1
|
Landrier JF, Breniere T, Sani L, Desmarchelier C, Mounien L, Borel P. Effect of tomato, tomato-derived products and lycopene on metabolic inflammation: from epidemiological data to molecular mechanisms. Nutr Res Rev 2025; 38:95-111. [PMID: 38105560 DOI: 10.1017/s095442242300029x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The goal of this narrative review is to summarise the current knowledge and limitations related to the anti-inflammatory effects of tomato, tomato-derived products and lycopene in the context of metabolic inflammation associated to cardiometabolic diseases. The potential of tomato and tomato-derived product supplementation is supported by animal and in vitro studies. In addition, intervention studies provide arguments in favour of a limitation of metabolic inflammation. This is also the case for observational studies depicting inverse association between plasma lycopene levels and inflammation. Nevertheless, current data of intervention studies are mixed concerning the anti-inflammatory effect of tomato and tomato-derived products and are not in favour of an anti-inflammatory effect of pure lycopene in humans. From epidemiological to mechanistic studies, this review aims to identify limitations of the current knowledge and gaps that remain to be filled to improve our comprehension in contrasted anti-inflammatory effects of tomato, tomato-derived products and pure lycopene.
Collapse
Affiliation(s)
| | - Thomas Breniere
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- INRAE-Centre d'Avignon UR1115 Plantes et Systèmes de Culture Horticoles, Avignon, France
- Laboratoire de Physiologie Expérimentale Cardiovasculaire (LAPEC), UPR-4278, Université d'Avignon, 84029 Avignon, France
| | - Léa Sani
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | | | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Patrick Borel
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| |
Collapse
|
2
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
3
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 PMCID: PMC11639863 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
4
|
Long Y, Paengkoum S, Lu S, Niu X, Thongpea S, Taethaisong N, Han Y, Paengkoum P. Physicochemical properties, mechanism of action of lycopene and its application in poultry and ruminant production. Front Vet Sci 2024; 11:1364589. [PMID: 38562916 PMCID: PMC10983797 DOI: 10.3389/fvets.2024.1364589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Lycopene is a kind of natural carotenoid that could achieve antioxidant, anti-cancer, lipid-lowering and immune-improving effects by up-regulating or down-regulating genes related to antioxidant, anti-cancer, lipid-lowering and immunity. Furthermore, lycopene is natural, pollution-free, and has no toxic side effects. The application of lycopene in animal production has shown that it could improve livestock production performance, slaughter performance, immunity, antioxidant capacity, intestinal health, and meat quality. Therefore, lycopene as a new type of feed additive, has broader application prospects in many antibiotic-forbidden environments. This article serves as a reference for the use of lycopene as a health feed additive in animal production by going over its physical and chemical characteristics, antioxidant, lipid-lowering, anti-cancer, and application in animal production.
Collapse
Affiliation(s)
- Yong Long
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Shengyong Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Xinran Niu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yong Han
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
5
|
Kaur P, Dey A, Rawat K, Dey S. Novel antioxidant protein target therapy to counter the prevalence and severity of SARS-CoV-2. Front Immunol 2024; 14:1241313. [PMID: 38235136 PMCID: PMC10791803 DOI: 10.3389/fimmu.2023.1241313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background This review analyzed the magnitude of the COVID-19 pandemic globally and in India and the measures to counter its effect using natural and innate immune booster molecules. The study focuses on two phases: the first focuses on the magnitude, and the second on the effect of antioxidants (natural compounds) on SARS-CoV-2. Methods The magnitude of the prevalence, mortality, and comorbidities was acquired from the World Health Organization (WHO) report, media, a report from the Ministry of Health and Family Welfare (MoHFW), newspapers, and the National Centre of Disease Control (NCDC). Research articles from PubMed as well as other sites/journals and databases were accessed to gather literature on the effect of antioxidants. Results In the elderly and any chronic diseases, the declined level of antioxidant molecules enhanced the reactive oxygen species, which in turn deprived the immune system. Conclusion Innate antioxidant proteins like sirtuin and sestrin play a vital role in enhancing immunity. Herbal products and holistic approaches can also be alternative solutions for everyday life to boost the immune system by improving the redox balance in COVID-19 attack. This review analyzed the counteractive effect of alternative therapy to boost the immune system against the magnitude of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyajit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Dey
- Clinton Health Access Initiative, New Delhi, India
| | - Kartik Rawat
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Tang D, Kang R, Zeh HJ, Lotze MT. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol 2023; 23:824-841. [PMID: 37322174 DOI: 10.1038/s41577-023-00894-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Fifty years since the initial discovery of HMGB1 in 1973 as a structural protein of chromatin, HMGB1 is now known to regulate diverse biological processes depending on its subcellular or extracellular localization. These functions include promoting DNA damage repair in the nucleus, sensing nucleic acids and inducing innate immune responses and autophagy in the cytosol and binding protein partners in the extracellular environment and stimulating immunoreceptors. In addition, HMGB1 is a broad sensor of cellular stress that balances cell death and survival responses essential for cellular homeostasis and tissue maintenance. HMGB1 is also an important mediator secreted by immune cells that is involved in a range of pathological conditions, including infectious diseases, ischaemia-reperfusion injury, autoimmunity, cardiovascular and neurodegenerative diseases, metabolic disorders and cancer. In this Review, we discuss the signalling mechanisms, cellular functions and clinical relevance of HMGB1 and describe strategies to modify its release and biological activities in the setting of various diseases.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael T Lotze
- Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Wei RR, Lin QY, Adu M, Huang HL, Yan ZH, Shao F, Zhong GY, Zhang ZL, Sang ZP, Cao L, Ma QG. The sources, properties, extraction, biosynthesis, pharmacology, and application of lycopene. Food Funct 2023; 14:9974-9998. [PMID: 37916682 DOI: 10.1039/d3fo03327a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lycopene is an important pigment with an alkene skeleton from Lycopersicon esculentum, which is also obtained from some red fruits and vegetables. Lycopene is used in the food field with rich functions and serves in the medical field with multiple clinical values because it has dual functions of both medicine and food. It was found that lycopene was mainly isolated by solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction, high-intensity pulsed electric field-assisted extraction, enzymatic-assisted extraction, and microwave-assisted extraction. Meanwhile, it was also obtained via 2 synthetic pathways: chemical synthesis and biosynthesis. Pharmacological studies revealed that lycopene has anti-oxidant, hypolipidemic, anti-cancer, immunity-enhancing, hepatoprotective, hypoglycemic, cardiovascular-protective, anti-inflammatory, neuroprotective, and osteoporosis-inhibiting effects. The application of lycopene mainly includes food processing, animal breeding, and medical cosmetology fields. It is hoped that this review will provide some useful information and guidance for future study and exploitation of lycopene.
Collapse
Affiliation(s)
- Rong-Rui Wei
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Qing-Yuan Lin
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Mozili Adu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Hui-Lian Huang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhi-Hong Yan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Feng Shao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Guo-Yue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhong-Li Zhang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lan Cao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Qin-Ge Ma
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, College of Pharmacy, Laboratory Service Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
8
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
9
|
Khongthaw B, Dulta K, Chauhan PK, Kumar V, Ighalo JO. Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology 2022; 30:1955-1976. [PMID: 36050507 PMCID: PMC9436159 DOI: 10.1007/s10787-022-01061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.
Collapse
Affiliation(s)
- Banlambhabok Khongthaw
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Kumar Chauhan
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
10
|
Wang J, Tao Y, Juan Y, Zhou H, Zhao X, Cheng X, Wang X, Quan X, Li J, Huang K, Wei W, Zhao J. Hierarchical Assembly of Flexible Biopolymer Polyphosphate-Manganese into Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203200. [PMID: 36084167 DOI: 10.1002/smll.202203200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphate (polyP) is one of the most compact inorganic polyanionic biopolymers that participates in various physiological processes. However, the development of polyP-based nanomaterials is still in its infancy. Here, biocompatible polyphosphate-manganese nanosheets are designed and synthesized by a hierarchical assembly strategy. The thickness and the lateral size of the resulting polyP-Mn nanosheets (PMNSs) are 5 nm and 120-130 nm, respectively. Molecular dynamics simulations suggested that the polyP-hexadecyl trimethyl ammonium bromide flat structure possesses a strong aggregating capacity and serves as the template for the 2D assembly of polyP-Mn. The PMNSs can activate the inflammatory response of macrophages resulting in the recovery of innate immunological functions to inhibit tumor proliferation. This work has initiated a new direction in constructing layered polyP-based nanomaterials and provides guidance for biocompatible and biodegradable biopolymer-based materials in the regulation of innate responses.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Yucheng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Yewen Juan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Hang Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiaomei Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Junyan Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| |
Collapse
|
11
|
Cytotoxic evaluation and chemical investigation of tomatoes from plants (Solanum lycopersicum L.) grown in uncontaminated and experimentally contaminated soils. Sci Rep 2022; 12:13024. [PMID: 35906264 PMCID: PMC9338037 DOI: 10.1038/s41598-022-13876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxic activity and the chemical composition of the tomato extracts coming from, Pomodoro Giallo and San Marzano Cirio 3, and then to evaluate the potential changes when plants were grown in soils contaminated by cadmium, chromium and lead. Extracts were investigated by UHPLC-HRMS and UV–Vis. Cell viability (CellTiter-Glo Luminescent assay), enzyme aldehyde dehydrogenase activity (ALDEFLOUR Assay), cell cycle progression (Accuri C6 Flow Cytometer), apoptosis and necrosis (Annexin V-FITC assay) were evaluated on two gastric cancer (AGS and NCI-N87) and two colorectal cancer (HT-29 and HCT 116) cell lines. Different content of polyphenol and carotenoid constituents was observed. Extracts from uncontaminated soil induced cytotoxic activity towards all selected cancer cells, while extracts coming from contaminated soils showed the aberrant phenotype increased in colorectal cancer cells. Chloroform extracts exerted the highest cytotoxic activity. AGS and HT-29 were the most sensitive to cell cycle arrest and to apoptosis. No necrotic effect was observed in HCT 116. The contrasting effects on cancer cells were observed based on tomato variety, the extract polarity, heavy metal identity, and tested cell line. The investigation of potential adverse health effects due to Cd in the fruits should be explored.
Collapse
|
12
|
Li X, Zhang P, Li H, Yu H, Xi Y. The Protective Effects of Zeaxanthin on Amyloid-β Peptide 1–42-Induced Impairment of Learning and Memory Ability in Rats. Front Behav Neurosci 2022; 16:912896. [PMID: 35813593 PMCID: PMC9262409 DOI: 10.3389/fnbeh.2022.912896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives Zeaxanthin (ZEA) as one of the biologically active phytochemicals presents a neuroprotective effect. Since ZEA may play its anti-oxidative role in neurodegenerative diseases including Alzheimer’s disease (AD), we hypothesized cognitive defects could be prevented or deferred by ZEA pre-treatment. Methods and Study Design All the rats were randomly divided into four groups (control, Aβ1–42, ZEA, and ZEA + Aβ groups). Learning and memory ability of rats, cerebrovascular ultrastructure changes, the redox state, endothelin-1 (ET-1) level, and amyloid-β peptide (Aβ) level in plasma and the Aβ transport receptors which are advanced glycation end products (RAGEs) and LDL receptor-related protein-1 (LRP-1) and interleukin-1β (IL-1β) expressions in the cerebrovascular tissue were measured in the present study. Results The escape latency and frequency of spanning the position of platform showed significant differences between the Aβ group and ZEA treatment groups. ZEA could prevent the ultrastructure changes of cerebrovascular tissue. In addition, ZEA also showed the protective effects on regulating redox state, restraining ET-1 levels, and maintaining Aβ homeostasis in plasma and cerebrovascular. Moreover, the disordered expressions of RAGE and LRP-1 and IL-1β induced by Aβ1–42 could be prevented by the pre-treatment of ZEA. Conclusion ZEA pre-treatment could prevent learning and memory impairment of rats induced by Aβ1–42. This neuroprotective effect might be attributable to the anti-oxidative and anti-inflammatory effects of ZEA on maintaining the redox state and reducing the Aβ level through regulating the Aβ transport receptors and inflammatory cytokine of the cerebrovascular tissue.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Ping Zhang
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Hongrui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
| | - Yuandi Xi
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
- *Correspondence: Yuandi Xi,
| |
Collapse
|
13
|
Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, Selamoglu Z, Hasan M, Kumar M, Alshehri MM, Sharifi-Rad J. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2713511. [PMID: 34840666 PMCID: PMC8626194 DOI: 10.1155/2021/2713511] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
As an antioxidant, lycopene has acquired importance as it prevents autoxidation of fats and related products. Tomatoes are an important agricultural product that is a great source of lycopene. It contains many vitamins and minerals, fiber, and carbohydrates and is associated with various positive effects on health. The antioxidant potential of tomatoes is substantially explained with lycopene compounds. Diet is a major risk factor for heart diseases which is shown as the most important cause of death in the world. It has been observed that the lycopene taken in the diet has positive effects in many stages of atherosclerosis. The serum lipid levels, endothelial dysfunction, inflammation, blood pressure, and antioxidative potential are mainly affected by lycopene. These natural antioxidants, which can also enhance the nutritional value of foods, may lead to new ways if used in food preservation. In this review study, the antioxidant potential and cardiovascular protection mechanism of lycopene are discussed.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, 80500 Osmaniye, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Sariyer, Istanbul, Turkey
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Dilara Nur Kaplan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
14
|
Chauhan A, Islam AU, Prakash H, Singh S. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. J Pharm Anal 2021; 12:394-405. [PMID: 35811622 PMCID: PMC9257438 DOI: 10.1016/j.jpha.2021.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a ubiquitous regulator of the signalome and is indispensable for various biological cell functions. NF-κB consists of five transcription factors that execute both cytoplasmic and nuclear signaling processes in cells. NF-κB is the only signaling molecule that governs both pro- and anti-apoptotic, and pro- and anti-inflammatory responses. This is due to the canonical and non-canonical components of the NF-κB signaling pathway. Together, these pathways orchestrate cancer-related inflammation, hyperplasia, neoplasia, and metastasis. Non-canonical NF-κB pathways are particularly involved in the chemoresistance of cancer cells. In view of its pivotal role in cancer progression, NF-κB represents a potentially significant therapeutic target for modifying tumor cell behavior. Several phytochemicals are known to modulate NF-κB pathways through the stabilization of its inhibitor, IκB, by inhibiting phosphorylation and ubiquitination thereof. Several natural pharmacophores are known to inhibit the nuclear translocation of NF-κB and associated pro-inflammatory responses and cell survival pathways. In view of this and the high degree of specificity exhibited by various phytochemicals for the NF-κB component, we herein present an in-depth overview of these phytochemicals and discuss their mode of interaction with the NF-κB signaling pathways for controlling the fate of tumor cells for cancer-directed interventions. NF-κB plays a pivotal role in the maintenance of homeostasis and various inflammation-mediated pathologies. NF-κB is involved in cancer development and progression by modulating growth signaling and apoptosis pathways. Phytochemicals modulating NF-κB activity should be exploited to design anticancer drugs with minimal side effects. Use of these phytochemicals in adjunctive chemotherapy may enhance the chemosensitivity of existing chemotherapeutic drugs.
Collapse
Affiliation(s)
- Akansha Chauhan
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hridayesh Prakash
- Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Sandhya Singh
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
- Corresponding author.
| |
Collapse
|
15
|
Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 2021; 38:1203-1224. [PMID: 33292072 DOI: 10.1089/neu.2020.7413] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The blood-spinal cord barrier (BSCB), a physical barrier between the blood and spinal cord parenchyma, prevents the toxins, blood cells, and pathogens from entering the spinal cord and maintains a tightly controlled chemical balance in the spinal environment, which is necessary for proper neural function. A BSCB disruption, however, plays an important role in primary and secondary injury processes related to spinal cord injury (SCI). After SCI, the structure of the BSCB is broken down, which leads directly to leakage of blood components. At the same time, the permeability of the BSCB is also increased. Repairing the disruption of the BSCB could alleviate the SCI pathology. We review the morphology and pathology of the BSCB and progression of therapeutic methods targeting BSCB in SCI.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Kai-Feng Wang
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Wei-Wei Xia
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Zhen-Qi Zhu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Chun-Ru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| |
Collapse
|
16
|
Bano N, Zia-Ul-Haq M. Carotenoids in diabetes, retinopathy, and cardiovascular risk. DIABETES AND CARDIOVASCULAR DISEASE 2021:123-152. [DOI: 10.1016/b978-0-12-817428-9.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Saito Reis CA, Padron JG, Norman Ing ND, Kendal-Wright CE. High-mobility group box 1 is a driver of inflammation throughout pregnancy. Am J Reprod Immunol 2020; 85:e13328. [PMID: 32851715 DOI: 10.1111/aji.13328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
A proinflammatory response driven by high-mobility group box 1 (HMGB1) is important for the success of both the early stages of pregnancy and parturition initiation. However, the tight regulation of HMGB1 within these two stages is critical, as increased HMGB1 can manifest into pregnancy-related pathologies. Although during the early stages of pregnancy HMGB1 is critical for the development and implantation of the embryo, and uterine decidualization, high levels within the uterine cavity have been linked to pregnancy failure. In addition, chronic inflammation, resultant from increased HMGB1 within the maternal circulation and gestational tissues, also increases the risk for preterm labor, preterm birth, or infant mortality. Due to the link between HMGB1 and several pregnancy pathologies, the possibility of leveraging HMGB1 as a biomarker has been assessed. However, data are limited that demonstrate how known HMGB1 inhibitors could reduce inflammation within pregnancy. Thus, further research is warranted to improve our understanding of the potential of HMGB1 as a therapeutic target to reduce inflammation within pregnancy. This review aims to describe what is understood about the role of HMGB1 that drives inflammation throughout pregnancy and highlight its potential as a biomarker and therapeutic target within this context.
Collapse
Affiliation(s)
- Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoā, Honolulu, HI, USA
| | - Nainoa D Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA.,Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoā, Honolulu, HI, USA.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'I at Manoā, Honolulu, HI, USA
| |
Collapse
|
19
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Huang M, Geng Y, Deng Q, Li R, Shao X, Zhang Z, Xu W, Wu Y, Ma Q. Translationally controlled tumor protein affects colorectal cancer metastasis through the high mobility group box 1-dependent pathway. Int J Oncol 2018; 53:1481-1492. [PMID: 30066846 PMCID: PMC6086624 DOI: 10.3892/ijo.2018.4502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
Recently, accumulating evidence from clinical and experimental researches have suggested that translationally controlled tumor protein (TCTP) and high mobility group box 1 (HMGB1) are implicated in colorectal cancer (CRC) metastasis. However, whether there is an interconnection between these two tumor-promoting proteins and how they affect CRC metastasis remain to be fully elucidated. In the present study, the expression level of TCTP in CRC tissues was assessed by immunohistochemical staining and immunoblotting, and the serum concentration of HMGB1 in patients with CRC was detected by enzyme-linked immunosorbent assay. In vitro, following the modulation of TCTP expression in colon cancer LoVo cells, the translocation behavior of HMGB1 was observed by immunofluorescence assay. Furthermore, the activity of nuclear factor-κB (NF-κB) in LoVo cells was evaluated by immunoblotting and luciferase assay, and the invasion ability of LoVo cells after different treatments was determined using cell invasion assay. In vivo, xenograft tumor model was established and the correlation of TCTP and HMGB1 expression in xenografted tumors was studied by immunohistochemical examination. The results revealed that the expression level of TCTP in CRC tissue and the serum concentration of HMGB1 in patients with CRC were significantly increased, and there was a strong positive correlation between them. In vitro experiments showed that the overexpression of TCTP on LoVo cells resulted in the release of HMGB1 from the nucleus to the cytoplasm and into the extracellular space. In addition, the overexpression of TCTP led to the activation of NF-κB in LoVo cells, and this effect was reversed by treatment with antibodies targeting HMGB1 or to its receptors Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products advanced glycation end products (RAGE). Furthermore, inhibition of the HMGB1-TLR4/RAGE-NF-κB pathway significantly inhibited the TCTP-stimulated invasion of LoVo cells. In vivo experiments demonstrated that the over-expression of TCTP in nude mice promoted the development and spread of xenografted tumors, and concurrently enhanced the expression of HMGB1 in tumor tissues. Collectively, these findings suggested that TCTP promotes CRC metastasis through regulating the behaviors of HMGB1 and the downstream activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Maoliang Huang
- Fuzhou Dingxiang Clinic, Fuzhou, Fujian 350028, P.R. China
| | - Yan Geng
- Department of Intensive Care Unit, 303 Hospital of Chinese People's Liberation Army, Nanning, Guanxi 530021, P.R. China
| | - Qiaoting Deng
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ru Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiangyang Shao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhigao Zhang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiwen Xu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Ma
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
21
|
Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology 2018; 55:2833-2849. [PMID: 30065393 DOI: 10.1007/s13197-018-3221-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Abstract
Tomato is a wonder fruit fortified with health-promoting phytochemicals that are beneficial in preventing important chronic degenerative disorders. Tomato is a good source of phenolic compounds (phenolic acids and flavonoids), carotenoids (lycopene, α, and β carotene), vitamins (ascorbic acid and vitamin A) and glycoalkaloids (tomatine). Bioactive constituents present in tomato have antioxidant, anti-mutagenic, anti-proliferative, anti-inflammatory and anti-atherogenic activities. Health promoting bioactivities of tomatoes make them useful ingredient for the development of functional foods. Protective role of tomato (lycopene as a potent antioxidant) in humans against various degenerative diseases are known throughout the world. Intake of tomato is inversely related to the incidence of cancer, cardiovascular diseases, ageing and many other health problems. Bioavailability of phytoconstituents in tomato is generally not affected by routine cooking processes making it even more beneficial for human consumption. The present review provides collective information of phytochemicals in tomato along with discussing their bioactivities and possible health benefits.
Collapse
|
22
|
Mozos I, Stoian D, Caraba A, Malainer C, Horbańczuk JO, Atanasov AG. Lycopene and Vascular Health. Front Pharmacol 2018; 9:521. [PMID: 29875663 PMCID: PMC5974099 DOI: 10.3389/fphar.2018.00521] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/30/2018] [Indexed: 01/20/2023] Open
Abstract
Lycopene is a lipophilic, unsaturated carotenoid, found in red-colored fruits and vegetables, including tomatoes, watermelon, papaya, red grapefruits, and guava. The present work provides an up to date overview of mechanisms linking lycopene in the human diet and vascular changes, considering epidemiological data, clinical studies, and experimental data. Lycopene may improve vascular function and contributes to the primary and secondary prevention of cardiovascular disorders. The main activity profile of lycopene includes antiatherosclerotic, antioxidant, anti-inflammatory, antihypertensive, antiplatelet, anti-apoptotic, and protective endothelial effects, the ability to improve the metabolic profile, and reduce arterial stiffness. In this context, lycopene has been shown in numerous studies to exert a favorable effect in patients with subclinical atherosclerosis, metabolic syndrome, hypertension, peripheral vascular disease, stroke and several other cardiovascular disorders, although the obtained results are sometimes inconsistent, which warrants further studies focusing on its bioactivity.
Collapse
Affiliation(s)
- Ioana Mozos
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | - Dana Stoian
- 2nd Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | - Alexandru Caraba
- 1st Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | | | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Zhao B, Liu H, Wang J, Liu P, Tan X, Ren B, Liu Z, Liu X. Lycopene Supplementation Attenuates Oxidative Stress, Neuroinflammation, and Cognitive Impairment in Aged CD-1 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3127-3136. [PMID: 29509007 DOI: 10.1021/acs.jafc.7b05770] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The carotenoid pigment lycopene (LYC) possesses several properties, including antioxidative, anti-inflammatory, and neuroprotective properties. This study examined the effects of dietary supplementation with LYC on age-induced cognitive impairment, and the potential underlying mechanisms. Behavioral tests revealed that chronic LYC supplementation alleviated age-associated memory loss and cognitive defects. Histological and immunofluorescence-staining results indicated that LYC treatment reversed age-associated neuronal damage and synaptic dysfunctions in the brain. Additionally, LYC supplementation decreased age-associated oxidative stress via suppression of malondialdehyde levels, which increased glutathione, catalase, and superoxide dismutase activities and the levels of antioxidant-enzyme mRNAs, including those of heme oxygenase 1 and NAD-(P)-H-quinone oxidoreductase-1. Furthermore, LYC supplementation significantly reduced age-associated neuroinflammation by inhibiting microgliosis (Iba-1) and downregulating related inflammatory mediators. Moreover, LYC lowered the accumulation of Aβ1-42 in the brains of aged CD-1 mice. Therefore, LYC has the potential for use in the treatment of several age-associated chronic diseases.
Collapse
Affiliation(s)
- Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Hua Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Jiamin Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Pujie Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Xintong Tan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| |
Collapse
|
24
|
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 2018; 129:262-273. [DOI: 10.1016/j.phrs.2017.11.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
|
25
|
Fachinello MR, Fernandes NLM, de Souto ER, dos Santos TC, da Costa AER, Pozza PC. Lycopene affects the immune responses of finishing pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1401438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | | | | | - Paulo Cesar Pozza
- Departamento de Zootecnia, State University of Maringa, Maringá, Brazil
| |
Collapse
|
26
|
Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-κB transcriptional pathway. Food Chem Toxicol 2017; 109:505-516. [PMID: 28974442 DOI: 10.1016/j.fct.2017.09.050] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
Oxidative stress, considered as a major culprit in brain aging, triggers cognitive and memory impairment. Lycopene (LYC), a carotenoid pigment, possesses potent antioxidative, anti-inflammatory, and neuroprotective properties. In the present study, the effects of LYC on oxidative stress-induced cognitive defects and the underlying mechanisms were determined. The behavioral tests, including Y-maze test, locomotor activity and Morris water maze test, revealed that chronic LYC supplementation (50 mg/kg bodyweight per day) alleviated d-galactose induced CD-1 male mice cognitive impairments. LYC ameliorated histopathological damage and restored brain derived neurotrophic factor (BDNF) levels in the hippocampus of mice. LYC also significantly elevated antioxidant enzymes activities and reduced levels of inflammatory cytokines in the d-galactose-treated mice serum. Moreover, LYC treatment activated the mRNA expressions of antioxidant enzymes HO-1 and NQO-1, and downregulated inflammatory cytokines IL-1β and TNF-α in mice hippocampus. Immunohistochemical results also demonstrated that LYC significantly restored the expression of glial cells inflammatory makers Iba-1 and GFAP. Furthermore, LYC attenuated neuronal oxidative damage through activation of Nrf2 signaling and inactivation of NF-κB translocation in a H2O2-induced SH-SY5Y cell model. Therefore, these results illustrated that LYC could ameliorate oxidative stress induced neuroinflammation and cognitive impairment possibly via mediating Nrf2/NF-κB transcriptional pathway.
Collapse
|
27
|
Chu Y, Wang Y, Zheng Z, Lin Y, He R, Liu J, Yang X. Proinflammatory Effect of High Glucose Concentrations on HMrSV5 Cells via the Autocrine Effect of HMGB1. Front Physiol 2017; 8:762. [PMID: 29033853 PMCID: PMC5627536 DOI: 10.3389/fphys.2017.00762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Background: Peritoneal fibrosis, in which inflammation and apoptosis play crucial pathogenic roles, is a severe complication associated with the treatment of kidney failure with peritoneal dialysis (PD) using a glucose-based dialysate. Mesothelial cells (MCs) take part in the inflammatory processes by producing various cytokines and chemokines, such as monocyte chemoattractant protein 1 (MCP-1) and interleukin 8 (IL-8). The apoptosis of MCs induced by high glucose levels also contributes to complications of PD. High mobility group protein B1 (HMGB1) is an inflammatory factor that has repeatedly been proven to be related to the occurrence of peritoneal dysfunction. Aim: In this study, we aimed to explore the effect and underlying mechanism of endogenous HMGB1 in high-glucose-induced MC injury. Methods: The human peritoneal MC line, HMrSV5 was cultured in high-glucose medium and incubated with recombinant HMGB1. Cellular expression of HMGB1 was blocked using HMGB1 small interfering RNA (siRNA). Apoptosis and production of inflammatory factors as well as the potential intermediary signaling pathways were examined. Results: The major findings of these analyses were: (1) MCs secreted HMGB1 from the nucleus during exposure to high glucose levels; HMGB1 acted in an autocrine fashion on the MCs to promote the production of MCP-1 and IL-8; (2) HMGB1 had little effect on high-glucose-induced apoptosis of the MCs; and (3) HMGB1-mediated MCP-1 and IL-8 production depended on the activation of MAPK signaling pathways. In conclusion, endogenous HMGB1 plays an important role in the inflammatory reaction induced by high glucose on MCs via mitogen-activated protein kinase (MAPK) signaling pathways, but it seems to have little effect on high-glucose-induced apoptosis.
Collapse
Affiliation(s)
- Yuening Chu
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihuang Zheng
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuli Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rui He
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuguang Yang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174:1290-1324. [PMID: 27638711 PMCID: PMC5429337 DOI: 10.1111/bph.13625] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | | | - Sepideh Shahbazi
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
29
|
Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells. Inflammation 2017; 39:1177-87. [PMID: 27106477 DOI: 10.1007/s10753-016-0353-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transport of high-mobility group box 1 (HMGB1), a highly conserved non-histone DNA-binding protein, from the nucleus to the cytoplasm is induced by lipopolysaccharide (LPS). Secretion of HMGB1 appears to be a key lethal factor in sepsis, so it is considered to be a therapeutic target. Previous studies have suggested that paeonol (2'-hydroxy-4'-methoxyacetophenone), an active compound of Paeonia lactiflora Pallas, exerts anti-inflammatory effects. However, the effect of paeonol on HMGB1 is unknown. Here, we investigated the effect of paeonol on the expression, location, and secretion of HMGB1 in LPS-induced murine RAW264.7 cells. ELISA revealed HMGB1 supernatant concentrations of 615 ± 30 ng/mL in the LPS group and 600 ± 45, 560 ± 42, and 452 ± 38 ng/mL in cells treated with 0.2, 0.6, or 1 mM paeonol, respectively, suggesting that paeonol inhibits HMGB1 secretion induced by LPS. Immunohistochemistry and Western blotting revealed that paeonol decreased cytoplasmic HMGB1 and increased nuclear HMGB1. Chromatin immunoprecipitation microarrays suggested that HMGB1 relocation to the nucleus induced by paeonol might depress the action of Janus kinase/signal transducers and activators of transcription, chemokine, and mitogen-activated protein kinase pro-inflammatory signaling pathways. Paeonol was also found to inhibit tumor necrosis factor-α promoter activity in a dose-dependent manner. These results indicate that paeonol has the potential to be developed as a novel HMGB1-targeting therapeutic drug for the treatment of inflammatory diseases.
Collapse
|
30
|
Li XN, Lin J, Xia J, Qin L, Zhu SY, Li JL. Lycopene mitigates atrazine-induced cardiac inflammation via blocking the NF-κB pathway and NO production. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4391920. [PMID: 28116308 PMCID: PMC5237466 DOI: 10.1155/2017/4391920] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 02/07/2023]
Abstract
Uric acid (UA) is a risk factor for endothelial dysfunction, a process in which inflammation may play an important role. UA increases high mobility group box chromosomal protein 1 (HMGB1) expression and extracellular release in endothelial cells. HMGB1 is an inflammatory cytokine that interacts with the receptor for advanced glycation end products (RAGE), inducing an oxidative stress and inflammatory response, which leads to endothelial dysfunction. In this study, human umbilical vein endothelial cells (HUVECs) were incubated with a high concentration of UA (20 mg/dL) after which endothelial function and the expression of HMGB1, RAGE, nuclear factor kappa B (NF-κB), inflammatory cytokines, and adhesion molecules were evaluated. UA inhibited endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production in HUVECs, increased intracellular HMGB1 expression and extracellular HMGB1 secretion, and upregulated RAGE expression. UA also activated NF-κB and increased the level of inflammatory cytokines. Blocking RAGE significantly suppressed the upregulation of RAGE and HMGB1 and prevented the increase in DNA binding activity of NF-κB and the levels of inflammatory cytokines. It also blocked the decrease in eNOS expression and NO production induced by UA. Our results suggest that high concentrations of UA cause endothelial dysfunction via the HMGB1/RAGE signaling pathway.
Collapse
|
32
|
Bandeira ACB, da Silva TP, de Araujo GR, Araujo CM, da Silva RC, Lima WG, Bezerra FS, Costa DC. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice. Chem Biol Interact 2016; 263:7-17. [PMID: 27989599 DOI: 10.1016/j.cbi.2016.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 12/28/2022]
Abstract
Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo.
Collapse
Affiliation(s)
- Ana Carla Balthar Bandeira
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Talita Prato da Silva
- Postgraduated Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | - Glaucy Rodrigues de Araujo
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | - Carolina Morais Araujo
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | | | - Wanderson Geraldo Lima
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.
| |
Collapse
|
33
|
Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, Feng Y, Pan Z. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med 2016; 12:3941-3947. [PMID: 28105126 PMCID: PMC5228376 DOI: 10.3892/etm.2016.3857] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/06/2016] [Indexed: 12/19/2022] Open
Abstract
High mobility group box 1 (HMGB1) protein has been previously been detected in the inflammatory microenvironment of bone fractures. It is well known that HMGB1 acts as a chemoattractant to mesenchymal stem cells (MSCs). In the present study, the effects of HMGB1 on cytokine secretion from MSCs were determined, and the molecular mechanisms underlying these effects of HMGB1 on osteogenic differentiation were elucidated. To detect cytokine secretion, antibody array assays were performed, which demonstrated that HGMB1 induced the differential secretion of cytokines that are predominantly associated with cell development, regulation of growth and cell migration, stress responses, and immune system functions. Moreover, the secretion of epidermal growth factor receptor (EGFR) was significantly upregulated by HMGB1. The EGFR-activated Ras/MAPK pathway regulates the osteogenic differentiation of MSCs. These results suggested that HMGB1 enhances the secretion of various cytokines by MSCs and promotes osteogenic differentiation via the Ras/MAPK signaling pathway. The present study may provide a theoretical basis for the development of novel techniques for the treatment of bone fractures in the future.
Collapse
Affiliation(s)
- Lin Feng
- Department of Orthopedics, The First People's Hospital of Xiaoshan, Hangzhou, Zhejiang 311200, P.R. China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiang Gao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiawei Yu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yadong Feng
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
34
|
Anti-septic effects of pelargonidin on HMGB1-induced responses in vitro and in vivo. Arch Pharm Res 2016; 39:1726-1738. [DOI: 10.1007/s12272-016-0834-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 10/20/2022]
|
35
|
Nadeau-Vallée M, Obari D, Palacios J, Brien MÈ, Duval C, Chemtob S, Girard S. Sterile inflammation and pregnancy complications: a review. Reproduction 2016; 152:R277-R292. [PMID: 27679863 DOI: 10.1530/rep-16-0453] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
Inflammation is essential for successful embryo implantation, pregnancy maintenance and delivery. In the last decade, important advances have been made in regard to endogenous, and therefore non-infectious, initiators of inflammation, which can act through the same receptors as pathogens. These molecules are referred to as damage-associated molecular patterns (DAMPs), and their involvement in reproduction has only recently been unraveled. Even though inflammation is necessary for successful reproduction, untimely activation of inflammatory processes can have devastating effect on pregnancy outcomes. Many DAMPs, such as uric acid, high-mobility group box 1 (HMGB1), interleukin (IL)-1 and cell-free fetal DNA, have been associated with pregnancy complications, such as miscarriages, preeclampsia and preterm birth in preclinical models and in humans. However, the specific contribution of alarmins to these conditions is still under debate, as currently there is lack of information on their mechanism of action. In this review, we discuss the role of sterile inflammation in reproduction, including early implantation and pregnancy complications. Particularly, we focus on major alarmins vastly implicated in numerous sterile inflammatory processes, such as uric acid, HMGB1, IL-1α and cell-free DNA (especially that of fetal origin) while giving an overview of the potential role of other candidate alarmins.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Departments of PediatricsOphthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of PharmacologyUniversité de Montréal, Montreal, Quebec, Canada
| | - Dima Obari
- Department of PharmacologyUniversité de Montréal, Montreal, Quebec, Canada
| | - Julia Palacios
- Department of Obstetrics & GynecologyCHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Marie-Ève Brien
- Department of Obstetrics & GynecologyCHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of MicrobiologyVirology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Cyntia Duval
- Department of Obstetrics & GynecologyCHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Departments of PediatricsOphthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada .,Department of PharmacologyUniversité de Montréal, Montreal, Quebec, Canada
| | - Sylvie Girard
- Department of PharmacologyUniversité de Montréal, Montreal, Quebec, Canada .,Department of Obstetrics & GynecologyCHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of MicrobiologyVirology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Liu TY, Chen SB. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response. Biomed Pharmacother 2016; 84:34-41. [PMID: 27631138 DOI: 10.1016/j.biopha.2016.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022] Open
Abstract
Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication.
Collapse
Affiliation(s)
- Tian-Yin Liu
- Department of anesthesia, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Shi-Biao Chen
- Department of anesthesia, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
37
|
Zhang Q, Wang J, Gu Z, Zhang Q, Zheng H. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice. Biosci Trends 2016; 10:288-93. [PMID: 27357536 DOI: 10.5582/bst.2016.01062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Anesthesia, Tianjin Central Hospital of Gynecology & Obstetrics
| | | | | | | | | |
Collapse
|
38
|
Cai J, Wen J, Bauer E, Zhong H, Yuan H, Chen AF. The Role of HMGB1 in Cardiovascular Biology: Danger Signals. Antioxid Redox Signal 2015; 23:1351-69. [PMID: 26066838 DOI: 10.1089/ars.2015.6408] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Accumulating evidence shows that dysregulated immune response contributes to several types of CVDs such as atherosclerosis and pulmonary hypertension (PH). Vascular intimal impairment and low-density lipoprotein oxidation trigger a complex network of innate immune responses and sterile inflammation. RECENT ADVANCES High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, was recently discovered to function as a damage-associated molecular pattern molecule (DAMP) that initiates the innate immune responses. These findings lead to the understanding that HMGB1 plays a critical role in the inflammatory response in the pathogenesis of CVD. CRITICAL ISSUES In this review, we highlight the role of extracellular HMGB1 as a proinflammatory mediator as well as a DAMP in coronary artery disease, cerebral artery disease, peripheral artery disease, and PH. FUTURE DIRECTIONS A key focus for future researches on HMGB1 location, structure, modification, and signaling will reveal HMGB1's multiple functions and discover a targeted therapy that can eliminate HMGB1-mediated inflammation without interfering with adaptive immune responses.
Collapse
Affiliation(s)
- Jingjing Cai
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Juan Wen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Eileen Bauer
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Hua Zhong
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Hong Yuan
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Alex F Chen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
40
|
Lee IC, Bae JS. Anti-inflammatory effects of vicenin-2 and scolymoside on polyphosphate-mediated vascular inflammatory responses. Inflamm Res 2015; 65:203-12. [DOI: 10.1007/s00011-015-0906-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022] Open
|
41
|
Chi G, Zhong W, Liu Y, Lu G, Lü H, Wang D, Sun F. Isorhamnetin protects mice from lipopolysaccharide-induced acute lung injury via the inhibition of inflammatory responses. Inflamm Res 2015; 65:33-41. [DOI: 10.1007/s00011-015-0887-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 09/13/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023] Open
|
42
|
Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo. Inflamm Res 2015; 64:1005-21. [DOI: 10.1007/s00011-015-0886-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
|
43
|
Ku SK, Lee JH, O Y, Lee W, Song GY, Bae JS. Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives. Bioorg Med Chem Lett 2015; 25:4304-7. [DOI: 10.1016/j.bmcl.2015.07.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/04/2015] [Accepted: 07/23/2015] [Indexed: 11/30/2022]
|
44
|
Yang EJ, Ku SK, Lee W, Song KS, Bae JS. Inhibitory effects of polyozellin from Polyozellus multiplex on HMGB1-mediated septic responses. Inflamm Res 2015. [PMID: 26206236 DOI: 10.1007/s00011-015-0856-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM AND OBJECTIVE The ubiquitous nuclear protein, high-mobility group box 1 (HMGB1), is released by activated macrophages and human umbilical vein endothelial cells (HUVECs) and functions as a late mediator of experimental sepsis. Polyozellin, which has been reported to have a variety of biological activities including antioxidant and anticancer activity, is the major active compound found in edible mushroom (Polyozellus multiplex). In this study, we investigated the antiseptic effects and underlying mechanisms of polyozellin against HMGB1-mediated septic responses in HUVECs and mice. METHODS The anti-inflammatory activities of polyozellin were determined by measuring permeability, human neutrophil adhesion and migration, and activation of proinflammatory proteins in HMGB1-activated HUVECs and mice. RESULTS According to the results, polyozellin effectively inhibited lipopolysaccharide (LPS)-induced release of HMGB1, and suppressed HMGB1-mediated septic responses, such as hyperpermeability, adhesion and migration of leukocytes, and expression of cell adhesion molecules. In addition, polyozellin suppressed the production of tumor necrosis factor-α and interleukin (IL)-6, and the activation of nuclear factor-κB and extracellular signal-regulated kinases 1/2 by HMGB1. CONCLUSION Collectively, these results indicate that P. multiplex containing polyozellin could be commercialized as functional food for preventing and treatment of various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Quinic acid derivatives from Salicornia herbacea alleviate HMGB1-mediated endothelial dysfunction. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Sachdeva AK, Chopra K. Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer's disease. J Nutr Biochem 2015; 26:736-44. [PMID: 25869595 DOI: 10.1016/j.jnutbio.2015.01.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/19/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to play a critical role in the pathogenesis of Alzheimer's disease (AD). β-Amyloid1-42 (Aβ1-42)-induced learning and memory impairment in rats is believed to be associated with neuronal inflammation. OBJECTIVES The present study was designed to investigate the effect of lycopene, a potent antioxidant and anti-inflammatory carotenoid, in intracerebroventricular (i.c.v.) Aβ1-42-induced neuroinflammatory cascade along with learning and memory impairment in rats. MATERIAL AND METHODS I.c.v. Aβ1-42 was injected bilaterally followed by treatment with lycopene or rivastigmine for 14 days. Morris water maze and elevated plus maze tests were used to assess the memory function. Rats were sacrificed and brains harvested to evaluate various biochemical parameters and mitochondrial complex activities in postmitochondrial supernatant fractions of cerebral cortex and hippocampus of rat brains. The levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), tumor growth factor β (TGF-β), nuclear factor-κB (NF-κB) and caspase-3 were assessed by enzyme-linked immunosorbent assay analysis. RESULTS Lycopene remediated Aβ-induced learning and memory deficits in a dose-dependent manner. Aβ1-42-induced mitochondrial dysfunction along with surge of proinflammatory cytokines TNF-α, TGF-β and IL-1β as well as NF-κB and caspase-3 activity in rat brain was significantly reduced with lycopene treatment. CONCLUSION The amelioration of Aβ1-42-induced spatial learning and memory impairment by lycopene could be linked, at least in part, to the inhibition of NF-κB activity and the down-regulation of expression of neuroinflammatory cytokines, suggesting that lycopene may be a potential candidate for AD treatment.
Collapse
Affiliation(s)
- Anand Kamal Sachdeva
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India.
| |
Collapse
|
47
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 731] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
48
|
Amid A, Wan Chik WD, Jamal P, Hashim YZHY. Microarray and quantitative PCR analysis of gene expression profiles in response to treatment with tomato leaf extract in mcf-7 breast cancer cells. Asian Pac J Cancer Prev 2014; 13:6319-25. [PMID: 23464452 DOI: 10.7314/apjcp.2012.13.12.6319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We previously found cytotoxic effects of tomato leaf extract (TLE) on the MCF-7 breast cancer cell line. The aim of this study was to ascertain the molecular mechanisms associated with the usage of TLE as an anticancer agent by microarray analysis using mRNA from MCF-7 breast cancer cells after treatment with TLE for 1 hr and 48 hrs. Approximately 991 genes out of the 30,000 genes in the human genome were significantly (p<0.05) changed after the treatment. Within this gene set, 88 were significantly changed between the TLE treated cells and the untreated MCF-7 cells (control cells) with a cut-off fold change >2.00. In order to focus on genes that were involved in cancer cell growth, only twenty-nine genes were selected, either down-regulated or up-regulated after treatment with TLE. Microarray assay results were confirmed by analyzing 10 of the most up and down regulated genes related to cancer cells progression using real-time PCR. Treatment with TLE induced significant up-regulation in the expression of the CRYAB, PIM1, BTG1, CYR61, HIF1-α and CEBP-β genes after 1 hr and 48 hrs, whereas the TXNIP and THBS1 genes were up-regulated after 1 hr of treatment but down-regulated after 48 hrs. In addition both the HMG1L1 and HIST2H3D genes were down-regulated after 1 hr and 48 hrs of treatment. These results demonstrate the potent activity of TLE as an anticancer agent.
Collapse
Affiliation(s)
- Azura Amid
- Bioprocess and Molecular Engineering Research Unit (BPMERU), International Islamic University Malaysia, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
49
|
Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 2014; 34:907-29. [PMID: 25134454 DOI: 10.1016/j.nutres.2014.07.010] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/24/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
Abstract
Several epidemiologic studies have shown that diets rich in fruits and vegetables reduce the risk of developing several chronic diseases, such as type 2 diabetes, atherosclerosis, and cancer. These diseases are linked with systemic, low-grade chronic inflammation. Although controversy persists on the bioactive ingredients, several secondary plant metabolites have been associated with these beneficial health effects. Carotenoids represent the most abundant lipid-soluble phytochemicals, and in vitro and in vivo studies have suggested that they have antioxidant, antiapoptotic, and anti-inflammatory properties. Recently, many of these properties have been linked to the effect of carotenoids on intracellular signaling cascades, thereby influencing gene expression and protein translation. By blocking the translocation of nuclear factor κB to the nucleus, carotenoids are able to interact with the nuclear factor κB pathway and thus inhibit the downstream production of inflammatory cytokines, such as interleukin-8 or prostaglandin E2. Carotenoids can also block oxidative stress by interacting with the nuclear factor erythroid 2-related factor 2 pathway, enhancing its translocation into the nucleus, and activating phase II enzymes and antioxidants, such as glutathione-S-transferases. In this review, which is organized into in vitro, animal, and human investigations, we summarized current knowledge on carotenoids and metabolites with respect to their ability to modulate inflammatory and oxidative stress pathways and discuss potential dose-health relations. Although many pathways involved in the bioactivity of carotenoids have been revealed, future research should be directed toward dose-response relations of carotenoids, their metabolites, and their effect on transcription factors and metabolism.
Collapse
|
50
|
Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-α1/heme oxygenase-1 pathways. Neurobiol Aging 2014; 35:191-202. [DOI: 10.1016/j.neurobiolaging.2013.06.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/21/2013] [Accepted: 06/30/2013] [Indexed: 12/21/2022]
|