1
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2025; 17:516-540. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Crakes KR, Questell L, Soni S, Suez J. Impacts of non-nutritive sweeteners on the human microbiome. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00060. [PMID: 40291991 PMCID: PMC12020452 DOI: 10.1097/in9.0000000000000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Replacing sugar with non-nutritive sweeteners (NNS) is a common dietary strategy for reducing the caloric content and glycemic index of foods and beverages. However, the efficacy of this strategy in preventing and managing metabolic syndrome and its associated comorbidities remains uncertain. Human cohort studies suggest that NNS contribute to, rather than prevent, metabolic syndrome, whereas randomized controlled trials yield heterogeneous outcomes, ranging from beneficial to detrimental impacts on cardiometabolic health. The World Health Organization recently issued a conditional recommendation against using NNS, citing the need for additional evidence causally linking sweeteners to health effects. One proposed mechanism through which NNS induce metabolic derangements is through disruption of the gut microbiome, a link strongly supported by evidence in preclinical models. This review summarizes the evidence for similar effects in interventional and observational trials in humans. The limited available data highlight heterogeneity between trials, as some, but not all, find NNS consumption associated with microbiome modulation as well as metabolic effects independent of sweetener type. In other trials, the lack of microbiome changes coincides with the absence of metabolic effects. We discuss the hypothesis that the impacts of NNS on health are personalized and microbiome dependent. Thus, a precision nutrition approach may help resolve the conflicting reports regarding NNS impacts on the microbiome and health. This review also discusses additional factors contributing to study heterogeneity that should be addressed in future clinical trials to clarify the relationship between NNS, the microbiome, and health to better inform dietary guidelines and public health policies.
Collapse
Affiliation(s)
- Katti R. Crakes
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lauren Questell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Subah Soni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhu X, Sylvetsky AC, McCullough ML, Welsh JA, Hartman TJ, Ferranti EP, Um CY. Association of Low-Calorie Sweeteners with Selected Circulating Biomarkers of Intestinal Permeability in the Cancer Prevention Study-3 Diet Assessment Substudy. J Nutr 2025; 155:1226-1235. [PMID: 40032143 DOI: 10.1016/j.tjnut.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Low-calorie sweeteners (LCSs) are popular sugar substitutes and have been shown to alter the gut microbiota, which raises concerns about potential impacts on intestinal permeability. OBJECTIVES This study aimed to examine cross-sectional associations between LCS consumption and circulating biomarkers of intestinal permeability. METHODS We analyzed data from 572 United States adults participating in the Cancer Prevention Study-3 Diet Assessment Substudy who provided ≤2 fasting blood samples, collected 6 mo apart, to measure biomarkers of intestinal permeability including antibodies to flagellin (anti-flagellin), lipopolysaccharide (anti-LPS), and total antibodies; and ≤6 24-h dietary recalls, collected over the course of 12 mo, to estimate average intake of LCS including aspartame, sucralose, acesulfame-potassium, and saccharin. Multivariable linear regression, adjusted for sociodemographic characteristics, lifestyle factors, and medical history, was used to examine associations between LCS consumption and levels of intestinal permeability biomarkers by comparing mean differences in biomarkers among lower (>0 to ≤50th percentile) (n = 158) and higher (>50th percentile) LCS consumers (n = 157) than nonconsumers. A linear trend across nonconsumers and the 2 consumption categories was evaluated using a continuous variable based on the median LCS intake (median = 0, 11.3, and 124.2 mg/d for non-, lower, and higher consumers, respectively). RESULTS Among the 572 study participants, the mean age was 52.5 y, 63.3% were female, 60.7% were on-Hispanic White, and 55.1% reported consuming LCS-containing products. Greater LCS consumption was not associated with anti-flagellin, anti-LPS, or total antibodies. Additionally, no associations between specific types of LCS and intestinal permeability biomarkers were observed. CONCLUSIONS The results of our study did not demonstrate an association between LCS consumption and intestinal permeability biomarkers. Further research with larger sample sizes and randomized controlled trials is needed to confirm our findings.
Collapse
Affiliation(s)
- Xinyu Zhu
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States.
| | - Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Marjorie L McCullough
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Jean A Welsh
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States; Department of Child Advocacy, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Terryl J Hartman
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA, United States; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Erin P Ferranti
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States.
| |
Collapse
|
4
|
de Dios R, Gadar K, Proctor CR, Maslova E, Han J, Soliman MAN, Krawiel D, Dunbar EL, Singh B, Peros S, Killelea T, Warnke AL, Haugland MM, Bolt EL, Lentz CS, Rudolph CJ, McCarthy RR. Saccharin disrupts bacterial cell envelope stability and interferes with DNA replication dynamics. EMBO Mol Med 2025:10.1038/s44321-025-00219-1. [PMID: 40169895 DOI: 10.1038/s44321-025-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Saccharin has been part of the human diet for over 100 years, and there is a comprehensive body of evidence demonstrating that it can influence the gut microbiome, ultimately impacting human health. However, the precise mechanisms through which saccharin can impact bacteria have remained elusive. In this work, we demonstrate that saccharin inhibits cell division, leading to cell filamentation with altered DNA synthesis dynamics. We show that these effects on the cell are superseded by the formation of bulges emerging from the cell envelope, which ultimately trigger cell lysis. We demonstrate that saccharin can inhibit the growth of both Gram-negative and Gram-positive bacteria as well as disrupt key phenotypes linked to host colonisation, such as motility and biofilm formation. In addition, we test its potential to disrupt established biofilms (single-species as well as polymicrobial) and its capacity to re-sensitise multidrug-resistant pathogens to last-resort antibiotics. Finally, we present in vitro and ex vivo evidence of the versatility of saccharin as a potential antimicrobial by integrating it into an effective hydrogel wound dressing.
Collapse
Affiliation(s)
- Rubén de Dios
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Kavita Gadar
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Chris R Proctor
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Evgenia Maslova
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Jie Han
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Mohamed A N Soliman
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Dominika Krawiel
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Emma L Dunbar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706-1544, USA
| | - Bhupender Singh
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Stelinda Peros
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Tom Killelea
- School of Life Sciences, Faculty of Medicine & Health Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Anna-Luisa Warnke
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Marius M Haugland
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Edward L Bolt
- School of Life Sciences, Faculty of Medicine & Health Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Christian J Rudolph
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Ronan R McCarthy
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
5
|
Sun Y, Xu B. A critical review on effects of artificial sweeteners on gut microbiota and gastrointestinal health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2737-2747. [PMID: 39878083 DOI: 10.1002/jsfa.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Artificial sweeteners have emerged as popular alternatives to traditional sweeteners, driven by the growing concern over sugar consumption and its associated rise in obesity and metabolic disorders. Despite their widespread use, the safety and health implications of artificial sweeteners remain a topic of debate, with conflicting evidence contributing to uncertainty about their long-term effects. This review synthesizes current scientific evidence regarding the impact of artificial sweeteners on gut microbiota and gastrointestinal health. Our analysis of in vitro experiments, animal models, and clinical trials reveals that artificial sweeteners can alter the composition and abundance of gut microbes. These changes raise concerns about their potential to affect overall gut health and contribute to gastrointestinal disorders. Additionally, artificial sweeteners have been shown to influence the production of metabolites by gut bacteria, further impacting systemic health. The findings suggest that artificial sweeteners may have complex and sometimes contradictory effects on gut microbiota. While some studies indicate potential benefits, such as reduced caloric intake and weight management, others highlight detrimental effects on microbial balance and metabolic functions. The inconsistent results underscore the need for further research to comprehensively understand the physiological impacts of various artificial sweeteners on human health. Future studies should aim for long-term, well-controlled investigations to clarify these relationships, ensuring evidence-based guidelines for the safe use of artificial sweeteners in diet management. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yizhe Sun
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
6
|
Sylvetsky AC, Wang Y, Reddy AG, Um CY, Hodge RA, Lichtman C, Mitchell D, Nanavati A, Pollak M, Wang Y, Patel AV, McCullough ML. Nonnutritive sweetener consumption, metabolic risk factors, and inflammatory biomarkers among Adults in the Cancer Prevention Study-3 Diet Assessment Sub-Study. J Nutr 2025:S0022-3166(25)00172-5. [PMID: 40127735 DOI: 10.1016/j.tjnut.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Nonnutritive sweeteners (NNSs) are widely used to replace added sugars, yet their role in metabolic health and chronic disease prevention is debated. OBJECTIVE The objective of this study was to examine associations between NNS consumption, metabolic risk factors, and inflammatory biomarkers. METHODS This cross-sectional analysis included 624 adults in the American Cancer Society's Cancer Prevention Study-3 Diet Assessment Substudy (DAS). Consumption of NNS, including aspartame, saccharin, sucralose, and acesulfame-potassium, was estimated using the mean quantities reported in 6 24-h dietary recalls over 1 y. Fasting insulin, C-peptide, hemoglobin A1c (HbA1c), leptin, adiponectin, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were measured in fasting blood samples collected twice, 6 mo apart. Multivariable linear regression was used to examine associations between NNS consumption and the mean levels of each metabolic or inflammatory biomarker. Base models were adjusted for age, sex, race, education, smoking, and physical activity; full models were further adjusted for body mass index (BMI), diet quality (Healthy Eating Index 2020), and energy intake. RESULTS More than half (55%) of participants reported consuming NNS (mean daily NNS consumption 7, 38, and 221 mg across tertiles). NNS consumption was positively associated with leptin (P-trend = 0.0006) and CRP (P-trend = 0.02), but associations were attenuated after adjustment for BMI, diet quality, and energy intake. NNS consumption was not associated with insulin, C-peptide, HbA1c, adiponectin, TNF-α, or IL-10. In analyses stratified by BMI, NNS consumption was positively associated with IL-6 among participants with BMI ≥25kg/m2 but not BMI <25kg/m2. CONCLUSIONS Findings in the full sample were null after adjustment for energy intake and BMI, but NNS consumption was positively associated with IL-6 among participants with overweight or obesity. Investigation of mechanisms through which NNS consumption may impact inflammatory pathways is warranted.
Collapse
Affiliation(s)
- Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States.
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Ananya G Reddy
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Rebecca A Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Cari Lichtman
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Diane Mitchell
- Institute for Advancing Health through Agriculture, Texas A & M University, College Station, TX, United States
| | - Anuj Nanavati
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Michael Pollak
- Pollak Assay Lab, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ye Wang
- Pollak Assay Lab, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Marjorie L McCullough
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| |
Collapse
|
7
|
Barra NG, Fang H, Bhatwa A, Schmidt AM, Syed SA, Steinberg GR, Morrison KM, Surette MG, Wade MG, Holloway AC, Schertzer JD. Food supply toxicants and additives alter the gut microbiota and risk of metabolic disease. Am J Physiol Endocrinol Metab 2025; 328:E337-E353. [PMID: 39871724 DOI: 10.1152/ajpendo.00364.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
Metabolic disease is rising along with both global industrialization and the use of new commercial, agricultural, and industrial chemicals and food additives. Exposure to these compounds may contribute to aspects of metabolic diseases such as obesity, diabetes, and fatty liver disease. Ingesting compounds in the food supply is a key route of human exposure, resulting in the interaction between toxicants or additives and the intestinal microbiota. Toxicants can influence the composition and function of the gut microbiota, and these microbes can metabolize and transform toxicants and food additives. Microbe-toxicant interactions in the intestine can alter host mucosal barrier function, immunity, and metabolism, which may contribute to the risk or severity of metabolic disease development. Targeting the connection between toxicants, food, and immunity in the gut using strategies such as fermentable fiber (i.e., inulin) may mitigate some of the effects of these compounds on host metabolism. Understanding causative factors in the microbe-host relationship that promote toxicant-induced dysmetabolism is an important goal. This review highlights the role of common toxicants (i.e., persistent organic pollutants, pesticides, and fungicides) and food additives (emulsifiers and artificial sweeteners) found in our food supply that alter the gut microbiota and promote metabolic disease development.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Angela M Schmidt
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Saad A Syed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Li L, Zhao Y, Ding Y, Guo L, Dai R, Chen A, Duan G. Forsythia suspensa leaf fermented tea extracts attenuated oxidative stress in mice via the Ref-1/HIF-1α signal pathway and modulation of gut microbiota. Sci Rep 2025; 15:4106. [PMID: 39900709 PMCID: PMC11790883 DOI: 10.1038/s41598-025-87182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
Forsythia suspensa leaf fermented tea (FSLFT) is made from tender buds of Forsythia suspensa collected in spring. The main active components of FSLFT include forsythiaside, forsythia ester glycoside, rutin, and forsythia flavonoids, which have antibacterial, antioxidant, liver-protective, and immune-regulatory effects. Oxidative stress can trigger excessive apoptosis in intestinal epithelial cells, leading to dysfunction of the small intestinal mucosa and impaired intestinal absorption. This study focused on Kunming mice as research subjects and used hydrogen peroxide as an inducer to investigate the antioxidant and anti-inflammatory effects of FSLFT in vivo, as well as its regulatory effects on the intestinal microbiota of mice. The aim of this study was to establish a theoretical foundation for the functional study of Forsythia suspensa leaves and provide specific recommendations for their growth and application. The results showed that H2O2 treatment led to an increase in oxidative levels in mice. FSLFT has been shown to have antioxidant effects via the Redox Factor-1(Ref-1)/ hypoxia-inducible factor-1 alpha (HIF-1α) pathway, reduce inflammation caused by hydrogen peroxide through the Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway, and protect mouse colons from oxidative stress by repairing gut microbiota imbalance and increasing microbial diversity and abundance. These findings establish a theoretical basis for studying the functional properties of FSLFT.
Collapse
Affiliation(s)
- Lijuan Li
- Shanxi Provincial Department, Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | | | - Yuxin Ding
- Shanxi Agriculture University, Taigu, China
| | - Lanze Guo
- Shanxi Agriculture University, Taigu, China
| | - Ruiyao Dai
- Shanxi Agriculture University, Taigu, China
| | - Aixiang Chen
- Shanxi Provincial Department, Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Guofeng Duan
- Shanxi Provincial Department, Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, Changzhi Medical College, Changzhi, 046000, Shanxi, China.
| |
Collapse
|
9
|
Okoro FO, Markus V. Artificial sweeteners and Type 2 Diabetes Mellitus: A review of current developments and future research directions. J Diabetes Complications 2025; 39:108954. [PMID: 39854925 DOI: 10.1016/j.jdiacomp.2025.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While artificial sweeteners are Generally Regarded as Safe (GRAS), the scientific community remains divided on their safety status. The previous assumption that artificial sweeteners are inert within the body is no longer valid. Artificial sweeteners, known for their high intense sweetness and low or zero calories, are extensively used today in food and beverage products as sugar substitutes and are sometimes recommended for weight management and Type 2 Diabetes Mellitus (T2DM) patients. The general omission of information about the concentration of artificial sweeteners on market product labels makes it challenging to determine the amounts of artificial sweeteners consumed by people. Despite regulatory authorization for their usage, such as from the United States Food and Drug Administration (FDA), concerns remain about their potential association with metabolic diseases, such as T2DM, which the artificial sweeteners were supposed to reduce. This review discusses the relationship between artificial sweetener consumption and the risk of developing T2DM. With the increasing number of recent scientific studies adding to the debate on this subject matter, we assessed recent literature and up-to-date evidence. Importantly, we highlight future research directions toward furthering knowledge in this field of study.
Collapse
Affiliation(s)
- Francisca Obianuju Okoro
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, 99138 TRNC, Mersin 10, Turkey
| | - Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, 99138 TRNC, Mersin 10, Turkey.
| |
Collapse
|
10
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Filip R. Effects of Selected Food Additives on the Gut Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). MEDICINA (KAUNAS, LITHUANIA) 2025; 61:192. [PMID: 40005309 PMCID: PMC11857189 DOI: 10.3390/medicina61020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
The purpose of this article is to present selected food additives as disruptors of normal intestinal homeostasis with a potential impact on the development of metabolic dysfunction-associated steatotic liver disease (MASLD). A comprehensive literature search was conducted in three major electronic databases: PubMed, ScienceDirect, and Google Scholar. MASLD is a prevalent liver condition that is closely related to the global rise in obesity. Its pathogenesis is multifactorial, with genetic, environmental, and metabolic factors playing a key role. The "multiple-hit" hypothesis suggests that a Western-style diet, rich in ultra-processed foods, saturated fats, and food additives, combined with low physical activity, contributes to obesity, which promotes lipid accumulation in the liver. Recent studies underscore the role of impaired intestinal homeostasis in the development of MASLD. Food additives, including preservatives, emulsifiers, and sweeteners, affect gut health and liver function. Selected preservatives inhibit pathogenic microorganisms but disrupt the intestinal microbiota, leading to changes in intestinal permeability and liver dysfunction. Some emulsifiers and thickeners can cause inflammation and alter the gut microbiome, contributing to liver steatosis. Furthermore, the use of sweeteners such as sucralose and aspartame has been linked to changes in liver metabolism and intestinal microbial composition, which in turn promotes metabolic disorders.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Rafał Filip
- Gastroenterology Clinic, Center for Comprehensive Treatment of Inflammatory, Bowel Disease Regional Hospital No. 2 in Rzeszow, 35-301 Rzeszow, Poland
- Department of Internal Medicine, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
11
|
Marongiu L, Brzozowska E, Brykała J, Burkard M, Schmidt H, Szermer-Olearnik B, Venturelli S. The non-nutritive sweetener rebaudioside a enhances phage infectivity. Sci Rep 2025; 15:1337. [PMID: 39779812 PMCID: PMC11711195 DOI: 10.1038/s41598-025-85186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Non-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment. While the effect of NNS on bacteria has been established, the impact of these sweeteners on bacterial viruses (phages) has been neglected, even though phages are crucial elements in maintaining microbial eubiosis. The present study sought to provide a proof-of-concept of the impact of NNS on phage infectivity by assessing the binding of rebA to phage proteins involved in the infection process of enteropathogenic bacteria, namely the fiber protein gp17 of Yersinia enterocolitica phage φYeO3-12 and the tubular baseplate protein gp31 of Klebsiella pneumoniae phage 32. We employed docking analysis and a panel of in vitro confirmatory tests (microscale thermophoresis, RedStarch™ depolymerization, adsorption, and lysis rates). Docking analysis indicated that NNS can bind to both fiber and baseplate proteins. Confirmatory assays demonstrated that rebA can bind gp31 and that such binding increased the protein's enzymatic activity. Moreover, the binding of rebA to gp17 resulted in a decrease in the adsorption rate of the recombinant protein to its host but increased the Yersinia bacteriolysis caused by the whole phage compared to unexposed controls. These results support the hypothesis that NNS can impair phage infectivity, albeit the resulting effect on the microbiome remains to be elucidated.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Ewa Brzozowska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Jan Brykała
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Bożena Szermer-Olearnik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074, Tuebingen, Germany
| |
Collapse
|
12
|
Kearns ML, Reynolds CM. The impact of non-nutritive sweeteners on fertility, maternal and child health outcomes: a review of human and animal studies. Proc Nutr Soc 2024; 83:280-292. [PMID: 38433591 DOI: 10.1017/s0029665124000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
There is significant evidence that an unhealthy diet greatly increases the risk of complications during pregnancy and predisposes offspring to metabolic dysfunction and obesity. While fat intake is typically associated with the onset of obesity and its comorbidities, there is increasing evidence linking sugar, particularly high fructose corn syrup, to the global rise in obesity rates. Furthermore, the detrimental effects of added sugar intake during pregnancy on mother and child have been clearly outlined. Guidelines advising pregnant women to avoid food and beverages with high fat and sugar have led to an increase in consumption of 'diet' or 'light' options. Examination of some human birth cohort studies shows that heavy consumption (at least one beverage a day) of non-nutritive sweetener (NNS) containing beverages has been associated with increased risk of preterm birth and increased weight/BMI in male offspring independent of maternal weight, which appears to be offset by breastfeeding for 6 months. Rodent models have shown that NNS exposure during pregnancy can impact maternal metabolic health, adipose tissue function, gut microbiome profiles and taste preference. However, the mechanisms underlying these effects are multifaceted and further research, particularly in a translational setting is required to fully understand the effects of NNS on maternal and infant health during pregnancy. Therefore, this review examines maternal sweetener intakes and their influence on fertility, maternal health outcomes and offspring outcomes in human cohort studies and rodent models.
Collapse
Affiliation(s)
- Michelle L Kearns
- School of Public Health, Physiotherapy and Sports Science/Conway Institute/Institute of Food and Health/Diabetes Complications Research Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - Clare M Reynolds
- School of Public Health, Physiotherapy and Sports Science/Conway Institute/Institute of Food and Health/Diabetes Complications Research Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Markus V. Artificial sweetener-induced dysbiosis and associated molecular signatures. Biochem Biophys Res Commun 2024; 735:150798. [PMID: 39406022 DOI: 10.1016/j.bbrc.2024.150798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Despite their approval for inclusion in beverages, and food products, the safety of artificial sweeteners is still a topic of debate within the scientific community. A significant aspect of this debate focuses on the potential of artificial sweeteners to induce dysbiosis, an imbalance in the intestinal microbiota, which has been associated with many diseases including obesity, Type 2 diabetes, and cardiovascular diseases. The interactions and mechanisms of action of artificial sweeteners within the gut microbiota, as well as the extent of associated molecular alterations, are still under active investigation. This review aims to evaluate recent developments in artificial sweetener-induced dysbiosis with its associated molecular signatures. Importantly, potential future directions for research are proposed, offering insights that could guide further targeted studies and inform dietary recommendations and policy revisions.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, 99138, Lefkosa/ TRNC Mersin 10, Turkey.
| |
Collapse
|
14
|
Herzog H, Zhang L, Fontana L, Neely GG. Impact of non-sugar sweeteners on metabolism beyond sweet taste perception. Trends Endocrinol Metab 2024:S1043-2760(24)00276-5. [PMID: 39551640 DOI: 10.1016/j.tem.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Non-sugar sweeteners (NSS), low- or no-calorie alternatives to sugar, are marketed for weight loss and improved blood glucose control in people with diabetes. However, their health effects remain controversial. This review provides a brief overview of sweet taste perception and summarizes experimental findings of the impact of NSS on cardiometabolic health in animal models and humans. We also review evidence suggesting that many NSS are not metabolically inert, highlighting the challenges in related human studies. Given the conflicting and unclear data on health outcomes, additional mechanistic studies, particularly in animal models, are necessary to clarify how NSS influence feeding behaviors and energy homoeostasis.
Collapse
Affiliation(s)
- Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia.
| | - Lei Zhang
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, New South Wales, Australia
| | - Luigi Fontana
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Dr John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
15
|
Li P, Qu R, Li M, Sheng P, Jin L, Huang X, Xu ZZ. Impacts of food additives on gut microbiota and host health. Food Res Int 2024; 196:114998. [PMID: 39614468 DOI: 10.1016/j.foodres.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 12/01/2024]
Abstract
The rapidly expanding food industry necessitates the use of food additives to achieve specific purposes. However, this raises new concerns in food safety due to the reported negative impacts of food additives on gut microbiota and host health, particularly in the context of continuous worldwide urbanization. This review summarizes the existing studies on the effects of different types of commonly used food additives on gut microbiota alteration, intestinal barrier disruption, metabolism disorder, and neurobehavior changes. These food additives, including emulsifiers, low-calorie sweeteners, inorganic nanoparticles, and preservatives, have been found to exert multifaceted impacts, primarily adverse effects, highlighting the potential risks associated with food additive exposure in various chronic diseases. Further research is warranted to elucidate the specific mechanisms, determine the relevance of these findings to humans, and clarify the suitability of certain food additives for vulnerable populations. It is crucial to note that natural food additives are not inherently superior to synthetic ones in terms of safety. Rigorous evaluation is still warranted before their widespread application in the food industry. Additionally, the potential synergistic effects of commonly used food additives combination in specific food categories on gut microbiota and host metabolism should be investigated to understand their relevance in real-world scenarios.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Ru Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ping Sheng
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Liang Jin
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
16
|
Castle L, Andreassen M, Aquilina G, Bastos ML, Boon P, Fallico B, FitzGerald R, Frutos Fernandez MJ, Grasl‐Kraupp B, Gundert‐Remy U, Gürtler R, Houdeau E, Kurek M, Louro H, Morales P, Passamonti S, Batke M, Bruzell E, Chipman J, Cheyns K, Crebelli R, Fortes C, Fürst P, Halldorsson T, LeBlanc J, Mirat M, Lindtner O, Mortensen A, Ntzani E, Shah R, Wallace H, Wright M, Barmaz S, Civitella C, Georgelova P, Lodi F, Mazzoli E, Rasinger J, Maria Rincon A, Tard A, Zakidou P, Younes M. Re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. EFSA J 2024; 22:e9044. [PMID: 39553702 PMCID: PMC11565076 DOI: 10.2903/j.efsa.2024.9044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
This opinion deals with the re-evaluation of saccharin and its sodium, potassium and calcium salts (E 954) as food additives. Saccharin is the chemically manufactured compound 1,2-benzisothiazol-3(2H)-one-1,1-dioxide. Along with its sodium (Na), potassium (K) and calcium (Ca) salts, they are authorised as sweeteners (E 954). E 954 can be produced by two manufacturing methods i.e. Remsen-Fahlberg and Maumee. No analytical data on potential impurities were provided for products manufactured with the Maumee process; therefore, the Panel could only evaluate saccharins (E 954) manufactured with the Remsen-Fahlberg process. The Panel concluded that the newly available studies do not raise a concern for genotoxicity of E 954 and the saccharins impurities associated with the Remsen-Fahlberg manufacturing process. For the potential impurities associated with the Maumee process, a concern for genotoxicity was identified. The data set evaluated consisted of animals and human studies. The Panel considered appropriate to set a numerical acceptable daily intake (ADI) and considered the decrease in body weight in animal studies as the relevant endpoint for the derivation of a reference point. An ADI of 9 mg/kg body weight (bw) per day, expressed as free imide, was derived for saccharins (E 954). This ADI replaces the ADI of 5 mg /kg bw per day (expressed as sodium saccharin, corresponding to 3.8 mg /kg bw per day saccharin as free imide) established by the Scientific Committee on Food. The Panel considered the refined brand-loyal exposure assessment scenario the most appropriate exposure scenario for the risk assessment. The Panel noted that the P95 exposure estimates for chronic exposure to saccharins (E 954) were below the ADI. The Panel recommended the European Commission to consider the revision of the EU specifications of saccharin and its sodium, potassium and calcium salts (E 954).
Collapse
|
17
|
Li A, Gao S, Li B, Zheng Y, Zhang L, Li K, Liu Y, Qin X. Characterization of physical and chemical properties of dietary fiber from grain bran and its regulation of gut microbiota and metabolite to prevent colitis. Food Chem 2024; 456:140043. [PMID: 38878544 DOI: 10.1016/j.foodchem.2024.140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
Grain bran dietary fiber (DF) has the effect of promoting intestinal health and is worth being studied. In the present study, the physicochemical properties and prevention effect of DF on ulcerative colitis (UC) were investigated. The results showed that the optimal extraction conditions were determined as α-amylase (350 U/g, 70 °C, pH 7.0, 2.5 h) and papain (100 U/g, 60 °C, pH 7.0, 1.5 h), resulting in a yield of 83.81% for DF. Moreover, DF exhibited unique physicochemical properties contributing to its preventive effects, as evidenced by its ability to mitigate symptoms such as hematochezia, immune inflammation, and impaired intestinal barrier in UC mice. The underlying mechanism can be attributed to the regulation of phenylalanine, tyrosine and tryptophan biosynthesis pathway and maintenance of intestinal microbial homeostasis. Therefore, our study suggests that grain bran DF holds potential for the prevention of UC, providing a basis for the development and utilization of grain bran.
Collapse
Affiliation(s)
- Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Academy of Traditional Chinese Medicine, Taiyuan 030012, China.
| | - Shuxiao Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ben Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yuhe Zheng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Lichao Zhang
- Institutes of Biomedical sciences of Shanxi University, Taiyuan 030006, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
18
|
Rose BD, Pezos N, Choo JM, Wu T, Rogers GB, Ivey KL, Rayner CK, Young RL. Host or the Hosted? Effects of Non-Nutritive Sweeteners on Intestinal and Microbial Mechanisms of Glycemic Control. Nutrients 2024; 16:3628. [PMID: 39519461 PMCID: PMC11548007 DOI: 10.3390/nu16213628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objective: High habitual consumption of non-nutritive sweeteners (NNS) is linked to increased incident type 2 diabetes, with emerging clinical evidence that effects on gut microbiota may, in part, drive this risk. However, the precise contribution of the effects of NNS on gut microbiota to host glycemic responses remains unclear. Methods: Ten-week-old male C57BL/6 mice (N = 10 per group) were randomized to drinking water with or without combined NNS (sucralose 1.5 mg/mL plus acesulfame-K 2.5 mg/mL) and with or without antibiotics to deplete gut microbiota (ABX, 1 mg/mL ampicillin and neomycin) over two weeks. Oral glucose tolerance tests (OGTT, 2 g/kg) were conducted on days -1 and 12. On day 14, mice underwent a jejunal infusion of glucose (300 mg) with 3-O-methyl glucose (30 mg, 3-OMG, a marker of glucose absorption) in 1.5 mL for 30 min, followed by blood collection and bioassays. Data were analyzed using ANOVA with NNS and ABX as factors. Results: Jejunal glucose absorption was augmented in NNS+ mice relative to NNS- (31%; 3-OMG T30; p ≤ 0.05) independent of ABX. ABX attenuated OGTT responses independent of NNS supplementation (-35%; incremental AUC, p ≤ 0.001). NNS+ ABX+ mice had augmented GLP-1 responses to intrajejunal glucose relative to other groups (69-108%, p < 0.05). Conclusions: These findings demonstrate that sub-acute NNS supplementation augments glucose absorption independent of gut microbiota in mice but does not disrupt glycemic responses. Antibiotic depletion of gut microbiota markedly increased glucose tolerance in mice, which may involve the actions of GLP-1.
Collapse
Affiliation(s)
- Braden D. Rose
- Intestinal Sensing Group, The University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5005, Australia
- Diabetes, Nutrition & Gut Health, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Nektaria Pezos
- Intestinal Sensing Group, The University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Diabetes, Nutrition & Gut Health, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Jocelyn M. Choo
- Microbiome and Host Health, Lifelong Health, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
- Infection and Immunity, College of Medicine & Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Tongzhi Wu
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Geraint B. Rogers
- Microbiome and Host Health, Lifelong Health, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
- Infection and Immunity, College of Medicine & Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Kerry L. Ivey
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher K. Rayner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard L. Young
- Intestinal Sensing Group, The University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA 5005, Australia
- Diabetes, Nutrition & Gut Health, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|
19
|
Feng J, Peng J, Hsiao YC, Liu CW, Yang Y, Zhao H, Teitelbaum T, Wang X, Lu K. Non/Low-Caloric Artificial Sweeteners and Gut Microbiome: From Perturbed Species to Mechanisms. Metabolites 2024; 14:544. [PMID: 39452925 PMCID: PMC11509705 DOI: 10.3390/metabo14100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Non/low-caloric artificial sweeteners (NAS) are recognized as chemical additives substituting sugars to avoid caloric intake and subsequent sugar-derived diseases such as diabetes and hyperglycemia. Six NAS have been claimed safe and are authorized by the US Food and Drug Administration (FDA) for public use, with acceptable daily intake information available: aspartame, acesulfame-K, saccharin, sucralose, neotame, and advantame. However, the impacts of NAS on the gut microbiome have raised potential concerns, since sporadic research revealed NAS-induced microbial changes in the gastrointestinal tracts and alterations in the microbiome-host interactive metabolism. METHODS Given the fact that the gut microbiome influences kaleidoscopic physiological functions in host health, this review aimed to decipher the impacts of NAS on the gut microbiome by implementing a comprehensive two-stage literature analysis based on each NAS. RESULTS This review documented disturbed microbiomes due to NAS exposure to a maximal resolution of species level using taxonomic clustering analysis, and recorded metabolism alterations involved in gut microbiome-host interactions. CONCLUSIONS The results elucidated that specific NAS exhibited discrepant impacts on the gut microbiome, even though overlapping on the genera and species were identified. Some NAS caused glucose tolerance impairment in the host, but the key metabolites and their underlying mechanisms were different. Furthermore, this review embodied the challenges and future directions of current NAS-gut microbiome research to inspire advanced examination of the NAS exposure-gut microbiome-host metabolism axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Liu Q, Wang M, Hou Y, Chen R, Liu H, Han T, Liu D. Deciphering the multifaceted effects of artificial sweeteners on body health and metabolic functions: a comprehensive review and future perspectives. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39368060 DOI: 10.1080/10408398.2024.2411410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
As the rates of chronic diseases such as obesity and diabetes rise worldwide, there is a growing demand for low-calorie or no-calorie sweeteners to reduce sugar intake without sacrificing the sweetness of foods and beverages. Artificial sweeteners have become indispensable as substitutes for sugar due to their high sweetening power and low impact on blood sugar levels and are used in a variety of low-calorie foods and beverages. Although artificial sweeteners offer an alternative for reducing sugar intake while maintaining sweetness, research into their long-term health effects, particularly at high doses, is ongoing, further scientific research and regulatory review are needed to clarify these potential health risks. This article reviews the latest research on the health effects of artificial sweeteners, based on recent studies, introduces the classification, performance, and safety standards for artificial sweeteners, analyses their potential harms to the nervous, immune, and circulatory systems, reproductive system, as well as their effects on gut microbiota, liver function, cancer, diabetes, and obesity. In addition, consumer perceptions of artificial sweeteners and future research directions are discussed, providing insights into current research controversies and knowledge gaps, as well as the health research and market application of artificial sweeteners.
Collapse
Affiliation(s)
- Qiang Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Min Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yuting Hou
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Meat Innovation Center of Liaoning Province, Jinzhou, China
- Liaoning Kazuo Hybrid Wild Boar Science and Technology Backyard, Chaoyang, China
| | - Rui Chen
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Haixia Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Tianlong Han
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Liaoning Kazuo Hybrid Wild Boar Science and Technology Backyard, Chaoyang, China
| | - Dengyong Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Meat Innovation Center of Liaoning Province, Jinzhou, China
| |
Collapse
|
21
|
Sylvetsky AC, Kuttamperoor JT, Langevin B, Murphy J, Arcaro KF, Smolyak S, Walter PJ, Cai H, Daines DH, van den Anker JN, Gopalakrishnan M. Intergenerational transmission of sucralose and acesulfame-potassium from mothers to their infants via human milk: a pharmacokinetic study. Am J Clin Nutr 2024; 120:846-853. [PMID: 39111550 PMCID: PMC11473674 DOI: 10.1016/j.ajcnut.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Low-calorie sweetener (LCS) consumption is prevalent among lactating mothers, yet infants' exposure to LCS in human milk is not well-characterized. OBJECTIVES Conduct a pharmacokinetic study of sucralose and acesulfame-potassium (ace-K) in mothers' milk and plasma over 72 h and in infants' plasma. METHODS Following baseline blood and milk collection, mothers (n = 40) consumed 20 oz of diet cranberry juice containing sucralose and ace-K. Blood samples were collected from the mother 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 24, 48, and 72 h after beverage ingestion, and milk was expressed at 1, 2, 3, 4, 6, 8, 12, and 24 h postingestion. One blood sample was collected from each infant, the timing of which was determined using pharmacokinetics model-based simulation. Concentration-time profiles of LCS from the mother's plasma and milk were analyzed using noncompartmental methods. RESULTS Ace-K rapidly entered human milk with the largest observed concentration of 373.0 (coefficient of variation 69%) ng/mL first detected 4 h following diet beverage ingestion. Sucralose appeared in human milk 1-2 h after diet beverage ingestion with the largest observed concentration of 7.2 (coefficient of variation 63%) ng/mL first detected 7 h postingestion. The mean 24-h milk to plasma ratio of ace-K was 1.75 [standard deviation (SD) 1.37] with a mean relative infant dose of 1.59% (SD 1.72%). Ace-K was detected in all infants' plasma with an mean concentration of 9.2 (SD% 14.8) ng/mL ∼6 h after maternal beverage ingestion. The mean 24-h milk to plasma ratio of sucralose was 0.15 (SD 0.06) with a mean relative infant dose of 0.04% (SD 0.02%). Sucralose was detected in only 15 infants' plasma, and the mean concentration was 5.0 (SD% 7.1) ng/mL ∼5 h after diet beverage ingestion. CONCLUSIONS Ace-K rapidly transfers from human milk into infants' circulation whereas sucralose was detected at much lower concentrations and in some but not all infants. Future research should investigate the effects of early-life sucralose and ace-K exposure via human milk on infants' health. This trial was registered at clinicaltrials.gov as NCT05379270.
Collapse
Affiliation(s)
- Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States.
| | - Janae T Kuttamperoor
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Brooke Langevin
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jeanne Murphy
- School of Nursing, George Washington University, Washington, DC, United States
| | - Kathleen F Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Simona Smolyak
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Peter J Walter
- Clinical Mass Spectrometry Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States
| | - Hongyi Cai
- Clinical Mass Spectrometry Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States
| | - Dina H Daines
- Department of Obstetrics and Gynecology, George Washington University, Washington, DC, United States
| | - John N van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington DC, United States
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, United States
| |
Collapse
|
22
|
Rathaus M, Azem L, Livne R, Ron S, Ron I, Hadar R, Efroni G, Amir A, Braun T, Haberman Y, Tirosh A. Long-term metabolic effects of non-nutritive sweeteners. Mol Metab 2024; 88:101985. [PMID: 38977130 PMCID: PMC11347859 DOI: 10.1016/j.molmet.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS Long-term consumption of commonly used NNSs does not induce adverse metabolic effects, with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Loziana Azem
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel; Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
23
|
Wang H, Bai J, Miao P, Wei Y, Chen X, Lan H, Qing Y, Zhao M, Li Y, Tang R, Yang X. The key to intestinal health: a review and perspective on food additives. Front Nutr 2024; 11:1420358. [PMID: 39360286 PMCID: PMC11444971 DOI: 10.3389/fnut.2024.1420358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
In this review, we explore the effects of food additives on intestinal health. Food additives, such as preservatives, antioxidants and colorants, are widely used to improve food quality and extend shelf life. However, their effects on intestinal microecology May pose health risks. Starting from the basic functions of food additives and the importance of intestinal microecology, we analyze in detail how additives affect the diversity of intestinal flora, oxidative stress and immune responses. Additionally, we examine the association between food additives and intestinal disorders, including inflammatory bowel disease and irritable bowel syndrome, and how the timing, dosage, and individual differences affect the body's response to additives. We also assess the safety and regulatory policies of food additives and explore the potential of natural additives. Finally, we propose future research directions, emphasizing the refinement of risk assessment methods and the creation of safer, innovative additives.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Junyi Bai
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Pengyu Miao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Wei
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | | - Haibo Lan
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yong Qing
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Meizhu Zhao
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yanyu Li
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | |
Collapse
|
24
|
Sun T, Yang J, Lei F, Huang X, Liu W, Zhang X, Lin L, Sun L, Xie X, Zhang XJ, Cai J, She ZG, Xu C, Li H. Artificial sweeteners and risk of incident cardiovascular disease and mortality: evidence from UK Biobank. Cardiovasc Diabetol 2024; 23:233. [PMID: 38965574 PMCID: PMC11225337 DOI: 10.1186/s12933-024-02333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Artificial sweeteners are widely popular worldwide as substitutes for sugar or caloric sweeteners, but there are still several important unknowns and controversies regarding their associations with cardiovascular disease (CVD). We aimed to extensively assess the association and subgroup variability between artificial sweeteners and CVD and CVD mortality in the UK Biobank cohort, and further investigate the modification effects of genetic susceptibility and the mediation role of type 2 diabetes mellitus (T2DM). METHODS This study included 133,285 participants in the UK Biobank who were free of CVD and diabetes at recruitment. Artificial sweetener intake was obtained from repeated 24-hour diet recalls. Cox proportional hazard models were used to estimate HRs. Genetic predisposition was estimated using the polygenic risk score (PRS). Furthermore, time-dependent mediation was performed. RESULTS In our study, artificial sweetener intake (each teaspoon increase) was significantly associated with an increased risk of incident overall CVD (HR1.012, 95%CI: 1.008,1.017), coronary artery disease (CAD) (HR: 1.018, 95%CI: 1.001,1.035), peripheral arterial disease (PAD) (HR: 1.035, 95%CI: 1.010,1.061), and marginally significantly associated with heart failure (HF) risk (HR: 1.018, 95%CI: 0.999,1.038). In stratified analyses, non-whites were at greater risk of incident overall CVD from artificial sweetener. People with no obesity (BMI < 30 kg/m2) also tended to be at greater risk of incident CVD from artificial sweetener, although the obesity interaction is not significant. Meanwhile, the CVD risk associated with artificial sweeteners is independent of genetic susceptibility, and no significant interaction exists between genetic susceptibility and artificial sweeteners in terms of either additive or multiplicative effects. Furthermore, our study revealed that the relationship between artificial sweetener intake and overall CVD is significantly mediated, in large part, by prior T2DM (proportion of indirect effect: 70.0%). In specific CVD subtypes (CAD, PAD, and HF), the proportion of indirect effects ranges from 68.2 to 79.9%. CONCLUSIONS Our findings suggest significant or marginally significant associations between artificial sweeteners and CVD and its subtypes (CAD, PAD, and HF). The associations are independent of genetic predisposition and are mediated primarily by T2DM. Therefore, the large-scale application of artificial sweeteners should be prudent, and the responses of individuals with different characteristics to artificial sweeteners should be better characterized to guide consumers' artificial sweeteners consumption behavior.
Collapse
Affiliation(s)
- Tao Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Rd, 430060, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Juan Yang
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- State Key Laboratory of New Drug Discovery and Development for Major Diseases, Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuewei Huang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weifang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Rd, 430060, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Rd, 430060, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Linsu Sun
- State Key Laboratory of New Drug Discovery and Development for Major Diseases, Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xinlan Xie
- State Key Laboratory of New Drug Discovery and Development for Major Diseases, Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory of New Drug Discovery and Development for Major Diseases, Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Rd, 430060, Wuhan, China.
- State Key Laboratory of New Drug Discovery and Development for Major Diseases, Gannan Medical University, Ganzhou, China.
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Chengsheng Xu
- Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Rd, 430060, Wuhan, China.
- State Key Laboratory of New Drug Discovery and Development for Major Diseases, Gannan Medical University, Ganzhou, China.
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China.
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Lee CY, So YS, Yoo SH, Lee BH, Seo DH. Impact of artificial sweeteners and rare sugars on the gut microbiome. Food Sci Biotechnol 2024; 33:2047-2064. [PMID: 39130663 PMCID: PMC11315849 DOI: 10.1007/s10068-024-01597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/13/2024] Open
Abstract
Alternative sugars are often used as sugar substitutes because of their low calories and glycemic index. Recently, consumption of these sweeteners in diet foods and beverages has increased dramatically, raising concerns about their health effects. This review examines the types and characteristics of artificial sweeteners and rare sugars and analyzes their impact on the gut microbiome. In the section on artificial sweeteners, we have described the chemical structures of different sweeteners, their digestion and absorption processes, and their effects on the gut microbiota. We have also discussed the biochemical properties and production methods of rare sugars and their positive and negative effects on gut microbial communities. Finally, we have described how artificial sweeteners and rare sugars alter the gut microbiome and how these changes affect the gut environment. Our observations aim to improve our understanding regarding the potential health implications of the consumption of artificial sweeteners and low-calorie sugars.
Collapse
Affiliation(s)
- Chang-Young Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Yun-Sang So
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
26
|
Whelan K, Bancil AS, Lindsay JO, Chassaing B. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:406-427. [PMID: 38388570 DOI: 10.1038/s41575-024-00893-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Ultra-processed foods (UPFs) and food additives have become ubiquitous components of the modern human diet. There is increasing evidence of an association between diets rich in UPFs and gut disease, including inflammatory bowel disease, colorectal cancer and irritable bowel syndrome. Food additives are added to many UPFs and have themselves been shown to affect gut health. For example, evidence shows that some emulsifiers, sweeteners, colours, and microparticles and nanoparticles have effects on a range of outcomes, including the gut microbiome, intestinal permeability and intestinal inflammation. Broadly speaking, evidence for the effect of UPFs on gut disease comes from observational epidemiological studies, whereas, by contrast, evidence for the effect of food additives comes largely from preclinical studies conducted in vitro or in animal models. Fewer studies have investigated the effect of UPFs or food additives on gut health and disease in human intervention studies. Hence, the aim of this article is to critically review the evidence for the effects of UPF and food additives on gut health and disease and to discuss the clinical application of these findings.
Collapse
Affiliation(s)
- Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK.
| | - Aaron S Bancil
- Department of Nutritional Sciences, King's College London, London, UK
| | - James O Lindsay
- Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine, London, UK
| | | |
Collapse
|
27
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
28
|
Wang Y, Wang D, Wang K, Weng S, Zheng R, Liu X, Zhao L, Li C, Hu Z. Litchi pulp-derived gamma-aminobutyric acid (GABA) extract counteracts liver inflammation induced by litchi thaumatin-like protein. Food Funct 2024; 15:4818-4831. [PMID: 38606579 DOI: 10.1039/d3fo05463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.
Collapse
Affiliation(s)
- Yao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shaoquan Weng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Rongbo Zheng
- Guangzhou Wanglaoji Great Health Industry Co., Ltd, Guangzhou 510623, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holding Limited, Guangzhou 510130, China.
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Chai X, Chen X, Yan T, Zhao Q, Hu B, Jiang Z, Guo W, Zhang Y. Intestinal Barrier Impairment Induced by Gut Microbiome and Its Metabolites in School-Age Children with Zinc Deficiency. Nutrients 2024; 16:1289. [PMID: 38732540 PMCID: PMC11085614 DOI: 10.3390/nu16091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Zinc deficiency affects the physical and intellectual development of school-age children, while studies on the effects on intestinal microbes and metabolites in school-age children have not been reported. School-age children were enrolled to conduct anthropometric measurements and serum zinc and serum inflammatory factors detection, and children were divided into a zinc deficiency group (ZD) and control group (CK) based on the results of serum zinc. Stool samples were collected to conduct metagenome, metabolome, and diversity analysis, and species composition analysis, functional annotation, and correlation analysis were conducted to further explore the function and composition of the gut flora and metabolites of children with zinc deficiency. Beta-diversity analysis revealed a significantly different gut microbial community composition between ZD and CK groups. For instance, the relative abundances of Phocaeicola vulgatus, Alistipes putredinis, Bacteroides uniformis, Phocaeicola sp000434735, and Coprococcus eutactus were more enriched in the ZD group, while probiotic bacteria Bifidobacterium kashiwanohense showed the reverse trend. The functional profile of intestinal flora was also under the influence of zinc deficiency, as reflected by higher levels of various glycoside hydrolases in the ZD group. In addition, saccharin, the pro-inflammatory metabolites, and taurocholic acid, the potential factor inducing intestinal leakage, were higher in the ZD group. In conclusion, zinc deficiency may disturb the gut microbiome community and metabolic function profile of school-age children, potentially affecting human health.
Collapse
Affiliation(s)
- Xiaoqi Chai
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Xiaohui Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Tenglong Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Binshuo Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Zhongquan Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| |
Collapse
|
30
|
Chi L, YifeiYang, Bian X, Gao B, Tu P, Ru H, Lu K. Chronic sucralose consumption inhibits farnesoid X receptor signaling and perturbs lipid and cholesterol homeostasis in the mouse livers, potentially by altering gut microbiota functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:169603. [PMID: 38272087 DOI: 10.1016/j.scitotenv.2023.169603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Sucralose has raised concerns regarding its safety and recent studies have demonstrated that sucralose consumption can disrupt the normal gut microbiome and alter metabolic profiles in mice. However, the extent to which this perturbation affects the functional interaction between the microbiota and the host, as well as its potential impact on host health, remains largely unexplored. Here, we aimed to investigate whether chronic sucralose consumption, at levels within the Acceptable Daily Intake (ADI), could disturb key gut microbial functions and lead to adverse health effects in mice. Following six-month sucralose consumption, several bacterial genera associated with bile acid metabolism were decreased, including Lactobacillus and Ruminococcus. Consequently, the richness of secondary bile acid biosynthetic pathway and bacterial bile salt hydrolase gene were decreased in the sucralose-treated gut microbiome. Compared to controls, sucralose-consuming mice exhibited significantly lower ratios of free bile acids and taurine-conjugated bile acids in their livers. Additionally, several farnesoid X receptor (FXR) agonists were decreased in sucralose-treated mice. This reduction in hepatic FXR activation was associated with altered expression of down-stream genes, in the liver. Moreover, the expression of key lipogenic genes was up-regulated in the livers of sucralose-treated mice. Changes in hepatic lipid profiles were also observed, characterized by lower ceramide levels, a decreased PC/PE ratio, and a mildly increase in lipid accumulation. Additionally, sucralose-consumed mice exhibited higher hepatic cholesterol level compared to control mice, with up-regulation of cholesterol efflux genes and down-regulation of genes associated with reverse cholesterol transport. In conclusion, chronic sucralose consumption disrupts FXR signaling activation and perturbs hepatic lipid and cholesterol homeostasis, potentially by diminishing the bile acid metabolic capacity of the gut microbiome. These findings shed light on the complex interplay between sucralose, the gut microbiota, and host metabolism, raising important questions about the safety of its long-term consumption.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - YifeiYang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Xiaoming Bian
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Bei Gao
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States; Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, NC 27599, United States.
| |
Collapse
|
31
|
Wang X, Guo L, Zheng L, Zhao W, Li L. Natural Sweetener Glycyrrhetinic Acid Monoglucuronide Improves Glucose Homeostasis in Healthy Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3483-3494. [PMID: 38346790 DOI: 10.1021/acs.jafc.3c06151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Noncaloric or low-caloric sweeteners have become popular worldwide, although debates persist regarding their impact on health. To investigate whether the sweeteners are favorable for glucose homeostasis, our study assessed the effects of glycyrrhetinic acid monoglucuronide (GAMG) and several commonly used sweeteners [glycyrrhetinic acid (GA), stevioside, erythritol, sucralose, and aspartame] on glycometabolism and elucidated the underlying mechanisms. The C57BL/6J male mice were exposed to different sweeteners for 10 weeks, and our results showed that GAMG significantly reduced fasting blood glucose (FBG) levels (FBG-control: 3.81 ± 0.42 mmol/L; FBG-GAMG: 3.37 ± 0.38 mmol/L; p < 0.05) and the blood glucose levels 15 and 30 min after sucrose or maltose loading (p < 0.05). Furthermore, it improved glucose tolerance (p = 0.028) and enhanced insulin sensitivity (p = 0.044), while the other sweeteners had negligible or adverse effects on glucose homeostasis. Subsequent experiments showed that GAMG inhibited α-glucosidases potently (IC50 = 0.879 mg·mL-1), increased three SCFA-producing bacteria and SCFAs levels (p < 0.05), and promoted the gene expression of SCFA receptor GPR43 (p = 0.018). These results suggest that GAMG may regulate blood glucose by inhibiting α-glucosidases and modulating gut microbial SCFAs. Our findings prove that GAMG, beneficial to blood glucose regulation, is a promising natural sweetener for future utilization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Libing Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
32
|
Niu H, Xu M, Tu P, Xu Y, Li X, Xing M, Chen Z, Wang X, Lou X, Wu L, Sun S. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. TOXICS 2024; 12:47. [PMID: 38251002 PMCID: PMC10819641 DOI: 10.3390/toxics12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.
Collapse
Affiliation(s)
- Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Manjin Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Pengcheng Tu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Yunfeng Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
33
|
Sylvetsky AC, Clement RA, Stearrett N, Issa NT, Dore FJ, Mazumder R, King CH, Hubal MJ, Walter PJ, Cai H, Sen S, Rother KI, Crandall KA. Consumption of sucralose- and acesulfame-potassium-containing diet soda alters the relative abundance of microbial taxa at the species level: findings of two pilot studies. Appl Physiol Nutr Metab 2024; 49:125-134. [PMID: 37902107 DOI: 10.1139/apnm-2022-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Sucralose and acesulfame-potassium consumption alters gut microbiota in rodents, with unclear effects in humans. We examined effects of three-times daily sucralose- and acesulfame-potassium-containing diet soda consumption for 1 (n = 17) or 8 (n = 8) weeks on gut microbiota composition in young adults. After 8 weeks of diet soda consumption, the relative abundance of Proteobacteria, specifically Enterobacteriaceae, increased; and, increased abundance of two Proteobacteria taxa was also observed after 1 week of diet soda consumption compared with sparkling water. In addition, three taxa in the Bacteroides genus increased following 1 week of diet soda consumption compared with sparkling water. The clinical relevance of these findings and effects of sucralose and acesulfame-potassium consumption on human gut microbiota warrant further investigation in larger studies. Clinical trial registration: NCT02877186 and NCT03125356.
Collapse
Affiliation(s)
- Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, DC 20052, USA
| | - Rebecca A Clement
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
| | - Nathaniel Stearrett
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
| | - Najy T Issa
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, DC 20052, USA
| | - Fiona J Dore
- Department of Medicine, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Raja Mazumder
- Department of Biochemistry, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Charles Hadley King
- Department of Biochemistry, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Monica J Hubal
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, DC 20052, USA
| | - Peter J Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Hongyi Cai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Sabyasachi Sen
- Department of Medicine, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Kristina I Rother
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
| |
Collapse
|
34
|
Tosi M, Montanari C, Bona F, Tricella C, Agostinelli M, Dolor J, Chillemi C, Di Profio E, Tagi VM, Vizzuso S, Fiore G, Zuccotti G, Verduci E. Dietary Inflammatory Potential in Pediatric Diseases: A Narrative Review. Nutrients 2023; 15:5095. [PMID: 38140353 PMCID: PMC10745369 DOI: 10.3390/nu15245095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory status is one of the main drivers in the development of non-communicable diseases (NCDs). Specific unhealthy dietary patterns and the growing consumption of ultra-processed foods (UPFs) may influence the inflammation process, which negatively modulates the gut microbiota and increases the risk of NCDs. Moreover, several chronic health conditions require special long-term dietary treatment, characterized by altered ratios of the intake of nutrients or by the consumption of disease-specific foods. In this narrative review, we aimed to collect the latest evidence on the pro-inflammatory potential of dietary patterns, foods, and nutrients in children affected by multifactorial diseases but also on the dietetic approaches used as treatment for specific diseases. Considering multifactorial diet-related diseases, the triggering effect of pro-inflammatory diets has been addressed for metabolic syndrome and inflammatory bowel diseases, and the latter for adults only. Future research is required on multiple sclerosis, type 1 diabetes, and pediatric cancer, in which the role of inflammation is emerging. For diseases requiring special diets, the role of single or multiple foods, possibly associated with inflammation, was assessed, but more studies are needed. The evidence collected highlighted the need for health professionals to consider the entire dietary pattern, providing balanced and healthy diets not only to permit the metabolic control of the disease itself, but also to prevent the development of NCDs in adolescence and adulthood. Personalized nutritional approaches, in close collaboration between the hospital, country, and families, must always be promoted together with the development of new methods for the assessment of pro-inflammatory dietary habits in pediatric age and the implementation of telemedicine.
Collapse
Affiliation(s)
- Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Federica Bona
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Chiara Tricella
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Jonabell Dolor
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Claudia Chillemi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Sara Vizzuso
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| |
Collapse
|
35
|
Zhang Y, Zhou M, Zhou Y, Guan X. Dietary components regulate chronic diseases through gut microbiota: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6752-6766. [PMID: 37225671 DOI: 10.1002/jsfa.12732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
In recent years, gut microbiota as an immune organ has gradually become the mainstream of research. When the composition of the gut microbiota is changed significantly, this may affect human health. This review details the major microbiota composition and metabolites in the gut and discusses chronic diseases based on gut dysbiosis, including obesity, liver injury, colon cancer, atherosclerosis, and central nervous system diseases. We comprehensively summarize the changes in abundance of relevant gut microbiota by ingesting different diet components (such as food additives, dietary polyphenols, polysaccharides, fats, proteins) and their influence on the microbial quorum sensing system, thereby regulating related diseases. We believe that quorum sensing can be used as a new entry point to explain the mechanism of ingesting dietary components to improve gut microbiota and thereby regulate related diseases. This review hopes to provide a theoretical basis for future research on improving disease symptoms by ingesting functional foods containing dietary components. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Ming Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqin Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
36
|
de Souza Lopes A, Elisabete Costa Antunes A, Idelça Aires Machado K, Sartoratto A, Cristina Teixeira Duarte M. The impact of antimicrobial food additives and sweeteners on the growth and metabolite production of gut bacteria. Folia Microbiol (Praha) 2023; 68:813-821. [PMID: 37480433 DOI: 10.1007/s12223-023-01076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
Metabolic disorders caused by the imbalance of gut microbiota have been associated with the consumption of processed foods. Thus, this study aimed to evaluate the effects of antimicrobial food additives (benzoate, sorbate, nitrite, and bisulfite) and sweeteners (saccharin, stevia, sucralose, aspartame, and cyclamate) on the growth and metabolism of some gut and potentially probiotic bacterial species. The effects on the growth of Bifidobacterium longum, Enterococcus faecium, Lactobacillus acidophilus, and Lactococcus lactis subsp. lactis cultures were investigated using a turbidimetric test and by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). To evaluate the metabolic activity, the cultures were exposed to compounds with the highest antimicrobial activity, subjected to cultivation with inulin (1.5%), and analyzed by liquid chromatography for the production of short-chain fatty acids (acetate, propionate, and butyrate). The results showed that potassium sorbate (25 mg/mL), sodium bisulfite (0.7 mg/mL), sodium benzoate, and saccharin (5 mg/mL) presented greater antimicrobial activity against the studied species. L. lactis and L. acidophilus bacteria had reduced short-chain fatty acid production after exposure to saccharin and sorbate, and B. longum after exposure to sorbate, in comparison to controls (acetic acid reduction 1387 μg/mL and propionic 23 μg/mL p < 0.05).
Collapse
Affiliation(s)
- Aline de Souza Lopes
- Food Engineering and Technology Department, School of Food Engineering, Microbiological Analysis Laboratory, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, ZIP Code: 13083-862, Campinas, SP, Brazil.
| | | | - Karla Idelça Aires Machado
- Federal Institute of Education, Science and Technology of Piauí (IFPI), Portal Dos Cerrados, ZIP Code, PI-247, Uruçui, PI, 64860-000, Brazil
| | - Adilson Sartoratto
- Organic and Pharmaceutical Chemical Division, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, State University of Campinas (UNICAMP), Alexandre Cazellato, 999, SP, 13148-218,, Paulinia, Brazil
| | - Marta Cristina Teixeira Duarte
- Microbiology Division, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, State University of Campinas (UNICAMP), Alexandre Cazellato, 999, SP, ZIP code 13148-218,, Paulinia, Brazil
| |
Collapse
|
37
|
Halasa BC, Sylvetsky AC, Conway EM, Shouppe EL, Walter MF, Walter PJ, Cai H, Hui L, Rother KI. Non-Nutritive Sweeteners in Human Amniotic Fluid and Cord Blood: Evidence of Transplacental Fetal Exposure. Am J Perinatol 2023; 40:1286-1291. [PMID: 34500483 DOI: 10.1055/s-0041-1735555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study aimed to investigate human fetal exposure to non-nutritive sweeteners (NNS) by analyzing amniotic fluid and umbilical cord blood. STUDY DESIGN Concentrations of four NNS (acesulfame-potassium [ace-K], saccharin, steviol glucuronide, and sucralose) were measured in amniotic fluid (n = 13) and cord blood samples (n = 15) using liquid chromatography-mass spectrometry. Amniotic fluid samples were obtained for research purposes at the time of term elective cesarean birth or clinically indicated third trimester amnioreduction at Mercy Hospital for Women (Melbourne, Australia). All except four women were in the fasting state. Cord blood samples were obtained from an independent cohort of newborns whose mothers were enrolled in a separate clinical trial at the National Institutes of Health. RESULTS Ten of 13 amniotic fluid samples contained at least one NNS (ace-K, saccharin, steviol glucuronide, and/or sucralose). Maximum amniotic fluid NNS concentrations of ace-K, saccharin, steviol glucuronide, and sucralose were 78.9, 55.9, 93.5, and 30.6 ng/mL, respectively. Ace-K and saccharin were present in 100% and 80% of the cord blood samples, with maximal concentrations of 6.5 and 2.7 ng/mL, respectively. Sucralose was not detected and steviol glucuronide was not measurable in any of the cord blood samples. CONCLUSION Our results provide evidence of human transplacental transmission of NNS. Based on results predominantly obtained from rodent models, we speculate that NNS exposure may adversely influence the offsprings' metabolic health. Well-designed, prospective clinical trials are necessary to understand the impact of NNS intake during pregnancy on human development and long-term health. KEY POINTS · NNS consumption during pregnancy has increased in recent years.. · Maternal NNS intake during pregnancy is associated with preterm birth and higher infant weight gain in epidemiologic studies.. · In rodents, in utero NNS exposure induces metabolic abnormalities in mothers and their offspring, alters offspring gut microbiota composition, and promotes sweet taste preference in adulthood.. · It is presently unknown whether and to what degree maternal NNS ingestion in humans leads to direct in utero exposure.. · This study provides the first evidence of in utero NNS exposure in humans and highlights the urgent need to investigate clinical consequences of early life NNS exposure on metabolism, weight, taste preference, and general health..
Collapse
Affiliation(s)
- Brianna C Halasa
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, George Washington University, Washington, District of Columbia
| | - Ellen M Conway
- National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Eileen L Shouppe
- National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mary F Walter
- National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter J Walter
- National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hongyi Cai
- National Institute of Diabetes and Digestive Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lisa Hui
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina I Rother
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Wang L, Jiang Y, Yu Q, Xiao C, Sun J, Weng L, Qiu Y. Gentiopicroside improves high-fat diet-induced NAFLD in association with modulation of host serum metabolome and gut microbiome in mice. Front Microbiol 2023; 14:1145430. [PMID: 37614606 PMCID: PMC10443917 DOI: 10.3389/fmicb.2023.1145430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Objective The incidence of non-alcoholic fatty liver disease is increasing every year, and there is growing evidence that metabolites and intestinal bacteria play a causal role in NAFLD. Gentiopicroside, a major iridoids compound in gentian, has been reported to reduce hepatic lipid accumulation. However to date, no studies have confirmed whether the predominance of Gentiopicroside is related to metabolites and intestinal bacteria. Therefore, we sought to study whether the hypolipidemic effect of Gentiopicroside is related to metabolic function and intestinal flora regulation. Methods In the present study, C57BL/6J mice were fed a high-fat diet for 12 weeks, followed by a high-fat diet with or without Gentiopicroside for 8 weeks, respectively. The Gentiopicroside intervention reduced body weight gain, liver index, and decreased serum biochemical parameters such as alanine aminotransferase, aspartate aminotransferase, and triglycerides in high-fat fed mice. The effect of Gentiopicroside on non-alcoholic fatty liver disease was studied using serum untargeted metabolomics and 16S rDNA assay. Results Metabolomic analysis showed that the addition of Gentiopicroside significantly altered the levels of amino acids, unmetabolized Gentiopicroside after administration, and metabolites such as Cinnoline, Galabiosylceramide, and Tryptophyl-Tyrosine, which are involved in the pathways regulating bile secretion, tryptophan metabolism, and lipid metabolism. Analysis of intestinal bacteria showed that Gentiopicrosides altered the community composition structure of intestinal bacteria, characterized by an increase and a decrease in beneficial and harmful bacteria, respectively. In addition, correlation analysis showed that the effect of Gentiopicroside on metabolites was positively correlated with intestinal flora Bacteroides, Lactobacillus, Muribaculum, and Prevotellaceae_UCG_001. Finally, the combined analysis revealed that metabolites were associated with the regulation of Firmicutes and Actinobacteria and positively correlated with lipid levels. Conclusion These results suggest that Gentiopicroside may be a potential agent for the prevention of intestinal disorders and the alleviation of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Weng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
39
|
Abstract
Overweight, obesity, undernutrition and their respective sequelae have devastating tolls on personal and public health worldwide. Traditional approaches for treating these conditions with diet, exercise, drugs and/or surgery have shown varying degrees of success, creating an urgent need for new solutions with long-term efficacy. Owing to transformative advances in sequencing, bioinformatics and gnotobiotic experimentation, we now understand that the gut microbiome profoundly impacts energy balance through diverse mechanisms affecting both sides of the energy balance equation. Our growing knowledge of microbial contributions to energy metabolism highlights new opportunities for weight management, including the microbiome-aware improvement of existing tools and novel microbiome-targeted therapies. In this Review, we synthesize current knowledge concerning the bidirectional influences between the gut microbiome and existing weight management strategies, including behaviour-based and clinical approaches, and incorporate a subject-level meta-analysis contrasting the effects of weight management strategies on microbiota composition. We consider how emerging understanding of the gut microbiome alters our prospects for weight management and the challenges that must be overcome for microbiome-focused solutions to achieve success.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Penn State Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
40
|
Dale HF, Lorentzen SCS, Mellin-Olsen T, Valeur J. Diet-microbiota interaction in irritable bowel syndrome: looking beyond the low-FODMAP approach. Scand J Gastroenterol 2023; 58:1366-1377. [PMID: 37384386 DOI: 10.1080/00365521.2023.2228955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Diet is one of the main modulators of the gut microbiota, and dietary patterns are decisive for gut-microbiota-related diseases, including irritable bowel syndrome (IBS). The low-FODMAP diet (LFD) is commonly used to treat IBS, but its long-term effects on microbiota, symptoms and quality of life (QoL) are unclear. Alternative dietary strategies promoting beneficial gut microbiota, combined with reduced symptoms and improved QoL, are therefore of interest. AIMS To review current evidence on the diet-microbiota-interaction as a modulator of IBS pathophysiology, and dietary management of IBS, with particular emphasis on strategies targeting the gut microbiota, beyond the LFD. METHODS Literature was identified through PubMed-searches with relevant keywords. RESULTS Dietary patterns with a low intake of processed foods and a high intake of plants, such as the Mediterranean diet, promote gut microbiota associated with beneficial health outcomes. In contrast, Western diets with a high intake of ultra-processed foods promote a microbiota associated with disease, including IBS. Increasing evidence points towards dietary strategies consistent with the Mediterranean diet being equal to the LFD in alleviating IBS-symptoms and having a less negative impact on QoL. Timing of food intake is suggested as a gut microbiota modulator, but little is known about its effects on IBS. CONCLUSIONS Dietary recommendations in IBS should aim to target the gut microbiota by focusing on improved dietary quality, considering the impact on both IBS-symptoms and QoL. Increased intake of whole foods combined with a regular meal pattern and limitation of ultra-processed foods can be beneficial strategies beyond the LFD.
Collapse
Affiliation(s)
- Hanna Fjeldheim Dale
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Clinical Support, Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | - Tonje Mellin-Olsen
- Department of Clinical Support, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| |
Collapse
|
41
|
Lane MM, Lotfalian M, Hodge A, O'Neil A, Travica N, Jacka FN, Rocks T, Machado P, Forbes M, Ashtree DN, Marx W. High ultra-processed food consumption is associated with elevated psychological distress as an indicator of depression in adults from the Melbourne Collaborative Cohort Study. J Affect Disord 2023; 335:57-66. [PMID: 37149054 DOI: 10.1016/j.jad.2023.04.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Few studies have tested longitudinal associations between ultra-processed food consumption and depressive outcomes. As such, further investigation and replication are necessary. The aim of this study is to examine associations of ultra-processed food intake with elevated psychological distress as a marker for depression after 15 years. METHOD Data from the Melbourne Collaborative Cohort Study (MCCS) were analysed (n = 23,299). We applied the NOVA food classification system to a food frequency questionnaire (FFQ) to determine ultra-processed food intake at baseline. We categorised energy-adjusted ultra-processed food consumption into quartiles by using the distribution of the dataset. Psychological distress was measured by the ten-item Kessler Psychological Distress Scale (K10). We fitted unadjusted and adjusted logistic regression models to assess the association of ultra-processed food consumption (exposure) with significant psychological distress (outcome and defined as K10 ≥ 20). We fitted additional logistic regression models to determine whether these associations were modified by sex, age and body mass index. RESULTS After adjusting for sociodemographic characteristics and lifestyle and health-related behaviours, participants with the highest relative intake of ultra-processed food were at increased odds of significant psychological distress compared to participants with the lowest intake (aOR: 1.23; 95%CI: 1.10, 1.38, p for trend = 0.001). We found no evidence for an interaction of sex, age and body mass index with ultra-processed food intake. CONCLUSION Higher ultra-processed food intake at baseline was associated with subsequent elevated psychological distress as an indicator of depression at follow-up. Further prospective and intervention studies are necessary to identify possible underlying pathways, specify the precise attributes of ultra-processed food that confer harm, and optimise nutrition-related and public health strategies for common mental disorders.
Collapse
Affiliation(s)
- Melissa M Lane
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia.
| | - Mojtaba Lotfalian
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Allison Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Rd, Melbourne, VIC 3004, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, VIC, Australia; Black Dog Institute, NSW, Australia; James Cook University, QLD, Australia
| | - Tetyana Rocks
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Priscila Machado
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; Center for Epidemiological Research in Nutrition and Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Sao Paulo 01246-904, Brazil
| | - Malcolm Forbes
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Mental Health, Drugs & Alcohol Service, University Hospital Geelong, Barwon Health, VIC 3220, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC 3050, Australia
| | - Deborah N Ashtree
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| |
Collapse
|
42
|
Bhuia MS, Siam MSH, Ahamed MR, Roy UK, Hossain MI, Rokonuzzman M, Islam T, Sharafat R, Bappi MH, Mia MN, Emamuzzaman M, de Almeida RS, Coutinho HDM, Raposo A, Alturki HA, Islam MT. Toxicity Analysis of Some Frequently Used Food Processing Chemicals Using Allium cepa Biomonitoring System. BIOLOGY 2023; 12:biology12050637. [PMID: 37237451 DOI: 10.3390/biology12050637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Frequent use of various food processing chemical agents sometimes causes damage to our bodies by inducing cytotoxicity, genotoxicity, and mutagenesis. In Bangladesh, among various chemical agents, formalin, saccharin, and urea are vastly used for processing foodstuffs by industry and local people. This study is focused to assess the toxic effects of formalin, saccharin, and urea on the popularly used eukaryotic test model, Allium cepa L. The assay was carried out by exposing different concentrations of test samples to A. cepa at 24, 48, and 72 h, where distilled water and CuSO4·5H2O (0.6 µg/mL) were utilized as the vehicle and positive control, respectively. The root length of the onions was measured in mm, and the results propose that all the chemical agents demonstrated toxicity in onions in a concentration- and exposure-time-dependent manner. The highest root length was examined at the lower concentrations, and with the increase in the concentration of the test sample and exposure time, the RG (root growth) was inhibited due to the deposition of chemicals and hampering of cell division in the root meristematic region of A. cepa. All the chemical agents also revealed a concentration- and time-dependent adaptive effect up to 72 h inspection of 24 h and a depletion of % root growth at 72 h inspection of 48 h. Our study suggests that sufficient precautions should be confirmed during its industrial and traditional usage as a toxicological response to the chemical agents observed in the A. cepa assay.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sajjad Hossain Siam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Riat Ahamed
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Uttam Kumar Roy
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Imran Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Rezoan Sharafat
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Emamuzzaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Hmidan A Alturki
- General Directorate for Funds & Grants, King Abdulaziz City for Science & Technology, Riyadh 11442, Saudi Arabia
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
43
|
Monserrat-Mesquida M, Bouzas C, Mascaró CM, Tejada S, Sureda A. Probiotics as Potential Therapy in the Management of Non-Alcoholic Fatty Liver Disease (NAFLD). FERMENTATION-BASEL 2023; 9:395. [DOI: 10.3390/fermentation9040395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, the prevalence of which has increased over the years. The management of this pathology is not clear, and a specific pharmacological drug that can treat NAFLD is not available. In this sense, efforts are focused on the potential use of compounds with a natural origin that can contribute to reversing hepatic steatosis. Supplementation with probiotics, live microorganisms, is a potential strategy for the management of NAFLD. Methods: In the present review, the available information on the potential therapeutic effects of probiotics in NAFLD, mainly in animal models and in some clinical trials, is summarized. Results: Studies carried out using animal models of NAFLD induced by a high-fat diet have shown the beneficial effects of probiotic supplementation in reducing liver steatosis and normalizing the blood lipid profile and liver enzyme activities. In addition, a decrease in lipogenesis and an increase in lipolysis have been observed, together with a reduction in the pro-oxidative and pro-inflammatory state and a normalization of intestinal dysbiosis. Clinical trials have reported a decrease in the serum transaminases and an improved lipid profile, as well as a reduction in inflammatory markers. Conclusions: In conclusion, probiotic supplementation can be used as a potential therapy for the management of NAFLD.
Collapse
Affiliation(s)
- Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Catalina M. Mascaró
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
44
|
Conz A, Salmona M, Diomede L. Effect of Non-Nutritive Sweeteners on the Gut Microbiota. Nutrients 2023; 15:nu15081869. [PMID: 37111090 PMCID: PMC10144565 DOI: 10.3390/nu15081869] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The human gut microbiota, a complex community of microorganisms living in the digestive tract, consists of more than 1500 species distributed in more than 50 different phyla, with 99% of bacteria coming from about 30-40 species. The colon alone, which contains the largest population of the diverse human microbiota, can harbor up to 100 trillion bacteria. The gut microbiota is essential in maintaining normal gut physiology and health. Therefore, its disruption in humans is often associated with various pathological conditions. Different factors can influence the composition and function of the gut microbiota, including host genetics, age, antibiotic treatments, environment, and diet. The diet has a marked effect, impacting the gut microbiota composition, beneficially or detrimentally, by altering some bacterial species and adjusting the metabolites produced in the gut environment. With the widespread use of non-nutritive sweeteners (NNS) in the diet, recent investigations have focused on their effect on the gut microbiota as a mediator of the potential impact generated by gastrointestinal-related disturbances, such as insulin resistance, obesity, and inflammation. We summarized the results from pre-clinical and clinical studies published over the last ten years that examined the single effects of the most consumed NNS: aspartame, acesulfame-K, sucralose, and saccharin. Pre-clinical studies have given conflicting results for various reasons, including the administration method and the differences in metabolism of the same NNS among the different animal species. A dysbiotic effect of NNS was observed in some human trials, but many other randomized controlled trials reported a lack of significant impacts on gut microbiota composition. These studies differed in the number of subjects involved, their dietary habits, and their lifestyle; all factors related to the baseline composition of gut microbiota and their response to NNS. The scientific community still has no unanimous consensus on the appropriate outcomes and biomarkers that can accurately define the effects of NNS on the gut microbiota.
Collapse
Affiliation(s)
- Andrea Conz
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
45
|
Li D, Zheng Q, Thomas KV, Dang AK, Binh VN, Anh NTK, Thai PK. Use of artificial sweeteners and caffeine in a population of Hanoi: An assessment by wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161515. [PMID: 36634775 DOI: 10.1016/j.scitotenv.2023.161515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Monitoring the consumption of artificial sweeteners in the population is essential to help public health authorities understand the level of sugar consumption. There is a gap in knowledge of patterns and levels of artificial sweetener consumption in Vietnam. Using wastewater-based epidemiology (WBE), this study aims to evaluate the use of artificial sweeteners in an urban population in Hanoi, Vietnam. A total of 184 wastewater samples were collected at two sampling sites in an urban canal, receiving sewage from over 400,000 people in three different periods between 2018 and 2020. The population normalized per capita consumption of the five detected artificial sweeteners varied from 0.87 mg d-1 p-1 (sucralose) to 5.2 mg d-1 p-1 (aspartame). The daily consumption of artificial sweeteners was found to be stable throughout the week, however the consumption of artificial sweeteners was influenced by season with higher consumption in summer. Significant correlations (p < 0.01) were found among levels of artificial sweeteners and caffeine in urban canal samples, suggesting these chemicals had common sources. Population-weighted consumption load of artificial sweeteners and caffeine was compared in Vietnam, China and Australia, and the per capita consumption load mainly depended on the habitual of tea/coffee drinking in different countries. This was the first study that provided information on the artificial sweetener consumption by wastewater analysis in Vietnam. However, several sources of uncertainty (sample collection, population estimation, other sources of artificial sweeteners in wastewater, etc.) were acknowledged in this study. Further investigations on the spatial-temporal variation of artificial sweetener consumption with more intensive sampling scheme in Vietnam are recommended.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia.
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Anh Kim Dang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia; Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Viet Nam
| | - Vu Ngan Binh
- Department of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | - Nguyen Thi Kieu Anh
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Viet Nam
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
46
|
Tu P, Xue J, Niu H, Tang Q, Mo Z, Zheng X, Wu L, Chen Z, Cai Y, Wang X. Deciphering Gut Microbiome Responses upon Microplastic Exposure via Integrating Metagenomics and Activity-Based Metabolomics. Metabolites 2023; 13:metabo13040530. [PMID: 37110188 PMCID: PMC10145956 DOI: 10.3390/metabo13040530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 04/29/2023] Open
Abstract
Perturbations of the gut microbiome are often intertwined with the onset and development of diverse metabolic diseases. It has been suggested that gut microbiome perturbation could be a potential mechanism through which environmental chemical exposure induces or exacerbates human diseases. Microplastic pollution, an emerging environmental issue, has received ever increasing attention in recent years. However, interactions between microplastic exposure and the gut microbiota remain elusive. This study aimed to decipher the responses of the gut microbiome upon microplastic polystyrene (MP) exposure by integrating 16S rRNA high-throughput sequencing with metabolomic profiling techniques using a C57BL/6 mouse model. The results indicated that MP exposure significantly perturbed aspects of the gut microbiota, including its composition, diversity, and functional pathways that are involved in xenobiotic metabolism. A distinct metabolite profile was observed in mice with MP exposure, which probably resulted from changes in gut bacterial composition. Specifically, untargeted metabolomics revealed that levels of metabolites associated with cholesterol metabolism, primary and secondary bile acid biosynthesis, and taurine and hypotaurine metabolism were changed significantly. Targeted approaches indicated significant perturbation with respect to the levels of short-chain fatty acids derived from the gut microbiota. This study can provide evidence for the missing link in understanding the mechanisms behind the toxic effects of microplastics.
Collapse
Affiliation(s)
- Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huixia Niu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
- School of Medicine, Ningbo University, Ningbo 315000, China
| | - Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou 310018, China
| | - Zhe Mo
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Lizhi Wu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Zhijian Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofeng Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| |
Collapse
|
47
|
Tristan Asensi M, Napoletano A, Sofi F, Dinu M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023; 15:1546. [PMID: 36986276 PMCID: PMC10058108 DOI: 10.3390/nu15061546] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Low-grade inflammation alters the homeostasis of the organism and favors the onset of many chronic diseases. The global growth in the prevalence of noncommunicable diseases in recent years has been accompanied by an increase in the consumption of ultra-processed foods (UPF). Known to be hyperpalatable, economic and ready-to-eat, increased consumption of UPF has already been recognized as a risk factor for several chronic diseases. Different research groups have tried to investigate whether UPF consumption could promote low-grade inflammation and thus favor the development of noncommunicable diseases. Current evidence highlights the adverse health effects of UPF characteristics, not only due to the nutrients provided by a diet rich in UPF, but also due to the non-nutritive components present in UPF and the effect they may have on gut health. This review aims to summarize the available evidence on the possible relationship between excessive UPF consumption and modulation of low-grade inflammation, as potential promoters of chronic disease.
Collapse
Affiliation(s)
- Marta Tristan Asensi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Antonia Napoletano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
48
|
Li B, Yan N, Jiang H, Cui M, Wu M, Wang L, Mi B, Li Z, Shi J, Fan Y, Azalati MM, Li C, Chen F, Ma M, Wang D, Ma L. Consumption of sugar sweetened beverages, artificially sweetened beverages and fruit juices and risk of type 2 diabetes, hypertension, cardiovascular disease, and mortality: A meta-analysis. Front Nutr 2023; 10:1019534. [PMID: 37006931 PMCID: PMC10050372 DOI: 10.3389/fnut.2023.1019534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionSugar-sweetened beverage (SSB) intake is associated with an increased risk of cardiometabolic diseases. However, evidence regarding associations of artificially sweetened beverages (ASBs) and fruit juices with cardiometabolic diseases is mixed. In this study, we aimed to investigate the association between the SSB, ASB and fruit juice consumption with the incidence of cardiometabolic conditions and mortality.MethodsRelevant prospective studies were identified by searching PubMed, Web of Science, Embase, and Cochrane Library until December 2022 without language restrictions. The pooled relative risk (RR) and 95% confidence intervals (CIs) were estimated for the association of SSBs, ASBs, and fruit juices with the risk of type 2 diabetes (T2D), cardiovascular disease (CVD), and mortality by using random-effect models.ResultsA total of 72 articles were included in this meta-analysis study. Significantly positive associations were observed between the consumption of individual beverages and T2D risk (RR: 1.27; 95% CI: 1.17, 1.38 for SSBs; RR: 1.32; 95% CI: 1.11, 1.56 for ASBs; and RR:0.98; 95% CI: 0.93, 1.03 for fruit juices). Moreover, our findings showed that intakes of SSBs and ASBs were significantly associated with risk of hypertension, stroke, and all-cause mortality (RR ranging from 1.08 to 1.54; all p < 0.05). A dose-response meta-analysis showed monotonic associations between SSB intake and hypertension, T2D, coronary heart disease (CHD), stroke and mortality, and the linear association was only significant between ASB consumption and hypertension risk. Higher SSB and ASB consumptions were associated with a greater risk of developing cardiometabolic diseases and mortality. Fruit juice intake was associated with a higher risk of T2D.ConclusionTherefore, our findings suggest that neither ASBs nor fruit juices could be considered as healthier beverages alternative to SSBs for achieving improved health.Systematic Review Registration: [PROSPERO], identifier [No. CRD42022307003].
Collapse
Affiliation(s)
- Baoyu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ni Yan
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hong Jiang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Cui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Min Wu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lina Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Baibing Mi
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhaofang Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jia Shi
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yahui Fan
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | | | - Chao Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Fangyao Chen
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mao Ma
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Mao Ma, ; Duolao Wang, ; Le Ma,
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- *Correspondence: Mao Ma, ; Duolao Wang, ; Le Ma,
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an, China
- *Correspondence: Mao Ma, ; Duolao Wang, ; Le Ma,
| |
Collapse
|
49
|
Barlow GM, Celly S, Mathur R. Changes in the Gut Microbiome as Seen in Diabetes and Obesity. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:61-81. [DOI: 10.1007/978-3-031-46712-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Wang X, Liang X, Guo X. Global distribution and potential risks of artificial sweeteners (ASs) with widespread contaminant in the environment: The latest advancements and future development. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|