1
|
Fitzpatrick DP, Browne E, Kealey C, Brady D, Kavanagh S, Devery S, Gately N. The Effects of Encapsulating Bioactive Irish Honey into Pluronic-Based Thermoresponsive Hydrogels and Potential Application in Soft Tissue Regeneration. Gels 2025; 11:215. [PMID: 40136920 PMCID: PMC11941932 DOI: 10.3390/gels11030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Honey has been recognised for centuries for its potential therapeutic properties, and its application in wound healing has gained attention due to its antimicrobial, anti-inflammatory, and regenerative properties. With the rapid increase in multidrug resistance, there is a need for new or alternative approaches to traditional antibiotics. This paper focuses on the physicochemical changes that occur when formulating honey into Pluronic F127 hydrogels. The manual incorporation of honey, irrespective of quality type, presented the amelioration of Pluronic's capacity to undergo sol-gel transitions, as investigated by parallel plate rheology. This novel finding was attributed to the formation of fractal aggregates via the hydrogen-bonding-induced irreversible aggregation of honey-PF127 micelles, which subsequently dominate the entire hydrogel system to form a gel. The hydrogen bonding of micelles was identified through Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Light Scattering (DLS). This is the first known study to provide physicochemical insight into the effects that honey incorporation has on the thermogelation capacity of Pluronic F127 hydrogels for downstream dermal wound applications.
Collapse
Affiliation(s)
- Daniel P. Fitzpatrick
- PRISM Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Applied Polymer Technologies (APT), Technological University of the Shannon, N37HD6 Athlone, Co. Westmeath, Ireland
| | - Emma Browne
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Carmel Kealey
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Damien Brady
- Bioscience Research Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland; (E.B.)
- Department of Science and Health, South East Technological University, R93V960 Carlow, Co. Carlow, Ireland
| | - Siobhan Kavanagh
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Sinead Devery
- Department of Pharmaceutical Sciences and Biotechnology, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
| | - Noel Gately
- PRISM Institute, Technological University of the Shannon, N37HD68 Athlone, Co. Westmeath, Ireland
- Applied Polymer Technologies (APT), Technological University of the Shannon, N37HD6 Athlone, Co. Westmeath, Ireland
| |
Collapse
|
2
|
Jagua-Gualdrón A, García-Reyes NA, Fernández-Bernal RE. Apitherapy for diabetes mellitus: mechanisms and clinical implications. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0367. [PMID: 39743810 DOI: 10.1515/jcim-2024-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Diabetes mellitus is a complex disease in terms of its causes and pathophysiological processes, it produces a significant impact on health and leads to complications that are difficult to manage. CONTENT This review summarizes and analyzes recent advances in the understanding of the mechanisms of diabetes mellitus and how apitherapy affects them. Also present the available clinical evidence on its application. SUMMARY Apitherapy (complementary-integral use of beehive products) is a potentially useful therapeutic system with a significant level of evidence. This review shows and analyzes the preclinical and clinical evidence on the use of apitherapy in diabetes mellitus. OUTLOOK Apitherapy shows significant effects on epigenetics, chronic inflammation, oxidative stress, metabolic control, dysbiosis, premature cell death and tissue remodeling. Clinical evidence shows an impact on these mechanisms. Apitherapy is a very useful complementary medicine in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Andrés Jagua-Gualdrón
- National University of Colombia, Bogota, Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogota, Colombia
- International College of Apitherapy, Bogota, Colombia
| | - Nicolai Andrés García-Reyes
- National University of Colombia, Bogota, Colombia
- International Institute for Complementary and Alternative Medicine-IIMAN, Bogota, Colombia
- International College of Apitherapy, Bogota, Colombia
| | - Roger Edwin Fernández-Bernal
- International College of Apitherapy, Bogota, Colombia
- Provada Del Valle University, Cochabamba, Bolivia
- KIMED, Cochabamba, Bolivia
| |
Collapse
|
3
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Xu L, Wang X, Wu Y, Zhang Z, Li X, Zhang J. Effectiveness of APG and Honey Gauze in Pressure Injury of Elderly: A Randomized Control Trial. INT J LOW EXTR WOUND 2024:15347346241234420. [PMID: 38403980 DOI: 10.1177/15347346241234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
This study was designed to evaluate the efficiency of the combination of autologous platelet-rich plasma gel (APG) and Manuka honey gauze in the treatment of Stages 3-4 pressure injury of older adults. Patients were divided into four groups: Manuka honey gauze and APG (M + A), Manuka honey gauze (M), APG (A), and a control group (C). Different treatments were given, then wound bed coverage with granulation tissue, wound size reduction, and Pressure Ulcer Scale for Healing (PUSH) score were examined. Paraffin-embedded sections of wound tissues were analyzed and wound swab cultures were assessed. Kruskal-Wallis test and Mann-Whitney U test were performed in statistical analysis at a 5% significance level. A total of 42 patients were accepted. Significant increase of wound bed coverage with granulation tissue (51.24%, P = .004, Kruskal-Wallis test) and decrease of PUSH score (-5) were observed in the M + A group at the end of the observation (P = .032, Mann-Whitney U test). The hematoxylin-eosin staining of wound tissues showed that typical squamous epithelium was seen in wound bed of patient in M + A group. Manuka honey gauze and APG were proved to be superior treatments for pressure injury of old patient. Increase of granulation tissue coverage, reduction of PUSH score, and improved growth of epithelium were observed in M + A group. There was no side-effect, and the treatment would not cause infection.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Xinmeng Wang
- Chinese Academy of Sciences, Chongqing Medical University & Chongqing Institute of Green and Intelligent Technology, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Yongmei Wu
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Xiafei Li
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
| | - Jie Zhang
- Department of Geriatrics, Chongqing Clinical Research Center for Geriatric Diseases, Chongqing General Hospital, Chongqing, China
- Graduate School, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
6
|
Wang Z, Wang L, Huang H, Li Q, Wang X, Sun Q, Wang Q, Li N. In vitro antioxidant analysis of flavonoids extracted from Artemisia argyi stem and their anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem 2023; 407:135198. [PMID: 36527947 DOI: 10.1016/j.foodchem.2022.135198] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In this study, flavonoids were successfully extracted from Artemisia argyi stem, and their yield reached 15.3 mg/g dry A. argyi stem. The flavonoid extract from A. argyi stem had a purity of 88.58 % (w/w), meanwhile, which also contained 1.57 % (w/w) carbohydrates, 2.04 % (w/w) proteins and 7.81 % (w/w) polyphenols, respectively. In vitro antioxidant activity analysis showed the increased scavenging effects of flavonoid extract from A. argyi stem on 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azinobis-di-(3-ethyl-benzothiazolin-6-sulfonic acid) diammonium salt, hydroxyl, and superoxide radicals in a concentration-dependent manner. Furthermore, the flavonoid extract from A. argyi stem exerted protective effects on lipopolysaccharide-stimulated RAW 264.7 macrophages via inhibiting the levels of tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and nitric oxide free radicals. Overall, this work will provide guidance and help in the utilization of edible A. argyi as plant-based diet and its bioactive flavonoid extract as antioxidant and anti-inflammatory ingredients to improve the function, nutrition, and healthiness of foods.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongtao Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qiuyan Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoyuan Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Skadiņš I, Labsvārds KD, Grava A, Amirian J, Tomsone LE, Ruško J, Viksna A, Bandere D, Brangule A. Antimicrobial and Antibiofilm Properties of Latvian Honey against Causative Agents of Wound Infections. Antibiotics (Basel) 2023; 12:antibiotics12050816. [PMID: 37237718 DOI: 10.3390/antibiotics12050816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Honey is widely used in traditional medicine and modern wound healing biomaterial research as a broad-spectrum antimicrobial, anti-inflammatory and antioxidant agent. The study's objectives were to evaluate the antibacterial activity and polyphenolic profiles of 40 monofloral honey samples collected from beekeepers in the territory of Latvia. The antimicrobial and antifungal activity of Latvian honey samples were compared with commercial Manuka honey and the honey analogue sugar solutions-carbohydrate mixture and tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, clinical isolates Extended-Spectrum Beta-Lactamases produced Escherichia coli, Methicillin-resistant Staphylococcus aureus and Candida albicans. Antimicrobial activity was evaluated with the well-diffusion method (80% honey solution w/v) and microdilution method. The honey samples with the highest antimicrobial potential were tested to prevent biofilm development and activity against a preformed biofilm. The principal component analysis of the antimicrobial properties of honey samples vs. polyphenolic profile was performed. Eleven honey samples exhibited antibacterial activity to all investigated bacteria. The antibacterial effect of the samples was most significant on the Gram-positive bacteria compared to the studied Gram-negative bacteria. Latvian honey presents promising potential for use in wound healing biomaterials, opening the possibility of achieving long-term antibacterial effects.
Collapse
Affiliation(s)
- Ingus Skadiņš
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Biology and Microbiology, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Krišs Dāvids Labsvārds
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, LV-1007 Riga, Latvia
| | - Jhaleh Amirian
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Laura Elīna Tomsone
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Jānis Ruško
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia
| | - Arturs Viksna
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | - Dace Bandere
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Agnese Brangule
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
8
|
Al-Kafaween MA, Alwahsh M, Mohd Hilmi AB, Abulebdah DH. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12020337. [PMID: 36830249 PMCID: PMC9952753 DOI: 10.3390/antibiotics12020337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Honey is considered to be a functional food with health-promoting properties. However, its potential health benefits can be affected by individual composition that varies between honey types. Although studies describing the health benefits of Tualang honey (TH), Kelulut honey (KH), and Sidr honey (SH) are scarce, these honey types showed a comparable therapeutic efficacy to Manuka honey (MH). The purpose of this review is to characterise the physicochemical, biological, and therapeutic properties of TH, KH, and SH. Findings showed that these honeys have antibacterial, antifungal, antiviral, antioxidant, antidiabetic, antiobesity, anticancer, anti-inflammatory and wound-healing properties and effects on the cardiovascular system, nervous system, and respiratory system. The physicochemical characteristics of TH, KH, and SH were compared with MH and discussed, and results showed that they have high-quality contents and excellent biological activity sources. Flavonoids and polyphenols, which act as antioxidants, are two main bioactive molecules present in honey. The activity of honey depends on the type of bee, sources of nectar, and the geographic region where the bees are established. In conclusion, TH, KH, and SH could be considered as natural therapeutic agents for various medicinal purposes compared with MH. Therefore, TH, KH, and SH have a great potential to be developed for modern medicinal use.
Collapse
Affiliation(s)
- Mohammad A. Al-Kafaween
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abu Bakar Mohd Hilmi
- Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
- Correspondence: (M.A.A.-K.); (A.B.M.H.); Tel.: +6-099988548 (A.B.M.H.); Fax: +6-096687896 (A.B.M.H.)
| | - Dina H. Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
9
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Yu W, Sun F, Xu R, Cui M, Liu Y, Xie Q, Guo L, Kong C, Li X, Guo X, Luo L. Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct 2023; 14:250-261. [PMID: 36484340 DOI: 10.1039/d2fo02233h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Castanopsis is diffusely spread in tropical and subtropical regions and is an important nectar source plant in China. The Castanopsis honey (CH) is characterized by its bitter taste. However, its composition and functions remain unclear. In this study, the physicochemical parameters, chemical composition, and antioxidant capacity of CH were comprehensively investigated, with the anti-inflammatory effects of the Castanopsis honey extract (CHE) evaluated based on the RAW 264.7 cell inflammatory model. The results revealed a high level of quality in CH based on the quality standards. Among a total of 84 compounds identified in CH, 5 high response compounds and 29 phenols were further quantified by UPLC-Q/TOF-MS. The high content of phenylethylamine (117.58 ± 64.81 mg kg-1) was identified as a potential marker of CH. Furthermore, the CH showed evident antioxidant activities, and the anti-inflammatory activities of CHE were observed to inhibit the release of nitric oxide (NO) and reduce the content of tumor necrosis factor alpha (TNF-α) and improve the content of interleukin-10 (IL-10) by regulating the NF-κB pathway. Our study indicates that CH has sound physicochemical properties and biological activities with a high level of quality, providing strong experimental evidence to support the further economic and agricultural development and application of CH.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Ruixin Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Quanyuan Xie
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Limin Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chenxian Kong
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
11
|
Release of Bioactive Peptides from Erythrina edulis ( Chachafruto) Proteins under Simulated Gastrointestinal Digestion. Nutrients 2022; 14:nu14245256. [PMID: 36558415 PMCID: PMC9788341 DOI: 10.3390/nu14245256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The estimated and concerning rise in world population over the next few years and the consequent increase in food demand will lead to a deterioration in global food security. To avoid or reduce this world crisis, informed and empowered consumers are turning to sustainable and nutrient-rich foods that substitute animal products, also reducing their associated environmental impact. Moreover, due to the demonstrated influence of diet on the risk of high incidence and mortality of noncommunicable diseases, the current established food pattern is focused on the consumption of foods that have functionality for health. Among these new foods, traditional and underutilized plants are gaining interest as alternative protein sources providing nutritional and biological properties. In this work, the potential of Erythrina edulis (chachafruto) proteins as a source of multifunctional peptides after transit through the gastrointestinal tract has been demonstrated, with antioxidant and immunostimulating effects in both biochemical assays and cell culture. While low molecular weight peptides released during the digestive process were found to be responsible for protection against oxidative stress mediated by their radical scavenging activity, high molecular weight peptides exerted immunostimulating effects by upregulation of immunoresponse-associated biomarkers. The findings of this study support the promising role of chachafruto proteins as a new antioxidant and immunostimulatory ingredient for functional foods and nutraceuticals.
Collapse
|
12
|
Anti-Inflammatory and Antibacterial Effects and Mode of Action of Greek Arbutus, Chestnut, and Fir Honey in Mouse Models of Inflammation and Sepsis. Microorganisms 2022; 10:microorganisms10122374. [PMID: 36557628 PMCID: PMC9784341 DOI: 10.3390/microorganisms10122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Honey has been shown to possess anti-inflammatory and bactericidal properties that may be useful for the prevention and treatment of infections as well as of acute and chronic inflammatory diseases. The antimicrobial potency of honey could be attributed to its physicochemical characteristics combined with the presence of certain compounds, such as hydrogen peroxide and polyphenols. Honey's bacteriostatic or bactericidal capacity varies depending on its composition and the bacterial type of each infection. Nevertheless, not all honey samples possess anti-inflammatory or antibacterial properties and their mechanism of action has not been clearly elucidated. Objectives: We therefore investigated the anti-inflammatory properties of three different honey samples that derived from different geographical areas of Greece and different botanical origins, namely, arbutus, chestnut, and fir; they were compared to manuka honey, previously known for its anti-inflammatory and antibacterial activity. Materials and Methods: To test the anti-inflammatory activity of the different samples, we utilized the in vivo model of LPS-driven inflammation, which induces septic shock without the presence of pathogens. To evaluate the antibacterial action of the same honey preparations, we utilized the cecal-slurry-induced peritonitis model in mice. Since acute inflammation and sepsis reduce the biotransformation capacity of the liver, the expression of key enzymes in the process was also measured. Results: The administration of all Greek honey samples to LPS-stimulated mice revealed a potent anti-inflammatory activity by suppressing the TNFα serum levels and the expression of TNFα and iNOS in the liver at levels comparable to those of the manuka honey, but they had no effect on IL-6 or IL-1β. It was shown that the LPS-induced suppression of CYP1A1 in the liver was reversed by Epirus and Crete fir honey, while, correspondingly, the suppression of CYP2B10 in the liver was reversed by Evros chestnut and Epirus fir honey. The effect of the same honey samples in polymicrobial peritonitis in mice was also evaluated. Even though no effect was observed on the disease severity or peritoneal bacterial load, the bacterial load in the liver was reduced in mice treated with Evros chestnut, Epiros fir, and Crete fir, while the bacterial load in the lungs was reduced in Epirus arbutus, Crete fir, and manuka honey-treated mice. Conclusion: Our findings suggest that these specific Greek honey samples possess distinct anti-inflammatory and antibacterial properties, as evidenced by the reduced production of pro-inflammatory mediators and the impaired translocation of bacteria to tissues in septic mice. Their mode of action was comparable or more potent to those of manuka honey.
Collapse
|
13
|
Liu R, Zhou F, Yu J, Wei X, Liu X, Yuan X, Yu C. Abrusamide H Impairs the Secretion of the Cytokines in RAW264.7 Cells and the Inflammatory Infiltration in Tail Transection-Induced Zebrafish. Chem Biodivers 2022; 19:e202200474. [PMID: 36190475 DOI: 10.1002/cbdv.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Abrus mollis Hance (Leguminosae) has a variety of biological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, and antitumor activities. However, the specific substances responsible for the anti-inflammatory effects are unknown. Abrusamide H (BJBS) is a truxillic acid derivative obtained from the leaves of Abrus mollis Hance and has potential anti-inflammatory effects. In this study, we aimed to estimate the potential effect and mechanism of BJBS in inflammation by establishing lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and an injured zebrafish tail fin in vivo. The RAW264.7 cells were treated with different concentrations of BJBS after LPS stimulation. The production of nitric oxide (NO) was detected by Griess reaction, and reactive oxygen species (ROS) were detected by an ROS assay kit. The levels of proinflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 18 (IL-18) were measured by ELISA. Results showed that BJBS at all concentrations inhibited the proliferation of RAW264.7 macrophages after LPS stimulation by cell counting kit-8 and the production of NO and ROS. In the BJBS treatment group, the levels of IL-6, TNF-α, IL-1β, and IL-18 decreased in a concentration-dependent manner. The results in vivo showed that no significant difference in the survival of zebrafish between the BJBS and blank groups and BJBS inhibited the migration and aggregation of zebrafish neutrophils in a dose-dependent manner in inflammation induced by tail transection-induced inflammation. In conclusion, BJBS inhibited the production of NO and ROS, decreased the levels of secreted IL-6, TNF-α, IL-1β, and IL-18, and reduced the migration and aggregation of zebrafish neutrophils.
Collapse
Affiliation(s)
- Roujia Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Feirong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Jiaxian Yu
- Jinan University, Guangzhou, P. R. China
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Xiangying Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Xujiang Yuan
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Chuqin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| |
Collapse
|
14
|
Honeys with anti-inflammatory capacity can alter the elderly gut microbiota in an ex vivo gut model. Food Chem 2022; 392:133229. [PMID: 35679723 DOI: 10.1016/j.foodchem.2022.133229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
The anti-inflammatory effect of different sourced honeys and the impact on elderly gut microbiota were studied in terms of chemical compositions, anti-inflammatory effect and gut microbiota modulating capacities. All four honeys suppressed the production of pro-inflammatory markers NO, IL-1β and IL-6 induced by lipopolysaccharide and promoted the expression of anti-inflammatory cytokines IL-10 in RAW 264.7 cells. Moreover, in the ex vivo batch gut model using elderly fecal microbiota (referred to as microcosm), it was showed that the addition of honeys increased the abundance of beneficial lactobacilli, decreased the abundance of potentially harmful Gram negative enteric bacteria, and exerted a beneficial effect on the production of short chain fatty acids. The concentration of gallic acid in honeys was positively correlated with the expression level of IL-10 and the abundance of lactobacilli. These findings indicate honeys with anti-inflammatory capacity have great potential for regulating the elderly gut microbiota which would lead to health benefits.
Collapse
|
15
|
da Silva CA, Mafra LL, Rossi GR, da Silva Trindade E, Matias WG. A simple method to evaluate the toxic effects of Prorocentrum lima extracts to fish (sea bass) kidney cells. Toxicol In Vitro 2022; 85:105476. [PMID: 36126776 DOI: 10.1016/j.tiv.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
The diarrhetic shellfish toxins (DSTs) okadaic acid (OA) and its analogues - the dinophysistoxins (DTXs) - are produced by dinoflagellates such as Prorocentrum lima and can bioaccumulate in filter-feeding organisms as they are transferred through the food web. Although there is no assessment of the harmful effects of these toxins on the fish's immune system, this study developed a primary culture protocol for kidney cells from marine fish Centropomus parallelus and evaluated the immunotoxic effects to P. lima extracts containing DSTs. The cells were obtained by mechanical dissociation, segregated with Percoll gradient, and incubated for 24 h at 28 °C in a Leibovitz culture medium supplemented with 2% fetal bovine serum and antibiotics. The exposed cells were evaluated in flow cytometry using the CD54 PE antibody. We obtained >5.0 × 106 viable cells per 1.0 g of tissue that exhibited no cell differentiation. Exposure to 1.2 or 12 ng DST mL-1 stimulated the immune system activation and increased the proportion of activated macrophages and monocytes in 48 to 52% and in 127 to 146%, respectively. The protocol proved to be an alternative tool to assess the immunotoxic effects of DST exposure on fish's anterior kidney cells.
Collapse
Affiliation(s)
- Cesar Aparecido da Silva
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR 83255-976, Brazil.
| | - Luiz Laureno Mafra
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR 83255-976, Brazil
| | - Gustavo Rodrigues Rossi
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Federal University of Paraná, Av. Cel Francisco H dos Santos, Curitiba, PR 81530-980, Brazil
| | - Edvaldo da Silva Trindade
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Federal University of Paraná, Av. Cel Francisco H dos Santos, Curitiba, PR 81530-980, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Departament of Sanitary and Environmental Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC 88010-970, Brazil
| |
Collapse
|
16
|
Abstract
Dry eye has become an increasingly prevalent public health issue for which there is currently no cure. Manuka honey possesses anti-inflammatory and antioxidant properties that can be used to treat dry eye. The present study aimed to systematically review evidence supporting the treatment of dry eye with manuka honey and quantify this evidence via meta-analysis. Randomised clinical trials that fulfilled the inclusion criteria from database inception until 5 September 2021, were identified through online searches of seven databases, including but not limited to Embase, Medline, and Central. Changes between the point of longest follow-up and baseline subjective symptoms, tear film quality, ocular surface characteristics, adverse events, and compliance were selected for meta-analysis. A total of 288 adult participants with dry eye from five eligible randomised controlled trials were analysed. Compared with the control groups, treatment with manuka honey demonstrated a significant improvement in Ocular Surface Disease Index, Standard Patient Evaluation of Eye Dryness, tear evaporation rate, negative conversion rate of matrix metalloproteinase-9 levels, ocular surface staining, and daily use frequency of lubricant. No serious adverse events were reported, except for temporary stinging and redness, which were generally tolerated. This review found that manuka honey demonstrated promising results for the treatment of dry eye. However, limitations of the included studies and analytical methodology affect the reliability of this conclusion. Therefore, further high-quality randomised clinical trials are required to confirm the efficacy and safety of the use of manuka honey in the treatment of dry eye.
Collapse
Affiliation(s)
- Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingwen Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Sixing Zhu
- Institute of Science, Technology and Humanities of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mohan Ju
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianfu Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Agussalim, Umami N, Nurliyani, Agus A. STINGLESS BEE HONEY (Tetragonula laeviceps): CHEMICAL COMPOSITION AND THEIR POTENTIAL ROLES AS AN IMMUNOMODULATOR IN MALNOURISHED RATS. Saudi J Biol Sci 2022; 29:103404. [PMID: 36033927 PMCID: PMC9411681 DOI: 10.1016/j.sjbs.2022.103404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/10/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Honey is rich in bioactive compounds, phenolic acids, and flavonoids and is an antioxidant and an immunomodulator. The objectives of this study were to determine the honey chemical composition of Indonesian stingless bees and their potential roles as an immunomodulator in the malnourished rats. Tetragonula laeviceps honey was used to analyses of chemical composition was obtained from three different geographical origins were Depok Sleman, Bayan Lombok, and Nglipar Gunungkidul. Thirty-two rats were divided into four groups of 8 rats and placed in individual cages. The experimental designed was as follows: T1 = normal rats + without honey (0–7 weeks), T2 = normal rats + with honey of 1.8 g/kg BW/day (0–7 weeks), T3 = malnourished honey of 1.8 g/kg BW/day started from 2 weeks after the malnourished condition (2–7 weeks). The results showed that the chemical composition of Tetragonula laeviceps honey from three different geographical origins were vitamin C content (6.49–13.58 mg/100 g), total phenolic content (0.65–2.30% GAE/100 g), total flavonoid content (0.28–1.00 mg QE/g), and antioxidant activity DPPH (61.43–90.28%). The application of fresh honey from stingless bee that was offered to either normal or malnourished rats were increased lymphocytes proliferation and decreased the production of both proinflammatory markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) from tissue culture supernatant of lymphocytes (p < 0.01). Data from this study clearly indicates the potential role of honey from stingless bee as an immunomodulator in malnourished rats.
Collapse
|
18
|
Lawag IL, Lim LY, Joshi R, Hammer KA, Locher C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022; 11:foods11081152. [PMID: 35454742 PMCID: PMC9025093 DOI: 10.3390/foods11081152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the large variety of phenolic compounds that have to date been identified in a wide range of monofloral honeys found globally. The collated information is structured along several themes, including the botanical family and genus of the monofloral honeys for which phenolic constituents have been reported, the chemical classes the phenolic compounds can be attributed to, and the analytical method employed in compound determination as well as countries with a particular research focus on phenolic honey constituents. This review covers 130 research papers that detail the phenolic constituents of a total of 556 monofloral honeys. Based on the findings of this review, it can be concluded that most of these honeys belong to the Myrtaceae and Fabaceae families and that Robinia (Robinia pseudoacacia, Fabaceae), Manuka (Leptospermum scoparium, Myrtaceae), and Chestnut (Castanea sp., Fagaceae) honeys are to date the most studied honeys for phenolic compound determination. China, Italy, and Turkey are the major honey phenolic research hubs. To date, 161 individual phenolic compounds belonging to five major compound groups have been reported, with caffeic acid, gallic acid, ferulic acid and quercetin being the most widely reported among them. HPLC with photodiode array detection appears to be the most popular method for chemical structure identification.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Lee-Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Ranee Joshi
- Centre for Exploration Targeting, School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Katherine A. Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
- Correspondence:
| |
Collapse
|
19
|
Quality Control of Different Types of Honey and Propolis Collected from Romanian Accredited Beekeepers and Consumer’s Risk Assessment. CRYSTALS 2022. [DOI: 10.3390/cryst12010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Honey is a natural product recognized and appreciated for its nutritional value and therapeutic potential. However, the quality of bee honey is essential because various contaminants can seriously affect consumers’ health. In the experimental part of the work, we analyzed different types of honey (linden, black locust, rapeseed and multifloral honey) and propolis, which were collected from Romanian accredited beekeepers who placed beehives in two areas characterized by different industrial activity: area 1 (A1) is an area with intense industrial activity, with other industries existing nearby, including a refinery, while area 2 (A2) is entirely devoid of industrial activity, but with moderate agricultural activity. A total of 144 samples were collected, twelve samples for each variety of honey, propolis and soil, corresponding to each area analyzed. In addition, seven heavy metals and three pesticides were tested for in the samples collected. Finally, the correlation between the degree of contamination with soil pollutants and the contamination of the bee products harvested from the analyzed areas was studied. Cadmium, lead, copper, zinc and the sum of DDT metabolites exceeded the maximum allowable levels in honey samples, with differences between different types of honey.
Collapse
|
20
|
da Silva B, Caon T, Mohr ETB, Biluca FC, Gonzaga LV, Fett R, Dalmarco EM, Costa ACO. Phenolic profile and in vitro anti-inflammatory activity of Mimosa scabrella Bentham honeydew honey in RAW 264.7 murine macrophages. J Food Biochem 2022; 46:e14076. [PMID: 34997588 DOI: 10.1111/jfbc.14076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
The anti-inflammatory activity is mainly attributed to the phenolic compounds. Once the geographical location affects the phenolic content of honeys, a relationship between the collection spot and the anti-inflammatory effect of bracatinga (Mimosa scabrella Bentham) honeydew honeys was hypothesized. The inhibitory effect of 14 honey samples on NOx, TNF-α, IL-6, IL-12p70, MCP-1, INF-γ, and IL-10 in RAW 264.7 macrophages inflamed by LPS was evaluated. Fourteen phenolic compounds were identified, mainly syringic acid and rutin. Ten honeys inhibited nitrite production; at least six downregulated TNF-α, IL-12p70, MCP-1, and IFN-γ; only four honey samples inhibited IL-6; and one honey sample inhibited IL-10 levels, showing their variable effects on the inflammatory markers. Principal component analysis grouped samples according to the phenolic content and downregulation of specific inflammatory markers. The bracatinga honeydew honey effectiveness was associated with geographical location, as samples from areas with higher density and diversity of plants had a more significant anti-inflammatory effect. PRACTICAL APPLICATIONS: The present research study investigated the anti-inflammatory potential of bracatinga honeydew honey samples collected from regions with different vegetation coverages. Honey samples collected from locations presenting greater forest diversity and density inhibited inflammatory markers more efficiently. This study reinforces the role of the bracatinga honeydew honey in preventing inflammatory processes and the importance of preserving forests so that products with a greater diversity of compounds and consequently more active can be obtained.
Collapse
Affiliation(s)
- Bibiana da Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Fabíola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Luciano Valdomiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | | |
Collapse
|
21
|
Navarro-Hortal MD, Romero-Márquez JM, Muñoz-Ollero P, Jiménez-Trigo V, Esteban-Muñoz A, Tutusaus K, Giampieri F, Battino M, Sánchez-González C, Rivas-García L, Llopis J, Forbes-Hernández TY, Quiles JL. Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer's disease. Food Funct 2022; 13:11185-11199. [DOI: 10.1039/d2fo01739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's is a chronic degenerative disease of the central nervous system considered the leading cause of dementia in the world.
Collapse
Affiliation(s)
- María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Pedro Muñoz-Ollero
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Victoria Jiménez-Trigo
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | | | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Universidad Internacional Iberoamericana, 24560 Campeche, Mexico
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/.Menéndez Pelayo 32, 18016 Armilla, Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/.Menéndez Pelayo 32, 18016 Armilla, Granada, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/.Menéndez Pelayo 32, 18016 Armilla, Granada, Spain
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
22
|
Cianciosi D, Forbes-Hernandez TY, Alvarez-Suarez JM, Ansary J, Quinzi D, Amici A, Navarro-Hortal MD, Esteban-Muñoz A, Quiles JL, Battino M, Giampieri F. Anti-inflammatory activities of Italian Chestnut and Eucalyptus honeys on murine RAW 264.7 macrophages. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
23
|
Li M, Ge Q, Du H, Lin S. Tricholoma matsutake-Derived Peptides Ameliorate Inflammation and Mitochondrial Dysfunction in RAW264.7 Macrophages by Modulating the NF-κB/COX-2 Pathway. Foods 2021; 10:2680. [PMID: 34828964 PMCID: PMC8621704 DOI: 10.3390/foods10112680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Tricholoma matsutake is an edible fungus that contains various bioactive substances, some of them with immunostimulatory properties. Presently, there is limited knowledge about the functional components of T. matsutake. Our aim was to evaluate the protective effects and molecular mechanisms of two T. matsutake-derived peptides, SDLKHFPF and SDIKHFPF, on lipopolysaccharide (LPS)-induced mitochondrial dysfunction and inflammation in RAW264.7 macrophages. Tricholoma matsutake peptides significantly ameliorated the production of inflammatory cytokines and inhibited the expression of COX-2, iNOS, IKKβ, p-IκB-α, and p-NF-κB. Immunofluorescence assays confirmed the inhibitory effect of T. matsutake peptides on NF-κB/p65 nuclear translocation. Furthermore, the treatment with T. matsutake peptides prevented the accumulation of reactive oxygen species, increased the Bcl-2/Bax ratio, reversed the loss of mitochondrial membrane potential, and rescued abnormalities in cellular energy metabolism. These findings indicate that T. matsutake peptides can effectively inhibit the activation of NF-κB/COX-2 and may confer an overall protective effect against LPS-induced cell damage.
Collapse
Affiliation(s)
| | | | | | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (Q.G.); (H.D.)
| |
Collapse
|
24
|
Xin SL, Yang X, Zhang YP, Xu KS. Zhikang Capsule Ameliorates Inflammation, Drives Polarization to M2 Macrophages, and Inhibits Apoptosis in Lipopolysaccharide-induced RAW264.7 Cells. Curr Med Sci 2021; 41:1214-1224. [PMID: 34705217 DOI: 10.1007/s11596-021-2441-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/15/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To explore the anti-inflammatory effect of the traditional Chinese medicine Zhikang capsule (ZKC) on lipopolysaccharide (LPS)-induced RAW264.7 cells. METHODS Safe concentrations of ZKC (0.175, 0.35, and 0.7 mg/mL) were used after the half-maximal inhibitory concentration (IC50) of RAW264.7 cells was calculated through the CCK-8 assay. In addition, the optimal intervention duration of ZKC (0.7 mg/mL) on RAW264.7 cells was determined to be 6 h, since all proinflammatory mediators [tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), inteleukin-6 (IL-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and monocyte chemotactic protein-1 (MCP-1)] had a decreasing tendency and relatively down-regulated mRNA expression levels as compared with other durations (4, 8, and 12 h). RAW264.7 cells were pretreated with ZKC at various concentrations (0.175, 0.35 and 0.7 mg/mL) for 6 h and then stimulated with LPS (1 µg/mL) for an additional 12 h. RESULTS In terms of inflammation, ZKC could reverse LPS-induced upregulation of TNF-α, IL-1β, IL-6, COX-2, iNOS, and MCP-1 at both the mRNA and protein levels in RAW264.7 cells in a dose-dependent manner. In terms of the NF-κB signaling pathway, ZKC could reduce phosphorylated p65 and promote M2 polarization of RAW264.7 cells under LPS stimulation in a dose-dependent manner. Moreover, ZKC exhibited a protective effect on macrophages from apoptosis. CONCLUSION ZKC exhibited obvious antiinflammatory and anti-apoptotic effects on LPS-induced RAW264.7 cells at the cellular level, and a weakened NF-κB signaling pathway may be a potential significant target.
Collapse
Affiliation(s)
- Sheng-Liang Xin
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yang
- Department of Gastroenterology, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Yu-Ping Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Shu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Erten F. Lycopene ameliorates propionic acid-induced autism spectrum disorders by inhibiting inflammation and oxidative stress in rats. J Food Biochem 2021; 45:e13922. [PMID: 34476820 DOI: 10.1111/jfbc.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023]
Abstract
This study was conducted to study lycopene efficacy in brain-behavior, pro-inflammatory and apoptotic markers, and antioxidant levels in a rodent model. Rats were administered with propionic acid (PPA) (500 mg/kg BW) to induce autism-like disorders, then treated with different lycopene (L) concentrations (5, 10, 20 mg kg-1 day-1 ) for 35 days. The groups were: (i);control, (ii);PPA, (iii);PPA + L5, (iv);PPA + L10, and (v);PPA + L20. In this study, serum and brain malondialdehyde (MDA) levels decreased with lycopene supplements compared to the PPA group, similarly to the brain levels of inflammatory factors (IL-1α, IL-8, NF-κB, TNF-α; p < .05). Besides, brain levels of anti-apoptotic Bcl-2 decreased, whereas pro-apoptotic Bax, antioxidant Nrf2, and HO-1 levels in brain increased compared with PPA (p < .05). This study showed that lycopene might have therapeutic value to improve the dysfunctions in learning and memory in a dose-dependent way, along with the antioxidant, anti-inflammatory, and antiapoptotic molecular responses in a rat model of ASD-like disorders. PRACTICAL APPLICATIONS: This study suggested that lycopene can reduce propionic acid (PPA)-induced learning and memory impairment and oxidative damage by participating in multiple biological activities such as antioxidant, and anti-inflammatory effects. Lycopene protects serum and brain tissues against PPA induced oxidative damage in rats. These effects may be realized through up-regulation of the brain Nrf2/HO-1 pathway and down-regulation of the IL-1α, IL-8, TNF-α, and NF-κB levels. Lycopene may also contribute to memory and learning function, apoptotic/antiapoptotic modulation, and antioxidant and possible therapeutic efficacy in PPA-induced- Autism spectrum disorder cases.
Collapse
Affiliation(s)
- Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, Tunceli, Turkey
| |
Collapse
|
26
|
El-Senduny FF, Hegazi NM, Abd Elghani GE, Farag MA. Manuka honey, a unique mono-floral honey. A comprehensive review of its bioactives, metabolism, action mechanisms, and therapeutic merits. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
The Rediscovery of Honey for Skin Repair: Recent Advances in Mechanisms for Honey-Mediated Wound Healing and Scaffolded Application Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Honey is a honey-bee product obtained mainly by the enzymatic processing of nectar from a variety of plants, which leads to the wide range of colours and flavours available on the market. These organoleptic and nutritional features are influenced by the chemical composition, which in turn depends on the botanical origin. Bioactive compounds account for honey beneficial activity in medical applications, which explains the extensive use of honey in ethno-pharmacology since antiquity, from cough remedies to dermatological treatments. Wound healing is one of the main therapeutic uses of honey, and various design options in pharmaceutical technology such as smart delivery systems and advanced dressings are currently being developed to potentiate honey’s valuable properties for better performance and improved final outcome. In this review, we will focus on the latest research that discloses crucial factors in determining what properties are most beneficial when considering honey as a medicinal product. We will present the most recent updates on the possible mechanisms responsible for the exceptional effects of this ageless therapeutical remedy on skin repair. Furthermore, the state-of-the-art in application techniques (incorporation into scaffolds as an alternative to direct administration) used to enhance honey-mediated wound-healing properties are explored.
Collapse
|
28
|
Battino M, Giampieri F, Cianciosi D, Ansary J, Chen X, Zhang D, Gil E, Forbes-Hernández T. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153170. [PMID: 31980299 DOI: 10.1016/j.phymed.2020.153170] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Oxidative stress and inflammation contribute to the etiopathogenesis of several human chronic diseases, such as cancer, diabetes, cardiovascular diseases and metabolic syndrome. Besides classic stimuli, such as reactive oxidant species, endotoxins (i.e., bacteria lipopolysaccharide), cytokines or carcinogens, oxidative stress and inflammation can be triggered by a poor diet and an excess of body fat and energy intake. Strawberry and honey are common rich sources of nutrients and bioactive compounds, widely studied for their roles exerted in health maintenance and disease prevention. PURPOSE This review aims to summarize and update the effects of strawberry and honey against oxidative stress and inflammation, with emphasis on metabolism and on the main molecular mechanisms involved in these effects. METHODS A wide range of literature, published in the last 10 years, elucidating the effects of strawberry and honey in preventing oxidative stress and inflammation both in vitro (whole matrix and digested fractions) and in vivo was collected from online electronic databases (PubMed, Scopus and Web of Science) and reviewed. RESULTS Strawberry and honey polyphenols may potentially prevent the chronic diseases related to oxidative stress and inflammation. Several in vitro and in vivo studies reported the effects of these foods in suppressing the oxidative stress, by decreasing ROS production and oxidative biomarkers, restoring the antioxidant enzyme activities, ameliorating the mitochondrial antioxidant status and functionality, among others, and the inflammatory process, by modulating the mediators of acute and chronic inflammation essential for the onset of several human diseases. These beneficial properties are mediated in part through their ability to target multiple signaling pathways, such as p38 MAPK, AMPK, PI3K/Akt, NF-κB and Nrf2. CONCLUSIONS Available scientific literature show that strawberry and honey may be effective in preventing oxidative stress and inflammation. The deep evaluation of the factors that affect their metabolism as well as the assessment of the main molecular mechanisms involved are of extreme importance for the possible therapeutic and preventive benefit against the most common human diseases. However, published literature is still scarce so that deeper studies should be performed in order to evaluate the bioavailability of these food matrices and their effects after digestion.
Collapse
Affiliation(s)
- Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Johura Ansary
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Xiumin Chen
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Jiangsu Hengshun Group Co., Ltd., Zhenjiang 212000, China
| | - Emilio Gil
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Tamara Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| |
Collapse
|
29
|
Martinez-Armenta C, Camacho-Rea MC, Martínez-Nava GA, Espinosa-Velázquez R, Pineda C, Gomez-Quiroz LE, López-Reyes A. Therapeutic Potential of Bioactive Compounds in Honey for Treating Osteoarthritis. Front Pharmacol 2021; 12:642836. [PMID: 33967778 PMCID: PMC8097136 DOI: 10.3389/fphar.2021.642836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of joint tissue homeostasis induces articular degenerative changes and musculoskeletal diseases such as osteoarthritis. This pathology represents the first cause of motor disability in individuals over 60 years of age, impacting their quality of life and the costs of health systems. Nowadays, pharmacological treatments for cartilage disease have failed to achieve full tissue regeneration, resulting in a functional loss of the joint; therefore, joint arthroplasty is the gold standard procedure to cure this pathology in severe cases of Osteoarthritis. A different treatment is the use of anti-inflammatory drugs which mitigate pain and inflammation in some degree, but without significant inhibition of disease progression. In this sense, new therapeutic alternatives based on natural compounds have been proposed to delay osteoarthritis progression, particularly those agents that regulate articular homeostasis. Preclinical studies have shown a therapeutic application of honey and its bioactive compounds, ranging from treating wounds, coughs, skin infections, and are also used as a biological stimulant by exerting antioxidant and anti-inflammatory properties. In this article, we reviewed the current medicinal applications of honey with particular emphasis on its use regulating articular homeostasis by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Carlos Martinez-Armenta
- Posgrado en Biología Experimental, Dirección de Ciencias Biológicas y de La Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico
| | - María Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | | | - Carlos Pineda
- División de Enfermedades Musculo-esqueléticas y Reumáticas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alberto López-Reyes
- Facultad de Ciencias de La Salud, Universidad Anáhuac México Sur, Ciudad de México, Mexico.,Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| |
Collapse
|
30
|
Viteri R, Zacconi F, Montenegro G, Giordano A. Bioactive compounds in Apis mellifera monofloral honeys. J Food Sci 2021; 86:1552-1582. [PMID: 33864260 DOI: 10.1111/1750-3841.15706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 01/23/2023]
Abstract
Honey is a natural product with a sweet flavor. Honey is made by the honeybee (Apis mellifera L.) from the nectar of flowers or other plant secretions that are collected near the hive. These products are mixed with bee saliva and stored. Several studies have demonstrated that honey exhibits antioxidant, antimicrobial, nematicidal, antifungal, anticancer, and anti-inflammatory activities. These properties are influenced by the plants from which the secretions are harvested, from the naturally occurring compounds present in the nectar. Studies of the properties and applications of honey have distinguished honey from other natural products due to the presence of certain compounds and due its bioactive properties. The focus of this review is to discuss the identified and isolated compounds from monofloral honey produced by A. mellifera, with specific emphasis on antioxidant and antimicrobial properties of honey and its therapeutic health benefits.
Collapse
Affiliation(s)
- Rafael Viteri
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile.,Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Gloria Montenegro
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| |
Collapse
|
31
|
Ji SY, Cha HJ, Molagoda IMN, Kim MY, Kim SY, Hwangbo H, Lee H, Kim GY, Kim DH, Hyun JW, Kim HS, Kim S, Jin CY, Choi YH. Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae. Biomol Ther (Seoul) 2021; 29:685-696. [PMID: 33820881 PMCID: PMC8551728 DOI: 10.4062/biomolther.2021.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/05/2022] Open
Abstract
In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Republic of Korea
| | | | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Zhengzhou University, Henan 450001, China
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
32
|
Chan-Zapata I, Segura-Campos MR. Honey and its protein components: Effects in the cancer immunology. J Food Biochem 2021; 45:e13613. [PMID: 33768550 DOI: 10.1111/jfbc.13613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
The immune system plays an important role in cancer development, but some tumor cells can evade or inhibit the processes of innate and adaptive immunity. This review made a description of honey and its proteins effect on diverse mediators from the immune system. Scientific evidence reported that many types of honey (jungle, manuka, pasture, and others) and some isolated proteins enhanced the release of reactive oxygen species (O2 - and H2 O2 ) and cytokines (mostly IL-1β, IL-6, and TNF-α) by innate immune system cells. Furthermore, honey elicited proliferation and functions of T lymphocytes, cells related to specific adaptive immune responses. These studies have established a precedent over the honey and its properties on the immune system, demonstrating that it can promote the innate and adaptive immunity. PRACTICAL APPLICATIONS: Cancer is a genetic illness that represents a world health problem. Recognizing the potential of diet therapy in the prevention and treatment of chronic diseases, the present work summarizes the effects of honey on the immune system and mediators involved in cancer elimination processes, establishing the importance of this natural product as a future anticancer agent.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, México
| | | |
Collapse
|
33
|
Li M, Dong L, Du H, Bao Z, Lin S. Potential mechanisms underlying the protective effects of Tricholoma matsutake singer peptides against LPS-induced inflammation in RAW264.7 macrophages. Food Chem 2021; 353:129452. [PMID: 33714115 DOI: 10.1016/j.foodchem.2021.129452] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/01/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the protective effects of a < 3 kDa Tricholoma matsutake Singer peptide (TMWP) on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. The results showed that TMWP significantly upregulated superoxide dismutase (SOD) activity and reduced reactive oxygen species (ROS) generation in RAW264.7 macrophages. Western blotting and immunofluorescence analysis indicated that TMWP inhibited the activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, thereby reducing the secretion of IL-1β and IL-6 and the expression of TNF-α, COX-2, and iNOS. Additionally, TMWP improved mitochondrial respiration in LPS-stressed macrophages, counteracting the harmful effects of LPS treatment on mitochondrial function. Three peptides (SDIKHFPF, SDLKHFPF, and WFNNAGP) with the highest predicted scores for potential anti-inflammatory activity were identified using nano-HPLC-MS/MS. These data indicated that T. matsutake peptides could be an attractive natural ingredient for developing novel functional foods.
Collapse
Affiliation(s)
- Mengqi Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hanting Du
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
34
|
Silva B, Biluca FC, Gonzaga LV, Fett R, Dalmarco EM, Caon T, Costa ACO. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res Int 2021; 141:110086. [PMID: 33641965 DOI: 10.1016/j.foodres.2020.110086] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Honey is a natural ready-to-eat product rich in flavonoids, which is known by the wound healing properties due to both antibacterial and antioxidant activity. Flavonoids mitigate inflammatory processes, and thus it could currently support studies of anti-inflammatory potential of honeys. In this review, in vitro anti-inflammatory properties of flavonoids found in honey were prioritized. Mechanistic information of specific isolated flavonoids as modulators of inflammatory processes are summarized aiming to stimulate studies regarding the action of honey in inflammatory events. Lastly, a structure-activity relationship (SAR) of flavonoids was also included. Flavonoids found in honey have demonstrated antioxidant properties and ability to inhibit pro-inflammatory enzymes such as COX, LOX, iNOS, and pro-inflammatory mediators, including nitric oxide, cytokines and chemokines. Transcriptional factors such as NF-κB are also modulated by flavonoids, controlling the expression of several inflammatory mediators. SAR studies demonstrate the effect of flavonoids in the prevention of inflammatory cascades. Despite the promising reports of in vitro anti-inflammatory activity, well-designed clinical trials need yet to be performed to confirm the benefits of honeys from different botanical sources in diseases that include episodes of inflammation.
Collapse
Affiliation(s)
- Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fabíola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
35
|
Yu JS, Lim SH, Lee SR, Choi CI, Kim KH. Antioxidant and Anti-Inflammatory Effects of White Mulberry ( Morus alba L.) Fruits on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Molecules 2021; 26:molecules26040920. [PMID: 33572374 PMCID: PMC7916181 DOI: 10.3390/molecules26040920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, the protective effects of white mulberry (Morus alba) fruits on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were investigated. The ethanol (EtOH) extract of white mulberry fruits and its derived fractions contained adequate total phenolic and flavonoid contents, with good in vitro antioxidant radical scavenging activity. The extract and fractions also markedly inhibited ROS generation and antioxidant activity. After treatment with the EtOH extract and its fractions, LPS stimulation-induced elevated nitric oxide (NO) production was restored, which was primarily mediated by downregulation of inducible NO synthase expression. A total of 20 chemical constituents including flavonoids, steroids, and phenolics were identified in the fractions using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight (QTOF) high-resolution mass spectrometry (HRMS). These findings provide experimental evidence of the protective effects of white mulberry fruit extract against oxidative stress and inflammatory responses, suggesting their nutraceutical and pharmaceutical potential as natural antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (S.R.L.)
| | - Sung Ho Lim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea;
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (S.R.L.)
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Correspondence: (C.-I.C.); (K.H.K.); Tel.: +82-31-961-5230 (C.-I.C.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.S.Y.); (S.R.L.)
- Correspondence: (C.-I.C.); (K.H.K.); Tel.: +82-31-961-5230 (C.-I.C.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
36
|
Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Zakaria ZA, Albujja M, Bakar MFA. Honey and its nutritional and anti-inflammatory value. BMC Complement Med Ther 2021; 21:30. [PMID: 33441127 PMCID: PMC7807510 DOI: 10.1186/s12906-020-03170-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammation is the main key role in developing chronic diseases including cancer, cardiovascular diseases, diabetes, arthritis, and neurodegenerative diseases which possess a huge challenge for treatment. With massively compelling evidence of the role played by nutritional modulation in preventing inflammation-related diseases, there is a growing interest into the search for natural functional foods with therapeutic and preventive actions. Honey, a nutritional healthy product, is produced mainly by two types of bees: honeybee and stingless bee. Since both types of honey possess distinctive phenolic and flavonoid compounds, there is recently an intensive interest in their biological and clinical actions against inflammation-mediated chronic diseases. This review shed the light specifically on the bioavailability and bioaccessibility of honey polyphenols and highlight their roles in targeting inflammatory pathways in gastrointestinal tract disorders, edema, cancer, metabolic and cardiovascular diseases and gut microbiota.
Collapse
Affiliation(s)
- Yazan Ranneh
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 86400, Pagoh, Johor, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Huzwah Khazaai
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Abdulmannan Fadel
- Sport and Exercises Sciences School, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohammed Albujja
- Department of Forensic Biology, Faculty of Forensic Sciences, Naif Arab University of Security Sciences, Riyadh, 14812, Saudi Arabia
| | - Mohd Fadzelly Abu Bakar
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 86400, Pagoh, Johor, Malaysia
| |
Collapse
|
37
|
Afrin S, Forbes-Hernández TY, Giampieri F, Battino M. Manuka honey, oxidative stress, 5-fluorouracil treatment, and colon cancer cells. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Talebi M, Talebi M, Farkhondeh T, Samarghandian S. Molecular mechanism-based therapeutic properties of honey. Biomed Pharmacother 2020; 130:110590. [PMID: 32768885 DOI: 10.1016/j.biopha.2020.110590] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Honey and its phenolic compounds specifically chrysin are focused as nutritional supplements and likewise as valued phytochemicals, nutraceuticals, and phytopharmaceuticals alone, or adjuvant with some conventional medications to cause synergistic therapeutic or cytotoxic effects. Through the verified beneficial strategies combat several disturbances, phenolic compounds play fundamental functions in the avoidance and treatment of disorders. Oxidative stress, inflammation, and apoptosis are the three most imperative physiological reactions in the prevalence of numerous ailments. Honey, chrysin, and other phenolic compounds detected in honey can modify clinical conditions via modulation of these contrivances and correlated signaling pathways. The current study desires to review the therapeutic effects of honey and its allied molecular mechanisms. Evidenced-base studies show that honey would represent therapeutic potential against various types of cancer and tumor proliferation (colorectal cancer, breast cancer, bladder cancer, leukemia, glioma, hepatocellular cancer, pancreatic cancer, and melanoma), wounds, diabetes mellitus, neurological (depression, Parkinson disease, and Alzheimer's disease), respiratory, gastrointestinal (peptic ulcer and ulcerative colitis), cardiovascular disorders, renal injuries, liver diseases and many other kinds of physiological dysfunctionalities through various molecular mechanisms contributed with oxidative stress, inflammatory process, and apoptosis.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19166, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, United States; Food Safety Net Services, San Antonio, TX 78216, United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
39
|
Thomas D, Nath MS, Mathew N, R R, Philip E, Latha M. Alginate film modified with aloevera gel and cellulose nanocrystals for wound dressing application: Preparation, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Silva B, Biluca FC, Mohr ETB, Caon T, Gonzaga LV, Fett R, Dalmarco EM, Costa ACO. Effect of Mimosa scabrella Bentham honeydew honey on inflammatory mediators. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153252. [PMID: 32505916 DOI: 10.1016/j.phymed.2020.153252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration. HYPOTHESIS SIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below. RESULTS Many SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site. CONCLUSIONS However, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University Punjab, India 144411
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dhiraj Kabra
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Limited, Vadodara, Gujarat, India, 390010
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University Punjab, India 144411.
| |
Collapse
|
42
|
Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga LV, Vitali L, Micke G, Fett R, Dalmarco EM, Costa ACO. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int 2020; 129:108756. [DOI: 10.1016/j.foodres.2019.108756] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 11/25/2022]
|
43
|
Therapeutic and preventive properties of honey and its bioactive compounds in cancer: an evidence-based review. Nutr Res Rev 2019; 33:50-76. [PMID: 31791437 DOI: 10.1017/s0954422419000192] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the much improved therapeutic approaches for cancer treatment that have been developed over the past 50 years, cancer remains a major cause of mortality globally. Considerable epidemiological and experimental evidence has demonstrated an association between ingestion of food and nutrients with either an increased risk for cancer or its prevention. There is rising interest in exploring agents derived from natural products for chemoprevention or for therapeutic purposes. Honey is rich in nutritional and non-nutritional bioactive compounds, as well as in natural antioxidants, and its potential beneficial function in human health is becoming more evident. A large number of studies have addressed the anti-cancer effects of different types of honey and their phenolic compounds using in vitro and in vivo cancer models. The reported findings affirm that honey is an agent able to modulate oxidative stress and has anti-proliferative, pro-apoptotic, anti-inflammatory, immune-modulatory and anti-metastatic properties. However, despite its reported anti-cancer activities, very few clinical studies have been undertaken. In the present review, we summarise the findings from different experimental approaches, including in vitro cell cultures, preclinical animal models and clinical studies, and provide an overview of the bioactive profile and bioavailability of the most commonly studied honey types, with special emphasis on the chemopreventive and therapeutic properties of honey and its major phenolic compounds in cancer. The implications of these findings as well as the future prospects of utilising honey to fight cancer will be discussed.
Collapse
|
44
|
Mendes LF, Gaspar VM, Conde TA, Mano JF, Duarte IF. Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Sci Rep 2019; 9:14906. [PMID: 31624286 PMCID: PMC6797761 DOI: 10.1038/s41598-019-51113-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
The ability of flavonoids to attenuate macrophage pro-inflammatory activity and to promote macrophage-mediated resolution of inflammation is still poorly understood at the biochemical level. In this study, we have employed NMR metabolomics to assess how therapeutically promising flavonoids (quercetin, naringenin and naringin) affect the metabolism of human macrophages, with a view to better understand their biological targets and activity. In vitro-cultured human macrophages were polarized to the pro-inflammatory M1 phenotype, through incubation with LPS + IFN-γ, and subsequently treated with each flavonoid. The metabolic signatures of pro-inflammatory polarization and of flavonoid incubations were then characterized and compared. The results showed that all flavonoids modulated the cells endometabolome with the strongest impact being observed for quercetin. Many of the flavonoid-induced metabolic variations were in the opposite sense to those elicited by pro-inflammatory stimulation. In particular, the metabolic processes proposed to reflect flavonoid-mediated immunomodulation of macrophages included the downregulation of glycolytic activity, observed for all flavonoids, anti-inflammatory reprogramming of the TCA cycle (mainly quercetin), increased antioxidant protection (quercetin), osmoregulation (naringin), and membrane modification (naringenin). This work revealed key metabolites and metabolic pathways involved in macrophage responses to quercetin, naringenin and naringin, providing novel insights into their immunomodulatory activity.
Collapse
Affiliation(s)
- Luís F Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago A Conde
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Gelam honey promotes ex vivo corneal fibroblasts wound healing. Cytotechnology 2019; 71:1121-1135. [PMID: 31606844 DOI: 10.1007/s10616-019-00349-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effects of Gelam honey (GH) on ex vivo corneal fibroblast ulcer model via wound healing assay, gene expression and immunocytochemistry. Corneal fibroblasts from New Zealand white rabbits were culture expanded. The corneal fibroblast wound healing capacity was observed by creating a circular wound onto confluent monolayer cells cultured in basal medium (BM), BM with GH, serum-enriched basal medium (BMS) and BMS with GH respectively. Wound healing assay and phenotypic characterization of the corneal fibroblast were performed at different stages of wound closure. Expression of aldehyde dehydrogenase (ALDH), vimentin, α-smooth muscle actin (α-SMA), lumican, collagen I and matrix metalloproteinase 12 (MMP 12) were measured at day 1, day 3 and complete wound closure day. Corneal fibroblast cultured in BMS with GH demonstrated the fastest wound closure, at day 5 post wounding. The gene expressions of ALDH and vimentin were higher than control groups while α-SMA expression was lower, in GH enriched media. The expressions of lumican, collagen I and MMP 12 were also higher in cells cultured in GH enriched media compared to the control groups. GH was shown to promote in vitro corneal fibroblast wound healing and may be a potential natural adjunct in the treatment of corneal wound.
Collapse
|
46
|
Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sci 2019; 231:116550. [DOI: 10.1016/j.lfs.2019.116550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
|
47
|
Deng X, Zhang S, Wu J, Sun X, Shen Z, Dong J, Huang J. Promotion of Mitochondrial Biogenesis via Activation of AMPK-PGC1ɑ Signaling Pathway by Ginger (Zingiber officinale Roscoe) Extract, and Its Major Active Component 6-Gingerol. J Food Sci 2019; 84:2101-2111. [PMID: 31369153 DOI: 10.1111/1750-3841.14723] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023]
Abstract
Several studies indicated that ginger (Zingiber officinale Roscoe) enhances thermogenesis and/or energy expenditure with which to interpret the beneficial effects of ginger on metabolic disorders. It is well known that mitochondrial activity plays an essential role in these processes. Thus, this study aimed to investigate the effect of ginger extract (GE) and its major components, 6-gingerol and 6-shogaol, on mitochondrial biogenesis and the underlying molecular mechanisms. Our results showed that GE at dose of 2 g/kg promoted oxygen consumption and intrascapular temperature in mice. The mitochondrial DNA (mtDNA) copy number in muscle and liver increased. Expression levels of oxidative phosphorylation (OXPHOS) related proteins and AMP-activated protein kinase ɑ/proliferator-activated receptor gamma coactivator 1 ɑ (AMPK/PGC1ɑ) signaling related proteins in the muscle, liver, and brown adipose tissue (BAT) increased as well. In HepG2 cells, GE at concentration of 2.5 and 5 mg/mL increased mitochondrial mass and mtDNA copy number. GE promoted ATP production, the activities of mitochondrial respiratory chain complex I and IV, and expression levels of OXPHOS complex related proteins and AMPK/PGC1ɑ signaling related proteins. The antagonist of AMPK eliminated partly the effect of GE on mitochondrial biogenesis. 6-Gingerol increased mitochondrial mass, mtDNA copy number and ATP production, and the activities of mitochondrial respiratory chain complexes in HepG2 cells as well. However, both 6-gingerol at high concentration of 200 µM and 6-shogaol at 10 to 200 µM inhibited cell viability. In conclusion, GE promoted mitochondrial biogenesis and improved mitochondrial functions via activation of AMPK-PGC1ɑ signaling pathway, and 6-gingerol other than 6-shogaol, may be the main active component. PRACTICAL APPLICATION: Ginger (Zingiber officinale Roscoe) is a food seasoning and also used as a medical plant in alternative medicine throughout the world. Here, we demonstrated that ginger extract (GE) promoted mitochondrial biogenesis and mitochondrial function via activation of AMPK-PGC1ɑ signaling pathway both in mice and in HepG2 cells, and 6-gingerol may be its main active component. Ginger, with anticipated safety, is expected to be a long-term used dietary supplement and be developed into a new remedy for mitochondrial dysfunctional disorders.
Collapse
Affiliation(s)
- Xiaohong Deng
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Siwei Zhang
- Dept. of Traditional Chinese Medicine, Shenzhen People's Hospital, No. 1017, Dongmen (North) Road, Shenzhen, 518020, China
| | - Junzhen Wu
- Inst. of Antibiotics, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Xianjun Sun
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Ziyin Shen
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Jingcheng Dong
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Jianhua Huang
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| |
Collapse
|
48
|
Strawberry tree honey as a new potential functional food. Part 2: Strawberry tree honey increases ROS generation by suppressing Nrf2-ARE and NF-кB signaling pathways and decreases metabolic phenotypes and metastatic activity in colon cancer cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
49
|
Afrin S, Giampieri F, Cianciosi D, Pistollato F, Ansary J, Pacetti M, Amici A, Reboredo-Rodríguez P, Simal-Gandara J, Quiles JL, Forbes-Hernández TY, Battino M. Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
50
|
Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem Toxicol 2018; 120:578-587. [DOI: 10.1016/j.fct.2018.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
|