1
|
Zhang J, Vancea AI, Arold ST. Targeting plant UBX proteins: AI-enhanced lessons from distant cousins. TRENDS IN PLANT SCIENCE 2022; 27:1099-1108. [PMID: 35718708 DOI: 10.1016/j.tplants.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Across all eukaryotic kingdoms, ubiquitin regulatory X (UBX) domain-containing adaptor proteins control the segregase cell division control protein 48 (CDC48), and thereby also control cellular proteostasis and adaptation. The structures and biological roles of UBX proteins in animals and fungi have garnered considerable attention. However, their counterparts in plants remain markedly understudied. Since 2021, the artificial intelligence (AI)-based algorithm AlphaFold has provided predictions of protein structural features that can be highly accurate. Predictions of the proteomes of all major model organisms are now freely accessible to the entire research community through user-friendly web interfaces. We propose that the combination of cross-kingdom comparison with AF analysis produces a wealth of testable hypotheses to inspire and guide experimental research on plant UBX domain-containing (PUX) proteins.
Collapse
Affiliation(s)
- Junrui Zhang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Alexandra I Vancea
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
2
|
Mirzadeh A, Kobakhidze G, Vuillemot R, Jonic S, Rouiller I. In silico prediction, characterization, docking studies and molecular dynamics simulation of human p97 in complex with p37 cofactor. BMC Mol Cell Biol 2022; 23:39. [PMID: 36088301 PMCID: PMC9464413 DOI: 10.1186/s12860-022-00437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The AAA + ATPase p97 is an essential unfoldase/segragase involved in a multitude of cellular processes. It functions as a molecular machine critical for protein homeostasis, homotypic membrane fusion events and organelle biogenesis during mitosis in which it acts in concert with cofactors p47 and p37. Cofactors assist p97 in extracting and unfolding protein substrates through ATP hydrolysis. In contrast to other p97ʼs cofactors, p37 uniquely increases the ATPase activity of p97. Disease-causing mutations in p97, including mutations that cause neurodegenerative diseases, increase cofactor association with its N-domain, ATPase activity and improper substrate processing. Upregulation of p97 has also been observed in various cancers. This study aims towards the characterization of the protein–protein interaction between p97 and p37 at the atomic level. We defined the interacting residues in p97 and p37. The knowledge will facilitate the design of unique small molecules inhibiting this interaction with insights into cancer therapy and drug design.
Results
The homology model of human p37 UBX domain was built from the X-ray crystal structure of p47 C-terminus from rat (PDB code:1S3S, G) as a template and assessed by model validation analysis. According to the HDOCK, HAWKDOCK, MM-GBSA binding free energy calculations and Arpeggio, we found that there are several hydrophobic and two hydrogen-bonding interactions between p37 UBX and p97 N-D1 domain. Residues of p37 UBX predicted to be involved in the interactions with p97 N-D1 domain interface are highly conserved among UBX cofactors.
Conclusion
This study provides a reliable structural insight into the p37-p97 complex binding sites at the atomic level though molecular docking coupled with molecular dynamics simulation. This can guide the rational design of small molecule drugs for inhibiting mutant p97 activity.
Collapse
|
3
|
Zhang J, Vancea AI, Shahul Hameed UF, Arold ST. Versatile control of the CDC48 segregase by the plant UBX-containing (PUX) proteins. Comput Struct Biotechnol J 2021; 19:3125-3132. [PMID: 34141135 PMCID: PMC8181520 DOI: 10.1016/j.csbj.2021.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/26/2022] Open
Abstract
In plants, AAA-adenosine triphosphatase (ATPase) Cell Division Control Protein 48 (CDC48) uses the force generated through ATP hydrolysis to pull, extract, and unfold ubiquitylated or sumoylated proteins from the membrane, chromatin, or protein complexes. The resulting changes in protein or RNA content are an important means for plants to control protein homeostasis and thereby adapt to shifting environmental conditions. The activity and targeting of CDC48 are controlled by adaptor proteins, of which the plant ubiquitin regulatory X (UBX) domain-containing (PUX) proteins constitute the largest family. Emerging knowledge on the structure and function of PUX proteins highlights that these proteins are versatile factors for plant homeostasis and adaptation that might inspire biotechnological applications.
Collapse
Affiliation(s)
- Junrui Zhang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Alexandra I Vancea
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
4
|
An intrinsically disordered motif regulates the interaction between the p47 adaptor and the p97 AAA+ ATPase. Proc Natl Acad Sci U S A 2020; 117:26226-26236. [PMID: 33028677 DOI: 10.1073/pnas.2013920117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
VCP/p97, an enzyme critical to proteostasis, is regulated through interactions with protein adaptors targeting it to specific cellular tasks. One such adaptor, p47, forms a complex with p97 to direct lipid membrane remodeling. Here, we use NMR and other biophysical methods to study the structural dynamics of p47 and p47-p97 complexes. Disordered regions in p47 are shown to be critical in directing intra-p47 and p47-p97 interactions via a pair of previously unidentified linear motifs. One of these, an SHP domain, regulates p47 binding to p97 in a manner that depends on the nucleotide state of p97. NMR and electron cryomicroscopy data have been used as restraints in molecular dynamics trajectories to develop structural ensembles for p47-p97 complexes in adenosine diphosphate (ADP)- and adenosine triphosphate (ATP)-bound conformations, highlighting differences in interactions in the two states. Our study establishes the importance of intrinsically disordered regions in p47 for the formation of functional p47-p97 complexes.
Collapse
|
5
|
Wang XD, Zhao CS, Wang QL, Zeng Q, Feng XZ, Li L, Chen ZL, Gong Y, Han J, Li Y. The p38-interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1. EMBO Rep 2020; 21:e48035. [PMID: 32410369 DOI: 10.15252/embr.201948035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
Negative regulation of immunoreceptor signaling is required for preventing hyperimmune activation and maintaining immune homeostasis. The roles of p38IP in immunoreceptor signaling remain unclear. Here, we show that p38IP suppresses T-cell receptor (TCR)/LPS-activated NF-κB and p38 by targeting TAK1 kinase and that p38IP protein levels are downregulated in human PBMCs from rheumatoid arthritis (RA) patients, inversely correlating with the enhanced activity of NF-κB and p38. Mechanistically, p38IP interacts with TAK1 to disassemble the TAK1-TAB (TAK1-binding protein) complex. p38IP overexpression decreases TCR-induced binding of K63-linked polyubiquitin (polyUb) chains to TAK1 but increases that to TAB2, and p38IP knockdown shows the opposite effects, indicating unanchored K63-linked polyUb chain transfer from TAB2 to TAK1. p38IP dynamically interacts with TAK1 upon stimulation, because of the polyUb chain transfer and the higher binding affinity of TAK1 and p38IP for polyUb-bound TAB2 and TAK1, respectively. Moreover, p38IP scaffolds the deubiquitinase USP4 to deubiquitinate TAK1 once TAK1 is activated. These findings reveal a novel role and the mechanisms of p38IP in controlling TCR/LPS signaling and suggest that p38IP might participate in RA pathogenesis.
Collapse
Affiliation(s)
- Xu-Dong Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Zhi Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhi-Long Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Morrison EJ, Champagne DP, Dzieciatkowska M, Nemkov T, Zimring JC, Hansen KC, Guan F, Huffman DM, Santambrogio L, D'Alessandro A. Parabiosis Incompletely Reverses Aging-Induced Metabolic Changes and Oxidant Stress in Mouse Red Blood Cells. Nutrients 2019; 11:nu11061337. [PMID: 31207887 PMCID: PMC6627295 DOI: 10.3390/nu11061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the human body, but they are also exposed to all body tissues during their circulation in the bloodstream. In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging and age-related oxidant stress without the confounding factor of gene expression. In the present study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry (UHPLC–MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male mice (6, 15, and 25 months old). We report that RBCs from aging mice face a progressive decline in the capacity to cope with oxidant stress through the glutathione/NADPH-dependent antioxidant systems. Oxidant stress to tryptophan and purines was accompanied by declines in late glycolysis and methyl-group donors, a potential compensatory mechanism to repair oxidatively damaged proteins. Moreover, heterochronic parabiosis experiments demonstrated that the young environment only partially rescued the alterations in one-carbon metabolism in old mice, although it had minimal to no impact on glutathione homeostasis, the pentose phosphate pathway, and oxidation of purines and tryptophan, which were instead aggravated in old heterochronic parabionts.
Collapse
Affiliation(s)
- Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Devin P Champagne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Fangxia Guan
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Derek M Huffman
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Laura Santambrogio
- Department of Pathology, Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
- Department of Medicine-Division of Hematology, University of Colorado Denver-Anschutz Medical Campus, 12469 East 17th Ave RC2, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Ubiquitin-Independent Disassembly by a p97 AAA-ATPase Complex Drives PP1 Holoenzyme Formation. Mol Cell 2018; 72:766-777.e6. [PMID: 30344098 DOI: 10.1016/j.molcel.2018.09.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The functional diversity of protein phosphatase-1 (PP1), with its countless substrates, relies on the ordered assembly of alternative PP1 holoenzymes. Here, we show that newly synthesized PP1 is first held by its partners SDS22 and inhibitor-3 (I3) in an inactive complex, which needs to be disassembled by the p97 AAA-ATPase to promote exchange to substrate specifiers. Unlike p97-mediated degradative processes that require the Ufd1-Npl4 ubiquitin adapters, p97 is targeted to PP1 by p37 and related adapter proteins. Reconstitution with purified components revealed direct interaction of the p37 SEP domain with I3 without the need for ubiquitination, and ATP-driven pulling of I3 into the central channel of the p97 hexamer, which triggers dissociation of I3 and SDS22. Thus, we establish regulatory ubiquitin-independent protein complex disassembly as part of the functional arsenal of p97 and define an unanticipated essential step in PP1 biogenesis that illustrates the molecular challenges of ordered subunit exchange.
Collapse
|
8
|
Rezvani K. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer. Int J Mol Sci 2016; 17:ijms17101724. [PMID: 27754413 PMCID: PMC5085755 DOI: 10.3390/ijms17101724] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 12/15/2022] Open
Abstract
The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.
Collapse
Affiliation(s)
- Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA.
| |
Collapse
|
9
|
Malik N, Kumar A. Resonance assignment of disordered protein with repetitive and overlapping sequence using combinatorial approach reveals initial structural propensities and local restrictions in the denatured state. JOURNAL OF BIOMOLECULAR NMR 2016; 66:21-35. [PMID: 27586017 DOI: 10.1007/s10858-016-0054-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
NMR resonance assignment of intrinsically disordered proteins poses a challenge because of the limited dispersion of amide proton chemical shifts. This becomes even more complex with the increase in the size of the system. Residue specific selective labeling/unlabeling experiments have been used to resolve the overlap, but require multiple sample preparations. Here, we demonstrate an assignment strategy requiring only a single sample of uniformly labeled (13)C,(15)N-protein. We have used a combinatorial approach, involving 3D-HNN, CC(CO)NH and 2D-MUSIC, which allowed us to assign a denatured centromeric protein Cse4 of 229 residues. Further, we show that even the less sensitive experiments, when used in an efficient manner can lead to the complete assignment of a complex system without the use of specialized probes in a relatively short time frame. The assignment of the amino acids discloses the presence of local structural propensities even in the denatured state accompanied by restricted motion in certain regions that provides insights into the early folding events of the protein.
Collapse
Affiliation(s)
- Nikita Malik
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashutosh Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
10
|
Sane S, Abdullah A, Nelson ME, Wang H, Chauhan SC, Newton SS, Rezvani K. Structural studies of UBXN2A and mortalin interaction and the putative role of silenced UBXN2A in preventing response to chemotherapy. Cell Stress Chaperones 2016; 21:313-26. [PMID: 26634371 PMCID: PMC4786526 DOI: 10.1007/s12192-015-0661-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022] Open
Abstract
Overexpression of the oncoprotein mortalin in cancer cells and its protein partners enables mortalin to promote multiple oncogenic signaling pathways and effectively antagonize chemotherapy-induced cell death. A UBX-domain-containing protein, UBXN2A, acts as a potential mortalin inhibitor. This current study determines whether UBXN2A effectively binds to and occupies mortalin's binding pocket, resulting in a direct improvement in the tumor's sensitivity to chemotherapy. Molecular modeling of human mortalin's binding pocket and its binding to the SEP domain of UBXN2A followed by yeast two-hybrid and His-tag pull-down assays revealed that three amino acids (PRO442, ILE558, and LYS555) within the substrate-binding domain of mortalin are crucial for UBXN2A binding to mortalin. As revealed by chase experiments in the presence of cycloheximide, overexpression of UBXN2A seems to interfere with the mortalin-CHIP E3 ubiquitin ligase and consequently suppresses the C-terminus of the HSC70-interacting protein (CHIP)-mediated destabilization of p53, resulting in its stabilization in the cytoplasm and upregulation in the nucleus. Overexpression of UBXN2A causes a significant inhibition of cell proliferation and the migration of colon cancer cells. We silenced UBXN2A in the human osteosarcoma U2OS cell line, an enriched mortalin cancer cell, followed by a clinical dosage of the chemotherapeutic agent 5-fluorouracil (5-FU). The UBXN2A knockout U2OS cells revealed that UBXNA is essential for the cytotoxic effect achieved by 5-FU. UBXN2A overexpression markedly increased the apoptotic response of U2OS cells to the 5-FU. In addition, silencing of UBXN2A protein suppresses apoptosis enhanced by UBXN2A overexpression in U2OS. The knowledge gained from this study provides insights into the mechanistic role of UBXN2A as a potent mortalin inhibitor and as a potential chemotherapy sensitizer for clinical application.
Collapse
Affiliation(s)
- Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Ammara Abdullah
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Morgan E Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, 57069, USA.
| |
Collapse
|
11
|
Zhang X, Gui L, Zhang X, Bulfer SL, Sanghez V, Wong DE, Lee Y, Lehmann L, Lee JS, Shih PY, Lin HJ, Iacovino M, Weihl CC, Arkin MR, Wang Y, Chou TF. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc Natl Acad Sci U S A 2015; 112:E1705-14. [PMID: 25775548 PMCID: PMC4394316 DOI: 10.1073/pnas.1418820112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dominant mutations in p97/VCP (valosin-containing protein) cause a rare multisystem degenerative disease with varied phenotypes that include inclusion body myopathy, Paget's disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. p97 disease mutants have altered N-domain conformations, elevated ATPase activity, and altered cofactor association. We have now discovered a previously unidentified disease-relevant functional property of p97 by identifying how the cofactors p37 and p47 regulate p97 ATPase activity. We define p37 as, to our knowledge, the first known p97-activating cofactor, which enhances the catalytic efficiency (kcat/Km) of p97 by 11-fold. Whereas both p37 and p47 decrease the Km of ATP in p97, p37 increases the kcat of p97. In contrast, regulation by p47 is biphasic, with decreased kcat at low levels but increased kcat at higher levels. By deleting a region of p47 that lacks homology to p37 (amino acids 69-92), we changed p47 from an inhibitory cofactor to an activating cofactor, similar to p37. Our data suggest that cofactors regulate p97 ATPase activity by binding to the N domain. Induced conformation changes affect ADP/ATP binding at the D1 domain, which in turn controls ATPase cycling. Most importantly, we found that the D2 domain of disease mutants failed to be activated by p37 or p47. Our results show that cofactors play a critical role in controlling p97 ATPase activity, and suggest that lack of cofactor-regulated communication may contribute to p97-associated disease pathogenesis.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502; College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Lin Gui
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502; College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048
| | - Stacie L Bulfer
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Valentina Sanghez
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - Daniel E Wong
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - YouJin Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Lynn Lehmann
- NanoTemper Technologies, Inc., South San Francisco, CA 94080
| | - James Siho Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Pei-Yin Shih
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Henry J Lin
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - Michelina Iacovino
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502;
| |
Collapse
|
12
|
Rezvani K, Teng Y, Pan Y, Dani JA, Lindstrom J, García Gras EA, McIntosh JM, De Biasi M. UBXD4, a UBX-containing protein, regulates the cell surface number and stability of alpha3-containing nicotinic acetylcholine receptors. J Neurosci 2009; 29:6883-96. [PMID: 19474315 PMCID: PMC2935801 DOI: 10.1523/jneurosci.4723-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 04/02/2009] [Accepted: 04/13/2009] [Indexed: 01/11/2023] Open
Abstract
Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the alpha3 and alpha4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with alpha3-containing nAChRs (alpha3* nAChRs) expressed in HEK293 cells, PC12 cells, and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the alpha3beta2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining, and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of alpha3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the alpha3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of alpha3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the alpha3 subunit and, consequently, the number of receptors at the cell surface.
Collapse
Affiliation(s)
| | | | | | - John A. Dani
- Department of Neuroscience and
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104
| | - Eduardo A. García Gras
- Centro de Salud y Medio Ambiente, Escuela de Ciencia y Tecnologia, Universidad de General San Martin, 1650 San Martin, Provincia de Buenos Aires, Argentina, and
| | - J. Michael McIntosh
- Departments of Psychiatry and
- Biology, University of Utah, Salt Lake City, Utah 84112
| | - Mariella De Biasi
- Department of Neuroscience and
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
13
|
Pye VE, Beuron F, Keetch CA, McKeown C, Robinson CV, Meyer HH, Zhang X, Freemont PS. Structural insights into the p97-Ufd1-Npl4 complex. Proc Natl Acad Sci U S A 2007; 104:467-72. [PMID: 17202270 PMCID: PMC1761865 DOI: 10.1073/pnas.0603408104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p97/VCP (Cdc48 in yeast) is an essential and abundant member of the AAA+ family of ATPases and is involved in a number of diverse cellular pathways through interactions with different adaptor proteins. The two most characterized adaptors for p97 are p47 and the Ufd1 (ubiquitin fusion degradation 1)-Npl4 (nuclear protein localization 4) complex. p47 directs p97 to membrane fusion events and has been shown to be involved in protein degradation. The Ufd1-Npl4 complex directs p97 to an essential role in endoplasmic reticulum-associated degradation and an important role in mitotic spindle disassembly postmitosis. Here we describe the structural features of the Ufd1-Npl4 complex and its interaction with p97 with the aid of EM and other biophysical techniques. The Ufd1-Npl4 heterodimer has an elongated bilobed structure that is approximately 80 x 30 A in dimension. One Ufd1-Npl4 heterodimer is shown to interact with one p97 hexamer to form the p97-Ufd1-Npl4 complex. The Ufd1-Npl4 heterodimer emanates from one region on the periphery of the N-D1 plane of the p97 hexamer. Intriguingly, the p97-p47 and the p97-Ufd1-Npl4 complexes are significantly different in stoichiometry, symmetry, and quaternary arrangement, reflecting their specific actions and their ability to interact with additional cofactors that cooperate with p97 in diverse cellular pathways.
Collapse
Affiliation(s)
- Valerie E. Pye
- *Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fabienne Beuron
- *Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Catherine A. Keetch
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; and
| | - Ciaran McKeown
- *Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; and
| | - Hemmo H. Meyer
- Institute of Biochemistry, Eidgenössiche Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Xiaodong Zhang
- *Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- To whom correspondence may be addressed. E-mail:
or
| | - Paul S. Freemont
- *Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
14
|
Beuron F, Dreveny I, Yuan X, Pye VE, Mckeown C, Briggs LC, Cliff MJ, Kaneko Y, Wallis R, Isaacson RL, Ladbury JE, Matthews SJ, Kondo H, Zhang X, Freemont PS. Conformational changes in the AAA ATPase p97-p47 adaptor complex. EMBO J 2006; 25:1967-76. [PMID: 16601695 PMCID: PMC1456939 DOI: 10.1038/sj.emboj.7601055] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 02/27/2006] [Indexed: 11/08/2022] Open
Abstract
The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at approximately 20 Angstroms resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes.
Collapse
Affiliation(s)
- Fabienne Beuron
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Ingrid Dreveny
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Xuemei Yuan
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Valerie E Pye
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Ciaran Mckeown
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Louise C Briggs
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Matthew J Cliff
- Department of Biochemistry and Molecular Biology, University College London, London, UK
| | - Yayoi Kaneko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- PRESTO and SORST, Japan Science and Technology Corporation, Japan
| | - Russell Wallis
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Infection, Immunity, and Inflammation, Medical Research Council Immunochemistry Unit, University of Leicester, Leicester, UK
| | - Rivka L Isaacson
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - John E Ladbury
- Department of Biochemistry and Molecular Biology, University College London, London, UK
| | - Steve J Matthews
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Hisao Kondo
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- PRESTO and SORST, Japan Science and Technology Corporation, Japan
| | - Xiaodong Zhang
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | - Paul S Freemont
- Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| |
Collapse
|
15
|
Büssow K, Scheich C, Sievert V, Harttig U, Schultz J, Simon B, Bork P, Lehrach H, Heinemann U. Structural genomics of human proteins--target selection and generation of a public catalogue of expression clones. Microb Cell Fact 2005; 4:21. [PMID: 15998469 PMCID: PMC1250228 DOI: 10.1186/1475-2859-4-21] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/05/2005] [Indexed: 11/12/2022] Open
Abstract
Background The availability of suitable recombinant protein is still a major bottleneck in protein structure analysis. The Protein Structure Factory, part of the international structural genomics initiative, targets human proteins for structure determination. It has implemented high throughput procedures for all steps from cloning to structure calculation. This article describes the selection of human target proteins for structure analysis, our high throughput cloning strategy, and the expression of human proteins in Escherichia coli host cells. Results and Conclusion Protein expression and sequence data of 1414 E. coli expression clones representing 537 different proteins are presented. 139 human proteins (18%) could be expressed and purified in soluble form and with the expected size. All E. coli expression clones are publicly available to facilitate further functional characterisation of this set of human proteins.
Collapse
Affiliation(s)
- Konrad Büssow
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Christoph Scheich
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Volker Sievert
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Ulrich Harttig
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- RZPD German Resource Center for Genome Research GmbH, Heubnerweg 6, 14059 Berlin, Germany
- DIFE, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - Jörg Schultz
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Simon
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Peer Bork
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Hans Lehrach
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Udo Heinemann
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13092 Berlin, Germany
- Institut für Chemie/Kristallographie, Freie Universität, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|