1
|
Buchmann C, Korz S, Moraru A, Richling E, Sadzik S, Scharfenberger-Schmeer M, Muñoz K. From winery by-product to soil improver? - A comprehensive review of grape pomace in agriculture and its effects on soil properties and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179611. [PMID: 40373684 DOI: 10.1016/j.scitotenv.2025.179611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Grape pomace (GP), a by-product of winemaking, is rich in organic carbon and nutrients, offering potential as an alternative to synthetic soil amendments. However, its broader use in agriculture remains limited due to uncertainties about long-term environmental and agronomic impacts. This review assesses the potential of GP as a soil amendment, highlighting its ability to enhance soil organic matter, nutrient availability, and soil physicochemical properties. At the same time, concerns remain regarding its acidic nature, wide carbon-to‑nitrogen (C/N) ratio, and bioactive compounds, such as mycotoxins and (poly)phenols, which could negatively impact soil microbial communities and nutrient cycling. Furthermore, residual contaminants such as pesticides and heavy metals in GP may pose ecotoxicological risks, potentially disrupting soil ecosystem functions and contaminating surrounding environments. Besides these challenges, research on the efficiency, fate and mobility of GP in soil, particularly in relation to soil type, climate, and agricultural practices, is limited. Furthermore, the effects of various (pre)treatments (e.g., composting, fermentation) on GP properties and soil interactions require more systematic investigation. Future research should focus on long-term field trials, advanced analytical methods, and effective monitoring frameworks. It is essential to refine regulatory guidance based on comprehensive risk assessments to ensure safe application and maximize GP's agronomic and environmental benefits. Overcoming these challenges could transform GP into a valuable resource for sustainable agriculture, contributing to soil health, climate resilience, and a circular economy.
Collapse
Affiliation(s)
- Christian Buchmann
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany.
| | - Sven Korz
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany
| | - Anja Moraru
- Institute for Viticulture and Enology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Neustadt an der Weinstraße, Germany
| | - Elke Richling
- Faculty of Chemistry, Division Food Chemistry and Toxicology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Sullivan Sadzik
- Faculty of Chemistry, Division Food Chemistry and Toxicology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Maren Scharfenberger-Schmeer
- Institute for Viticulture and Enology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Neustadt an der Weinstraße, Germany; Kaiserslautern University of Applied Sciences, Wine Campus Neustadt, Neustadt, Germany
| | - Katherine Muñoz
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany.
| |
Collapse
|
2
|
Netinger Grubeša I, Šamec D, Juradin S, Hadzima-Nyarko M. Utilizing Agro-Waste as Aggregate in Cement Composites: A Comprehensive Review of Properties, Global Trends, and Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2195. [PMID: 40428931 PMCID: PMC12112986 DOI: 10.3390/ma18102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with a particular focus on palm kernel shells, coconut shells, hazelnut, peanut and pistachio shells, stone fruit shells and pits, date and grape seeds, rice husks, maize (corn) cobs, and sunflower seed shells. For each type of agro-waste, the paper discusses key physical and mechanical properties, global production volumes, and primary countries of origin. Furthermore, it offers an in-depth analysis of existing research on the incorporation of these materials into cement-based composites, highlighting both the advantages and limitations of their use. Although the integration of agro-waste into construction materials presents certain challenges, the vast quantities of agricultural residues generated globally underscore the urgency and potential of their reuse. In line with circular economy principles, this review advocates for the valorization of agro-waste through innovative and sustainable applications within the construction industry.
Collapse
Affiliation(s)
| | - Dunja Šamec
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Sandra Juradin
- Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia;
| | - Marijana Hadzima-Nyarko
- Faculty of Civil Engineering and Architecture, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
3
|
Baratian Ghorghi Z, Faezian A, Yeganehzad S, Hesarinejad MA, Sheikhi Darani A, Fidaleo M, Ahmadi Tighchi H. Numerical simulation and experimental validation of the oleogel formation from grape seed oil and beeswax. Sci Rep 2025; 15:1213. [PMID: 39774968 PMCID: PMC11707145 DOI: 10.1038/s41598-024-82352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
This study focuses on numerical modeling of the oleogelation process using grape seed oil and beeswax and its validation using experimental approach. The main goal is to investigate how the cooling rate affects this process. The necessary physical and thermal properties of the oleogel for modeling were determined through experiments. Additionally, differential scanning calorimetry was used to characterize phase transitions. The apparent heat capacity method was applied in the numerical modeling to simulate the phase change process, and the energy equation was solved using the finite element method. The numerical model demonstrated a maximum relative error of 5.4%, indicating a strong agreement between the numerical results and experimental data. After validating the numerical model, five different cooling rates were investigated. The findings showed that oleogelation begins near the bottom boundary of the setup and then propagates toward the center. Furthermore, the fraction of the total time required for the phase change to complete varied between 0.35 and 0.04 as the cooling rate decreased. This indicates that slower cooling rates provide more time for heat transfer, allowing for more thorough gelation and completing the phase transition in a smaller fraction of the total time. The proposed model can save time and costs while delivering accurate data on creating a beneficial oleogel.
Collapse
Affiliation(s)
- Zohreh Baratian Ghorghi
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
- Department for Innovation in Biological, Agro-Food, and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Ali Faezian
- Research Institute of Food Science and Technology (RIFST), P.O. Box 91895-157-356, Mashhad, Iran.
| | - Samira Yeganehzad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | | - Marcello Fidaleo
- Department for Innovation in Biological, Agro-Food, and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Hashem Ahmadi Tighchi
- Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Volpato Maroldi W, de Andrade Arruda Fernandes I, Demczuk Junior B, Cristina Pedro A, Maria Maciel G, Windson Isidoro Haminiuk C. Waste from the food industry: Innovations in biorefineries for sustainable use of resources and generation of value. BIORESOURCE TECHNOLOGY 2024; 413:131447. [PMID: 39245066 DOI: 10.1016/j.biortech.2024.131447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Biorefineries have attracted significant attention from the scientific community and various industrial sectors due to their use of unconventional biomass sources to produce biofuels and other value-added compounds. Various agro-industrial residues can be applied in biorefinery systems, making them economically and environmentally attractive. However, the cost, efficiency, and profitability of the process are directly affected by the choice of biomass, pre-treatments, and desired products. In biorefineries, the simultaneous production of different products during processing is a valuable approach. Chemical, physical, biological, or combined treatments can generate numerous compounds of high commercial interest, such as phenolic compounds. These treatments, in addition to modifying the biomass structure, are essential for the process's viability. Over the years, complex treatments with high costs and environmental impacts have been simplified and improved, becoming more specific in generating high-value resources as secondary outputs to the main process (generally related to the release of sugars from lignocelluloses to produce second-generation ethanol). Innovative methods involving microorganisms and enzymes are the most promising in terms of efficiency and lower environmental impact. Biorefineries enable the use of varied raw materials, such as different agro-industrial residues, allowing for more efficient resource utilization and reducing dependence on non-renewable sources. In addition to producing low-carbon biofuels, biorefineries generate a variety of high-value by-products, such as packaging materials, pharmaceuticals, and nutritional ingredients. This not only increases the profitability of biorefineries but also contributes to a circular economy.
Collapse
Affiliation(s)
- Wédisley Volpato Maroldi
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Brazil
| | | | - Bogdan Demczuk Junior
- Departamento Acadêmico de Alimentos e Engenharia Química (DAAEQ), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil
| | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil
| | - Charles Windson Isidoro Haminiuk
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil.
| |
Collapse
|
5
|
Blasi F, Trovarelli V, Mangiapelo L, Ianni F, Cossignani L. Grape Pomace for Feed Enrichment to Improve the Quality of Animal-Based Foods. Foods 2024; 13:3541. [PMID: 39593957 PMCID: PMC11593000 DOI: 10.3390/foods13223541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
In this review, the potential role of grape pomace (GP) as a tool for improving feed has been critically summarized, considering the findings of the literature of the last five years (2020-2024). The main applications of GP to the nutrition of different animals and the impact on derived foods (meat, milk and dairy products, eggs, fish) are discussed along with the major advantages and limits. Emphasis was placed on the phenols and fatty acids of GP, which are considered phytochemicals with health-promoting effects. Phenolic compounds increase the antioxidant potential of animal-based foods even if their content and profile are strongly related to grape cultivar and geographical origin. Unsaturated fatty acids, including linoleic and oleic acids, contributed to extending the shelf life of new products. Few approaches exploited chemometrics tools. Generally, GP showed a promising role in feed fortification, even if, in most cases, GP was key only if used in a correct percentage within a balanced diet and for an adequate administration time. From a multidisciplinary perspective, future research endeavors should prioritize a larger sampling, a deep phenol fraction characterization, and an appropriate chemometric approach.
Collapse
Affiliation(s)
| | | | | | | | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.B.); (V.T.); (L.M.); (F.I.)
| |
Collapse
|
6
|
Hoang TD, Van Anh N, Yusuf M, Ali S A M, Subramanian Y, Hoang Nam N, Minh Ky N, Le VG, Thi Thanh Huyen N, Abi Bianasari A, K Azad A. Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies. CHEM REC 2024; 24:e202300333. [PMID: 39051717 DOI: 10.1002/tcr.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/08/2024] [Indexed: 07/27/2024]
Abstract
Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to "value-added" products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.
Collapse
Affiliation(s)
- Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
- Vietam National Univeristy Hanoi -, School of Interdisciplinary Sciences and Arts, 144 Cau Giay, Hanoi, 10000, Hanoi, Vietnam
| | - Nguyen Van Anh
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India
| | - Muhammed Ali S A
- Fuel Cell Institute, (CETRI), Universiti Kebangsasn Malaysia, 43600, Bangi, Malaysia
| | - Yathavan Subramanian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Nguyen Hoang Nam
- Faculty of Environment, Climate change and Urban Studies, National Economics University, 10000, Hanoi, Vietnam
| | - Nguyen Minh Ky
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Vietnam
| | | | - Alien Abi Bianasari
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Abul K Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
7
|
Maity S, Dokania P, Goenka M, Rahul S, Are RP, Sarkar A. Techno-economic feasibility and life cycle assessment analysis for a developed novel biosorbent-based arsenic bio-filter system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:79. [PMID: 38367087 DOI: 10.1007/s10653-023-01839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/18/2023] [Indexed: 02/19/2024]
Abstract
Significant aquifers around the world is contaminated by arsenic (As), that is regarded as a serious inorganic pollution. In this study, a biosorbent-based bio-filter column has been developed using two different plant biomasses (Colocasia esculenta stems and Artocarpus heterophyllus seeds) to remove total As from the aqueous system. Due to its natural origin, affordability, adaptability, removal effectiveness, and possibility for integration with existing systems, the biosorbent-based bio-filter column presents an alluring and promising method. It offers a practical and eco-friendly way to lessen the damaging impacts of heavy metal contamination on ecosystems and public health. In this system, As (III) is oxidized to As (V) using chlorine as an oxidant, after this post-oxidized As-contaminated water is passed through the bio-filter column to receive As-free water (or below World Health Organization permissible limit for As in drinking water). Optimization of inlet flow rate, interference of co-existing anions and cations, and life cycle of the column were studied. The maximum removal percent of As was identified to be 500 µg L-1 of initial concentration at a flow rate of 1.5 L h-1. Furthermore, the specifications of the biosorbent material was studied using elemental analysis and Zeta potential. The particle size distribution, morphological structures, and chemical composition before and after binding with As were studied using dynamic light scattering (DLS), scanning electron microscope-energy dispersive X-Ray spectroscopy (SEM-EDX), and fourier's transform infrared spectroscopy (FTIR) analysis, respectively. SuperPro 10 software was used to analyze the techno-economic viability of the complete unit and determine its ideal demand and potential. Life cycle assessment was studied to interpret the environmental impacts associated alongside the process system. Therefore, this bio-filtration system could have a potential application in rural, urban, and industrial sectors.
Collapse
Affiliation(s)
- Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Puja Dokania
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Manav Goenka
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - S Rahul
- Department of Biotechnology, Indian Institute of Technology, Madras, 600036, India
| | - Ramakrishna P Are
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
8
|
Taifouris M, El-Halwagi M, Martin M. Evaluation of the Economic, Environmental, and Social Impact of the Valorization of Grape Pomace from the Wine Industry. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:13718-13728. [PMID: 37767084 PMCID: PMC10521143 DOI: 10.1021/acssuschemeng.3c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/19/2023] [Indexed: 09/29/2023]
Abstract
The increase in the world population has led to intensive food production systems that are generating increasing amounts of solid waste. In this work, the valorization of the most important waste generated during wine production, grape pomace, is evaluated. Eight processes are proposed to approach different types of valorization (production of energy and value-added products), from economic, environmental, and social points of view. The best process depends on the budget available, the production capacity, and the weight of each impact produced by the factory (economic, environmental, or social). For small (less than 0.1 kg/s) or very large (greater than 10 kg/s) capacities, the production of high-value-added products outperforms the other processes in all three impacts and in profitability. For intermediate capacities, combustion and gasification stand out as having the highest greenhouse emissions and intermediate economic benefits. Anaerobic digestion is remarkable for its low greenhouse gas emissions, while tannin production is the best-balanced process from both economic and environmental points of view. Pyrolysis is the worst process of all three impacts.
Collapse
Affiliation(s)
- Manuel Taifouris
- Department
of Chemical Engineering, University of Salamanca, Plza. Caídos 1-5, 37008 Salamanca, Spain
| | - Mahmoud El-Halwagi
- Department
of Chemical Engineering, Texas A&M, 3122 TAMU, 100 Spence St., College Station, Texas 77843A, United States
| | - Mariano Martin
- Department
of Chemical Engineering, University of Salamanca, Plza. Caídos 1-5, 37008 Salamanca, Spain
| |
Collapse
|
9
|
Biswas R, Rahul S, Pal SK, Sarkar A. Fabrication, characterization and performance analysis of a two-step arsenic bio-filter column using Delftia spp. BAs29 and fired red mud pellets. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4257-4273. [PMID: 36719609 DOI: 10.1007/s10653-022-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Arsenic (As) is considered to be a grave inorganic pollutant, contaminating major aquifers worldwide. In this study, a two-step approach has been designed to combat this toxic metalloid by combining a highly efficient As (III) oxidizing bacteria; Delftia sp. BAs29 and fired red mud pellets to remove the total As from groundwater including both As (III) and As (V) ions. The maximum capacity of As (III) oxidation by Delftia sp. BAs29 was seen to be 95.65% for 500 ml of As contaminated groundwater using an optimized As (III) concentration of 300 ppb and 6.5 g of bacterial cell mass for 7 days. The second step indicated the maximum As (V) adsorption capacity by the stacked red mud pellets to be 97.91% for 500 ml of As contaminated groundwater using the optimized pore size of 106-125 μm for 7 days. The efficiency of As removal increased to 98.76% at a flow rate of 50 ml/h on combining of both the steps. In addition, the morphological properties, chemical composition, and the crystal structure of the As (V) adsorbed red mud pellets were characterized. The techno-economic feasibility of this entire unit was studied using SuperPro 10 software to estimate its optimal demand and potential. Hence, it is believed that scaling up of this two-step bio-filter column can serve as a potent filtration unit to eliminate As, both at the household and industrial level in the near future.
Collapse
Affiliation(s)
- Rimi Biswas
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - S Rahul
- Department of Biotechnology, Indian Institute of Technology, Madras, 600036, India
| | - Sumit Kumar Pal
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
10
|
Martín M, Taifouris M, Galán G. Lignocellulosic biorefineries: A multiscale approach for resource exploitation. BIORESOURCE TECHNOLOGY 2023:129397. [PMID: 37380036 DOI: 10.1016/j.biortech.2023.129397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Biomass can become the source for chemicals towards a sustainable production system. However, the challenges it presents such as the variety of species, their widespread and sparse availability, and the expensive transportation claims for an integrated approach to design the novel production system. Multiscale approaches have not been properly extended to biorefineryes design and deployment, due to the comprehensive experimental and modelling work they require. A systems perspective provides the systematic framework to analyze the availability and composition of raw materials across regions, how that affects process design, the portfolio of products that can be obtained by evaluating the strong link between the biomass features and the process design. The use of lignocellulosic materials requires for a multidisciplinary work, that must lead to new process engineers with technical competences in biology, biotechnology but also process engineering, mathematics, computer science and social sciences towards a sustainable process/chemical industry.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain.
| | - Manuel Taifouris
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| | - Guillermo Galán
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| |
Collapse
|
11
|
Muñoz-Bernal ÓA, Vazquez-Flores AA, de la Rosa LA, Rodrigo-García J, Martínez-Ruiz NR, Alvarez-Parrilla E. Enriched Red Wine: Phenolic Profile, Sensory Evaluation and In Vitro Bioaccessibility of Phenolic Compounds. Foods 2023; 12:foods12061194. [PMID: 36981121 PMCID: PMC10048746 DOI: 10.3390/foods12061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The beneficial health effect of red wine depends on its phenolic content and the phenolic content in red wines is affected by ecological, agricultural, and enological practices. Enriched wines have been proposed as an alternative to increase the phenolic content in wines. Nevertheless, phenolic compounds are related to the sensory characteristics of red wines, so enrichment of red wines requires a balance between phenolic content and sensory characteristics. In the present study, a Merlot red wine was enriched with a phenolic extract obtained from Cabernet Sauvignon grape pomace. Two levels of enrichment were evaluated: 4 and 8 g/L of total phenolic content (gallic acid equivalents, GAE). Wines were evaluated by a trained panel to determine their sensory profile (olfactive, visual, taste, and mouthfeel phases). The bioaccessibility of phenolic compounds from enriched red wines was evaluated using an in vitro digestive model and phenolic compounds were quantified by High Performance Liquid Chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Enrichment increased mainly flavonols and procyanidins. Such an increase impacted astringency and sweetness perceived by judges. This study proposes an alternative to increase the phenolic content in wines without modifying other main sensory characteristics and offers a potential beneficial effect on the health of consumers.
Collapse
Affiliation(s)
- Óscar A. Muñoz-Bernal
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Alma A. Vazquez-Flores
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Laura A. de la Rosa
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Joaquín Rodrigo-García
- Departamento de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Nina R. Martínez-Ruiz
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf s/n, Fovisste Chamizal, Ciudad Juárez C.P. 32300, Mexico
- Correspondence: ; Tel.: +52-(656)-688-21-00 (ext. 1562)
| |
Collapse
|
12
|
Bilias F, Kalderis D, Richardson C, Barbayiannis N, Gasparatos D. Biochar application as a soil potassium management strategy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159782. [PMID: 36309281 DOI: 10.1016/j.scitotenv.2022.159782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The established practices of intensive agriculture, combined with inadequate soil Κ replenishment by conventional inorganic fertilization, results in a negative environmental impact through the gradual exhaustion of different forms of K reserves in soils. Although biochar application as soil amendment has been established as an approach of integrated nutrient management, few works have focused on the impact of biochar application to soil K availability and crop uptake. This review provides an up-to-date analysis of the published literature, focusing on the impact of biochar in the availability of potassium in soil and crop growth. First, the effect of biomass type and pyrolysis temperature on potassium content of biochar was assessed. Second, the influence of biochar addition to the availability of potassium in soil and on potassium soil dynamics was examined. Finally, alternative methods for estimating available K in soils were proposed. The most promising biomasses in terms of potassium content were grape pomace, coffee husk and hazelnut husk however, these have not been widely utilized for biochar production. Higher pyrolysis temperatures (>500 °C) increase the total potassium content whereas lower temperatures increase the water-soluble and exchangeable potassium fractions. It was also determined that biochar has considerable potential for enhancing K availability through several distinct mechanisms which eventually lead directly or indirectly to increased K uptake by plants. Indirect mechanisms mainly include increased K retention capacity based on biochar properties such as high cation exchange capacity, porosity, and specific surface area, while the direct supply of K can be provided by K-rich biochar sources through purpose-made biochar production techniques. Research based on biochar applications for soil K fertility purposes is still at an early stage, therefore future work should focus on elucidating the mechanisms that define K retention and release processes through the complicated soil-biochar-plant system.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronic Engineering, Hellenic Mediterranean University, Chania 73100, Greece
| | - Clive Richardson
- Department of Economic and Regional Development, Panteion University of Social and Political Sciences, Athens 17671, Greece
| | - Nikolaos Barbayiannis
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, Athens 11855, Greece.
| |
Collapse
|
13
|
Perra M, Bacchetta G, Muntoni A, De Gioannis G, Castangia I, Rajha HN, Manca ML, Manconi M. An outlook on modern and sustainable approaches to the management of grape pomace by integrating green processes, biotechnologies and advanced biomedical approaches. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Rodrigues RP, Gando-Ferreira LM, Quina MJ. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022; 27:molecules27154709. [PMID: 35897883 PMCID: PMC9331683 DOI: 10.3390/molecules27154709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The wine industry is one of the most relevant socio-economic activities in Europe. However, this industry represents a growing problem with negative effects on the environment since it produces large quantities of residues that need appropriate valorization or management. From the perspective of biorefinery and circular economy, the winery residues show high potential to be used for the formulation of new products. Due to the substantial quantities of phenolic compounds, flavonoids, and anthocyanins with high antioxidant potential in their matrix, these residues can be exploited by extracting bioactive compounds before using the remaining biomass for energy purposes or for producing fertilizers. Currently, there is an emphasis on the use of new and greener technologies in order to recover bioactive molecules from solid and liquid winery residues. Once the bio compounds are recovered, the remaining residues can be used for the production of energy through bioprocesses (biogas, bioethanol, bio-oil), thermal processes (pyrolysis, gasification combustion), or biofertilizers (compost), according to the biorefinery concept. This review mainly focuses on the discussion of the feasibility of the application of the biorefinery concept for winery residues. The transition from the lab-scale to the industrial-scale of the different technologies is still lacking and urgent in this sector.
Collapse
|
16
|
Milew K, Manke S, Grimm S, Haseneder R, Herdegen V, Braeuer AS. Application, characterisation and economic assessment of brewers’ spent grain and liquor. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kerstin Milew
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| | - Sophie Manke
- Institute of Bioscience TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Sandra Grimm
- Institute of Bioscience TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Roland Haseneder
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| | - Volker Herdegen
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| | - Andreas S. Braeuer
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| |
Collapse
|
17
|
del Mar Contreras M, Romero-García JM, López-Linares JC, Romero I, Castro E. Residues from grapevine and wine production as feedstock for a biorefinery. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Ioannidou SM, Filippi K, Kookos IK, Koutinas A, Ladakis D. Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products. BIORESOURCE TECHNOLOGY 2022; 348:126295. [PMID: 34800640 DOI: 10.1016/j.biortech.2021.126295] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
This study presents techno-economic evaluation and life cycle assessment of a novel biorefinery using the three main waste streams generated by wineries for the production of bio-based succinic acid (SA), crude phenolic-rich extract, grape-seed oil, calcium tartrate and crude tannin-rich extract. Process design has been employed for the estimation of material and energy balances and the sizing of unit operations. The Minimum Selling Price of succinic acid production within a winery waste biorefinery ranges from $1.23-2.76/kgSA depending on the market price and the potential end-uses of the extracted fractions. The Global Warming Potential and the Abiotic Depletion Potential of winery waste valorisation through the proposed biorefinery are 1.47 kg CO2-eq per kg dry waste and 25.2 MJ per kg dry waste, respectively. Biorefining of winery waste could lead to the development of a sustainable and novel bioeconomy business model with new market opportunities and efficient waste management.
Collapse
Affiliation(s)
- Sofia Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Katiana Filippi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
19
|
Madadian E, Rahimi J, Mohebbi M, Simakov DS. Grape Pomace as an Energy Source for the Food Industry: A Thermochemical and Kinetic Analysis. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Tikhonova A, Ageeva N, Globa E. Grape pomace as a promising source of biologically valuable components. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213406002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental data on the content of biologically valuable components in grape pomace are presented. The presence of organic acids was revealed in an amount from 33.35 g/kg (Saperavi) to 108.2 g/kg (Rebo). The main acid is tartaric. Phenolic compounds have been identified: anthocyanins, flavones, flavan-3-ols, oxycinnamic and hydroxybenzoic acids, procyanidins. The main anthocyanins found in grape pomace are the 3-O-glycosides of malvidin, petunidin, cyanidin, peonidin and delphinidin. The highest total content of hydroxybenzoic acids was in the pomace of Pinot Noir grapes – 720 mg/kg, further in descending order of concentration followed by pomace from Saperavi grapes (708 mg/kg), Cabernet Sauvignon (681 mg/kg), Merlot (575 mg/kg) and Rebo (545 mg/kg). The highest total content of vitamins was found in the pomace of Rebo grapes – 639 mg/kg, the lowest – Merlot (471 mg/kg). In all samples, vitamin B1 prevails, then in decreasing order – ascorbic acid, vitamins B2, B3, B5, B7. Moreover, their concentrations vary significantly depending on the grape variety from which the pomace is obtained. The influence of the grape variety on the content of these biologically valuable components in the pomace has been established, which must be taken into account in the production of biologically active substances that increase the nutritional status of a person.
Collapse
|