1
|
Toledo R, Cociancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Immunology and pathology of echinostomes and other intestinal trematodes. ADVANCES IN PARASITOLOGY 2024; 124:1-55. [PMID: 38754926 DOI: 10.1016/bs.apar.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.
Collapse
Affiliation(s)
- Rafael Toledo
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain.
| | - Paola Cociancic
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Emma Fiallos
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - J Guillermo Esteban
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Carla Muñoz-Antoli
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Toledo R, Conciancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Echinostomes and Other Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:285-322. [PMID: 39008269 DOI: 10.1007/978-3-031-60121-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.
Collapse
Affiliation(s)
- Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Paola Conciancic
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Emma Fiallos
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
3
|
Abstract
In the present paper, we review two of the most neglected intestinal food-borne trematodiases: echinostomiasis, caused by members of the family Echinostomatidae, and gastrodiscoidiasis produced by the amphistome Gastrodiscoides hominis. Both parasitic infections are important intestinal food-borne diseases. Humans become infected after ingestion of raw or insufficiently cooked molluscs, fish, crustaceans, amphibians or aquatic vegetables. Thus, eating habits are essential to determine the distribution of these parasitic diseases and, traditionally, they have been considered as minor diseases confined to low-income areas, mainly in Asia. However, this scenario is changing and the population at risk are currently expanding in relation to factors such as new eating habits in developed countries, growing international markets, improved transportation systems and demographic changes. These aspects determine the necessity of a better understanding of these parasitic diseases. Herein, we review the main features of human echinostomiasis and gastrodiscoidiasis in relation to their biology, epidemiology, immunology, clinical aspects, diagnosis and treatment.
Collapse
|
4
|
Cortés A, Mikeš L, Muñoz-Antolí C, Álvarez-Izquierdo M, Esteban JG, Horák P, Toledo R. Secreted cathepsin L-like peptidases are involved in the degradation of trapped antibodies on the surface of Echinostoma caproni. Parasitol Res 2019; 118:3377-3386. [PMID: 31720841 DOI: 10.1007/s00436-019-06487-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Antibody trapping is a recently described strategy for immune evasion observed in the intestinal trematode Echinostoma caproni, which may aid to avoiding the host humoral response, thus facilitating parasite survival in the presence of high levels of local-specific antibodies. Parasite-derived peptidases carry out the degradation of trapped antibodies, being essential for this mechanism. Herein, we show that cathepsin-like cysteine endopeptidases are active in the excretory/secretory products (ESPs) of E. caproni and play an important role in the context of antibody trapping. Cysteine endopeptidase activity was detected in the ESPs of E. caproni adults. The affinity probe DCG-04 distinguished a cysteine peptidase band in ESPs, which was specifically recognized by an anti-cathepsin L heterologous antibody. The same antibody localized this protein in the gut and syncytial tegument of adult worms. Studies with cultured parasites showed that in vivo-bound antibodies are removed from the parasite surface in the absence of peptidase inhibitors, while addition of cathepsin L inhibitor prevented their degradation. These results indicate that cathepsin L-like peptidases are involved in the degradation of surface-trapped antibodies and suggest that cysteine peptidases are not only crucial for tissue-invading trematodes, but they can be equally relevant at the parasite-host interface in gut-dwelling flukes.
Collapse
Affiliation(s)
- Alba Cortés
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Álvarez-Izquierdo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Toledo R, Alvárez-Izquierdo M, Muñoz-Antoli C, Esteban JG. Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:181-213. [DOI: 10.1007/978-3-030-18616-6_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Cortés A, Toledo R, Cantacessi C. Classic Models for New Perspectives: Delving into Helminth–Microbiota–Immune System Interactions. Trends Parasitol 2018; 34:640-654. [DOI: 10.1016/j.pt.2018.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
|
7
|
Cortés A, Sotillo J, Muñoz-Antolí C, Molina-Durán J, Esteban JG, Toledo R. Antibody trapping: A novel mechanism of parasite immune evasion by the trematode Echinostoma caproni. PLoS Negl Trop Dis 2017; 11:e0005773. [PMID: 28715423 PMCID: PMC5531663 DOI: 10.1371/journal.pntd.0005773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/27/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022] Open
Abstract
Background Helminth infections are among the most prevalent neglected tropical diseases, causing an enormous impact in global health and the socioeconomic growth of developing countries. In this context, the study of helminth biology, with emphasis on host-parasite interactions, appears as a promising approach for developing new tools to prevent and control these infections. Methods/Principal findings The role that antibody responses have on helminth infections is still not well understood. To go in depth into this issue, work on the intestinal helminth Echinostoma caproni (Trematoda: Echinostomatidae) has been undertaken. Adult parasites were recovered from infected mice and cultured in vitro. Double indirect immunofluorescence at increasing culture times was done to show that in vivo-bound surface antibodies become trapped within a layer of excretory/secretory products that covers the parasite. Entrapped antibodies are then degraded by parasite-derived proteases, since protease inhibitors prevent for antibody loss in culture. Electron microscopy and immunogold-labelling of secreted proteins provide evidence that this mechanism is consistent with tegument dynamics and ultrastructure, hence it is feasible to occur in vivo. Secretory vesicles discharge their content to the outside and released products are deposited over the parasite surface enabling antibody trapping. Conclusion/Significance At the site of infection, both parasite secretion and antibody binding occur simultaneously and constantly. The continuous entrapment of bound antibodies with newly secreted products may serve to minimize the deleterious effects of the antibody-mediated attack. This mechanism of immune evasion may aid to understand the limited effect that antibody responses have in helminth infections, and may contribute to the basis for vaccine development against these highly prevalent diseases. Helminthiases are highly prevalent neglected tropical diseases, affecting millions of people worldwide, mainly in the poorest regions. The lack of vaccines against these infections is one of the major constraints in the current parasitology and massive efforts are being done in that direction. Herein, we present a potential mechanism for parasite immune evasion consisting in trapping of surface-bound antibodies within the excretory/secretory products that are deposited over the parasite. This mechanism is aided by parasite-derived proteases, well documented virulence factors that degrade the entrapped antibodies. Altogether, this parasite strategy may serve to minimize the antibody-mediated response and promote the development of chronic infections. The present study has been done using the model trematode Echinostoma caproni, though is expected to work in other helminths, even in other groups of extracellular pathogens. This opens new expectative to better understanding of host-parasite interactions and susceptibility to helminth infections. Therefore, the results presented in this manuscript may contribute to the basis of anti-helminth vaccine development.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- * E-mail:
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Javier Molina-Durán
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - J. Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
8
|
Trelis M, Galiano A, Bolado A, Toledo R, Marcilla A, Bernal D. Subcutaneous injection of exosomes reduces symptom severity and mortality induced by Echinostoma caproni infection in BALB/c mice. Int J Parasitol 2016; 46:799-808. [PMID: 27590846 DOI: 10.1016/j.ijpara.2016.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
Recent studies have shown the importance of exosomes in the host-parasite relationship. These vesicles are an important part of the excretory/secretory pathway for proteins with the potential to alter immune responses. Therefore, in the present study, we examined the immunomodulatory role of exosomes in BALB/c mice using Echinostoma caproni as an experimental model of intestinal helminth infection. For this purpose, BALB/c mice were injected twice s.c. with purified exosomes of E. caproni, followed by experimental infection. We report a delay in the development of the parasite in mice immunised with exosomes, a concomitant reduced symptom severity and increased survival upon infection. Immunisations with exosomes evoked systemic antibody responses with high levels of IgM and IgG. IgG1, IgG2b and IgG3 are the subtypes responsible for the IgG increase. These antibodies showed specific recognition of exosomal proteins, indicating that these vesicles carry specific antigens that are involved in the humoral response. The administration of exosomes induced an increase of IFN-γ, IL-4 and TGF-β levels in the spleen of mice prior to infection. The subsequent infection with E. caproni resulted in a further increase of IL-4 and TGF-β, together with an abrupt overproduction of IL-10, suggesting the development of a Th2/Treg immune response. Our results show that the administration of exosomes primes the immune response in the host, which in turn can contribute to tolerance of the invader, reducing the severity of clinical signs in E. caproni infection.
Collapse
Affiliation(s)
- Maria Trelis
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute-La Fe, Universitat de Valencia, Av. Fdo. Abril Martorell, 106, 46026 Valencia, Spain
| | - Alicia Galiano
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain
| | - Anabel Bolado
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain
| | - Rafael Toledo
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute-La Fe, Universitat de Valencia, Av. Fdo. Abril Martorell, 106, 46026 Valencia, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/ Dr. Moliner, 50, 46100 Burjassot (Valencia), Spain.
| |
Collapse
|
9
|
Partial resistance to homologous challenge infections of the digenean Echinostoma caproni in ICR mice. J Helminthol 2015. [PMID: 26202834 DOI: 10.1017/s0022149x1500053x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present paper, we analyse the effect of a primary infection of ICR mice with Echinostoma caproni (Trematoda: Echinostomatidae) on the generation of resistance against homologous challenge infections. In ICR mice, E. caproni induces chronic infections concomitantly with strong responses characterized by the development of T-helper 1 (Th1)-type local immune responses with elevated levels of local interferon-gamma (IFN-γ) and inflammatory and antibody responses. Here, the effect of the response generated against a primary infection with E. caproni in the generation of resistance against subsequent homologous infections was analysed. For this purpose, ICR mice were challenged with metacercariae of E. caproni and the results obtained showed that primary infection induces partial resistance against subsequent homologous infections in ICR mice. This resistance was expressed as a reduced rate of infection, worm recovery and worm size, indicating that primary infection induces changes in the host, making a hostile environment for the development of the parasite.
Collapse
|
10
|
History of echinostomes (Trematoda). Acta Parasitol 2014; 59:555-67. [PMID: 25236263 DOI: 10.2478/s11686-014-0302-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/24/2014] [Accepted: 07/28/2014] [Indexed: 11/21/2022]
Abstract
Echinostomatidae (Trematoda) is the largest family within the class Trematoda. Members of this family have been studied for many years in relation to their utility as basic research models in biodiversity and systematics and also as experimental models in parasitology since they offer many advantages. Echinostomes have contributed significantly to numerous developments in many areas studied by parasitologists and experimental biologists. In this review, we examine the history of the echinostomebased studies from the beginnings to the present. For this purpose, we have divided the history of echinostomes into four periods (i.e. 18(th) and 19(th) centuries, first half of the 20(th) century, second half of the 20(th) century and the late 20(th) and 21(th) century) according to the types of studies performed in each of them. Moreover, we also briefly review the history of echinostome infections in humans.
Collapse
|
11
|
Haematological changes in the laboratory rat Rattus norvegicus infected with Echinostoma caproni (Trematoda: Echinostomatidae). J Helminthol 2014; 89:636-40. [PMID: 24893315 DOI: 10.1017/s0022149x14000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To study possible indirect effects of the infection with intestinal helminths, 12 Rattus norvegicus (Wistar) were each experimentally exposed to 100 metacercariae of Echinostoma caproni, and blood samples were taken weekly up to 4 weeks post-exposure for comparison with control rats. Values of haematocrit (HCT), red blood cells (RBC), platelets (PLT), white blood cells (WBC), haemoglobin (HGB) and haematimatrix indices, and mean corpuscular haemoglobin concentrations (MCHC) were determined. In addition, leucocyte counts, including lymphocytes, neutrophils, monocytes, eosinophils and basophils were analysed. These parameters, including the leucocyte counts, showed no significant differences, except for MCHC at 4 weeks post-exposure. The present results indicate that in rats infected with E. caproni, although eosinophilia did not significantly increase, a significant reduction in MCHC was associated with an increase in the number of RBC.
Collapse
|
12
|
The effect of glycosylation of antigens on the antibody responses against Echinostoma caproni (Trematoda: Echinostomatidae). Parasitology 2014; 141:1333-40. [PMID: 24828858 DOI: 10.1017/s0031182014000596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, we analyse the effect of glycosylation in Echinostoma caproni (Trematoda: Echinostomatidae) antigens in antibody responses against the parasite in experimentally infected mice. It has been previously demonstrated that the mouse is a host of high compatibility with E. caproni and develops elevated responses of IgG, IgG1, IgG3 and IgM as a consequence of the infection, though the role of glycans in these responses remains unknown. To this purpose, the responses generated in mice against non-treated excretory/secretory antigens of E. caproni were compared with those observed after N-deglycosylation, O-deglycosylation and double deglycosylation of the antigens by indirect ELISA and western blot. Our results suggest that E. caproni-expressed glycans play a major role in the modulation of the immune responses. The results obtained indicate that IgG subclass responses generated in mice against E. caproni are essentially due to glycoproteins and may affect the Th1/Th2 biasing. The reactivity significantly decreased after any of the deglycosylation treatments and the N-glycans appears to be of greater importance than O-glycans. Interestingly, the IgM response increased after N-deglycosylation suggesting that carbohydrates may mask peptide antigens.
Collapse
|
13
|
Chai JY, Park YJ, Park JH, Jung BK, Shin EH. Mucosal immune responses of mice experimentally infected with Pygidiopsis summa (Trematoda: Heterophyidae). THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:27-33. [PMID: 24623878 PMCID: PMC3948990 DOI: 10.3347/kjp.2014.52.1.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 01/28/2023]
Abstract
Mucosal immune responses against Pygidiopsis summa (Trematoda: Heterophyidae) infection were studied in ICR mice. Experimental groups consisted of group 1 (uninfected controls), group 2 (infection with 200 metacercariae), and group 3 (immunosuppression with Depo-Medrol and infection with 200 metacercariae). Worms were recovered in the small intestine at days 1, 3, 5, and 7 post-infection (PI). Intestinal intraepithelial lymphocytes (IEL), mast cells, and goblet cells were counted in intestinal tissue sections stained with Giemsa, astra-blue, and periodic acid-Schiff, respectively. Mucosal IgA levels were measured by ELISA. Expulsion of P. summa from the mouse intestine began to occur from days 3-5 PI which sustained until day 7 PI. The worm expulsion was positively correlated with proliferation of IEL, mast cells, goblet cells, and increase of IgA, although in the case of mast cells significant increase was seen only at day 7 PI. Immunosuppression suppressed all these immune effectors and inhibited worm reduction in the intestine until day 7 PI. The results suggested that various immune effectors which include IEL, goblet cells, mast cells, and IgA play roles in regulating the intestinal mucosal immunity of ICR mice against P. summa infection.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Young-Jin Park
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jae-Hwan Park
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Bong-Kwang Jung
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| |
Collapse
|
14
|
Toledo R, Muñoz-Antoli C, Esteban JG. Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 766:201-40. [DOI: 10.1007/978-1-4939-0915-5_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Protective immunity against Echinostoma caproni in rats is induced by Syphacia muris infection. Int J Parasitol 2013; 43:453-63. [PMID: 23399418 DOI: 10.1016/j.ijpara.2012.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
Abstract
Syphacia muris (Nematoda: Oxyuridae) is a ubiquitous nematode that commonly infects rats in the laboratory and can interfere with the development of unrelated biological assays. In this context, we analysed the effect of a patent S. muris infection in Wistar rats on a superimposed infection with the intestinal trematode, Echinostoma caproni (Trematoda: Echinostomatidae). The results indicate that in the rats, infection with S. muris induces an immunity against a subsequent infection with E. caproni, although each parasite occupies different niches in the host. Echinostoma caproni worm recovery was significantly decreased in the rats primarily infected with S. muris and, at 3 and 4 weeks post-primary infection, the rats primarily infected with S. muris were refractory to the challenge infection with E. caproni. We observed that the main alterations induced by S. muris in the niche of E. caproni (ileum) that may be the cause of the resistance are: (i) a local antibody response with elevated levels of mucosal IgA, IgE, IgG, IgG1 and IgG2a that cross-react with E. caproni antigens; (ii) development of a biased Th17/Th2 phenotype; and (iii) changes in the glycosylation of ileal mucins. This indicates that S. muris induces distant alterations to the ileum of rats affecting the development of other helminth species. Apart from the interest of these results in the study of the interactions between helminths in a single host, it has been demonstrated that pinworm infections may interfere in non-related experiments.
Collapse
|
16
|
Sotillo J, Trelis M, Fried B, Marcilla A, Esteban JG, Toledo R. Cellular immune responses in Echinostoma caproni experimentally infected mice. Parasitol Res 2011; 110:1033-6. [PMID: 21845414 DOI: 10.1007/s00436-011-2584-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/28/2011] [Indexed: 11/26/2022]
Abstract
The Echinostoma caproni-mice system is extensively used as an experimental model for the study of the factors involved in the establishment of chronic intestinal helminth infections. Although several parameters of the immunobiology of the host-parasite system have been studied in detail, the current knowledge of the cellular responses in these infections is still scarce. In the present paper, we analyze the kinetics of the circulating CD3(+) and CD19(+) cell populations and the different T-cell phenotype profiles in mice experimentally infected with E. caproni. Whereas the CD3(+) populations remained stable during the complete experiment, a marked increase in CD19(+) cells was observed from 4 weeks post-infection and beyond. Similarly, a marked increase in CD8(+) cell populations was observed in the 2 week post-infection. Our results show that E. caproni infection in mice alters the peripheral lymphoid cell populations, which may be important to determine the course of the infection. In this sense, CD8(+) cells can be essential in relation to their role as a source of IFN-γ.
Collapse
Affiliation(s)
- Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Murphy L, Nalpas N, Stear M, Cattadori IM. Explaining patterns of infection in free-living populations using laboratory immune experiments. Parasite Immunol 2011; 33:287-302. [PMID: 21272036 DOI: 10.1111/j.1365-3024.2011.01281.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The host response to different helminth species can vary and have different consequences for helminth persistence. Often these differences are generated by changes in the dynamics and intensity of the immune components against parasites with distinct life history strategies. We examined the immune response of rabbits to primary infections of the gastrointestinal nematodes Trichostrongylus retortaeformis and Graphidium strigosum under controlled conditions for 120 days post-challenge. Results showed that rabbits developed a robust and effective immune response against T. retortaeformis and abundance quickly decreased in the duodenum and was completely cleared in the remaining sections of the small intestine within 4 months. Infected individuals exhibited an initial strong inflammatory response (IFN-γ), IL-4 expression also increased and was coupled to a rapid serum and mucus IgG and IgA and eosinophilia. Strong IL-4, serum IgA and IgG responses and eosinophilia were also observed against G. strigosum. However, parasite abundance remained consistently high throughout the infection, and this was associated with relatively low mucus antibodies. These findings suggest that immunity plays a key role in affecting the abundance of these nematodes, and different immune mechanisms are involved in regulating the dynamics of each infection and their long-term persistence in free-living host populations.
Collapse
Affiliation(s)
- L Murphy
- Division of Animal Production and Public Health, Veterinary School, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
18
|
Uddin MH, Li S, Bae YM, Choi MH, Hong ST. Strain variation in the susceptibility and immune response to Clonorchis sinensis infection in mice. Parasitol Int 2011; 61:118-23. [PMID: 21763454 DOI: 10.1016/j.parint.2011.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
Abstract
Mice have shown various susceptibility to infection by Clonorchis sinensis. To compare the intra-specific variation in the host-parasite relationship of C. sinensis, 6 strains of mice (ICR, BALB/c, C57BL/6, DDY, CBA/N, and C3H/HeN) with 3 different haplotypes were evaluated on their susceptibility. The worm recovery rate and immunological responses were observed after 4 and 8 weeks of infection with 30 metacercariae. The highest worm recovery rate was observed as 20.7% in the C3H/HeN strain after 4 weeks of infection along with histopathological changes. The rate was 10.0% in C57BL/6 mice after 8 weeks. ICR, BALB/c, and CBA/N showed elevated levels of IgE at both time points when compared to the rest of the strains. The serum IgG1 and IgG2a levels were elevated in most of the strains; however, the C57BL/6 strain showed a lower level of IgG2a that indicated the IgG1 predominance over IgG2a. The production of IL-4 after concanavalin-A stimulation of splenocytes slightly increased among the mouse strains except C3H/HeN after 4 or 8 weeks of infection, but each strain produced high levels of IFN-γ after 8 weeks, which implied mixed Th1/Th2 responses. ICR, DDY, CBA/N, and C3H/HeN strains showed a significantly increased level of IL-10 after 8 weeks as compared to C57BL/6. All of the strains showed an increased level of IL-13 and suggested fibrotic changes in the mice. In conclusion, mice are insusceptible to infection with C. sinensis; however, the C57BL/6, BALB/c and ICR strains are relatively susceptible after 8 weeks of infection among the six strains. Worm expulsion may be one of the causes of low susceptibility of C3H/HeN mice strain at the 8th week. Elevated IgE, IFN-γ, and IL-13 of infected mice suggest both Th1 and Th2 responses that may be related to the low host susceptibility.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Trelis M, Sotillo J, Monteagudo C, Fried B, Marcilla A, Esteban JG, Toledo R. Echinostoma caproni (Trematoda): differential in vivo cytokine responses in high and low compatible hosts. Exp Parasitol 2010; 127:387-97. [PMID: 20849850 DOI: 10.1016/j.exppara.2010.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/23/2010] [Accepted: 09/07/2010] [Indexed: 12/22/2022]
Abstract
In order to investigate the factors determining the expulsion of intestinal trematodes, we have analyzed the in vivo cytokine responses at several levels and the local responses against Echinostoma caproni (Trematoda) in two host species displaying different compatibility with the parasite. The response of the high compatible host (mice) is characterized by a mixed Th1/Th2 phenotype in the spleen, Peyer's patches and mesenteric lymph nodes. At the intestine, a marked Th1 response with a marked increase of IFN-γ together with elevated number of mucosal neutrophils and expression of induced nitric oxide synthase were observed. The responses in the host of low compatibility (rats) with the parasite at the spleen, Peyer's patches and mesenteric lymph node did not show clear differences with regard to the mice. However, the response in the intestine was markedly different. In rats, a Th2 response with increase in the levels of IL-5, IL-6 and IL-13 expression was detected. According to these results, the local production of IFN-γ and the local inflammatory responses with neutrophilic infiltration are associated with the development of chronic infections, whereas the worm expulsion is related with the development of Th2 responses and appears to be based on effects on non-bone narrow-derived cells.
Collapse
Affiliation(s)
- Maria Trelis
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Sotillo J, Trudgett A, Halferty L, Marcilla A, Esteban JG, Toledo R. Echinostoma caproni: Differential tegumental responses to growth in compatible and less compatible hosts. Exp Parasitol 2010; 125:304-9. [DOI: 10.1016/j.exppara.2010.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
21
|
Chai JY, Shin EH, Lee SH, Rim HJ. Foodborne intestinal flukes in Southeast Asia. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47 Suppl:S69-102. [PMID: 19885337 PMCID: PMC2769220 DOI: 10.3347/kjp.2009.47.s.s69] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/23/2022]
Abstract
In Southeast Asia, a total of 59 species of foodborne intestinal flukes have been known to occur in humans. The largest group is the family Heterophyidae, which constitutes 22 species belonging to 9 genera (Centrocestus, Haplorchis, Heterophyes, Heterophyopsis, Metagonimus, Procerovum, Pygidiopsis, Stellantchasmus, and Stictodora). The next is the family Echinostomatidae, which includes 20 species in 8 genera (Artyfechinostomum, Acanthoparyphium, Echinochasmus, Echinoparyphium, Echinostoma, Episthmium, Euparyphium, and Hypoderaeum). The family Plagiorchiidae follows the next containing 5 species in 1 genus (Plagiorchis). The family Lecithodendriidae includes 3 species in 2 genera (Phaneropsolus and Prosthodendrium). In 9 other families, 1 species in 1 genus each is involved; Cathaemaciidae (Cathaemacia), Fasciolidae (Fasciolopsis), Gastrodiscidae (Gastrodiscoides), Gymnophallidae (Gymnophalloides), Microphallidae (Spelotrema), Neodiplostomidae (Neodiplostomum), Paramphistomatidae (Fischoederius), Psilostomidae (Psilorchis), and Strigeidae (Cotylurus). Various types of foods are sources of human infections. They include freshwater fish, brackish water fish, fresh water snails, brackish water snails (including the oyster), amphibians, terrestrial snakes, aquatic insects, and aquatic plants. The reservoir hosts include various species of mammals or birds.The host-parasite relationships have been studied in Metagonimus yokogawai, Echinostoma hortense, Fasciolopsis buski, Neodiplostomum seoulense, and Gymnophalloides seoi; however, the pathogenicity of each parasite species and host mucosal defense mechanisms are yet poorly understood. Clinical aspects of each parasite infection need more clarification. Differential diagnosis by fecal examination is difficult because of morphological similarity of eggs. Praziquantel is effective for most intestinal fluke infections. Continued efforts to understand epidemiological significance of intestinal fluke infections, with detection of further human cases, are required.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul National University Medical Research Center, Seoul 110-799, Korea.
| | | | | | | |
Collapse
|
22
|
Chapter 3 Recent Advances in the Biology of Echinostomes. ADVANCES IN PARASITOLOGY 2009; 69:147-204. [DOI: 10.1016/s0065-308x(09)69003-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Han ET, Chen JH, Chai JY. Antibody responses in sera of different mouse strains experimentally infected with Neodiplostomum seoulense. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 46:279-83. [PMID: 19127337 DOI: 10.3347/kjp.2008.46.4.279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/24/2008] [Indexed: 11/23/2022]
Abstract
To examine humoral immune responses in the host, we measured serum antibody levels in different strains of mice (ICR, BALB/c, and C3H) experimentally infected with Neodiplostomum seoulense. Specific IgG antibody levels were increased remarkably with little difference among 3 strains of mice infected with N. seoulense from day 7 to 35 post-infection. More target proteins of adult parasites reacted with IgG at the time when the worm recovery decreased compared with other times. More than 20 protein bands, from 14 kDa to 94 kDa in size, were separated from the crude antigen of N. seoulense adults by SDS-PAGE, and among them 26, 30, 35, 43, 54, 67, and 94 kDa proteins were the major antigenic proteins. The results suggest that significant IgG antibody responses occur against N. seoulense in mice and this may be related with expulsion of worms.
Collapse
Affiliation(s)
- Eun-Taek Han
- Department of Parasitology, Kangwon National University College of Medicine, Chuncheon 200-701, Korea
| | | | | |
Collapse
|
24
|
Sotillo J, Valero L, Sánchez Del Pino MM, Fried B, Esteban JG, Marcilla A, Toledo R. Identification of antigenic proteins from Echinostoma caproni (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunol 2008; 30:271-9. [PMID: 18221450 DOI: 10.1111/j.1365-3024.2007.01019.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Antigenic proteins of Echinostoma caproni (Trematoda) against mouse IgM, IgA, IgG, IgG1 and IgG2a were investigated by immunoproteomics. Excretory/secretory products (ESP) of E. caproni separated by two-dimensional (2D) gel electrophoresis were transferred to nitrocellulose membranes and probed with the different mouse immunoglobulin classes. A total of four proteins (enolase, 70 kDa heat-shock protein (HSP-70), actin and aldolase) were accurately identified. Enolase was recognized in eight different spots of which seven of them were detected in the expected molecular weight and were recognized by IgA, IgG or IgG and IgG1. Another spot identified as enolase at 72 kDa was only recognized by IgM. Digestion with N-glycosidase F of the 72 kDa band rendered a polypeptide with an apparent molecular weight similar to that expected for enolase recognized by Western immunoblotting using anti-enolase antibodies. This suggests that glycosylated forms of enolase may be involved in the early thymus-independent responses against E. caproni. Early IgM responses were also generated by actin and the HSP-70 which suggests that these proteins are exposed early to the host and may be of importance in the parasite establishment. The IgA responses also appear to be mediated by the HSP-70 and aldolase which could be related with the close contact of these proteins with the host mucosal surface after secretion.
Collapse
Affiliation(s)
- J Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|