischemia using [ 18F]DPA-714 imaging. EJNMMI Res 2018; 8:43. [PMID: 29884977 PMCID: PMC5993708 DOI: 10.1186/s13550-018-0400-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background Translocator protein (TSPO) imaging can be used to detect neuroinflammation (including microglial activation) after acute cerebral infarction. However, longitudinal changes of TSPO binding after mild ischemia that induces selective neuronal loss (SNL) without acute infarction are not well understood. Here, we performed TSPO imaging with [18F]DPA-714 to determine the time course of neuroinflammation and SNL after mild focal ischemia. Results Mild focal ischemia was induced by middle cerebral artery occlusion (MCAO) for 20 min. In MCAO rats without acute infarction investigated by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, in vitro ARG revealed a significant increase of [18F]DPA-714 binding in the ipsilateral striatum compared with that in the contralateral side at 1, 2, 3, and 7 days after MCAO. Increased [18F]DPA-714 binding was observed in the cerebral cortex penumbra, reaching maximal values at 7 days after MCAO. Activation of striatal microglia and astrocytes was observed with immunohistochemistry of ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) at 2, 3, and 7 days after MCAO. SNL was investigated with Nissl staining and neuronal nuclei (NeuN) immunostaining and observed in the ischemic core region of the striatum on days 3 and 7 after MCAO. We confirmed that total distribution volume of [18F]DPA-714 in the ipsilateral striatum was significantly increased at 2 and 7 days after MCAO using positron emission tomography (PET). Conclusions [18F]DPA-714 binding measured with in vitro ARG was increased before SNL appeared, and this change was detected by in vivo PET. These findings suggest that TSPO PET imaging might be useful for detection of neuroinflammation leading to SNL after focal ischemia.
Collapse
Affiliation(s)
- Natsumi Miyajima
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan.
| | - Miwa Ito
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| | - Takemi Rokugawa
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| | - Hitoshi Iimori
- Department of Applied Chemistry and Analysis, Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Sotaro Momosaki
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| | - Shigeki Omachi
- Department of medical affairs, Shionogi & Co., Ltd., Osaka, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Abe
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, 5610825, Japan
| |
Collapse
|
21
|
Gu YY, Huang P, Li Q, Liu YY, Liu G, Wang YH, Yi M, Yan L, Wei XH, Yang L, Hu BH, Zhao XR, Chang X, Sun K, Pan CS, Cui YC, Chen QF, Wang CS, Fan JY, Ma ZZ, Han JY. YangXue QingNao Wan and Silibinin Capsules, the Two Chinese Medicines, Attenuate Cognitive Impairment in Aged LDLR (+/-) Golden Syrian Hamsters Involving Protection of Blood Brain Barrier. Front Physiol 2018; 9:658. [PMID: 29910744 PMCID: PMC5992341 DOI: 10.3389/fphys.2018.00658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
The purpose of the study was to explore the effect and the underlying mechanism of YangXue QingNao Wan (YXQNW) and Silibinin Capsules (SC), the two Chinese medicines, on cognitive impairment in older people with familial hyperlipidaemia. Fourteen month-old female LDLR (+/-) golden Syrian hamsters were used with their wild type as control. YXQNW (0.5 g/kg/day), SC (0.1 g/kg/day), or YXQNW (0.5 g/kg/day) + SC (0.1 g/kg/day) were administrated orally for 30 days. To assess the effects of the two drugs on plasma lipid content and cognitive ability, plasma TC, TG, LDL-C, and HDL-C were measured, and Y maze task was carried out both before and after administration. After administering of the drugs for 30 days, to evaluate the effect of the two drugs on disturbed blood flow caused by hyperlipidemia, the cerebral blood flow (CBF) was measured. To assess blood-brain barrier integrity, albumin leakage in middle cerebral artery (MCA) area was determined. To evaluate the effect of the drugs on impaired microvessels, the number and morphology of microvessels were assessed in hippocampus area. To further evaluate the ultrastructure of microvessels in hippocampus, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were carried out. To assess the profiles of claudin-5 and occludin in hippocampus, we performed immunofluorescence. Finally, to assess the expression of claudin-5, JAM-1, occludin and ZO-1 in hippocampus, western blot was carried out. The results showed that YXQNW, SC, and YXQNW + SC improved cognitive impairment of aged LDLR (+/-) golden Syrian hamsters without lowering plasma TC and LDL-C. YXQNW, SC, and YXQNW + SC attenuated albumin leakage in MCA area and neuronal damage in hippocampus, concomitant with an increase in CBF, a decrease of perivascular edema and an up-regulated expression of claudin-5, occludin and ZO-1. In conclusion, YXQNW, SC, and YXQNW + SC are able to improve cognitive ability in aged LDLR (+/-) golden Syrian hamsters via mechanisms involving maintaining blood-brain barrier integrity. These findings provide evidence suggesting YXQNW or SC as a potential regime to counteract the cognitive impairment caused by familial hypercholesterolemia.
Collapse
Affiliation(s)
- You-Yu Gu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - George Liu
- Key Laboratory of Molecular Cardiovascular Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Yu-Hui Wang
- Key Laboratory of Molecular Cardiovascular Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Anatomy, Peking University Health Science Center, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xin-Rong Zhao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yuan-Chen Cui
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Qing-Fang Chen
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Chuan-She Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Li Y, Li Q, Pan CS, Yan L, Hu BH, Liu YY, Yang L, Huang P, Zhao SY, Wang CS, Fan JY, Wang XM, Han JY. Bushen Huoxue Attenuates Diabetes-Induced Cognitive Impairment by Improvement of Cerebral Microcirculation: Involvement of RhoA/ROCK/moesin and Src Signaling Pathways. Front Physiol 2018; 9:527. [PMID: 29867568 PMCID: PMC5962779 DOI: 10.3389/fphys.2018.00527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Type 2 Diabetes mellitus (T2DM) is closely correlated with cognitive impairment and neurodegenerative disease. Bushen Huoxue (BSHX) is a compound Chinese medicine used clinically to treat diabetes-induced cognitive impairment. However, its underlying mechanisms remain unclear. In the present study, KKAy mice, a genetic model of type 2 diabetes with obesity and insulin resistant hyperglycemia, received a daily administration of BSHX for 12 weeks. Blood glucose was measured every 4 weeks. After 12 weeks, BSHX treatment significantly ameliorated the T2DM related insults, including the increased blood glucose, the impaired spatial memory, decreased cerebral blood flow (CBF), occurrence of albumin leakage, leukocyte adhesion and opening capillary rarefaction. Meanwhile, the downregulation of the tight junction proteins (TJ) claudin-5, occludin, zonula occluden-1 (ZO-1) and JAM-1 between endothelial cells, amyloid-β (Aβ) accumulation in hippocampus, increased AGEs and RAGE, and expression of RhoA/ROCK/moesin signaling pathway and phosphorylation of Src kinase in KKAy mice were significantly protected by BSHX treatment. These results indicate that the protective effect of BSHX on T2DM-induced cognitive impairment involves regulation of RhoA/ROCK1/moesin signaling pathway and phosphorylation of Src kinase.
Collapse
Affiliation(s)
- Yuan Li
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Anatomy, Peking University Health Science Center, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Shao-Yang Zhao
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, China
| | - Chuan-She Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xue-Mei Wang
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Neuroprotective effects of Tongxinluo on focal cerebral ischemia and reperfusion injury in rats associated with the activation of the MEK1/2/ERK1/2/p90RSK signaling pathway. Brain Res 2018; 1685:9-18. [PMID: 29425910 DOI: 10.1016/j.brainres.2018.01.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Ischemic stroke brings a huge family and social burden. Although the reperfusion of ischemic cerebral tissue is the most important way to rescue ischemic stroke, ischemia-reperfusion (I/R) injury further results in brain damage and even lead to death. Recent studies demonstrated that Tongxinluo (TXL) helps to protect the brain against focal cerebral I/R injury in rats by reducing neuronal apoptosis, and the MEK1/2/ERK1/2/90 ribosomal S6 kinase (p90RSK) pathway may be involved in this protective effect. Therefore, our present research was designed to identify the potential mechanisms involved. Adult male Sprague-Dawley rats (n = 108) were randomly divided into 4 groups: sham, cerebral ischemia and reperfusion (I/R), I/R plus TXL (TXL), and TXL plus U0126, a highly selective inhibitor of MEK 1 and MEK 2 (TXL + U0126). Brain edema was measured by T2-weighted magnetic resonance imaging (MRI). Pathological destruction of the blood brain barrier (BBB) ultrastructure was assessed by transmission electron microscopy, and proteins involved in the MEK1/2/ERK1/2/p90RSK pathway were detected by immunofluorescence and Western blotting. Our results indicated that TXL significantly improved neurological function, reduced brain edema, ameliorated the destruction of the BBB ultrastructure and markedly reduced neuronal injury. However, these benefits were diminished when the MEK1/2/ERK1/2/p90RSK pathway was inhibited by U0126. We also found that TXL upregulated the expression levels of p-MEK1/2, p-ERK1/2, p-p90RSK and p-bad, which were all significantly reversed by U0126. Collectively, our data demonstrate that TXL provides neuroprotection against cerebral I/R injury and neuronal injury, and that these effects are mediated, in part, by activation of the MEK1/2/ERK1/2/p90RSK pathway.
Collapse
|
24
|
Yang XM, Chen XH, Lu JF, Zhou CM, Han JY, Chen CH. In vivo observation of cerebral microcirculation after experimental subarachnoid hemorrhage in mice. Neural Regen Res 2018; 13:456-462. [PMID: 29623930 PMCID: PMC5900508 DOI: 10.4103/1673-5374.228728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acute brain injury caused by subarachnoid hemorrhage is the major cause of poor prognosis. The pathology of subarachnoid hemorrhage likely involves major morphological changes in the microcirculation. However, previous studies primarily used fixed tissue or delayed injury models. Therefore, in the present study, we used in vivo imaging to observe the dynamic changes in cerebral microcirculation after subarachnoid hemorrhage. Subarachnoid hemorrhage was induced by perforation of the bifurcation of the middle cerebral and anterior cerebral arteries in male C57/BL6 mice. The diameter of pial arterioles and venules was measured by in vivo fluorescence microscopy at different time points within 180 minutes after subarachnoid hemorrhage. Cerebral blood flow was examined and leukocyte adhesion/albumin extravasation was determined at different time points before and after subarachnoid hemorrhage. Cerebral pial microcirculation was abnormal and cerebral blood flow was reduced after subarachnoid hemorrhage. Acute vasoconstriction occurred predominantly in the arterioles instead of the venules. A progressive increase in the number of adherent leukocytes in venules and substantial albumin extravasation were observed between 10 and 180 minutes after subarachnoid hemorrhage. These results show that major changes in microcirculation occur in the early stage of subarachnoid hemorrhage. Our findings may promote the development of novel therapeutic strategies for the early treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Xu-Hao Chen
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jian-Fei Lu
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Chang-Man Zhou
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Hua Chen
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
25
|
Inhibition of Caveolae Contributes to Propofol Preconditioning-Suppressed Microvesicles Release and Cell Injury by Hypoxia-Reoxygenation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3542149. [PMID: 29181124 PMCID: PMC5625844 DOI: 10.1155/2017/3542149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023]
Abstract
Endothelial microvesicles (EMVs), released after endothelial cell (EC) apoptosis or activation, may carry many adverse signals and propagate injury by intercellular transmission. Caveolae are 50–100 nm cell surface plasma membrane invaginations involved in many pathophysiological processes. Recent evidence has indicated EMVs and caveolae may have functional effects in cells undergoing H/R injury. Propofol, a widely used anaesthetic, confers antioxidative stress capability in the same process. But the connection between EMVs, H/R, and caveolae remains largely unclear. Here, we found that H/R significantly increased the release of EMVs, the expression of CAV-1 (the structural protein responsible for maintaining the shape of caveolae), oxidative stress, and the mitochondrial damage, and all these changes were inhibited by propofol preconditioning. Interestingly, the caveolae inhibitor Mβ-CD strengthened the protective effect of propofol preconditioning. We further found that the release of EMVs is more significantly reduced under propofol preconditioning in the presence of the caveolae inhibitor Mβ-CD. EMVs released from H/R-treated cells caused a substantially increased mitochondrial and cellular damage to normal HUVECs after 4 hours of coculture. Thus, we conclude that inhibition of caveolae contributes to propofol preconditioning-suppressed microvesicles release and cell injury by H/R.
Collapse
|
26
|
Novel Therapeutic Effects of Leonurine On Ischemic Stroke: New Mechanisms of BBB Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7150376. [PMID: 28690765 PMCID: PMC5485366 DOI: 10.1155/2017/7150376] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of morbidity and mortality globally. Leonurine (also named SCM-198), a compound extracted from Herba leonuri, was effective on the prevention of various cardiovascular and brain diseases. The purpose of this study was to explore the possible therapeutic potential of SCM-198 against ischemia reperfusion injury and underlying mechanisms. In the in vivo transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with SCM-198 could decrease infarct volume and improve neurological deficit by protecting against blood-brain barrier (BBB) breakdown. In the in vitro model of cell oxygen-glucose deprivation and reoxygenation (OGD/R), consistent results were obtained with decreased reactive oxygen species (ROS) production and maintained the BBB integrity. Further study demonstrated that SCM-198 increased the expression of histone deacetylase- (HDAC-) 4 which could inhibit NADPH oxidase- (NOX-) 4 and matrix metalloproteinase- (MMP-) 9 expression, resulting in the elevation of tight junction proteins, including claudin-5, occludin, and zonula occluden- (ZO-) 1. These results indicated SCM-198 protected BBB integrity by regulating the HDAC4/NOX4/MMP-9 tight junction pathway. Our findings provided novel insights into the protective effects and mechanisms of SCM-198 on ischemic stroke, indicating SCM-198 as a new class of potential drug against acute onset of ischemic stroke.
Collapse
|
27
|
Han JY, Li Q, Ma ZZ, Fan JY. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther 2017; 177:146-173. [PMID: 28322971 DOI: 10.1016/j.pharmthera.2017.03.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculation dysfunction and organ injury after ischemia and reperfusion (I/R) result from a complex pathologic process consisting of multiple links, with metabolism impairment in the ischemia phase and oxidative stress in the reperfusion phase as initiators, and any treatment targeting a single link is insufficient to cope with this. Compound Chinese medicine (CCM) has been applied in clinics in China and some Asian nations for >2000years. Studies over the past decades revealed the protective and therapeutic effect of CCMs and major ingredients on I/R-induced microcirculatory dysfunction and tissue injury in the heart, brain, liver, intestine, and so on. CCM contains diverse bioactive components with potential for energy metabolism regulation; antioxidant effect; inhibiting inflammatory cytokines release; adhesion molecule expression in leukocyte, platelet, and vascular endothelial cells; and the protection of thrombosis, albumin leakage, and mast cell degranulation. This review covers the major works with respect to the effects and underlying mechanisms of CCM and its ingredients on microcirculatory dysfunction and organ injury after I/R, providing novel ideas for dealing with this threat.
Collapse
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
28
|
Lu J, Jiang Z, Chen Y, Zhou C, Chen C. Knockout of programmed cell death 5 (PDCD5) gene attenuates neuron injury after middle cerebral artery occlusion in mice. Brain Res 2016; 1650:152-161. [DOI: 10.1016/j.brainres.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
|
29
|
Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci 2016; 17:64. [PMID: 27733124 PMCID: PMC5062881 DOI: 10.1186/s12868-016-0299-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebral oedema is closely related to the permeability of blood-brain barrier, vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) all of which are important blood-brain barrier (BBB) permeability regulatory factors. Zonula occludens 1 (ZO-1) and claudin-5 are also the key components of BBB. Hypertonic saline is widely used to alleviate cerebral oedema. This study aimed to explore the possible mechanisms underlying hypertonic saline that ameliorates cerebral oedema effectively. METHODS Middle cerebral artery occlusion (MCAO) model in Sprague-Dawley (SD) rats and of oxygen-glucose deprivation model in primary astrocytes were used in this study. The brain water content (BWC) was used to assess the effect of 10 % HS on cerebral oedema. The assessment of Evans blue (EB) extravasation was performed to evaluate the protective effect of 10 % HS on blood-brain barrier. The quantification of VEGF, VEGFR2, ZO-1 and claudin-5 was used to illustrate the mechanism of 10 % HS ameliorating cerebral oedema. RESULTS BWC was analysed by wet-to-dry ratios in the ischemic hemisphere of SD rats; it was significantly decreased after 10 % HS treatment (P < 0.05). We also investigated the blood-brain barrier protective effect by 10 % HS which reduced EB extravasation effectively in the peri-ischemic brain tissue. In parallel to the above notably at 24 h following MCAO, mRNA and protein expression of VEGF and VEGFR2 in the peri-ischemic brain tissue was down-regulated after 10 % HS treatment (P < 0.05). Along with this, in vitro studies showed increased VEGF and VEGFR2 mRNA and protein expression in primary astrocytes under hypoxic condition (P < 0.05), but it was suppressed after HS treatment (P < 0.05). In addition, HS inhibited the down-regulation of ZO-1, claudin-5 effectively. CONCLUSIONS The results suggest that 10 % HS could alleviate cerebral oedema possibly through reducing the ischemia induced BBB permeability as a consequence of inhibiting VEGF-VEGFR2-mediated down-regulation of ZO-1, claudin-5.
Collapse
Affiliation(s)
- Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Wei Cao
- Zhuzhou Central Hospital, Zhuzhou, 412007, People's Republic of China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Gaofeng Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Hongke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
30
|
Yang H, Li L, Zhou K, Wang Y, Guan T, Chai C, Kou J, Yu B, Yan Y. Shengmai injection attenuates the cerebral ischemia/reperfusion induced autophagy via modulation of the AMPK, mTOR and JNK pathways. PHARMACEUTICAL BIOLOGY 2016; 54:2288-2297. [PMID: 26983890 DOI: 10.3109/13880209.2016.1155625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Shengmai injection (SMI) is a patented Chinese medicine originated from the ancient Chinese herbal compound Shengmai san, which is used extensively for the treatment of cardiovascular and cerebrovascular disease in the clinic. Objective To determine the neuroprotective effect of SMI, we investigated the effect of SMI on cerebral ischemia/reperfusion (I/R) injury in mice as well as the mechanisms underlying this effect. Materials and methods Right middle cerebral artery was occluded by inserting a thread through internal carotid artery for 1 h, and then reperfused for 24 h in mice. The neuroprotective effects were determined using transmission electron microscopic examination, the evaluation of infarct volume, neurological deficits and water brain content. Related mechanisms were evaluated by immunofluorescence staining and western blotting. SMI was injected intraperitoneally after 1 h of ischemia at doses of 1.42, 2.84 and 5.68 g/kg. The control group received saline as the SMI vehicle. Results Results showed that SMI (1.42, 2.84 and 5.68 g/kg) could significantly reduce the infarct volume, SMI (5.68 g/kg) could also significantly improve the neurological deficits, decreased brain water content, as well as the neuronal morphological changes. SMI (5.68g/kg) could significantly inhibit the expression of autophagy-related proteins: Beclin1 and LC3. It also reduced the increase in LC3-positive cells. SMI (5.68 g/kg) remarkably inhibited the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and Jun N-terminal kinase (JNK) after 24 h of reperfusion. Discussion and conclusion The results indicate that SMI provides remarkable protection against cerebral ischemia/reperfusion injury, which may be partly due to the inhibition of autophagy and related signalling pathways.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Autophagy/drug effects
- Beclin-1/metabolism
- Brain/drug effects
- Brain/enzymology
- Brain/physiopathology
- Brain/ultrastructure
- Brain Edema/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Combinations
- Drugs, Chinese Herbal/administration & dosage
- Enzyme Activation
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/prevention & control
- Injections, Intraperitoneal
- JNK Mitogen-Activated Protein Kinases/metabolism
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/metabolism
- Neuroprotective Agents/administration & dosage
- Phosphorylation
- Phytotherapy
- Plants, Medicinal
- Reperfusion Injury/enzymology
- Reperfusion Injury/pathology
- Reperfusion Injury/physiopathology
- Reperfusion Injury/prevention & control
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Haopeng Yang
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Long Li
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Kecheng Zhou
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Yuqing Wang
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Teng Guan
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Chengzhi Chai
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Junping Kou
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Boyang Yu
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| | - Yongqing Yan
- a Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
31
|
Ha Park J, Yoo KY, Hye Kim I, Cho JH, Lee JC, Hyeon Ahn J, Jin Tae H, Chun Yan B, Won Kim D, Kyu Park O, Kwon SH, Her S, Su Kim J, Hoon Choi J, Hyun Lee C, Koo Hwang I, Youl Cho J, Hwi Cho J, Kwon YG, Ryoo S, Kim YM, Won MH, Jun Kang I. Hydroquinone Strongly Alleviates Focal Ischemic Brain Injury via Blockage of Blood–Brain Barrier Disruption in Rats. Toxicol Sci 2016; 154:430-441. [DOI: 10.1093/toxsci/kfw167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Chen FQ, Li Q, Pan CS, Liu YY, Yan L, Sun K, Mao XW, Mu HN, Wang MX, Wang CS, Fan JY, Cui YC, Zhang YP, Yang JY, Bai W, Han JY. Kudiezi Injection®Alleviates Blood-Brain Barrier Disruption After Ischemia-Reperfusion in Rats. Microcirculation 2016; 23:426-37. [DOI: 10.1111/micc.12288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/08/2016] [Indexed: 11/26/2022]
|
33
|
He F, Duan X, Dai R, Wang W, Yang C, Lin Q. PROTECTIVE EFFECTS OF ETHYL ACETATE EXTRACTION FROM GASTRODIA ELATA BLUME ON BLOOD-BRAIN BARRIER IN FOCAL CEREBRAL ISCHEMIA REPERFUSION. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2016; 13:199-209. [PMID: 28852737 PMCID: PMC5566145 DOI: 10.21010/ajtcam.v13i4.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Damage of the blood brain barrier (BBB) during the process of cerebral ischemic injury is a key factor which influences the therapeutic efficacy to the cerebral ischemic injury. The present study was designed to verify the mechanisms underlying the protective effects of the ethyl acetate (EtOAc) extraction from Gastrodia elata Blume (GEB) on the BBB by developing a model of cerebral ischemia-reperfusion in rats. Material and methods: MCAO/R model in rats was developed through a thread embolism method. The neurological scales, the moisture and the evans blue (EB) contents of brains were detected. Meanwhile, the release of nitric oxide (NO) and activities of NO synthase (NOS) in brain tissues were measured. Western blotting analyses were also performed to assess the protein expressions of AQP-4, Occludin and Claudin-5 in brain tissue. Results: After rats were pretreated with different concentrations of EtOAc extractions from GEB, the neurologic scores, the EB contents in the brain tissues and the moisture of the brains were significantly decreased. Meanwhile, the release of NO, the activities of nNOS and iNOS were notably inhibited. Furthemore, the protein expression of AQP-4 was markedly decreased, but the protein expressions of -5 and Occludin were significantly increased. Conclusion: the EtOAc extracts of GEB may decrease the permeability of BBB when focal cerebral ischemia occurs. The inhibition of the NOS pathways, the attenuation of the protein expression of AQP-4 and the enhancement of the expressions of the tight junction proteins may contribute to the protective effects of the EtOAc extracts from GEB on BBB.
Collapse
Affiliation(s)
- Fangyan He
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Xiaohua Duan
- The Key Modern Research Laboratory for Ethno-pharmacognosy of Yunnan Higher School, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Rong Dai
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Wei Wang
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Qing Lin
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
34
|
Xu L, Wang L, Wen Z, Wu L, Jiang Y, Yang L, Xiao L, Xie Y, Ma M, Zhu W, Ye R, Liu X. Caveolin-1 is a checkpoint regulator in hypoxia-induced astrocyte apoptosis via Ras/Raf/ERK pathway. Am J Physiol Cell Physiol 2016; 310:C903-10. [PMID: 27009876 DOI: 10.1152/ajpcell.00309.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/17/2016] [Indexed: 01/27/2023]
Abstract
Astrocytes, the most numerous cells in the human brain, play a central role in the metabolic homeostasis following hypoxic injury. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, has been shown to converge prosurvival signaling in the central nerve system. The present study aimed to investigate the role of Cav-1 in the hypoxia-induced astrocyte injury. We also examined how Cav-1 alleviates apoptotic astrocyte death. To this end, primary astrocytes were exposed to oxygen-glucose deprivation (OGD) for 6 h and a subsequent 24-h reoxygenation to mimic hypoxic injury. OGD significantly reduced Cav-1 expression. Downregulation of Cav-1 using Cav-1 small interfering RNA dramatically worsened astrocyte cell damage and impaired cellular glutamate uptake after OGD, whereas overexpression of Cav-1 with Cav-1 scaffolding domain peptide attenuated OGD-induced cell apoptosis. Mechanistically, the expressions of Ras-GTP, phospho-Raf, and phospho-ERK were sequestered in Cav-1 small interfering RNA-treated astrocytes, yet were stimulated after supplementation with caveolin peptide. MEK/ERK inhibitor U0126 remarkably blocked the Cav-1-induced counteraction against apoptosis following hypoxia, indicating Ras/Raf/ERK pathway is required for the Cav-1's prosurvival role. Together, these findings support Cav-1 as a checkpoint for the in hypoxia-induced astrocyte apoptosis and warrant further studies targeting Cav-1 to treat hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Liumin Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Li Wu
- Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Lian Yang
- Department of Neurology, the Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
| | - Lulu Xiao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Minmin Ma
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China;
| |
Collapse
|
35
|
Zhao HM, Wang Y, Huang XY, Huang MF, Xu R, Yue HY, Zhou BG, Huang HY, Sun QM, Liu DY. Astragalus polysaccharide attenuates rat experimental colitis by inducing regulatory T cells in intestinal Peyer’s patches. World J Gastroenterol 2016; 22:3175-3185. [PMID: 27003994 PMCID: PMC4789992 DOI: 10.3748/wjg.v22.i11.3175] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore probable mechanism underlying the therapeutic effect of Astragalus polysaccharide (APS) against experimental colitis.
METHODS: Thirty-two Sprague-Dawley rats were randomly divided into four groups. Colitis was induced with 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). The rats with colitis were treated with 400 mg/kg of APS for 7 d. The therapeutic effect was evaluated by colonic weight, weight index of the colon, colonic length, and macroscopic and histological scores. The levels of regulatory T (Treg) cells in Peyer’s patches were measured by flow cytometry, and cytokines in colonic tissue homogenates were analyzed using enzyme-linked immunosorbent assay. The expression of related orphan receptor-γt (ROR-γt), IL-23 and STAT-5a was measured by Western blot.
RESULTS: After 7-d treatment with APS, the weight index of the colon, colonic weight, macroscopical and histological scores were decreased, while the colonic length was increased compared with the model group. The expression of interleukin (IL)-2, IL-6, IL-17, IL-23 and ROR-γt in the colonic tissues was down-regulated, but Treg cells in Peyer’s patches, TGF-β and STAT5a in the colonic tissues were up-regulated.
CONCLUSION: APS effectively ameliorates TNBS-induced experimental colitis in rats, probably through restoring the number of Treg cells, and inhibiting IL-17 levels in Peyer’s patches.
Collapse
|
36
|
Yang MC, Zhang HZ, Wang Z, You FL, Wang YF. The molecular mechanism and effect of cannabinoid-2 receptor agonist on the blood-spinal cord barrier permeability induced by ischemia-reperfusion injury. Brain Res 2016; 1636:81-92. [PMID: 26835555 DOI: 10.1016/j.brainres.2016.01.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/13/2015] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that modulation of the receptor-mediated endocannabinoid system during ischemia injury can induce potent neuroprotective effects. However, little is known about whether cannabinoid-2 (CB2) receptor agonist would produce a protective effect on blood-spinal cord barrier (BSCB) during ischemia. Using an in vivo transient spinal cord ischemia model in rats, JWH-015 (1mg/kg, i.p.), a CB2 receptor selective agonist, or vehicles were injected 20 min before ischemia. The effects of JWH-015 on BSCB permeability, the major structural protein for the formation of caveolae, caveolin-1 (cav-1), tight junction (TJ) protein Occludin and zona occludens protein-1 (ZO-1) were examined at day 1, day 3 and day 7 of reperfusion after transient spinal cord ischemia in rats. Here we demonstrated that JWH-015 significantly down-regulated the expression of cav-1, up-regulated the expression of TJ proteins, and then decreased the permeability of BSCB compared with control group. In addition, using an in vitro BBB model, oxygen glucose deprivation (OGD) was applied to simulate spinal cord ischemia in vitro in Human brain microvascular endothelial cells (HBMECs). JWH-015 greatly increased the transepithelial electrical resistance (TEER) and changed the distribution of ZO-1 and Occludin. Moreover, JWH-015 induced the expression of p-PKB and p-FoxO1 protein and decreased the expression of cav-1, which were greatly reversed by ROS inhibitor or PI3K inhibitor. Taken together, all of these results suggested that JWH-015 might regulate the BSCB permeability and this effect could be related to paracellular and transcellular pathway. And pharmacological CB2R ligands offer a new strategy for BSCB protection during ischemic injury.
Collapse
Affiliation(s)
- Ming-Chao Yang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Hang-Zhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Zhe Wang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Fu-Li You
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China
| | - Yan-Feng Wang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
37
|
Cao G, Ye X, Xu Y, Yin M, Chen H, Kou J, Yu B. YiQiFuMai powder injection ameliorates blood-brain barrier dysfunction and brain edema after focal cerebral ischemia-reperfusion injury in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:315-25. [PMID: 26834461 PMCID: PMC4716731 DOI: 10.2147/dddt.s96818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB) dysfunction induced by cerebral ischemia–reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins.
Collapse
Affiliation(s)
- Guosheng Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xinyi Ye
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yingqiong Xu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Mingzhu Yin
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Honglin Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
38
|
Wu C, Chen J, Chen C, Wang W, Wen L, Gao K, Chen X, Xiong S, Zhao H, Li S. Wnt/β-catenin coupled with HIF-1α/VEGF signaling pathways involved in galangin neurovascular unit protection from focal cerebral ischemia. Sci Rep 2015; 5:16151. [PMID: 26537366 PMCID: PMC4633613 DOI: 10.1038/srep16151] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/17/2015] [Indexed: 01/07/2023] Open
Abstract
Microenvironmental regulation has become a promising strategy for complex disease treatment. The neurovascular unit (NVU), as the key structural basis to maintain an optimal brain microenvironment, has emerged as a new paradigm to understand the pathology of stroke. In this study, we investigated the effects of galangin, a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, on NVU microenvironment improvement and associated signal pathways in rats impaired by middle cerebral artery occlusion (MCAO). Galangin ameliorated neurological scores, cerebral infarct volume and cerebral edema and reduced the concentration of Evans blue (EB) in brain tissue. NVU ultrastructural changes were also improved by galangin. RT-PCR and western blot revealed that galangin protected NVUs through the Wnt/β-catenin pathway coupled with HIF-1α and vascular endothelial growth factor (VEGF). VEGF and β-catenin could be the key nodes of these two coupled pathways. In conclusion, Galangin might function as an anti-ischemic stroke drug by improving the microenvironment of NVUs.
Collapse
Affiliation(s)
- Chuanhong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Limei Wen
- The first Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830054, China
| | - Kuo Gao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Sihuai Xiong
- Beijing No.166 High School, Beijing 100006, China
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
39
|
Xu Y, Liu Z, Song X, Zhang K, Li X, Li J, Yan X, Li Y, Xie Z, Zhang H. Cerebralcare Granule® attenuates cognitive impairment in rats continuously overexpressing microRNA-30e. Mol Med Rep 2015; 12:8032-40. [PMID: 26498486 PMCID: PMC4758320 DOI: 10.3892/mmr.2015.4469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 09/09/2015] [Indexed: 11/23/2022] Open
Abstract
Previous studies have demonstrated that dysregulation of micro (mi)RNAs is associated with the etiology of various neuropsychiatric disorders, including depression and schizophrenia. Cerebralcare Granule® (CG) is a Chinese herbal medicine, which has been reported to have an ameliorative effect on brain injury by attenuating blood-brain barrier disruption and improving hippocampal neural function. The present study aimed to evaluate the cognitive behavior of rats continuously overexpressing miRNA-30e (lenti-miRNA-30e), prior to and following the administration of CG. In addition, the mechanisms underlying the ameliorative effects of CG were investigated. The cognitive ability of the rats was assessed using an open-field test and a Morris water maze spatial reference/working memory test. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to detect neuronal apoptosis in the dentate gyrus of the hippocampus. Immunohistochemical analysis and western blotting were conducted to detect the expression levels of B-cell lymphoma 2 (BCL-2) and ubiquitin-conjugating enzyme 9 (UBC9), in order to examine neuronal apoptosis. The lenti-miRNA-30e rats exhibited increased signs of anxiety, depression, hyperactivity and schizophrenia, which resulted in a severe impairment in cognitive ability. Furthermore, in the dentate gyrus of these rats, the expression levels of BCL-2 and UBC9 were reduced and apoptosis was increased. The administration of CG alleviated cognitive impairment, enhanced the expression levels of BCL-2 and UBC9, and reduced apoptosis in the dentate gyrus in the lenti-miRNA-30e rats. No significant differences were detected in behavioral indicators between the lenti-miRNA-30e rats treated with CG and the normal controls. These findings suggested that CG exerts a potent therapeutic effect, conferred by its ability to enhance the expression levels of BCL-2 and UBC9, which inhibits the apoptotic process in neuronal cells. Therefore, CG may be considered a potential therapeutic strategy for the treatment of cognitive impairment in mental disorders.
Collapse
Affiliation(s)
- Yong Xu
- Department of Psychiatry, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xi Song
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xingrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jianhong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xu Yan
- Department of Psychiatry, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuan Li
- Department of Interventional Radiography, Heping Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhongchen Xie
- Laboratory Animal Facility Biomedical Analysis Center, Tsinghua University, Beijing 100084, P.R. China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
40
|
Tang H, Pan CS, Mao XW, Liu YY, Yan L, Zhou CM, Fan JY, Zhang SY, Han JY. Role of NADPH oxidase in total salvianolic acid injection attenuating ischemia-reperfusion impaired cerebral microcirculation and neurons: implication of AMPK/Akt/PKC. Microcirculation 2015; 21:615-27. [PMID: 24702968 DOI: 10.1111/micc.12140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE TSI is a new drug derived from Chinese medicine for treatment of ischemic stroke in China. The aim of this study was to verify the therapeutic effect of TSI in a rat model of MCAO, and further explore the mechanism for its effect. METHODS Male Sprague-Dawley rats were subjected to right MCAO for 60 minutes followed by reperfusion. TSI (1.67 mg/kg) was administrated before reperfusion via femoral vein injection. Twenty-four hours after reperfusion, the fluorescence intensity of DHR 123 in, leukocyte adhesion to and albumin leakage from the cerebral venules were observed. Neurological scores, TTC staining, brain water content, Nissl staining, TUNEL staining, and MDA content were assessed. Bcl-2/Bax, cleaved caspase-3, NADPH oxidase subunits p47(phox)/p67(phox)/gp91(phox), and AMPK/Akt/PKC were analyzed by Western blot. RESULTS TSI attenuated I/R-induced microcirculatory disturbance and neuron damage, activated AMPK, inhibited NADPH oxidase subunits membrane translocation, suppressed Akt phosphorylation, and PKC translocation. CONCLUSIONS TSI attenuates I/R-induced brain injury in rats, supporting its clinic use for treatment of acute ischemic stroke. The role of TSI may benefit from its antioxidant activity, which is most likely implemented via inactivation of NADPH oxidase through a signaling pathway implicating AMPK/Akt/PKC.
Collapse
Affiliation(s)
- Hao Tang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Levo-tetrahydropalmatine attenuates mouse blood-brain barrier injury induced by focal cerebral ischemia and reperfusion: Involvement of Src kinase. Sci Rep 2015; 5:11155. [PMID: 26059793 PMCID: PMC4461916 DOI: 10.1038/srep11155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
The restoration of blood flow following thrombolytic therapy causes ischemia and reperfusion (I/R) injury leading to blood-brain barrier (BBB) disruption and subsequent brain edema in patients of ischemic stroke. Levo-tetrahydropalmatine (l-THP) occurs in Corydalis genus and some other plants. However, whether l-THP exerts protective role on BBB disrpution following cerebral I/R remains unclear. Male C57BL/6N mice (23 to 28 g) were subjected to 90 min middle cerebral artery occlusion, followed by reperfusion for 24 h. l-THP (10, 20, 40 mg/kg) was administrated by gavage 60 min before ischemia. We found I/R evoked Evans blue extravasation, albumin leakage, brain water content increase, cerebral blood flow decrease, cerebral infarction and neurological deficits, all of which were attenuated by l-THP treatment. Meanwhile, l-THP inhibited tight junction (TJ) proteins down-expression, Src kinase phosphorylation, matrix metalloproteinases-2/9 (MMP-2/9) and caveolin-1 activation. In addition, surface plasmon resonance revealed binding of l-THP to Src kinase with high affinity. Then we found Src kinase inhibitor PP2 could attenuate Evans blue dye extravasation and inhibit the caveolin-1, MMP-9 activation, occludin down-expression after I/R, respectively. In conclusion, l-THP attenuated BBB injury and brain edema, which were correlated with inhibiting the Src kinase phosphorylation.
Collapse
|
42
|
Zou R, Wu Z, Cui S. Electroacupuncture pretreatment attenuates blood‑brain barrier disruption following cerebral ischemia/reperfusion. Mol Med Rep 2015; 12:2027-34. [PMID: 25936438 DOI: 10.3892/mmr.2015.3672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) and subsequent brain edema are major contributors to the pathogenesis of ischemic stroke, however, current clinical therapeutic methods remains unsatisfactory. Electroacupuncture (EA) pretreatment has a protective effect against cerebral ischemia/reperfusion (I/R). However, the underlying mechanisms remain to be fully elucidated. In the present study, the effect of EA pretreatment on BBB disruption was investigated in a focal I/R rat model. Male Sprague-Dawley rats (280-320 g) were pretreated with EA at the acupoint 'Baihui' (GV20) 30 min/day, for five days consecutively prior to focal cerebral I/R, which was induced by middle cerebral artery occlusion (MCAO) for 2 h. The results demonstrated that the infarction volume, brain water content and neurological deficits increased in the MCAO model rats at 3 h and 24 h post-reperfusion, and were attenuated significantly by EA pretreatment. Furthermore, electron microscopy examination confirmed a reduction in brain edema reduction in the EA pretreated rats. Western blot analysis revealed that the tight junction proteins between endothelial cells, including claudin-5, occludin, were significantly degraded, while the protein expression of phosphorylated (p-)caveolin-1 and p-Akt increased following reperfusion, all of which were alleviated by EA pretreatment. However, no significant differences were observed in the expression of caveolin-1 or Akt. Overall, the results demonstrated that EA pretreatment significantly reduced BBB permeability and brain edema, which were correlated with alleviation of the degradation of tight junction proteins and inhibition of the expression of p-caveolin-1 in the endothelial cells.
Collapse
Affiliation(s)
- Rong Zou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Zhouquan Wu
- First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Suyang Cui
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
43
|
Sun K, Fan J, Han J. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharm Sin B 2015; 5:8-24. [PMID: 26579420 PMCID: PMC4629119 DOI: 10.1016/j.apsb.2014.11.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023] Open
Abstract
Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound TCM preparation, Chinese materia medica, and active components on I/R-induced cerebral microcirculatory disturbances, brain injury and neuron damage.
Collapse
Key Words
- 8-OHdG, 8-hydroxydeoxyguanosine
- AIF, apoptosis inducing factor
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- AP-1, activator protein-1
- Antioxidant
- Asp, aspartate
- BBB, brain blood barrier
- BMEC, brain microvascular endothelial cell
- BNDF, brain-derived neurotrophic factor
- Brain blood barrier
- CAT, catalase
- CBF, cerebral blood flow
- COX-2, cyclooxygenase-2
- Cav-1, caveolin-1
- DHR, dihydrorhodamine 123
- DPPH, 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl
- ERK, extracellular signal-regulated kinase
- GABA, γ-aminobutyric acid
- GRK2, G protein-coupled receptor kinase 2
- GSH, glutathione
- GSH-Px, glutathione peroxidase
- GSSH, glutathione disulfide
- Glu, glutamate
- Gly, glysine
- HE, hematoxylin and eosin
- HIF, hypoxia-inducible factor
- HPLC, high performance liquid chromatography
- Hyperpermeability
- I-κBα, Inhibitory κBα
- I/R, ischemia-reperfusion
- ICAM-1, intercellular adhesion molecule-1
- IL-10, interleukin-10
- IL-1β, interleukin-1β
- IL-8, interleukin-8
- Ischemia/reperfusion
- JAM-1, junctional adhesion molecule-1
- JNK, Jun N-terminal kinase
- LDH, lactate dehydrogenase
- Leukocyte adhesion
- MAPK, mitogen activated protein kinase
- MCAO, middle cerebral artery occlusion
- MDA, malondialdehyde
- MMPs, matrix metalloproteinases
- MPO, myeloperoxidase
- MRI, magnetic resonance imaging
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor κ-B
- NGF, nerve growth factor
- NMDA, N-methyl-d-aspartic acid
- NO, nitric oxide
- NSC, neural stem cells
- Neuron
- OGD, oxygen-glucose deprivation
- PARP, poly-ADP-ribose polymerase
- PMN, polymorphonuclear
- RANTES, regulated upon activation normal T-cell expressed and secreted
- ROS, reactive oxygen species
- SFDA, state food and drug administration
- SOD, superoxide dismutase
- TBARS, thiobarbituric acid reactive substance
- TCM, traditional Chinese medicine
- TGF-β1, transforming growth factor β1
- TIMP-1, tissue inhibitor of metalloproteinase-1
- TNF-α, tissue necrosis factor-α
- TTC, 2,3,5-triphenyltetrazolium chloride
- TUNEL, terminal-deoxynucleoitidyl transferase mediated nick end labeling
- Tuj-1, class III β-tublin
- VCAM-1, vascular adhesion molecule-1
- VEGF, vascular endothelial growth factor
- ZO-1, zonula occludens-1
- bFGF, basic fibroblast growth factor
- cAMP, cyclic adenosine monophosphate
- hs-CRP, high-sensitivity C-reactive protein
- iNOS, inducible nitric oxide synthase
- rtPA, recombinant tissue plasminogen activator
Collapse
|
44
|
Wu L, Zhang K, Hu G, Yan H, Xie C, Wu X. Inflammatory response and neuronal necrosis in rats with cerebral ischemia. Neural Regen Res 2014; 9:1753-62. [PMID: 25422636 PMCID: PMC4238163 DOI: 10.4103/1673-5374.143419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 01/02/2023] Open
Abstract
In the middle cerebral artery occlusion model of ischemic injury, inflammation primarily occurs in the infarct and peripheral zones. In the ischemic zone, neurons undergo necrosis and apoptosis, and a large number of reactive microglia are present. In the present study, we investigated the pathological changes in a rat model of middle cerebral artery occlusion. Neuronal necrosis appeared 12 hours after middle cerebral artery occlusion, and the peak of neuronal apoptosis appeared 4 to 6 days after middle cerebral artery occlusion. Inflammatory cytokines and microglia play a role in damage and repair after middle cerebral artery occlusion. Serum intercellular cell adhesion molecule-1 levels were positively correlated with the permeability of the blood-brain barrier. These findings indicate that intercellular cell adhesion molecule-1 may be involved in blood-brain barrier injury, microglial activation, and neuronal apoptosis. Inhibiting blood-brain barrier leakage may alleviate neuronal injury following ischemia.
Collapse
Affiliation(s)
- Lingfeng Wu
- Nanchang University Medical College, Nanchang, Jiangxi Province, China ; Department of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Kunnan Zhang
- Nanchang University Medical College, Nanchang, Jiangxi Province, China
| | - Guozhu Hu
- Institution of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Haiyu Yan
- Institution of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chen Xie
- Institution of Neurology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiaomu Wu
- Nanchang University Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
45
|
Hao HF, Liu LM, Liu YY, Liu J, Yan L, Pan CS, Wang MX, Wang CS, Fan JY, Gao YS, Han JY. Inhibitory effect of rhynchophylline on contraction of cerebral arterioles to endothelin 1: role of rho kinase. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:147-153. [PMID: 24814318 DOI: 10.1016/j.jep.2014.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhynchophylline (Rhy) is a major ingredient of Uncaria rhynchophylla (UR) used to reduce blood pressure and ameliorate brain ailments. This study was to examine the role of Rho kinase (ROCK) in the inhibition of Rhy on contraction of cerebral arterioles caused by endothelin 1 (ET-1). MATERIALS AND METHODS Cerebral arterioles of male Wistar rats were constricted with ET-1 for 10 min followed by perfusion of Rhy for 20 min. Changes in the diameters of the arterioles were recorded. The effects of Rhy on contraction of middle cerebral arteries (MCAs) were determined by a Multi-Myograph. Western blotting and immunofluorescent staining were used to examine the effects of Rhy on RhoA translocation and myosin phosphatase target subunit 1 (MYPT1) phosphorylation. RESULTS In vivo, Rhy (30-300 µM) relaxed cerebral arterioles constricted with ET-1 dose-dependently. In vitro, Rhy at lower concentrations (1-100 µM) caused relaxation of rat MCAs constricted with KCl and Bay-K8644 (an agonist of L-type voltage-dependent calcium channels (L-VDCCs)). Rhy at higher concentrations (>100 µM) caused relaxation of rat MCAs constricted with ET-1, which was inhibited by Y27632, a ROCK׳s inhibitor. Western blotting of rat aortas showed that Rhy inhibited RhoA translocation and MYPT1 phosphorylation. Immunofluorescent staining of MCAs confirmed that phosphorylation of MYPT1 caused by ET-1 was inhibited by Rhy. CONCLUSIONS These results demonstrate that Rhy is a potent inhibitor of contraction of cerebral arteries caused by ET-1 in vivo and in vitro. The effect of Rhy was in part mediated by inhibiting RhoA-ROCK signaling.
Collapse
Affiliation(s)
- Hui-Feng Hao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Li-Mei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Juan Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Ming-Xia Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Chuan-She Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Yuan-Sheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, China.
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| |
Collapse
|
46
|
Icariside II improves cerebral microcirculatory disturbance and alleviates hippocampal injury in gerbils after ischemia–reperfusion. Brain Res 2014; 1573:63-73. [DOI: 10.1016/j.brainres.2014.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 11/18/2022]
|
47
|
Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, Yu B, Kou J. A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res 2014; 92:1295-306. [PMID: 24801159 DOI: 10.1002/jnr.23400] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/30/2014] [Indexed: 01/10/2023]
Abstract
SMXZF is a combination of Rb1, Rg1, schizandrin, and DT-13 (6:9:5:4) derived from Sheng-mai San, a widely used Chinese traditional medicine for the treatment of cardiovascular and cerebral diseases. The present study explores the inhibitory effects and signaling pathways of SMXZF on autophagy induced by cerebral ischemia-reperfusion injury. Male C57BL/6 mice were subjected to ischemia-reperfusion insult by right middle cerebral artery occlusion (MCAO) for 1 hr with subsequent 24 hr reperfusion. Three doses of SMXZF (4.5, 9, and 18 mg/kg) were administered intraperitoneally (i.p.) after ischemia for 1 hr. An autophagic inhibitor, 3-methyladenine (3-MA; 300 μg/kg), was administered i.p. 20 min before ischemia as a positive drug. We found that SMXZF significantly increased cerebral blood flow and reduced the infarct volume, brain water content, and the neurological deficits in a dose-dependent manner. Similar to the positive control, SMXZF at 18 mg/kg also significantly inhibited autophagosome formation. Immunofluorescence staining and Western blotting demonstrated that SMXZF could significantly decrease the expression levels of beclin1 and microtubule-associated protein 1 light chain 3. SMXZF also remarkably inhibited the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) as well as the expression of c-Jun N-terminal kinase (JNK) and its phosphorylation induced by 24 hr reperfusion. Finally, we demonstrated that the optimal administration time of SMXZF was at the early period of reperfusion. This study reveals that SMXZF displays neuroprotective effect against focal ischemia-reperfusion injury, possibly associated with autophagy inactivation through AMPK/mTOR and JNK pathways.
Collapse
Affiliation(s)
- Zhongshun Guo
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang X, Zhang M, Feng R, Li WB, Ren SQ, Zhang J, Zhang F. Physical exercise training and neurovascular unit in ischemic stroke. Neuroscience 2014; 271:99-107. [PMID: 24780769 DOI: 10.1016/j.neuroscience.2014.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/16/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Physical exercise could exert a neuroprotective effect in both clinical studies and animal experiments. A series of related studies have indicated that physical exercise could reduce infarct volume, alleviate neurological deficits, decrease blood-brain barrier dysfunction, promote angiogenesis in cerebral vascular system and increase the survival rate after ischemic stroke. In this review, we summarized the protective effects of physical exercise on neurovascular unit (NVU), including neurons, astrocytes, pericytes and the extracellular matrix. Furthermore, it was demonstrated that exercise training could decrease the blood-brain barrier dysfunction and promote angiogenesis in cerebral vascular system. An awareness of the exercise intervention benefits pre- and post stroke may lead more stroke patients and people with high-risk factors to accept exercise therapy for the prevention and treatment of stroke.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - M Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - R Feng
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - W B Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - S Q Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - J Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - F Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
49
|
Zhang Y, Sun K, Liu YY, Zhang YP, Hu BH, Chang X, Yan L, Pan CS, Li Q, Fan JY, He K, Mao XW, Tu L, Wang CS, Han JY. Ginsenoside Rb1 ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules by intervening in both trans- and paracellular pathway. Am J Physiol Gastrointest Liver Physiol 2014; 306:G289-300. [PMID: 24356882 DOI: 10.1152/ajpgi.00168.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipopolysaccharide (LPS) is one of the common pathogens that causes mesentery hyperpermeability- and intestinal edema-related diseases. This study evaluated whether ginsenoside Rb1 (Rb1), an ingredient of a Chinese medicine Panax ginseng, has beneficial effects on mesentery microvascular hyperpermeability induced by LPS and the underlying mechanisms. Male Wistar rats were continuously infused with LPS (5 mg · kg(-1) · h(-1)) via the left jugular vein for 90 min. In some rats, Rb1 (5 mg · kg(-1) · h(-1)) was administrated through the left jugular vein 30 min after LPS infusion. The dynamics of fluorescein isothiocynate-labeled albumin leakage from mesentery venules was assessed by intravital microscopy. Intestinal tissue edema was evaluated by hematoxylin and eosin staining. The number of caveolae in endothelial cells of microvessels was examined by electron microscopy. Confocal microscopy and Western blotting were applied to detect caveolin-1 (Cav-1) expression and phosphorylation, junction-related proteins, and concerning signaling proteins in intestinal tissues and human umbilical vein endothelial cells. LPS infusion evoked an increased albumin leakage from mesentery venules that was significantly ameliorated by Rb1 posttreatment. Mortality and intestinal edema around microvessels were also reduced by Rb1. Rb1 decreased caveolae number in endothelial cells of microvessels. Cav-1 expression and phosphorylation, VE-Cadherin phosphorylation, ZO-1 degradation, nuclear factor-κB (NF-κB) activation, and Src kinase phosphorylation were inhibited by Rb1. Rb1 ameliorated microvascular hyperpermeability after the onset of endotoxemia and improved intestinal edema through inhibiting caveolae formation and junction disruption, which was correlated to suppression of NF-κB and Src activation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Molecular imaging in traditional Chinese medicine therapy for neurological diseases. BIOMED RESEARCH INTERNATIONAL 2013; 2013:608430. [PMID: 24222911 PMCID: PMC3814075 DOI: 10.1155/2013/608430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/21/2013] [Indexed: 02/08/2023]
Abstract
With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer's disease, Parkinson's disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM.
Collapse
|