1
|
Li X, Lu Y, Yang D, Guo J, Li G, Bian Q, Liu K, Song Y, Liu Z, Sui H, Chen J. Derivation of a health-based guidance value for bisphenol A via the weight of evidence approach. Food Chem Toxicol 2025; 200:115370. [PMID: 40054724 DOI: 10.1016/j.fct.2025.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/21/2025]
Abstract
There remains a debate over the health-based guidance value of bisphenol A (BPA) worldwide. Through the weight of evidence approach, this study systematically searched and evaluated the updated BPA toxicological data following the guidelines for evaluating the relevance and reliability of toxicological data developed by the China National Center for Food Safety Risk Assessment. Benchmark dose and no observed adverse effect dose/lowest observed adverse effect level methods were used for dose-relationship analysis. A total of 334 articles were used for evidence integration and included in this hazard assessment of BPA. General toxicity, toxicity to the reproductive system, and neurological (developmental) toxicity were included as possible critical effects in the present assessment. With a point of departure of 2310 μg/kg body weight (BW) based on the decreased round spermatid count in rat seminiferous tubules and the human equivalent dose factor of 0.185 using the constructed physiologically based toxicokinetic model of oral intake of BPA in Chinese population, a human equivalent dose of 427 μg/kg BW was obtained. Applying an overall uncertainty factor of 100, the present assessment established a temporary-tolerable daily intake of 4 μg/kg BW for oral exposure of humans to BPA.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Yu Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Daoyuan Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Jiabin Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Guojun Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Keliang Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Yan Song
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
2
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 PMCID: PMC11532624 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
3
|
Stein TP. Does Bisphenol A (BPA) Exposure Cause Human Diseases? Biomedicines 2024; 12:2678. [PMID: 39767585 PMCID: PMC11727305 DOI: 10.3390/biomedicines12122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Autism spectrum disorders (ASDs), attention-deficit disorder (ADHD), Parkinson's disease (PD), polycystic ovary disease (PCOS), and Alzheimer's disease (AD) have all been linked to exposure to bisphenol A (BPA). METHODS This paper is a review and discussion of the published literature. RESULTS Animal studies have shown BPA to be a broad-spectrum endocrine disruptor. BPA is metabolized via the glucuronidation pathway, which involves the addition of glucose to the target molecule, and is catalyzed by uridine 5'-diphospho-glucuronosyltransferases (UGTs). Evidence of compromised glucuronidation has been found for ASD, DHD, PD, and PCOS. Genetic polymorphisms that alter the catalytic activity of the UGTs and efflux transporters involved are common. There are two ways to interpret the findings of associations between BPA glucuronidation efficiency and disease, a 'direct' pathway and an 'indirect' pathway. With the 'direct' pathway, free BPA is the actual causative agent. Compromised BPA detoxification leads to higher concentrations of free BPA in vulnerable tissues. Decreased BPA detoxification leads to increased exposure of vulnerable tissues to free BPA, where it can function as an endocrine disruptor. With the 'indirect' pathway, BPA is not the causative agent. BPA serves as a marker for the decreased glucuronidation efficiency of another unknown compound of endogenous origin detoxified by a similar combination of UGTs and efflux transporters as BPA. It is this compound(s), acting as an endocrine disruptor, that leads to a metabolic environment that favors disease development over an extended time period. CONCLUSION A review of the existing literature supports the indirect 'marker' hypothesis over the 'direct' hypothesis.
Collapse
Affiliation(s)
- T Peter Stein
- Rowan-Virtua School of Translational Biomedical Engineering and Sciences and School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
4
|
Liang B, Chen J, Wang L, Zhang L, Huang S, Zhou Y, Ni M, Zhang L, Lv X, Li X. Mode of action exploration for prostate epithelial cell injury caused by bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117228. [PMID: 39442252 DOI: 10.1016/j.ecoenv.2024.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Bisphenol A (BPA) is a typical food chemical contaminant with various detrimental effects, especially on reproductive system. Male prostate damage is also one of its major adverse health effects, of which mode of action (MOA) remains unclear. This study aims to explore the MOA for prostate toxicity of BPA using human normal prostate epithelial cell RWPE-1 for 28-day human-relevant-level exposure. A physiological based pharmacokinetic model was used to determine the concentration of BPA based on the actual oral exposure in China. The possible key events were identified by high-throughput transcriptome sequencing and validated by qPCR, Western blot and cell cycle assay, and the benchmark concentration analysis were conducted. The enriched KEGG pathways include the endocytosis, cell cycle, cellular senescence, MAPK and TNF signaling pathways. With increasing BPA concentrations, the increased mRNA and/or protein expressions of MAPKAPK2, c-JUN and c-fos in the MAPK signaling pathway, the increased mRNA expressions of CCND1 and CDKN1A, the decreased mRNA expression of CDC25C, the increased proportion of G0/G1 phase and S phase, as well as the decreased proportion of G2/M phase, were observed. The lowest value of benchmark concentration lower confidence limit (BMCL) was retrieved from G2/M phase ratio, with 110.580 and 175.862 nM for BMCL5 and BMCL10, respectively, much higher than the male gonad maximum concentration of 0.019 nM of BPA at the current exposure level of adult Chinese males. In conclusion, the MOA of BPA induced male prostatic toxicity at human-relevant levels may include: key event (KE)1-MAPK signaling pathway activation, KE2-disorder of cell cycle regulatory gene expression (increased expression of CCND1 and CDKN1A, decreased expression of CDC25C), and KE3-disturbance of cell cycle (increased proportion of G0/G1 and S phases, decreased proportion of G2/M phases). However, more studies are needed to validate and complete the MOA.
Collapse
Affiliation(s)
- Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaohua Lv
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
5
|
Shi Z, Xiao S, Zhang Q. Interference with Systemic Negative Feedback Regulation as a Potential Mechanism for Nonmonotonic Dose-Responses of Endocrine-Disrupting Chemicals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611257. [PMID: 39282254 PMCID: PMC11398479 DOI: 10.1101/2024.09.04.611257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Endocrine-disrupting chemicals (EDCs) often exhibit nonmonotonic dose-response (NMDR) relationships, posing significant challenges to health risk assessment and regulations. Several molecular mechanisms operating locally in cells have been proposed, including opposing actions via different receptors, mixed-ligand heterodimer formation, and receptor downregulation. Systemic negative feedback regulation of hormone homeostasis, which is a common feature of many endocrine systems, has also been invoked as a mechanism; however, whether and how exactly such global feedback structure may underpin NMDRs is poorly understood. Objectives We hypothesize that an EDC may compete with the endogenous hormone for receptors (i) at the central site to interfere with the feedback regulation thus altering the physiological hormone level, and (ii) at the peripheral site to disrupt the hormone action; this dual-action may oppose each other, producing nonmonotonic endocrine effects. The objective here is to explore - through computational modeling - how NMDRs may arise through this potential mechanism and the relevant biological variabilities that enable susceptibility to nonmonotonic effects. Methods We constructed a dynamical model of a generic hypothalamic-pituitary-endocrine (HPE) axis with negative feedback regulation between a pituitary hormone and a terminal effector hormone (EH). The effects of model parameters, including receptor binding affinities and efficacies, on NMDR were examined for EDC agonists and antagonists. Monte Carlo human population simulations were then conducted to systemically explore biological parameter conditions that engender NMDR. Results When an EDC interferes sufficiently with the central feedback action of EH, the net endocrine effect at the peripheral target site can be opposite to what is expected of an agonist or antagonist at low concentrations. J/U or Bell-shaped NMDRs arise when the EDC has differential binding affinities and/or efficacies, relative to EH, for the peripheral and central receptors. Quantitative relationships between these biological variabilities and associated distributions were discovered, which can distinguish J/U and Bell-shaped NMDRs from monotonic responses. Conclusions The ubiquitous negative feedback regulation in endocrine systems can act as a universal mechanism for counterintuitive and nonmonotonic effects of EDCs. Depending on key receptor kinetic and signaling properties of EDCs and endogenous hormones, some individuals may be more susceptible to these complex endocrine effects.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, NJ 08854, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
7
|
vom Saal FS, Antoniou M, Belcher SM, Bergman A, Bhandari RK, Birnbaum LS, Cohen A, Collins TJ, Demeneix B, Fine AM, Flaws JA, Gayrard V, Goodson WH, Gore AC, Heindel JJ, Hunt PA, Iguchi T, Kassotis CD, Kortenkamp A, Mesnage R, Muncke J, Myers JP, Nadal A, Newbold RR, Padmanabhan V, Palanza P, Palma Z, Parmigiani S, Patrick L, Prins GS, Rosenfeld CS, Skakkebaek NE, Sonnenschein C, Soto AM, Swan SH, Taylor JA, Toutain PL, von Hippel FA, Welshons WV, Zalko D, Zoeller RT. The Conflict between Regulatory Agencies over the 20,000-Fold Lowering of the Tolerable Daily Intake (TDI) for Bisphenol A (BPA) by the European Food Safety Authority (EFSA). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45001. [PMID: 38592230 PMCID: PMC11003459 DOI: 10.1289/ehp13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND The European Food Safety Authority (EFSA) recommended lowering their estimated tolerable daily intake (TDI) for bisphenol A (BPA) 20,000-fold to 0.2 ng / kg body weight ( BW ) / day . BPA is an extensively studied high production volume endocrine disrupting chemical (EDC) associated with a vast array of diseases. Prior risk assessments of BPA by EFSA as well as the US Food and Drug Administration (FDA) have relied on industry-funded studies conducted under good laboratory practice protocols (GLP) requiring guideline end points and detailed record keeping, while also claiming to examine (but rejecting) thousands of published findings by academic scientists. Guideline protocols initially formalized in the mid-twentieth century are still used by many regulatory agencies. EFSA used a 21st century approach in its reassessment of BPA and conducted a transparent, but time-limited, systematic review that included both guideline and academic research. The German Federal Institute for Risk Assessment (BfR) opposed EFSA's revision of the TDI for BPA. OBJECTIVES We identify the flaws in the assumptions that the German BfR, as well as the FDA, have used to justify maintaining the TDI for BPA at levels above what a vast amount of academic research shows to cause harm. We argue that regulatory agencies need to incorporate 21st century science into chemical hazard identifications using the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) nonguideline academic studies in a collaborative government-academic program model. DISCUSSION We strongly endorse EFSA's revised TDI for BPA and support the European Commission's (EC) apparent acceptance of this updated BPA risk assessment. We discuss challenges to current chemical risk assessment assumptions about EDCs that need to be addressed by regulatory agencies to, in our opinion, become truly protective of public health. Addressing these challenges will hopefully result in BPA, and eventually other structurally similar bisphenols (called regrettable substitutions) for which there are known adverse effects, being eliminated from all food-related and many other uses in the EU and elsewhere. https://doi.org/10.1289/EHP13812.
Collapse
Affiliation(s)
- Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Michael Antoniou
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ake Bergman
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Ramji K. Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Linda S. Birnbaum
- Scientist Emeritus and Former Director, National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- Scholar in Residence, Duke University, Durham, North Carolina, USA
| | - Aly Cohen
- Integrative Rheumatology Associates, Princeton, New Jersey, USA
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Barbara Demeneix
- Comparative Physiology Laboratory, Natural History Museum, Paris, France
| | - Anne Marie Fine
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana—Champaign, Urbana-Champaign, Illinois, USA
| | - Veronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - William H. Goodson
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - Jerrold J. Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Raleigh, North Carolina, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, UK
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London, UK
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | | | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Retha R. Newbold
- Scientist Emeritus, NTP, NIEHS, Research Triangle Park, North Carolina, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Lyn Patrick
- Environmental Medicine Education International, Mancos, Colorado, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cheryl S. Rosenfeld
- Biomedical Sciences, Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri—Columbia, Columbia, Missouri, USA
- MU Institute of Data Science and Informatics, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Niels E. Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julia A. Taylor
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pierre-Louis Toutain
- Royal Veterinary College, University of London, London, UK
- NTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, University of Arizona, Tucson, Arizona, USA
| | - Wade V. Welshons
- Department of Biomedical Sciences, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Daniel Zalko
- ToxAlim (Research Centre in Food Toxicology), University of Toulouse, Toulouse, France
| | - R. Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
8
|
Vandenberg LN, Mogus JP, Szabo GK. Effects of a TAML catalyst on mice exposed during pregnancy and lactation. Reprod Toxicol 2024; 125:108557. [PMID: 38360075 DOI: 10.1016/j.reprotox.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Tetra-amido macrocyclic ligands (TAMLs) are catalysts designed to mimic endogenous peroxidases that can degrade pollutants. Before TAMLs gain widespread use, it is first important to determine if they have endocrine disrupting properties. In this study, we evaluated the effects of the iron TAML, NT7, on hormone-sensitive outcomes in mice exposed during pregnancy and lactation, and on their litters prior to weaning. We administered NT7 at one of three doses to mice via drinking water prior to and then throughout pregnancy and lactation. Two hormonally active pharmaceuticals, ethinyl estradiol (EE2) and flutamide (FLUT), a known estrogen receptor agonist and androgen receptor antagonist, respectively, were also included. In the females, we measured pre- and post-parturition weight, length of pregnancy, organ weights at necropsy, and morphology of the mammary gland at the end of the lactational period. We also quantified maternal behaviors at three stages of lactation. For the offspring, we measured litter size, litter weights, and the achievement of other developmental milestones. We observed only one statistically significant effect of NT7, a decrease in the percentage of pups with ear opening at postnatal day 5. This contrasts with the numerous effects of EE2 on both the mother and the litter, as well as several modest effects of FLUT. The approach taken in this study could provide guidance for future studies that aim to evaluate novel compounds for endocrine disrupting properties.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| |
Collapse
|
9
|
Prueitt RL, Goodman JE. Evidence evaluated by European Food Safety Authority does not support lowering the temporary tolerable daily intake for bisphenol A. Toxicol Sci 2024; 198:185-190. [PMID: 38265237 DOI: 10.1093/toxsci/kfad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
The European Food Safety Authority (EFSA) recently derived a tolerable daily intake (TDI) for bisphenol A (BPA) of 0.2 ng/kg bw/day. There are several issues with EFSA's hazard assessment review process, including that it was based on a limited subset of relevant studies. Multiple public commenters on EFSA's draft evaluation of BPA, including several European regulatory agencies, noted these issues, yet they were not adequately addressed by EFSA in the final evaluation. The TDI for BPA was based on an intermediate immunotoxicity endpoint in mice that has not been observed in other species; there is no evidence that it is a precursor event to any downstream pathological outcome. The TDI is several orders of magnitude lower than estimates of safe doses of BPA established by agencies worldwide, including EFSA's temporary TDI (t-TDI) for BPA established in 2015. Overall, the EFSA hazard assessment review process has led to a conclusion that there are low-dose effects of BPA based on very few, lower quality experimental animal studies. This conclusion is not supported by the totality of the available evidence, which includes multiple high-quality studies not considered by EFSA and indicates that the t-TDI established in 2015 is protective of human health.
Collapse
|
10
|
Kortenkamp A, Martin O, Iacovidou E, Scholze M. Drivers of divergent assessments of bisphenol-A hazards to semen quality by various European agencies, regulators and scientists. Int J Hyg Environ Health 2024; 255:114293. [PMID: 37976583 DOI: 10.1016/j.ijheh.2023.114293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The downward revision of the bisphenol A (BPA) Health-based Guidance Value (HBGV) by the European Food Safety Authority (EFSA) has led to disagreements with other regulatory agencies, among them the German Federal Institute for Risk Assessment (BfR). The BfR has recently published an alternative Tolerable Daily Intake (TDI), 1000-times higher than the EFSA HBGV of 0.2 ng/kg/d. While the EFSA value is defined in relation to immunotoxicity, the BfR alternative TDI is based on declines in sperm counts resulting from exposures in adulthood. Earlier, we had used semen quality deteriorations to estimate a BPA Reference Dose (RfD) of 3 ng/kg/d for use in mixture risk assessments of male reproductive health. We derived this estimate from animal studies of gestational BPA exposures which both EFSA and BfR viewed as irrelevant for human hazard characterisations. Here, we identify factors that drive these diverging views. We find that the fragmented, endpoint-oriented study evaluation system used by EFSA and BfR, with its emphasis on data that can support dose-response analyses, has obscured the overall BPA effect pattern relevant to male reproductive effects. This has led to a disregard for the effects of gestational BPA exposures. We also identify problems with the study evaluation schemes used by EFSA and BfR which leads to the omission of entire streams of evidence from consideration. The main driver of the diverging views of EFSA and BfR is the refusal by BfR to accept immunotoxic effects as the basis for establishing an HBGV. We find that switching from immunotoxicity to declines in semen quality as the basis for deriving a BPA TDI by deterministic or probabilistic approaches produces values in the range of 2.4-6.6 ng/kg/d, closer to the present EFSA HBGV of 0.2 ng/kg/d than the BfR TDI of 200 ng/kg/d. The proposed alternative BfR value is the result of value judgements which erred on the side of disregarding evidence that could have supported a lower TDI. The choices made in terms of selecting key studies and methods for dose-response analyses produced a TDI that comes close to doses shown to produce effects on semen quality in animal studies and in human studies of adult BPA exposures.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Olwenn Martin
- University College London, Department of Arts and Science, Gower Street, London, WC1E 6BT, United Kingdom
| | - Eleni Iacovidou
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Martin Scholze
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
11
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
12
|
Prueitt RL, Goodman JE. WITHDRAWN: Letter to editor: Evidence evaluated by EFSA does not support lowering the temporary tolerable daily intake for bisphenol A. Food Chem Toxicol 2023:114057. [PMID: 37739055 DOI: 10.1016/j.fct.2023.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA
| | | |
Collapse
|
13
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
14
|
Yin L, Hu C, Yu XJ. High-content analysis of testicular toxicity of BPA and its selected analogs in mouse spermatogonial, Sertoli cells, and Leydig cells revealed BPAF induced unique multinucleation phenotype associated with the increased DNA synthesis. Toxicol In Vitro 2023; 89:105589. [PMID: 36958674 PMCID: PMC10351343 DOI: 10.1016/j.tiv.2023.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Bisphenol A is an endocrine disruptor that has been shown to have testicular toxicity in animal models. Its structural analog, including bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) have been introduced to the market as BPA alternatives. Previously, we developed high-content analysis (HCA) assays and applied machine learning to compare the testicular toxicity of BPA and its analogs in spermatogonial cells and testicular cell co-culture models. There are diverse cell populations in the testis to support spermatogenesis, but their cell type-specific toxicities are still not clear. The purpose of this study is to examine the selective toxicity of BPA, BPS), BPAF, and TBBPA on these testicular cells, including Sertoli cells, Leydig cells, and spermatogonia cells. We developed a high-content image-based single-cell analysis and measured a broad spectrum of adverse endpoints related to the development of reproductive toxicology, including cell number, nuclear morphology, DNA synthesis, cell cycle progression, early DNA damage response, cytoskeleton structure, DNA methylation status, and autophagy. We introduced an HCA index and spectrum to reveal multiple HCA parameters and observed distinct toxicity profiling of BPA and its analogs among three testicular types. The HCA spectrum shows the dynamic, chemical-specific, dose-dependent changes of each HCA parameter. Each chemical displayed a unique dose-dependent profile within each type of cell. All three types of cells showed the highest response to BPAF at 10 μM across all endpoints measured. BPAF targeted spermatogonial cell (C18) more significantly at 5 μM. BPS more likely targeted Sertoli cell (TM4) and Leydig cell (TM3) and less at spermatogonia cells. TBBPA targeted spermatogonia, Sertoli cells, and less at TM3 cells. BPA is mainly targeted at TM4, followed by TM3 cells, and less at spermatogonial cells. Most importantly, we observed that BPAF induced a dose-dependent increase in spermatogonia cells, not in Sertoli and Leydig cells. In summary, our current HCA assays revealed the cell-type-specific toxicities of BPA and its analogs in different testicular cells. Multinucleation induced by BPAF, along with increased DNA damage and synthesis at low doses, could possibly have a profound long-term effect on reproductive systems.
Collapse
Affiliation(s)
- Lei Yin
- ReproTox Biotech LLC, 800 Bradbury Dr. SE Science & Technology Park, Albuquerque, NM 87106, United States of America
| | - Chelin Hu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America
| | - Xiaozhong John Yu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America.
| |
Collapse
|
15
|
Prueitt RL, Hixon ML, Fan T, Olgun NS, Piatos P, Zhou J, Goodman JE. Systematic review of the potential carcinogenicity of bisphenol A in humans. Regul Toxicol Pharmacol 2023:105414. [PMID: 37263405 DOI: 10.1016/j.yrtph.2023.105414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical to which humans are exposed through a variety of environmental sources. We have conducted a comprehensive, systematic review of 29 epidemiology studies and 27 experimental animal studies, published through May 2022, evaluating the potential carcinogenicity of BPA to contribute to the understanding of whether BPA is carcinogenic in humans. We conducted this review according to best practices for systematic reviews and incorporating established frameworks for study quality evaluation and evidence integration. The epidemiology studies have many limitations that increase the risk of biased results, but overall, the studies do not provide clear and consistent evidence for an association between BPA exposure and the development of any type of cancer. The experimental animal studies also do not provide strong and consistent evidence that BPA is associated with the induction of any malignant tumor type. Some of the proposed mechanisms for BPA carcinogenicity are biologically plausible, but the relevance to human exposures is not clear. We conclude that there is inadequate evidence to support a causal relationship between BPA exposure and human carcinogenicity, based on inadequate evidence in humans, as well as evidence from experimental animal studies that suggests a causal relationship is not likely.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Mary L Hixon
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Nicole S Olgun
- Gradient, 103 East Water Street, 3rd Floor, Charlottesville, VA, 22902, USA
| | - Perry Piatos
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | | |
Collapse
|
16
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
17
|
Tvrdý V, Dias P, Nejmanová I, Carazo A, Jirkovský E, Pourová J, Fadraersada J, Moravcová M, Peterlin Mašič L, Sollner Dolenc M, Mladěnka P. The effects of bisphenols on the cardiovascular system ex vivo and in vivo. CHEMOSPHERE 2023; 313:137565. [PMID: 36528156 DOI: 10.1016/j.chemosphere.2022.137565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The human population is regularly exposed to bisphenols. The first compound of this class, bisphenol A, is burdened by numerous reports of its potential toxicity and has been hence replaced by its analogues, so-called next generation bisphenols. Their widespread use has made them pervasive throughout the environment. These endocrine disrupting chemicals can affect the cardiovascular system, and hence the aim of this study was to test 14 bisphenols (A, AF, AP, B, BP, C, E, F, G, M, P, PH, S and Z), and compare their effects in vitro (human and rat cell lines), ex vivo (isolated rat aorta) and in vivo (Wistar Han rats, acutely or chronically exposed to low environmental and high toxic doses). The majority of the tested bisphenols relaxed rat aorta, but their potency varied markedly. The most potent compound, bisphenol AF, had an EC50 of 57 μM. The mechanism of action was likely based on the inhibition of calcium influx via L-type calcium channels. The cytotoxicity of bisphenols towards 4 human and rat cell lines (H9c2, A-10, MCF7/S0.5 and MCF7/182R-6) showed variable potencies ranging from units of micromolar to millimolar concentrations. Based on these data, an effect on arterial blood pressure and possible cardiotoxicity was expected. Contrarily, the in vivo acute effects of three doses (0.005, 0.05 and 2.5 mg/kg) of bisphenol AF and 3 other analogues (A, S and F) on the cardiovascular system were rather biologically negligible. The most potent bisphenol, AF, was also administered chronically at a dose of 2.5 mg/kg for 4 weeks to rats, but had no impact on arterial blood pressure. Our results showed that bisphenols can relax vascular smooth muscles, but the effective concentrations are too high to produce clear cardiovascular effects in relation to common biological exposure as was confirmed with the most potent bisphenol AF.
Collapse
Affiliation(s)
- Václav Tvrdý
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Patrícia Dias
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Iveta Nejmanová
- The Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Alejandro Carazo
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Eduard Jirkovský
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Jana Pourová
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Jaka Fadraersada
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Monika Moravcová
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Lucija Peterlin Mašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, The University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, The University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Bosland MC, Schlicht MJ, Acevedo N, Soto AM, Prins G. Effects of perinatal exposure to bisphenol A on induction of prostate cancer in Sprague Dawley rats by MNU and testosterone. Toxicology 2023; 484:153394. [PMID: 36521576 PMCID: PMC9945469 DOI: 10.1016/j.tox.2022.153394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Perinatal and neonatal exposure to bisphenol A (BPA) has been linked to enhancement of prostate carcinogenesis in rats induced by combined treatment with estradiol and testosterone, but human data are lacking. This study aimed to determine the effects of perinatal BPA exposure on induction of prostate cancer in rats by sequential treatment with N-methyl-N-nitrosamine (MNU) and continuous low dose administration of testosterone. Pregnant Sprague Dawley rats were exposed to BPA administered by subcutaneous Alzet minipumps at doses of 2.5 or 25 µg/kg body weight/day from gestational day 9 until postnatal day 28 when pups were weaned providing exposure of offspring in utero and via the mother's milk. At 10-12 weeks of age, one male offspring per litter was treated with an intraperitoneal injection of MNU after hormonal stimulation of prostatic cell proliferation followed two weeks later by subcutaneous insertion of Silastic implants containing testosterone until the termination of the study 57-58 weeks after MNU injection. The perinatal BPA exposure did not significantly affect the incidence of prostate carcinomas which was slightly lower in exposed rats (33-23 %) than in control animals (40 %). Carcinomas in all accessory sex glands combined were also insignificantly less frequent in exposed (46-48 %) than in control rats (60 %). The incidence of malignant tumors at any site in the body was significantly lower in exposed rats (81-65 %) than in controls (93 %). In conclusion, perinatal BPA exposure did not significantly modify prostate cancer induction by MNU plus testosterone in rats, unlike the enhancement of prostate carcinogenesis induced by treatments involving estradiol administration. Which of the two models of prostate carcinogenesis is more relevant for the human situation is unclear at present.
Collapse
Affiliation(s)
- Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Michael J Schlicht
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicole Acevedo
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Ana M Soto
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Gail Prins
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; Departments of Pathology, Physiology and Biophysics & Urology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Abstract
There is a continuing interest in whether Bisphenol A (BPA) is able to cause adverse health effects through interaction with elements of the immune system. That interest has been fuelled further by the recent publication of a draft opinion on BPA prepared by the European Food Safety Authority (EFSA) Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). This draft opinion judged effects on the immune system to be the most sensitive health outcome, and identified BPA-induced changes in the frequency of T-helper (TH)-17 cells in the spleens of mice as being the critical effect based on an association of these cells with inflammation. Based on these evaluations the CEP Panel recommended that a revised Tolerable Daily Intake (TDI) for BPA of 0.04 ng/kg bw/day should be adopted; representing a very substantial reduction (100,000-fold) compared with the existing TDI. The purpose of this commentary is to summarize briefly the role of TH17 cells in immune responses, and to review relevant literature regarding the influence of BPA on these cells, and on inflammatory responses in the lung and respiratory allergy. The conclusion drawn is that based on uncertainties about the effects of BPA on TH17 cells and lung inflammation in mice, the absence of consistent or persuasive evidence from human studies that exposure of BPA is associated with inflammation or allergy, and unresolved questions regarding the species selectivity of immune effects induced by BPA, it is inappropriate to adopt the revised TDI. Additional research is required to explore further the influence of BPA on the immune system and immune responses.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
20
|
Nayak D, Adiga D, Khan NG, Rai PS, Dsouza HS, Chakrabarty S, Gassman NR, Kabekkodu SP. Impact of Bisphenol A on Structure and Function of Mitochondria: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:10. [DOI: 10.1007/s44169-022-00011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 04/02/2024]
Abstract
AbstractBisphenol A (BPA) is an industrial chemical used extensively to manufacture polycarbonate plastics and epoxy resins. Because of its estrogen-mimicking properties, BPA acts as an endocrine-disrupting chemical. It has gained attention due to its high chances of daily and constant human exposure, bioaccumulation, and the ability to cause cellular toxicities and diseases at extremely low doses. Several elegant studies have shown that BPA can exert cellular toxicities by interfering with the structure and function of mitochondria, leading to mitochondrial dysfunction. Exposure to BPA results in oxidative stress and alterations in mitochondrial DNA (mtDNA), mitochondrial biogenesis, bioenergetics, mitochondrial membrane potential (MMP) decline, mitophagy, and apoptosis. Accumulation of reactive oxygen species (ROS) in conjunction with oxidative damage may be responsible for causing BPA-mediated cellular toxicity. Thus, several reports have suggested using antioxidant treatment to mitigate the toxicological effects of BPA. The present literature review emphasizes the adverse effects of BPA on mitochondria, with a comprehensive note on the molecular aspects of the structural and functional alterations in mitochondria in response to BPA exposure. The review also confers the possible approaches to alleviate BPA-mediated oxidative damage and the existing knowledge gaps in this emerging area of research.
Collapse
|
21
|
Molina-López AM, Bujalance-Reyes F, Urbano MT, Lora-Benítez A, Ayala-Soldado N, Moyano-Salvago R. Analysis of Blood Biochemistry and Pituitary-Gonadal Histology after Chronic Exposure to Bisphenol-A of Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113894. [PMID: 36360773 PMCID: PMC9659152 DOI: 10.3390/ijerph192113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/12/2023]
Abstract
Bisphenol-A is an emerging pollutant that is widespread in the environment, and to which live beings are continuously and inadvertently exposed. It is a substance with an endocrine-disrupting capacity, causing alterations in the reproductive, immunological, and neurological systems, among others, as well as metabolic alterations. Our study aimed to assess its clinical signs, and effects on the most relevant blood biochemical parameters, and to evaluate pituitary and gonadal histology after a chronic exposure of adult mice to different BPA doses (0.5, 2, 4, 50 and 100 µg/kg BW/day) through their drinking water. The biochemical results showed that a marked significant reduction (p < 0.05) was produced in the levels of serum glucose, hypoproteinaemia and hypoalbuminemia in the groups exposed to the highest doses, whereas in the group exposed to 50 µg/kg BW/day the glucose and total protein levels dropped, and the animals exposed to 100 µg/kg BW/day experienced a diminution in albumin levels. In the case of the group exposed to 50 µg/kg BW/day, however, hypertriglyceridemia and hypercholesterolemia were determined, and the blood parameters indicating kidney alterations such as urea and creatinine experienced a significant increase (p < 0.05) with respect to the controls. Regarding the pituitary and gonads, none of the animals exposed presented histological alterations at the doses tested, giving similar images to those of the control group. These results suggest that continuous exposure to low BPA doses could trigger an inhibition of hepatic gluconeogenesis, which would result in a hypoglycaemic state, together with an induction of the enzymes responsible for lipidic synthesis, a mechanism by which the increase in the lipid and serum cholesterol levels could be explained. Likewise, the decline in the protein and albumin levels would be indicative of a possible hepatic alteration, and the increase in urea and creatinine would point to a possible renal perturbation, derived from continuous exposure to this xenobiotic. Based on our results, it could be said that chronic exposure to low BPA doses would not produce any clinical signs or histological pituitary-gonadal effects, but it could cause modifications in some blood biochemical parameters, that could initially indicate a possible hepatic and renal effect.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - María Teresa Urbano
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
22
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
23
|
Li X, Ni M, Xiong W, Tian L, Yang Z, Zhang L, Chen J. Transcriptomics analysis and benchmark concentration estimating-based in vitro test with IOSE80 cells to unveil the mode of action for female reproductive toxicity of bisphenol A at human-relevant levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113523. [PMID: 35429799 DOI: 10.1016/j.ecoenv.2022.113523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is of great concern in public health, of which female reproductive toxicity is one major adverse health effect with the unclear mode of action (MOA) yet. Based on the principle of Toxicity Testing in the 21st Century, the purpose of this study is to explore the MOA for female reproductive toxicity using human normal ovarian epithelial cells IOSE80 at 28-day human-relevant-level exposure. A physiological based pharmacokinetic model was used to select the administration concentrations according to the BPA levels in female gonads at human actual exposure scenario. Enrichment KEGG pathways interrupted by BPA consisted of RNA transport, ribosome biogenesis in eukaryotes, cell cycle, cellular senescence, progesterone-mediated oocyte maturation, and oocyte meiosis. Increased relative mRNA and protein expressions of ERK and CDKN3, and proportion of S phase, as well as decreased proportion of G0/G1 phase were observed with increasing BPA concentrations, which could be partially inhibited by ERK inhibitor U0126. Among all the benchmark concentration lower confidence limits, mRNA expression of MAPK3 served as the lowest. In conclusion, the MOA of BPA induced female reproductive toxicity at human-relevant levels may include: key event (KE)1-ERK activation, KE2-increased expression of CDKN3, and KE3-cell cycle arrest. However, more in vivo studies may be needed to complete the MOA.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Xiong
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
24
|
Šturm S, Weber K, Klinc P, Spörndly-Nees E, Fakhrzadeh A, Knific T, Škibin A, Fialová V, Okazaki Y, Razinger T, Laufs J, Kreutzer R, Pogačnik M, Švara T, Cerkvenik-Flajs V. Basic Exploratory Study of Bisphenol A (BPA) Dietary Administration to Istrian Pramenka Rams and Male Toxicity Investigation. TOXICS 2022; 10:toxics10050224. [PMID: 35622638 PMCID: PMC9143511 DOI: 10.3390/toxics10050224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 12/30/2022]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical and environmental pollutant, has been reported by many researchers to induce male reproductive toxicity in different experimental models. In this study, we investigated whether long-term exposure for two months to 25 µg/kg body weight (low dose) of BPA affects spermatogenesis or sperm quality in young Istrian Pramenka rams exposed via diet. We evaluated body and testicular weights, histopathology of testes and epididymides, and sperm analyses, and compared these parameters between the group of treated rams and the control group of rams. Although there were some differences between the two groups, these differences were not large or statistically significant. The only statistically significant difference was the lower epithelial height of seminiferous tubules in treated rams, compared to control rams. In addition to assessing toxicity, BPA concentrations in the blood plasma of treated rams were determined after the first administration, and the toxicokinetic parameters of total BPA were calculated. In this study, no major signs of altered reproduction in rams were detected.
Collapse
Affiliation(s)
- Sabina Šturm
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
- Correspondence:
| | - Klaus Weber
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Primož Klinc
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Ellinor Spörndly-Nees
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 75007 Uppsala, Sweden;
| | - Azadeh Fakhrzadeh
- Iranian Research Institute for Information Science and Technology (IranDoc) Tehran Province, No. 1090, Enghelab, Tehran 13157 73314, Iran;
| | - Tanja Knific
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Andrej Škibin
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Věra Fialová
- Biopharm, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 01 Jílové u Prahy, Czech Republic;
| | - Yoshimasa Okazaki
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Tanja Razinger
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Jürgen Laufs
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Robert Kreutzer
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Milan Pogačnik
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Tanja Švara
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Vesna Cerkvenik-Flajs
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| |
Collapse
|
25
|
Dias P, Tvdrý V, Jirkovský E, Dolenc MS, Peterlin Mašič L, Mladěnka P. The effects of bisphenols on the cardiovascular system. Crit Rev Toxicol 2022; 52:66-87. [PMID: 35394415 DOI: 10.1080/10408444.2022.2046690] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bisphenols, endocrine disrupting chemicals, have frequently been used for producing food packaging materials. The best-known member, bisphenol A (BPA), has been linked to impaired foetal development in animals. Possible negative effects of BPA on human health have resulted in the production of novel, so-called next-generation (NextGen) bisphenols whose effects on humans are much less explored or even missing. This review aimed to summarise and critically assess the main findings and shortages in current bisphenol research in relation to their potential impact on the cardiovascular system in real biological exposure. Because of the common presence of bisphenols in daily use products, humans are clearly exposed to these compounds. Most data are available on BPA, where total serum levels (i.e. included conjugated metabolite) can reach up to ∼430 nM, while free bisphenol levels have been reported up to ∼80 nM. Limited data are available for other bisphenols, but maximal serum levels of bisphenol S have been reported (680 nM). Such levels seem to be negligible, although in vitro studies have showed effects on ion channels, and thyroid, oestrogenic and androgenic receptors in low micromolar concentrations. Ex vivo studies suggest vasodilatory effects of bisphenols. This stays in clear contrast to the elevation of arterial blood pressure documented in vivo and in observatory cross-sectional human studies. Bisphenols are also claimed to have a negative effect on lipidic spectrum and coronary artery disease. Regardless, the reported data are generally inconsistent and unsatisfactory. Hence novel well-designed studies, testing in particular NextGen bisphenols, are needed.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Václav Tvdrý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Analysis of Indirect Biomarkers of Effect after Exposure to Low Doses of Bisphenol A in a Study of Successive Generations of Mice. Animals (Basel) 2022; 12:ani12030300. [PMID: 35158624 PMCID: PMC8833323 DOI: 10.3390/ani12030300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Living beings are constantly and inadvertently exposed to a series of environmental and food pollutants, triggering effects on health that are transmitted over generations. Bisphenol A is a compound produced in large amounts world-wide and used in the manufacture of plastic containers and other utensils for daily use. It is an environmental and food pollutant with a demonstrated capacity to produce effects on the health of organisms exposed to it. The objective of our study was to identify possible indirect biomarkers of effect by means of the analysis of the blood biochemistry, and of certain reproductive parameters of animals exposed to Bisphenol A in doses considered to be safe over different generations. Our results did not show any modifications in the reproduction parameters evaluated, such as the duration of the estrous cycle, the size of the litters, or the percentage of the young alive at weaning time. However, they showed that there were alterations in biochemical parameters like glucose, total proteins, and albumin, which could therefore, be regarded as indirect indicators of an early effect of alterations in health caused by this compound. Abstract Bisphenol A (BPA) is considered as being an emerging pollutant, to which both animal and human populations are continuously and inadvertently exposed. The identification of indirect biomarkers of effect could be a key factor in determining early adverse outcomes from exposure to low doses of BPA. Thus, this study on mice aims to evaluate and identify indirect biomarkers of effect through the analysis of their blood biochemistry, and of certain reproduction parameters after exposure to different BPA concentrations (0.5, 2, 4, 50, and 100 µg/kg BW/day) in drinking water over generations. Our results showed that there were no modifications in the reproductive parameters evaluated, like estrous cycle duration, litter size, or the percentage of the young alive at reaching the weaning stage, at the exposure levels evaluated. However, there were modifications in the biochemical parameters, e.g., alterations in the glucose levels, that increased significantly (p < 0.05) in the breeders at the higher exposure doses (50 and 100 µg/kg BW/day in F1; 50 µg/kg BW/day in F2 and 100 µg/kg BW/day in F3), that would suggest that the BPA could induce hyperglycemia and its complications in adult animals, probably due to some damage in the pancreas cells; albumin, that increased in the breeders exposed to the highest dose in F1 and F3, inferring possible hepatic alterations. Further, total proteins showed a diminution in their values in F1 and F2, except the group exposed to 100 µg/kg BW/day, whereas in F3 the values of this parameter increased with respect to the control group, this aspect likely being related to a possible hepatic and renal alteration. Based on these results, glucose, albumin, and total proteins could initially be considered as early indicators of indirect effect after prolonged exposure to low BPA doses over generations.
Collapse
|
27
|
More S, Benford D, Hougaard Bennekou S, Bampidis V, Bragard C, Halldorsson T, Hernandez‐Jerez A, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Tarazona J, Younes M. Opinion on the impact of non-monotonic dose responses on EFSA's human health risk assessments. EFSA J 2021; 19:e06877. [PMID: 34712366 PMCID: PMC8528485 DOI: 10.2903/j.efsa.2021.6877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This Opinion assesses the biological relevance of the non-monotonic dose responses (NMDR) identified in a previous EFSA External Report (Beausoleil et al., 2016) produced under GP/EFSA/SCER/2014/01 and the follow-up probabilistic assessment (Chevillotte et al., 2017a,b), focusing on the in vivo data sets fulfilling most of the checkpoints of the visual/statistical-based analysis identified in Beausoleil et al. (2016). The evaluation was completed with cases discussed in EFSA assessments and the update of the scientific literature. Observations of NMDR were confirmed in certain studies and are particularly relevant for receptor-mediated effects. Based on the results of the evaluation, the Opinion proposes an approach to be applied during the risk assessment process when apparent non-monotonicity is observed, also providing advice on specific elements to be considered to facilitate the assessment of NMDR in EFSA risk assessments. The proposed approach was applied to two case studies, Bisphenol A and bis(2-ethylhexyl phthalate (DEHP) and these evaluations are reported in dedicated annexes. Considering the potential impact of NMDRs in regulatory risk assessment, the Scientific Committee recommends a concerted international effort on developing internationally agreed guidance and harmonised frameworks for identifying and addressing NMDRs in the risk assessment process.
Collapse
|
28
|
Moreno-Gómez-Toledano R, Sánchez-Esteban S, Cook A, Mínguez-Moratinos M, Ramírez-Carracedo R, Reventún P, Delgado-Marín M, Bosch RJ, Saura M. Bisphenol A Induces Accelerated Cell Aging in Murine Endothelium. Biomolecules 2021; 11:biom11101429. [PMID: 34680063 PMCID: PMC8533150 DOI: 10.3390/biom11101429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023] Open
Abstract
Bisphenol A (BPA) is a widespread endocrine disruptor affecting many organs and systems. Previous work in our laboratory demonstrated that BPA could induce death due to necroptosis in murine aortic endothelial cells (MAECs). This work aims to evaluate the possible involvement of BPA-induced senescence mechanisms in endothelial cells. The β-Gal assays showed interesting differences in cell senescence at relatively low doses (100 nM and 5 µM). Western blots confirmed that proteins involved in senescence mechanisms, p16 and p21, were overexpressed in the presence of BPA. In addition, the UPR (unfolding protein response) system, which is part of the senescent phenotype, was also explored by Western blot and qPCR, confirming the involvement of the PERK-ATF4-CHOP pathway (related to pathological processes). The endothelium of mice treated with BPA showed an evident increase in the expression of the proteins p16, p21, and CHOP, confirming the results observed in cells. Our results demonstrate that oxidative stress induced by BPA leads to UPR activation and senescence since pretreatment with N-acetylcysteine (NAC) in BPA-treated cells reduced the percentage of senescent cells prevented the overexpression of proteins related to BPA-induced senescence and reduced the activation of the UPR system. The results suggest that BPA participates actively in accelerated cell aging mechanisms, affecting the vascular endothelium and promoting cardiovascular diseases.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Sandra Sánchez-Esteban
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Alberto Cook
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Marta Mínguez-Moratinos
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | | | - Paula Reventún
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - María Delgado-Marín
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Ricardo J. Bosch
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Marta Saura
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
- Correspondence:
| |
Collapse
|
29
|
Natsch A. Scientific discrepancies in European regulatory proposals on endocrine disruptors-REACH regulation quo vadis? Arch Toxicol 2021; 95:3601-3609. [PMID: 34505931 PMCID: PMC8492591 DOI: 10.1007/s00204-021-03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
The EU chemical strategy for sustainability places a high focus on endocrine-disrupting chemicals (ED), the importance of their identification with increased testing and a ban in consumer products by a generic approach. It is assumed that for ED no threshold and hence no safe dose exists, leading to this generic approach. This view appears to be linked to the claim that for ED ‘low-dose non-monotonic dose response’ (low-dose NMDR) effects are observed. Without this hypothesis, there are no scientific reasons why classical risk assessment cannot be applied to the ED mode-of-action. Thus, whether for ED low-dose NMDR effects are considered a reproducible scientific fact by European authorities is Gretchen’s question in this politicized field. Recent documents by the SCCS, EFSA and ECHA reviewed herein illustrate the diverging views within European scientific bodies on this issue. Furthermore, ED researchers never replicated findings on low-dose NMDR in blinded inter-laboratory experiments and the CLARITY-BPA core studies could not find evidence for reproducible NMDR for BPA. ECHA proposes a battery of in vitro tests to test all chemicals for ED properties. However, these tests were never validated for relevance and their high positivity rate could lead to increased follow-up animal testing. Based on (i) lack of reproducibility data for low-dose NMDR, (ii) diverging views within European authorities on NMDR and (iii) lack of fully validated in vitro test methods it might be premature to fast-track the wide-ranging changes in the regulatory landscape proposed by the authorities ultimately leading to drastically increased animal testing.
Collapse
Affiliation(s)
- Andreas Natsch
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptpark 50, CH-8310, Kemptthal, Switzerland.
| |
Collapse
|
30
|
Ougier E, Zeman F, Antignac JP, Rousselle C, Lange R, Kolossa-Gehring M, Apel P. Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for bisphenol A. ENVIRONMENT INTERNATIONAL 2021; 154:106563. [PMID: 33894553 DOI: 10.1016/j.envint.2021.106563] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The "European Human Biomonitoring Initiative" (HBM4EU) derives human biomonitoring guidance values (HBM-GVs) for the general population (HBM-GVGenPop) and/or for occupationally exposed adults (HBM-GVWorker) for several priority substances and substance groups as identified by policy makers, scientists and stakeholders at EU and national level, including bisphenol A (BPA). Human exposure to BPA is widespread and of particular concern because of its known endocrine-disrupting properties. Unlike the conjugated forms of BPA circulating in the body, free BPA is known to interact with the nuclear estrogen receptors. Because free BPA is considered to be more toxicologically active than the conjugated forms (e.g. BPA-glucuronide (BPA-G) and BPA-sulfate (BPA-S)), its measurement in blood provides the superior surrogate of the biologically effective dose. However, considering the difficulty of implementing blood sampling in large HBM cohorts, as well as the current analytical capacities complying with the quality assurance (QA)/quality control (QC) schemes, total BPA in urine (i.e. the sum of free and conjugated forms of BPA measured after an hydrolysis of phase II metabolites) was retained as the relevant exposure biomarker for BPA. HBM-GVGenPop for total BPA in urine of 230 µg/L and 135 µg/L for adults and children, respectively, were developed on the basis of toxicological data. To derive these values, the concentrations of urinary total BPA consistent with a steady-state exposure to the temporary Tolerable Daily Intake (t-TDI) of 4 µg/kg bw/day set in 2015 by the European Food Safety Authority (EFSA) were estimated. The BPA human physiologically-based pharmacokinetic (PBPK) model developed by Karrer et al. (2018) was used, assuming an oral exposure to BPA at the t-TDI level averaged over 24 h. Dermal uptake of BPA is suspected to contribute substantially to the total BPA body burden, which in comparison with the oral route, is generating a higher ratio of free BPA to total BPA in blood. Therefore, an alternative approach for calculating the HBM-GVGenPop according to the estimated relative contributions of both the oral and dermal routes to the global BPA exposure is also discussed. Regarding BPA exposure at the workplace, the steady-state concentration of urinary total BPA was estimated after a dermal uptake of BPA that would generate the same concentration of free BPA in plasma (considered as the bioactive form) as would a 24 h-averaged intake to the European Chemicals Agency (ECHA)'s oral DNEL of 8 µg BPA/kg bw/day set for workers. The predicted concentration of urinary total BPA at steady-state is equivalent to, or exceeds the 95th percentile of total BPA in urine measured in different European HBM studies conducted in the general population. Thus, no HBM-GVWorker was proposed, as the high background level of BPA coming from environmental exposure - mostly through food intake - is making the discrimination with the occupational exposure to BPA difficult.
Collapse
Affiliation(s)
- Eva Ougier
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| | - Florence Zeman
- French National Institute for Industrial Environment and Risks (INERIS), Parc ALATA BP2, 60550 Verneuil en Halatte, France
| | | | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | | | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| |
Collapse
|
31
|
Abstract
Regulatory agencies around the world depend on standardized testing approaches to evaluate environmental chemicals for endocrine disrupting properties. The US Environmental Protection Agency (EPA) has developed a two-tiered testing approach within its Endocrine Disruptor Screening Program (EDSP). The eleven Tier 1 and three Tier 2 EDSP assays can be used to identify chemicals that act as agonists or antagonists of estrogen receptor, androgen receptor, or thyroid hormone receptor, or chemicals that interfere with steroidogenesis. Additional assays have been developed in the context of Tox21, and others have been validated by the OECD. In spite of the availability of validated toxicity tests, problems have been identified with the approaches and methods used to identify endocrine disrupting chemicals (EDCs). This chapter will provide an overview of several of these issues including: (1) The way an EDC is defined by an agency impacts whether a specific test can be used to determine if a chemical is an EDC. This is especially important when considering which assays examine outcomes that are considered "adverse effects." (2) Some assumptions about the validated studies used to identify EDCs may not be true (e.g., their reproducibility has been questioned). (3) Many of the validated assays are less sensitive than other methods that have not yet been validated. Ultimately, these and other problems contribute to the current landscape, where testing approaches have failed to protect the public from known EDCs. The chapter concludes with a review of approaches that have been taken to improve current guideline studies.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
32
|
Torres-Sánchez A, Pardo-Cacho J, López-Moreno A, Ruiz-Moreno Á, Cerk K, Aguilera M. Antimicrobial Effects of Potential Probiotics of Bacillus spp. Isolated from Human Microbiota: In Vitro and In Silico Methods. Microorganisms 2021; 9:1615. [PMID: 34442694 PMCID: PMC8399655 DOI: 10.3390/microorganisms9081615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The variable taxa components of human gut microbiota seem to have an enormous biotechnological potential that is not yet well explored. To investigate the usefulness and applications of its biocompounds and/or bioactive substances would have a dual impact, allowing us to better understand the ecology of these microbiota consortia and to obtain resources for extended uses. Our research team has obtained a catalogue of isolated and typified strains from microbiota showing resistance to dietary contaminants and obesogens. Special attention was paid to cultivable Bacillus species as potential next-generation probiotics (NGP) together with their antimicrobial production and ecological impacts. The objective of the present work focused on bioinformatic genome data mining and phenotypic analyses for antimicrobial production. In silico methods were applied over the phylogenetically closest type strain genomes of the microbiota Bacillus spp. isolates and standardized antimicrobial production procedures were used. The main results showed partial and complete gene identification and presence of polyketide (PK) clusters on the whole genome sequences (WGS) analysed. Moreover, specific antimicrobial effects against B. cereus, B. circulans, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Serratia marcescens, Klebsiella spp., Pseudomonas spp., and Salmonella spp. confirmed their capacity of antimicrobial production. In conclusion, Bacillus strains isolated from human gut microbiota and taxonomic group, resistant to Bisphenols as xenobiotics type endocrine disruptors, showed parallel PKS biosynthesis and a phenotypic antimicrobial effect. This could modulate the composition of human gut microbiota and therefore its functionalities, becoming a predominant group when high contaminant exposure conditions are present.
Collapse
Affiliation(s)
- Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
| | - Jesús Pardo-Cacho
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs (IBS), 18012 Granada, Spain
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs (IBS), 18012 Granada, Spain
| |
Collapse
|
33
|
Kassotis CD, Trasande L. Endocrine disruptor global policy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:1-34. [PMID: 34452684 DOI: 10.1016/bs.apha.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past several decades, scientific consensus has grown around the concept and evidence for human health impacts from exposure to endocrine disrupting chemicals (EDCs). A series of publications have now demonstrated considerable economic costs of EDC exposure-induced adverse health outcomes. This research has suggested economic burdens in the hundreds of billions, even considering only a small subset of EDCs and health. As of yet, regulatory efforts and policies to protect and decrease human exposure to most EDCs have been insufficient and have not kept pace with the science. Given the overwhelming scientific evidence, referenced throughout this collection, as well as the economic costs of inaction, described here, regulations are clearly needed. The EU and some other countries have taken promising steps towards protective regulation of EDCs, though the response of the US and many other countries has been limited or altogether lacking. Regulatory bodies that have and continue to apply risk-based approaches to regulating EDCs have also failed to consider the complete economic impacts of EDC-related health impacts. In this chapter, we will discuss broad strategies taken to regulate EDCs, examine the approaches currently taken to regulate EDCs in a global context (discussing the strengths and weaknesses of these regulations), discuss the economic costs of EDC exposures (detailing where consideration of health and economic costs could improve regulations), and discuss next steps and novel approaches to adapting existing regulatory frameworks to this class of chemicals.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States.
| | - Leonardo Trasande
- Departments of Pediatrics, New York University School of Medicine, New York, NY, United States; Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States; Department of Population Health, New York University School of Medicine, New York, NY, United States; NYU College of Global Public Health, New York, NY, United States
| |
Collapse
|
34
|
Walker C, Garza S, Papadopoulos V, Culty M. Impact of endocrine-disrupting chemicals on steroidogenesis and consequences on testicular function. Mol Cell Endocrinol 2021; 527:111215. [PMID: 33657436 DOI: 10.1016/j.mce.2021.111215] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Testicular steroidogenesis is a tightly regulated process that produces the androgens important for the development, maintenance and function of the male reproductive system. These androgens are also essential for overall health, and well-being. Disruptions in the ability of the testis to form steroids can result in developmental abnormalities, dysfunction, and infertility. Endocrine-disrupting chemicals (EDCs) can interfere with the intricate signaling and metabolizing networks that produce androgens and promote their dysfunction. These chemicals are found ubiquitously in our environment, as they are integral components of products that are used every day. The effects of EDCs, such as bisphenols, phthalates, and alkyl chemicals, have been studied independently, revealing deleterious effects; but the combined influence of these structures on steroidogenesis has yet to be completely elucidated. This manuscript presents an updated review on EDC mixtures and their impact on testicular function and fertility, highlighting new findings that illustrate the anti-androgenic capabilities of EDC mixtures.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Vandenberg LN. Endocrine disrupting chemicals: strategies to protect present and future generations. Expert Rev Endocrinol Metab 2021; 16:135-146. [PMID: 33973826 DOI: 10.1080/17446651.2021.1917991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Endocrine-disrupting chemicals (EDCs) are chemicals that alter the actions of hormones. In the 21st Century, numerous expert groups of clinicians, scientists, and environmental activists have called for action to protect present and future generations from the harm induced by EDC exposures. These demands for regulatory responses come because of the strong weight of the evidence from epidemiology, wildlife, and controlled laboratory studies.Areas covered: In this review, we examine the conclusions drawn by experts from different scientific and medical disciplines. We also address several areas where recent findings or work has changed the landscape of EDC work including new approaches to identify and evaluate the evidence for EDCs using a key characteristics approach, the need to expand our understanding of vulnerable periods of development, and the increasing concern that traditional methods used to evaluate toxicity of environmental chemicals are insufficient for EDCs and how collaborative science could help to address these gaps.Expert opinion: The science is clear: there is more than enough evidence to demonstrate that EDCs affect the health of humans and wildlife. Waiting to act is a decision that puts the health of current and future generations at risk.
Collapse
Affiliation(s)
- Laura N Vandenberg
- School of Public Health & Health Sciences, Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA USA
| |
Collapse
|
36
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. Elucidation of the Effects of Bisphenol A and Structural Analogs on Germ and Steroidogenic Cells Using Single Cell High-Content Imaging. Toxicol Sci 2021; 180:224-238. [PMID: 33501994 DOI: 10.1093/toxsci/kfab012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Concerns about the potential adverse effects of bisphenol A (BPA) have led to an increase in the use of replacements, yet the toxicity data for several of these chemicals are limited. Using high-content imaging, we compared the effects of BPA, BPAF, BPF, BPS, BPM, and BPTMC in germ (C18-4 spermatogonial) and steroidogenic (MA-10 Leydig and KGN granulosa) cell lines. Effects on cell viability and phenotypic markers were analyzed to determine benchmark concentrations (BMCs) and estimate administered equivalent doses (AEDs). In all 3 cell lines, BPA was one of the least cytotoxic bisphenol compounds tested, whereas BPM and BPTMC were the most cytotoxic. Interestingly, BPF and BPS were cytotoxic only in MA-10 cells. Effects on phenotypic parameters, including mitochondria, lysosomes, lipid droplets, and oxidative stress, were both bisphenol- and cell-line specific. BPA exposure affected mitochondria (BMC: 1.2 μM; AED: 0.09 mg/kg/day) in C18-4 cells. Lysosome numbers were increased in MA-10 cells exposed to BPA or BPAF but decreased in KGN cells exposed to BPAF or BPM. Lipid droplets were decreased in C18-4 cells exposed to BPF and in MA-10 cells exposed to BPTMC but increased in BPF, BPM, and BPTMC-exposed KGN cells. BPA and BPM exposure induced oxidative stress in MA-10 and KGN cells, respectively. In summary, structurally similar bisphenols displayed clear cell-line-specific differences in BMC and AED values for effects on cell viability and phenotypic endpoints. This approach, together with additional data on human exposure, may aid in the selection and prioritization of responsible replacements for BPA. .
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
37
|
Sirot V, Rivière G, Leconte S, Leblanc JC, Kolf-Clauw M, Vasseur P, Cravedi JP, Hulin M. Infant total diet study in France: Exposure to substances migrating from food contact materials. ENVIRONMENT INTERNATIONAL 2021; 149:106393. [PMID: 33529853 DOI: 10.1016/j.envint.2021.106393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
A total diet study (TDS) was conducted in France to assess the health risks related to the chemicals in food of non-breastfed children under three years of age (Infant TDS). For the first time, substances coming from food contact materials, such as bisphenol A (BPA), bisphenol A diglycidyl ether (BADGE) and its derivatives, some phthalates, and some ink photoinitiators, were targeted because of growing interest in these substances. Food samples were collected to be representative of the whole diet of non-breastfed children aged 1-36 months, and prepared as consumed prior to analysis. Dietary exposure was assessed for 705 representative children under three years of age. Generally, the substances from food contact materials were detected in few samples: 38% for BPA, 0% for BADGE and its derivatives, 0-35% for phthalates, 1.9% for benzophenone, and 0% for the other ink photoinitiators. Regarding exposure levels, the situation was deemed tolerable for BADGE and its hydrolysis products, di-isodecyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2-ethylhexyl) phthalate, and di-isononyl phthalate, benzophenone, and 4-methylbenzophenone. Only for BPA, the exposure levels of some children exceeded the lowest toxicological value established by the French Agency for Food, Environmental and Occupational Health & Safety at 0.083 µg.kg bw-1.d-1. The temporary tolerable daily intake of the European Food Safety Authority (EFSA), set at 4 µg.kg bw-1.d-1, was never exceeded. However, actual exposure to BPA was probably overestimated, as well as the associated risk, because the foods were sampled prior to the recent regulations banning BPA in food packaging. This study is the first worldwide to provide an estimate of infant food contamination levels and exposures of children under 3 years of age, based on a TDS approach. It therefore provides key data on the exposure of this particularly sensitive population to substances released from food contact materials, and presents useful data for studies evaluating exposure to mixtures or aggregated exposure.
Collapse
Affiliation(s)
| | - Gilles Rivière
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | | | - Martine Kolf-Clauw
- CREFRE, Toulouse University, INSERM, Toulouse Veterinary School, 23 Chemin des Capelles, BP 87614, 310176 Toulouse Cedex 3, France
| | - Paule Vasseur
- University of Lorraine, CNRS, LIEC, 57070 Metz, France
| | - Jean-Pierre Cravedi
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marion Hulin
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| |
Collapse
|
38
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
39
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
40
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
41
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
42
|
Leung YK, Biesiada J, Govindarajah V, Ying J, Kendler A, Medvedovic M, Ho SM. Low-Dose Bisphenol A in a Rat Model of Endometrial Cancer: A CLARITY-BPA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127005. [PMID: 33296240 PMCID: PMC7725436 DOI: 10.1289/ehp6875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is known to be biologically active in experimental models even at low levels of exposure. However, its impact on endometrial cancer remains unclear. OBJECTIVES This study aimed to investigate whether lifelong exposure to different doses of BPA induced uterine abnormalities and molecular changes in a rat model. METHODS Sprague-Dawley rats were exposed to 5 doses of BPA [0, 25, 250, 2,500, or 25,000 μ g / kg body weight (BW)/d] or 2 doses of 17 α - ethynylestradiol (EE2) (0.05 and 0.5 μ g / kg BW/d) starting from gestational day 6 up to 1 y old according to the CLARITY-BPA consortium protocol. The BW, uterus weight, and histopathology end points of the uteri were analyzed at postnatal (PND) day 21, 90, and 365. Estrous cycling status was evaluated in PND90 and PND365 rats. Transcriptomic analyses of estrus stage uteri were conducted on PND365 rats. RESULTS Based on the analysis of the combined effects of all testing outcomes (including immunohistological, morphological, and estrous cycle data) in a semiblinded fashion, using statistical models, 25 μ g / kg BW/d BPA [BPA(25)], or 250 μ g / kg BW/d BPA [BPA(250)] exerted effects similar to that of EE2 at 0.5 μ g / kg BW/d in 1-y-old rats. Transcriptome analyses of estrus stage uteri revealed a set of 710 genes shared only between the BPA(25) and BPA(250) groups, with 115 of them predicted to be regulated by estradiol and 57 associated with female cancers. An interesting finding is that the expression of 476 human orthologous genes in this rat BPA signature robustly predicted the overall survival (p = 1.68 × 10 - 5 , hazard ratio = 2.62 ) of endometrial cancer patients. DISCUSSION Lifelong exposure of rats to low-dose BPA at 25 and 250 μ g / kg BW/d altered the estrous cycle and uterine pathology with similarity to EE2. The exposure also disrupted a unique low-dose BPA-gene signature with predictive value for survival outcomes in patients with endometrial cancer. https://doi.org/10.1289/EHP6875.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vinothini Govindarajah
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jun Ying
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
43
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
44
|
Rotondo E, Chiarelli F. Endocrine-Disrupting Chemicals and Insulin Resistance in Children. Biomedicines 2020; 8:E137. [PMID: 32481506 PMCID: PMC7344713 DOI: 10.3390/biomedicines8060137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
The purpose of this article is to review the evidence linking background exposure to endocrine-disrupting chemicals (EDCs) with insulin resistance in children. Although evidence in children is scarce since very few prospective studies exist even in adults, evidence that EDCs might be involved in the development of insulin resistance and related diseases such as obesity and diabetes is accumulating. We reviewed the literature on both cross-sectional and prospective studies in humans and experimental studies. Epidemiological studies show a statistical link between exposure to pesticides, polychlorinated bisphenyls, bisphenol A, phthalates, aromatic polycyclic hydrocarbides, or dioxins and insulin resistance.
Collapse
Affiliation(s)
- Eleonora Rotondo
- Department of Pediatrics, University of Chieti, I-66100 Chieti, Italy;
| | | |
Collapse
|
45
|
Vandenberg LN, Prins GS, Patisaul HB, Zoeller RT. The Use and Misuse of Historical Controls in Regulatory Toxicology: Lessons from the CLARITY-BPA Study. Endocrinology 2020; 161:5613539. [PMID: 31690949 PMCID: PMC7182062 DOI: 10.1210/endocr/bqz014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
For many endocrine-disrupting chemicals (EDCs) including Bisphenol A (BPA), animal studies show that environmentally relevant exposures cause harm; human studies are consistent with these findings. Yet, regulatory agencies charged with protecting public health continue to conclude that human exposures to these EDCs pose no risk. One reason for the disconnect between the scientific consensus on EDCs in the endocrinology community and the failure to act in the regulatory community is the dependence of the latter on so-called "guideline studies" to evaluate hazards, and the inability to incorporate independent scientific studies in risk assessment. The Consortium Linking Academic and Regulatory Insights on Toxicity (CLARITY) study was intended to bridge this gap, combining a "guideline" study with independent hypothesis-driven studies designed to be more appropriate to evaluate EDCs. Here we examined an aspect of "guideline" studies, the use of so-called "historical controls," which are essentially control data borrowed from prior studies to aid in the interpretation of current findings. The US Food and Drug Administration authors used historical controls to question the plausibility of statistically significant BPA-related effects in the CLARITY study. We examined the use of historical controls on 5 outcomes in the CLARITY "guideline" study: mammary neoplasms, pituitary neoplasms, kidney nephropathy, prostate inflammation and adenomas, and body weight. Using US Food and Drug Administration-proposed historical control data, our evaluation revealed that endpoints used in "guideline" studies are not as reproducible as previously held. Combined with other data comparing the effects of ethinyl estradiol in 2 "guideline" studies including CLARITY-BPA, we conclude that near-exclusive reliance on "guideline" studies can result in scientifically invalid conclusions.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts
- Correspondence: Laura N. Vandenberg, PhD, Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, 171C Goessmann, 686 North Pleasant Street, Amherst, Massachusetts 01003. E-mail:
| | - Gail S Prins
- Department of Urology, School of Medicine; Division of Epidemiology & Biostatistics, School of Public Health University of Illinois at Chicago, Chicago, Illinois
| | - Heather B Patisaul
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts–Amherst, Amherst, Massachusetts
| |
Collapse
|
46
|
Mentor A, Bornehag CG, Jönsson M, Mattsson A. A suggested bisphenol A metabolite (MBP) interfered with reproductive organ development in the chicken embryo while a human-relevant mixture of phthalate monoesters had no such effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:66-81. [PMID: 32077375 DOI: 10.1080/15287394.2020.1728598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) and phthalate diesters are ubiquitous environmental contaminants. While these compounds have been reported as reproductive toxicants, their effects may partially be attributed to metabolites. The aim of this study was to examine reproductive organ development in chicken embryos exposed to the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP; 100 µg/g egg) or a human-relevant mixture of 4 phthalate monoesters (85 µg/g egg). The mixture was designed within the EU project EDC-MixRisk based upon a negative association with anogenital distance in boys at 21 months of age in a Swedish pregnancy cohort. Chicken embryos were exposed in ovo from an initial stage of gonad differentiation (embryonic day 4) and dissected two days prior to anticipated hatching (embryonic day 19). No discernible effects were noted on reproductive organs in embryos exposed to the mixture. MBP-treated males exhibited retention of Müllerian ducts and feminization of the left testicle, while MBP-administered females displayed a diminished the left ovary. In the left testicle of MBP-treated males, mRNA expression of female-associated genes was upregulated while the testicular marker gene SOX9 was downregulated, corroborating a feminizing effect by MBP. Our results demonstrate that MBP, but not the phthalate monoester mixture, disrupts both male and female reproductive organ development in an avian embryo model.
Collapse
Affiliation(s)
- Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| |
Collapse
|