1
|
Alam T, Din SU, Abdullah M, Ali M, Badshah M, Farman M, Khan S, Hasan F, Shah AA. Bioactive Metabolites from Radioresistant Bacterium Kocuria sp. TMM 11 and Their Role in Prevention of Ultraviolet-Induced Photodamages. Curr Microbiol 2025; 82:243. [PMID: 40232526 DOI: 10.1007/s00284-025-04194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025]
Abstract
A radioresistant bacterium identified as Kocuria sp.TMM 11 was isolated from Thal desert. Kocuria sp.TMM11 demonstrated resistance (57.3% survival rate) to an ultraviolet B radiations dose of 4.1 × 103 J/m2, 61.5% survival rate to hydrogen peroxide (60 mM) and 57.1% survivability to mitomycin C (6 μg/mL). An orange carotenoid pigment from strain TMM 11 was extracted using solvent mixture of methanol, ethyl acetate and acetone (7:5:3), subsequently purified using C18 cartridge column. The purified fraction was analyzed by liquid chromatography mass spectrometry and compounds identified were rhodovibrin, phytoene, 4'-Hydroxy-4,4'-diaponeurosporene-4-oic acid and 3,4,3',4'-Tetrahydrospirilloxanthin. The purified fraction with mixture of carotenoid compounds, was evaluated for its antioxidant activity, total flavonoids, phenolic content and radio protective potential. These assessments were conducted in relation to its ability to prevent protein and lipids oxidation, as well as DNA strand breaks in vitro. The fraction showed strong antioxidant activity, as indicated by its ability to scavenge super oxides, with an IC50 value of 50.8 μg/mL. Additionally, it displayed 75.76% iron chelation activity. The purified fraction strongly inhibited oxidative damage to proteins and lipids, comparable to the activity of standard ascorbic acid. The total phenolic and flavonoid contents in extract were measured 11.6 and 9.8 μg in terms of gallic acid and quercetin equivalents per milligram of dried mass. Hence, it is concluded that the carotenoid mixture from Kocuria sp.TMM 11 not only inhibited DNA strands from UV mediated photo damages but also protected lipid and protein peroxidation and therefore could be a good candidate in radio protective drugs and as sunscreen.
Collapse
Affiliation(s)
- Tayyaba Alam
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Salah Ud Din
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Abdullah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mahwish Ali
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Farman
- Department of Chemistry, Faculty of Natural Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Wang H, Liu K, Zeng W, Bai J, Xiao L, Qin Y, Liu Y, Xu X. Pyrroroquinoline Quinone (PQQ) Improves the Quality of Holstein Bull Semen during Cryopreservation. Animals (Basel) 2024; 14:2940. [PMID: 39457870 PMCID: PMC11503688 DOI: 10.3390/ani14202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cryopreserved semen is extensively utilized in the artificial insemination (AI) of domestic animals; however, suboptimal conception rates due to oxidative damage following AI continue to pose a challenge. The present study investigated the effects of Pyrroroquinoline Quinone (PQQ), a novel antioxidant, on the semen quality of Holstein bulls during cryopreservation, as well as its potential molecular mechanisms. Semen samples were diluted with varying concentrations of PQQ (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) prior to cryopreservation. Following the freeze-thaw process, a comprehensive evaluation was conducted to assess sperm motility, plasma membrane integrity, acrosome integrity, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and adenosine triphosphate (ATP). Western blot analysis was employed to examine the levels of proteins including PGAM2, CAPZB, CAT, SOD1, and GPX1. Notably, the inclusion of 100 μmol/L PQQ significantly enhanced sperm motility, membrane integrity, and acrosome integrity post freeze-thawing (p < 0.05). Furthermore, the group treated with 100 μmol/L PQQ exhibited reduced levels of MDA and ROS (p < 0.05), while ATP levels were significantly elevated (p < 0.05). Interestingly, treatment with 100 μmol/L PQQ resulted in decreased consumption of PGAM2, CAPZB, CAT, SOD1, and GPX1 proteins in sperm after freeze-thawing, compared to the control group (p < 0.05). These findings indicate that PQQ treatment enhances the quality of bull semen, mitigates oxidative stress damage, and ultimately improves the efficacy of sperm cryopreservation.
Collapse
Affiliation(s)
- Hai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.W.); (K.L.); (J.B.); (L.X.); (Y.Q.)
| |
Collapse
|
3
|
Lu Z, Jiang H, Yang D, Tang H, Hamouda HI, Wang T, Mao X. Characterization of a λ-Carrageenase Mutant with the Generation of Long-Chain λ-Neocarrageenan Oligosaccharides. Foods 2024; 13:1923. [PMID: 38928863 PMCID: PMC11202985 DOI: 10.3390/foods13121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
λ-carrageenan oligosaccharides can be widely applied in the food, pharmaceutical, medicine and cosmetic industries due to their abundant bioactivities, and they are important products for the high-value utilization of λ-carrageenan. However, oligosaccharides with different degrees of polymerization have different properties, and the final products of λ-carrageenase reported so far are mainly λ-neocarrabiose, λ-neocarratetraose and λ-neocarrahexaose without longer-chain oligosaccharides. Further research is consequently required. Herein, a mutant λ-carrageenase was constructed by deleting the pyrroloquinoline quinone-like domain of OUC-CglA derived from Maribacter vaceletii. Interestingly, it was discovered that the majority of final products of the mutant OUC-CglA-DPQQ were long-chain oligosaccharides with a polymerization degree of 10-20, which underwent significant changes compared to that of OUC-CglA. Additionally, without the pyrroloquinoline quinone-like domain, fewer inclusion bodies were produced throughout the expression process, and the yield of the λ-carrageenase increased about five-fold. However, compared to its parental enzyme, significant changes were made to its enzymatic properties. Its optimal temperature and pH were 15 °C and pH 7.0, and its specific activity was 51.59 U/mg. The stability of the enzyme decreased. Thus, it was found that the deleting domain was related to the formation of inclusion bodies, the stability of the enzyme, the activity of the enzyme and the composition of the products.
Collapse
Affiliation(s)
- Zewei Lu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Dianqi Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengxin Tang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hamed I. Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tao Wang
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
4
|
Misra HS, Rajpurohit YS. DNA damage response and cell cycle regulation in bacteria: a twist around the paradigm. Front Microbiol 2024; 15:1389074. [PMID: 38605710 PMCID: PMC11007091 DOI: 10.3389/fmicb.2024.1389074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Hari Sharan Misra
- School of Sciences, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
5
|
Sharma DK, Soni I, Misra HS, Rajpurohit YS. Natural transformation-specific DprA coordinate DNA double-strand break repair pathways in heavily irradiated D. radiodurans. Appl Environ Microbiol 2024; 90:e0194823. [PMID: 38193676 PMCID: PMC10880594 DOI: 10.1128/aem.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
6
|
Jia F, Peng X, Yang X, Qiu S, Jia S, Ran T, Wang W, Xu D. PqqF inhibits T6SS secretion by decreasing the pH in Serratia marcescens FS14. FEMS Microbiol Lett 2024; 371:fnae047. [PMID: 38908910 DOI: 10.1093/femsle/fnae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/24/2024] Open
Abstract
Pyrroloquinoline quinone (PQQ) is a redox cofactor with numerous important physiological functions, and the type VI secretion system (T6SS) is commonly found in Gram-negative bacteria and plays important roles in physiological metabolism of the bacteria. In this study, we found that the deletion of pqqF enhanced the secretion of Hcp-1 in Serratia marcesens FS14 in M9 medium. Transcriptional analysis showed that the deletion of pqqF almost had no effect on the expression of T6SS-1. Further study revealed that the increased secretion of Hcp-1 was altered by the pH changes of the culture medium through the reaction catalyzed by the glucose dehydrogenases in FS14. Finally, we demonstrated that decreased pH of culture medium has similar inhibition effects as PQQ induced on the secretion of T6SS-1. This regulation mode on T6SS by pH in FS14 is different from previously reported in other bacteria. Therefore, our results suggest a novel pH regulation mode of T6SS in S. marcesens FS14, and would broaden our knowledge on the regulation of T6SS secretion.
Collapse
Affiliation(s)
- Fengyu Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xuede Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiaomei Yang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shenshen Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shanshan Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Dongqing Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
7
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Makhijani K, Kumbhare LB, Nayak M, Kunwar A, Singh BG. Bis(1-methylimidazol-2-yl) diselenide and its evaluation as a chemical radio-protector: role of kinetic rate constants for ROS scavenging and glutathione peroxidase like activity. Free Radic Res 2024; 58:43-56. [PMID: 38165076 DOI: 10.1080/10715762.2023.2299341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Bis(1-methylimidazol-2-yl) diselenide (MeImSe), a derivative of selenoneine, has been examined for bimolecular rate constants for scavenging of various radiolytically and non-radiolytically generated reactive oxygen species (ROS). Further, its potential to show glutathione peroxidase (GPx)-like activity and to protect in vitro models of DNA and lipid against radiation induced strand breakage and lipid peroxidation, respectively were studied. The results confirmed that MeImSe scavenged all major short-lived (hydroxyl radical) and long-lived (peroxyl radical, carbonate radical, nitrogen dioxide radical, hypochlorite and hydrogen peroxide) oxidants involved in the radiation toxicity either directly or through GPx-like catalytic mechanism. The rate constants of MeImSe for these oxidants were found to be comparable to analogous sulfur and selenium-based compounds. The enzyme kinetics study established that MeImSe took part in the GPx cycle through the reductive pathway. Further, MeImSe inhibited the radiation induced DNA strand cleavage and lipid peroxidation with half maximal inhibitory concentration (IC50) of ∼ 60 μM and ∼100 μM, respectively. Interestingly, MeImSe treatment in the above concentration range (>100 μM) did not show any significant toxicity in normal human lung fibroblast (WI26) cells. The balance between efficacy and toxicity of MeImSe as a chemical radioprotector was attributed to the formation of less reactive intermediates during its oxidation/reduction reactions as evidenced from NMR studies.HighlightsMeImSe, a derivative of selenoneine protects DNA and lipid from radiation damageMeImSe scavenges all major short- and long-lived oxidants involved in radiation toxicityRate constants of MeImSe for ROS scavenging determined by pulse radiolysis techniqueFirst organoselenium compound reported to scavenge nitrogen dioxide radicalMeImSe exhibits GPx-like activity through reductive pathway.
Collapse
Affiliation(s)
- K Makhijani
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - L B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - M Nayak
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
9
|
De Mandal S, Srinivasan S, Jeon J. Complete genome sequence of Deinococcus rubellus Ant6 isolated from the fish muscle in the Antarctic Ocean. Front Bioeng Biotechnol 2023; 11:1257705. [PMID: 37908375 PMCID: PMC10614293 DOI: 10.3389/fbioe.2023.1257705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Surajit De Mandal
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
11
|
You X, Liu S, Berns-Herrboldt EC, Dai C, Werth CJ. Kinetics of Hydroxyl Radical Production from Oxygenation of Reduced Iron Minerals and Their Reactivity with Trichloroethene: Effects of Iron Amounts, Iron Species, and Sulfate Reducing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4892-4904. [PMID: 36921080 DOI: 10.1021/acs.est.3c00122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Reactive oxygen species generated during the oxygenation of different ferrous species have been documented at groundwater field sites, but their effect on pollutant destruction remains an open question. To address this knowledge gap, a kinetic model was developed to probe mechanisms of •OH production and reactivity with trichloroethene (TCE) and competing species in the presence of reduced iron minerals (RIM) and oxygen in batch experiments. RIM slurries were formed by combining different amounts of Fe(II) and sulfide (with Fe(II):S ratios from 1:1 to 50:1) or Fe(II) and sulfate with sulfate reducing bacteria (SRB) added. Extents of TCE oxidation and •OH production were both greater with RIM prepared under more reducing conditions (more added Fe(II)) and then amended with O2. Kinetic rate constants from modeling indicate that •OH production from free Fe(II) dominates •OH production from solid Fe(II) and that TCE competes for •OH with Fe(II) and organic matter (OM). Competition with OM only occurs in experiments with SRB, which include cells and their exudates. Experimental results indicate that cells and/or exudates also provide electron equivalents to reform Fe(II) from oxidized RIM. Our work provides new insights into mechanisms and environmental significance of TCE oxidation by •OH produced from oxygenation of RIM. However, further work is necessary to confirm the relative importance of reaction pathways identified here and to probe potentially unaccounted for mechanisms that affect abiotic TCE oxidation in natural systems.
Collapse
Affiliation(s)
- Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, Texas 78712, United States
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- The Yangtze River Water Environment Key Laboratory of the Ministry of Education, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Erin C Berns-Herrboldt
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, Texas 78712, United States
| | - Chaomeng Dai
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Insights into Pyrroloquinoline Quinone (PQQ) Effects on Soil Nutrients and Pathogens from Pepper Monocropping Soil under Anaerobic and Aerobic Conditions. Microbiol Spectr 2022; 10:e0093322. [PMID: 35852313 PMCID: PMC9430733 DOI: 10.1128/spectrum.00933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Imbalances of soil available nutrients and soilborne diseases have seriously restricted the productivity of crops and jeopardized food security worldwide. Pyrroloquinoline quinone (PQQ), a redox cofactor in some bacteria involved in glucose metabolism and phosphorus mineralization, could be anticipated to alter soil ecosystems to a certain extent. However, there is limited information on PQQ defending soilborne pathogens and regulating soil main nutrients. Here, a pot experiment based on mono-cropping soils of pepper was conducted to examine the effects of PQQ amendment on reconstructing soil microbial communities and soil nutrients under aerobic/anaerobic conditions comprising three treatments, namely, control, PQQ (aerobic), and FL-PQQ (anaerobic). The results revealed that soil microbial community composition and soil nutrients were distinctly altered by PQQ regimes. Compared to control, PQQ treatment significantly increased the content of soil available phosphorus (AP), while FL_PQQ treatment strongly improved the content of soil available nitrogen (AN). In terms of pathogens, relative to control, both PQQ treatments suppressed the abundances of pathogens, of which FL_PQQ treatment significantly decreased the abundance of the pathotrophic fungal by 64% and the abundance of Fusarium oxysporum by 57%, largely attributed to the increase of organic acid generators (Oxobacter, Hydrogenispora) and potential antagonists (Bacillus, Talaromyces). Structural equation modeling (SEM) showed that PQQ regimes suppressed pathogens by indirectly regulating soil physicochemical properties and microbial communities. Overall, we proposed that PQQ application both in aerobic/anaerobic conditions could improve soil available nutrients and suppress soil pathogens in pepper monocropping soils. IMPORTANCE The attention to PQQ (pyrroloquinoline quinone) effect on soil nutrients and pathogens was less paid in monocropping soils. However, the underlying microbial interacting mechanism remains unclear. Adopting a novel external bio-additive, the effects of PQQ on soil main nutrients and the pathotrophic fungal under aerobic and anaerobic regimes will be investigated, which would help to improve soil quality health. Our main conclusion was that PQQ would help to remediate monocropping obstacle soils in terms of soil nutrients and soil pathogens by associating with the microbial community, and anaerobic PQQ application more favored amelioration of continuous obstacle soils. These results will benefit the health and sustainable development of pepper production as well as other greenhouse vegetable production.
Collapse
|
13
|
Tian S, Liu Y, Jia L, Tian L, Qi J, Ma J, Wen G, Wang L. Insight into the oxidation of phenolic pollutants by enhanced permanganate with biochar: The role of high-valent manganese intermediate species. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128460. [PMID: 35180522 DOI: 10.1016/j.jhazmat.2022.128460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This work demonstrated that the oxidation of phenolic pollutants by permanganate (KMnO4) was effectively enhanced by a commercial biochar. Detailed characterization data indicated that the biochar contains porous structures, amounts of defective sites and abundant redox-active groups. In the presence of biochar, the degradation efficiency of 4-nitrophenol by KMnO4 surged from 5% to 92% in 180 min, up to 37.8% of total organic carbon (TOC) was removed. Meanwhile, acute toxicity of 4-nitrophenol was greatly reduced. Through analyzing oxidation products of triclosan (TCS) and using methyl phenyl sulfoxide (PMSO) as a chemical probe, high-valent Mn intermediates (i.e. Mn(VI)/Mn(V)) were proved to be the dominant oxidant in the KMnO4/biochar system. Quantitative structure-activity relationships (QSARs) were established between oxidation rate constants of various substituted phenols and classical descriptor variables (i.e., Hammett constant σ+). KMnO4/biochar was found to be less selective to the substituent variation of phenolic compounds compared with O3, K2FeO4, ClO2 and persulfate/carbon nanotube (PDS/CNT). This work provided a novel catalytic oxidation technology for eliminating phenolic compounds, and improved insights into the mechanistic study of the KMnO4-based oxidation process.
Collapse
Affiliation(s)
- Shiqi Tian
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Linran Jia
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, ĪSingapore
| | - Liquan Tian
- Hebei Safety Technology Center for Radiation Environment, Shijiazhuang 050051, PR China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
14
|
Pyrroloquinoline quinone (PQQ) protects mitochondrial function of HEI-OC1 cells under premature senescence. NPJ AGING 2022; 8:3. [PMID: 35927260 PMCID: PMC9158787 DOI: 10.1038/s41514-022-00083-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effects of pyrroloquinoline quinone (PQQ), an oxidoreductase cofactor, on the H2O2-induced premature senescence model in HEI-OC1 auditory cells and to elucidate its mechanism of action in vitro. Cells were treated with PQQ for 1 day before H2O2 (100 μM) exposure. Mitochondrial respiratory capacity was damaged in this premature senescence model but was restored in cells pretreated with PQQ (0.1 nM or 1.0 nM). A decrease in mitochondrial potential, the promotion of mitochondrial fusion and the accelerated movement of mitochondria were all observed in PQQ-pretreated cells. The protein expression of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) were significantly decreased under H2O2 exposure while they were increased with PQQ pretreatment, and PGC-1α acetylation was significantly decreased. In conclusion, PQQ has a protective effect on the premature senescence model of HEI-OC1 auditory cells and is associated with the SIRT1/PGC-1α signaling pathway, mitochondrial structure, and mitochondrial respiratory capacity.
Collapse
|
15
|
Abstract
Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus. Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>105 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus. We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems.
Collapse
|
16
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
17
|
Basu B. The radiophiles of Deinococcaceae family: Resourceful microbes for innovative biotechnological applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100153. [PMID: 35909625 PMCID: PMC9325910 DOI: 10.1016/j.crmicr.2022.100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author.
| |
Collapse
|
18
|
Rajpurohit YS, Sharma DK, Misra HS. Involvement of Serine / Threonine protein kinases in DNA damage response and cell division in bacteria. Res Microbiol 2021; 173:103883. [PMID: 34624492 DOI: 10.1016/j.resmic.2021.103883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The roles of Serine/Threonine protein kinases (STPKs) in bacterial physiology, including bacterial responses to nutritional stresses and under pathogenesis have been well documented. STPKs roles in bacterial cell cycle regulation and DNA damage response have not been much emphasized, possibly because the LexA/RecA type SOS response became the synonym to DNA damage response and cell cycle regulation in bacteria. This review summarizes current knowledge of STPKs genetics, domain organization, and their roles in DNA damage response and cell division regulation in bacteria.
Collapse
Affiliation(s)
- Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| |
Collapse
|
19
|
Zhao C, Wan Y, Cao X, Zhang H, Bao X. Comparative genomics and analysis of the mechanism of PQQ overproduction in Methylobacterium. World J Microbiol Biotechnol 2021; 37:100. [PMID: 33983497 DOI: 10.1007/s11274-021-03068-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Methylobacterium sp. CLZ was isolated from soil contaminated with chemical wastewater. This strain simultaneously synthesizes Pyrroloquinoline quinone (PQQ), Coenzyme Q10 (CoQ10), and carotenoids by utilizing methanol as a carbon source. Comparative genomic analysis was performed for five Methylobacterium strains. As per the outcomes, the Methylobacterium CLZ strain showed the smallest genome size and the lowest number of proteins. Thus, it can serve as an ideal cell model for investigating the biological process of Methylobacterium and constructing genetically engineered Methylobacterium. The Methylobacterium CLZ strain's pqqL gene, which does not occur in other Methylobacterium strains but plays a crucial role in PQQ synthesis. This was a surprising finding for the study of PQQ biosynthesis in Methylobacterium. Methylobacterium sp. NI91 strain was generated by random mutagenesis of CLZ strain, and NI91 strain showed a 72.44% increase in PQQ yield. The mutation in the mxaJ gene involved in the methanol dehydrogenase (MDH) synthesis was identified through comparative genomic analysis of the whole genome of mutant strain NI91 and wild-type strain CLZ. The mxaJ gene was found to be upregulated in the NI91 strain. Thus, the up-regulation of the mxaJ gene could be correlated with the high yield of PQQ, and it could provide valuable clues for strain engineering to improve PQQ production.
Collapse
Affiliation(s)
- Changle Zhao
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Yinping Wan
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xiaojie Cao
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Huili Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China.
| | - Xin Bao
- Xinjiang Fufeng Biotechnology Co., Ltd., Ürümqi, 830001, Xinjiang, People's Republic of China
| |
Collapse
|
20
|
Hoque SAM, Umehara T, Kawai T, Shimada M. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic Biol Med 2021; 163:344-355. [PMID: 33385538 DOI: 10.1016/j.freeradbiomed.2020.12.434] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
High mitochondrial oxidative phosphorylation (mt-OXPHOS) levels are required to supply the ATP necessary for follicle-stimulating hormone (FSH)-induced granulosa cell proliferation during the follicular development process. Consequently, excessive reactive oxygen species (ROS) might be generated and have an adverse effect on follicular health. This study aimed to elucidate the negative effects of ROS on mitochondrial functions in FSH-stimulated granulosa cells during the follicular development process and to investigate whether pyrroloquinoline quinone (PQQ) treatment could accelerate this process by ameliorating the adverse effects. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ, and a natural mating study was also performed. The ROS level in FSH-/eCG-stimulated granulosa cells was significantly increased. Moreover, high oxidative stress and mtDNA damage levels were evident in the granulosa cells. PQQ treatment not only reduced the ROS and oxidative stress levels but also ameliorated mtDNA damage, accelerated FSH-/eCG-induced ATP production, and increased the mitochondrial membrane potential and the expression levels of mitochondrial genes (Nd1, Cytb, Cox1, ATPase6) and the mt-ND1 protein. Accordingly, the proliferation and viability of granulosa cells, numbers of healthy preovulatory follicles and ovulated oocytes and serum estrogen level were significantly improved, while the apoptosis of granulosa cells was reduced. However, PQQ treatment did not change the fertility parameters in mature mice with natural cycles but did significantly increased the number of offspring born per delivery. These results revealed that ROS-associated damage in FSH-stimulated granulosa cells adversely affects their physiology and follicular health during the follicular development process. Treatment with PQQ is a beneficial tool to increase both the number of ovulated oocytes and pups per delivery.
Collapse
Affiliation(s)
- S A Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan; Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Takashi Umehara
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan; Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
21
|
Effects of Pyrroloquinoline Quinone on Lipid Metabolism and Anti-Oxidative Capacity in a High-Fat-Diet Metabolic Dysfunction-Associated Fatty Liver Disease Chick Model. Int J Mol Sci 2021; 22:ijms22031458. [PMID: 33535680 PMCID: PMC7867196 DOI: 10.3390/ijms22031458] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and its interaction with many metabolic pathways raises global public health concerns. This study aimed to determine the therapeutic effects of Pyrroloquinoline quinone (PQQ, provided by PQQ.Na2) on MAFLD in a chick model and primary chicken hepatocytes with a focus on lipid metabolism, anti-oxidative capacity, and mitochondrial biogenesis. The MAFLD chick model was established on laying hens by feeding them a high-energy low-protein (HELP) diet. Primary hepatocytes isolated from the liver of laying hens were induced for steatosis by free fatty acids (FFA) and for oxidative stress by hydrogen peroxide (H2O2). In the MAFLD chick model, the dietary supplementation of PQQ conspicuously ameliorated the negative effects of the HELP diet on liver biological functions, suppressed the progression of MAFLD mainly through enhanced lipid metabolism and protection of liver from oxidative injury. In the steatosis and oxidative stress cell models, PQQ functions in the improvement of the lipid metabolism and hepatocytes tolerance to fatty degradation and oxidative damage by enhancing mitochondrial biogenesis and then increasing the anti-oxidative activity and anti-apoptosis capacity. At both the cellular and individual levels, PQQ was demonstrated to exert protective effects of hepatocyte and liver from fat accumulation through the improvement of mitochondrial biogenesis and maintenance of redox homeostasis. The key findings of the present study provide an in-depth knowledge on the ameliorative effects of PQQ on the progression of fatty liver and its mechanism of action, thus providing a theoretical basis for the application of PQQ, as an effective nutrient, into the prevention of MAFLD.
Collapse
|
22
|
Wen H, He Y, Zhang K, Yang X, Hao D, Jiang Y, He B. Mini-review: Functions and Action Mechanisms of PQQ in Osteoporosis and Neuro Injury. Curr Stem Cell Res Ther 2020; 15:32-36. [PMID: 30526470 DOI: 10.2174/1574888x14666181210165539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022]
Abstract
Pyrroloquinoline Quinone (PQQ) is the third coenzyme found after niacinamide and flavone nucleotides and is widely present in microorganisms, plants, animals, and humans. PQQ can stimulate the growth of organisms and is very important for the growth, development and reproduction of animals. Owing to the inherent properties of PQQ as an antioxidant and redox modulator in various systems. In recent years, the role of PQQ in the field of osteoporosis and neuro injury has become a research hotspot. This article mainly discusses the derivatives, distribution of PQQ, in vitro models of osteoporosis and neuro injury, and the research progress of its mechanism of action. It provides new ideas in the study of osteoporosis and neuro injury.
Collapse
Affiliation(s)
- Hao Wen
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Yuan He
- Fifth Hospital of Xi'an, Xi'an , China
| | - Ke Zhang
- Yan'an University Medical School, Yan'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Yonghong Jiang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Zheng YW, Zhang JY, Zhou HB, Guo YP, Ma QG, Ji C, Zhao LH. Effects of dietary pyrroloquinoline quinone disodium supplementation on inflammatory responses, oxidative stress, and intestinal morphology in broiler chickens challenged with lipopolysaccharide. Poult Sci 2020; 99:5389-5398. [PMID: 33142455 PMCID: PMC7647834 DOI: 10.1016/j.psj.2020.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/03/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023] Open
Abstract
This study was conducted to investigate the effects of pyrroloquinoline quinone disodium (PQQ·Na2) on inflammatory responses, oxidative stress, and intestinal morphology of broiler chickens challenged with lipopolysaccharide (LPS). A 2 × 2 factorial arrangement in a complete randomized design experiment was used to study the effect of dietary PQQ·Na2 (0 or 1 mg/kg) on broiler chickens with or without a challenge with LPS. A total of two hundred eighty-eight 1-day-old Arbor Acre broiler chickens were randomly assigned to 4 treatments with 6 replicate cages of 12 birds per cage. All experimental broilers were injected intraperitoneally with 0.5 mg/kg body weight of either Escherichia coli LPS or sterile saline at 16, 18, and 20 d of age. Results showed that injecting LPS significantly increased the concentrations of interleukin-1beta (IL-1β) in serum of birds on day 20 and day 21. Meanwhile, LPS injection increased (P < 0.05) the relative mRNA expression of interleukin-6 (IL-6) in the duodenal mucosa of broilers on day 21. However, dietary supplementation with PQQ·Na2 decreased (P < 0.05) the concentration of IL-6 in serum of birds on day 20 and the levels of IL-1β, IL-6, and interleukin-10 (IL-10) in serum of broiler chickens on day 21. Besides, supplementation of PQQ·Na2 within diet decreased (P < 0.05) the mRNA expressions of IL-1β and IL-10 in the duodenal mucosa of birds on day 20. Relative to saline injection, the activity of glutathione peroxidase (GSH-Px) in serum and the activities of total superoxide dismutase (T-SOD) and catalase (CAT) in liver were found to be lower (P < 0.05) in broilers after LPS challenge on day 21. However, birds fed with PQQ·Na2 showed higher (P < 0.05) GSH-Px activity in serum and higher (P < 0.05) T-SOD activities in liver on day 21 and day 42. Pyrroloquinoline quinone disodium also significantly attenuated the LPS-induced decreases in villus height to crypt depth ratio in the duodenum of broilers. In conclusion, dietary PQQ·Na2 supplementation significantly exerted protective effects on inflammation damage and oxidant stress of broilers under LPS challenge by regulating the expression of inflammatory cytokines (IL-1β, IL-6, and IL-10) and activities of antioxidant enzymes (GSH-Px, T-SOD, and CAT). Moreover, dietary PQQ·Na2 supplementation significantly ameliorated the LPS-impaired intestinal morphology in broilers. Therefore, it has been considered that PQQ·Na2 can be used as a potential feed additive in broiler production.
Collapse
Affiliation(s)
- Y W Zheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - J Y Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - H B Zhou
- Dalian Chengsan Husbandry Co., Ltd., Dalian 116308, PR China
| | - Y P Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Q G Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - C Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - L H Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
24
|
Sharma DK, Bihani SC, Siddiqui MQ, Misra HS, Rajpurohit YS. WD40 domain of RqkA regulates its kinase activity and role in extraordinary radioresistance of D. radiodurans. J Biomol Struct Dyn 2020; 40:1246-1259. [PMID: 32990194 DOI: 10.1080/07391102.2020.1824810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RqkA, a DNA damage responsive serine/threonine kinase, is characterized for its role in DNA repair and cell division in D. radiodurans. It has a unique combination of a kinase domain at N-terminus and a WD40 type domain at C-terminus joined through a linker. WD40 domain is comprised of eight β-propeller repeats held together via 'tryptophan-docking motifs' and forming a typical 'velcro' closure structure. RqkA mutants lacking the WD40 region (hereafter referred to as WD mutant) could not complement RqkA loss in γ radiation resistance in D. radiodurans and lacked γ radiation-mediated activation of kinase activity in vivo. WD mutants failed to phosphorylate its cognate substrate (e.g. DrRecA) in surrogate E. coli cells. Unlike wild-type enzyme, the kinase activity of its WD40 mutants was not stimulated by pyrroloquinoline quinine (PQQ) indicating the role of the WD motifs in PQQ interaction and stimulation of its kinase activity. Together, results highlighted the importance of the WD40 domain in the regulation of RqkA kinase signaling functions in vivo, and thus, the role of WD40 domain in the regulation of any STPK is first time demonstrated in bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhirendra K Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Subhash C Bihani
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mohammad Q Siddiqui
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
25
|
Hepatoprotective effect of pyrroloquinoline quinone against alcoholic liver injury through activating Nrf2-mediated antioxidant and inhibiting TLR4-mediated inflammation responses. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Antioxidative and Radioprotective Properties of Glycosylated Flavonoid, Xanthorhamnin from Radio-Resistant Bacterium Bacillus indicus Strain TMC-6. Curr Microbiol 2020; 77:1245-1253. [PMID: 32125445 DOI: 10.1007/s00284-020-01930-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
A radio-resistant bacterium labeled as strain TMC-6 was isolated from Thal desert, Pakistan and identified through 16S rRNA gene sequencing as Bacillus indicus strain TMC-6 (MN721293). The isolate was found to be resistant to UV radiation dose of 6.780 × 103 J/m2 and showed 50% survivability to mitomycin C (6 μg/ml) and H2O2 (30 mM). The bacterium showed yellowish orange coloration when grown on tryptone yeast glucose (TGY) medium. The cellular metabolite was extracted in methanol and purified through solid phase extraction with C18 column cartridge. The compound was characterized through UV/Visible spectrophotometry, Fourier Transform Infra-Red (FT-IR) spectroscopy and Liquid Chromatography Mass Spectrometry (LC-MS). The LC-MS analysis of the compound revealed a molar mass of 769 [m/z]- that matched the chemical formula C34H42O20 and identified as a glycosylated flavonoid xanthorhamnin. The compound showed significant antioxidant (77.05%) and metal chelation (79.80%) activities. Xanthorhamnin showed promising oxidative damage inhibitory actions in bovine serum albumin (65.32%) and mice liver lipids (71.61%) and prevented DNA strand breaks from oxidative stress. Cytotoxicity in brine shrimp larvae was observed when compared with mitomycin C indicating its effect toward cancerous cells. These findings concluded that xanthorhamnin from radio-resistant Bacillus indicus strain TMC-6 has high antioxidant, radioprotective, and antitumor properties against UV-mediated oxidative damages.
Collapse
|
27
|
Meier MJ, Dodge AE, Samarajeewa AD, Beaudette LA. Soil exposed to silver nanoparticles reveals significant changes in community structure and altered microbial transcriptional profiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113816. [PMID: 31864930 DOI: 10.1016/j.envpol.2019.113816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 05/20/2023]
Abstract
Anthropogenic activities can disrupt soil ecosystems, normally resulting in reduced soil microbial health. Regulatory agencies need to determine the effects of uncharacterized substances on soil microbial health to establish the safety of these chemicals if they end up in the environment. Previous work has focused on measuring traditional ecotoxicologial endpoints within the categories of microbial biomass, activity, and community structure/diversity. Because these tests can be labor intensive, lengthy to conduct, and cannot measure changes in individual gene functions, we wanted to establish whether metatranscriptomics could be used as a more sensitive endpoint and provide a perspective on community function that is more informative than taxonomic identification of microbes alone. We spiked a freshly collected sandy loam soil (Vulcan, Alberta, Canada) with 0, 60, 145, 347, 833, and 2000 mg kg-1 of silver nanoparticles (AgNPs), a known antagonist of microorganisms due to its propensity for dissolution of toxic silver ions. Assessments performed in our previous work using traditional tests demonstrated the toxicity of AgNPs on soil microbial processes. We expanded this analysis with genomics-based tests by measuring changes in community taxonomic structure and function using 16S rDNA profiling and metatranscriptomics. In addition to identifying bacterial taxa affected by AgNPs, we found that genes involved in heavy metal resistance (e.g., the CzcA efflux pump) and other toxicity response pathways were highly upregulated in the presence of silver. Dose-response analysis using BMDExpress2 software successfully modeled many physiologically relevant genes responding to low concentrations of AgNPs. We found that the transcriptomic point of departure (BMD50) was lower than the IC50s calculated using the traditional tests in our previous work. These results suggest that dose-response modeling of metatranscriptomic gene expression is a useful tool in soil microbial health assessment. SUMMARY: Genomics-based endpoints for the assessment of soil microbial health can be used to perform quantitative dose-response modeling, and soil-based RNAseq adds functional insights.
Collapse
Affiliation(s)
- Matthew J Meier
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.
| | - Annette E Dodge
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Ajith Dias Samarajeewa
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Lee A Beaudette
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| |
Collapse
|
28
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
29
|
PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt signaling pathway in mouse. Sci Rep 2018; 8:8894. [PMID: 29891841 PMCID: PMC5995849 DOI: 10.1038/s41598-018-26962-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is known to be associated with various age-related diseases. D-galactose (D-gal) has been considered a senescent model which induces oxidative stress response resulting in memory dysfunction. Pyrroloquinoline quinone (PQQ) is a redox cofactor which is found in various foods. In our previous study, we found that PQQ may be converted into a derivative by binding with amino acid, which is beneficial to several pathological processes. In this study, we found a beneficial glutamate mixture which may diminish neurotoxicity by oxidative stress in D-gal induced mouse. Our results showed that PQQ may influence the generation of proinflammatory mediators, including cytokines and prostaglandins during aging process. D-gal-induced mouse showed increased MDA and ROS levels, and decreased T-AOC activities in the hippocampus, these changes were reversed by PQQ supplementation. Furthermore, PQQ statistically enhanced Superoxide Dismutase SOD2 mRNA expression. PQQ could ameliorate the memory deficits and neurotoxicity induced by D-gal via binding with excess glutamate, which provide a link between glutamate-mediated neurotoxicity, inflammation and oxidative stress. In addition, PQQ reduced the up-regulated expression of p-Akt by D-gal and maintained the activity of GSK-3β, resulting in a down-regulation of p-Tau level in hippocampus. PQQ modulated memory ability partly via Akt/GSK-3β pathway.
Collapse
|
30
|
Wen L, Lu X, Wang R, Jin X, Hu L, You C. Pyrroloquinoline quinone induces chondrosarcoma cell apoptosis by increasing intracellular reactive oxygen species. Mol Med Rep 2018; 17:7184-7190. [PMID: 29568949 PMCID: PMC5928675 DOI: 10.3892/mmr.2018.8745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) has been reported to contribute to cancer cell apoptosis and death; however, little is known of its underlying mechanisms. The present study was designed to investigate the role of PQQ in chondrosarcoma cell apoptosis and the underlying mechanism. A cell cytotoxicity assay was used to detect cell death; flow cytometry analysis was also performed to determine cell apoptosis and intracellular reactive oxygen species (ROS). Biochemical methods were employed to detect the activity and the expression of superoxide dismutase (SOD)1, SOD2 and glutathione. The present study also examined the effect on tumorigenesis in vivo. The results demonstrated that the apoptosis of SW1353 cells induced by PQQ increased in a concentration- and time-dependent manner, which may be attributable to the accumulation of intracellular ROS. In the in vivo experiments, PQQ inhibited proliferation and promoted apoptosis, increased ROS levels and caused DNA damage in transplanted cells. Taken together, the findings of the present study confirmed that PQQ induced apoptosis in human chondrosarcoma SW1353 cells and transplanted cells, by increasing intracellular ROS and reducing the ability of scavenging oxygen free radicals.
Collapse
Affiliation(s)
- Linchun Wen
- Department of Oncology, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Xiyan Lu
- Department of Oncology, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Rui Wang
- Department of Oncology, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Xiaowei Jin
- Department of Oncology, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Liqiang Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Chuanwen You
- Department of Oncology, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
31
|
Dani P, Ujaoney AK, Apte SK, Basu B. Regulation of potassium dependent ATPase (kdp) operon of Deinococcus radiodurans. PLoS One 2017; 12:e0188998. [PMID: 29206865 PMCID: PMC5716572 DOI: 10.1371/journal.pone.0188998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
The genome of D. radiodurans harbors genes for structural and regulatory proteins of Kdp ATPase, in an operon pattern, on Mega plasmid 1. Organization of its two-component regulatory genes is unique. Here we demonstrate that both, the structural as well as regulatory components of the kdp operon of D. radiodurans are expressed quickly as the cells experience potassium limitation but are not expressed upon increase in osmolarity. The cognate DNA binding response regulator (RR) effects the expression of kdp operon during potassium deficiency through specific interaction with the kdp promoter. Deletion of the gene encoding RR protein renders the mutant D. radiodurans (ΔRR) unable to express kdp operon under potassium limitation. The ΔRR D. radiodurans displays no growth defect when grown on rich media or when exposed to oxidative or heat stress but shows reduced growth following gamma irradiation. The study elucidates the functional and regulatory aspects of the novel kdp operon of this extremophile, for the first time.
Collapse
Affiliation(s)
- Pratiksha Dani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
- * E-mail:
| |
Collapse
|
32
|
Yu S, Lai B, Plan MR, Hodson MP, Lestari EA, Song H, Krömer JO. Improved performance ofPseudomonas putidain a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase. Biotechnol Bioeng 2017; 115:145-155. [DOI: 10.1002/bit.26433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shiqin Yu
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; St Lucia Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; St Lucia Brisbane Australia
| | - Bin Lai
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; St Lucia Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; St Lucia Brisbane Australia
- Systems Biotechnology Group, Department for Solar Materials (SOMA); Helmholtz Centre for Environmental Research UFZ; Leipzig Germany
| | - Manuel R. Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland; St Lucia Brisbane Australia
- Metabolomics Australia (Queensland Node); The University of Queensland; St Lucia Brisbane Australia
| | - Mark P. Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN); The University of Queensland; St Lucia Brisbane Australia
- Metabolomics Australia (Queensland Node); The University of Queensland; St Lucia Brisbane Australia
| | - Endah A. Lestari
- School of Chemical and Molecular Biosciences; The University of Queensland; St Lucia Brisbane Australia
| | - Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering & Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin University; Tianjin China
| | - Jens O. Krömer
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; St Lucia Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; St Lucia Brisbane Australia
- Systems Biotechnology Group, Department for Solar Materials (SOMA); Helmholtz Centre for Environmental Research UFZ; Leipzig Germany
| |
Collapse
|
33
|
Jung KW, Lim S, Bahn YS. Microbial radiation-resistance mechanisms. J Microbiol 2017; 55:499-507. [PMID: 28664512 DOI: 10.1007/s12275-017-7242-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/19/2017] [Indexed: 11/28/2022]
Abstract
Organisms living in extreme environments have evolved a wide range of survival strategies by changing biochemical and physiological features depending on their biological niches. Interestingly, organisms exhibiting high radiation resistance have been discovered in the three domains of life (Bacteria, Archaea, and Eukarya), even though a naturally radiationintensive environment has not been found. To counteract the deleterious effects caused by radiation exposure, radiation- resistant organisms employ a series of defensive systems, such as changes in intracellular cation concentration, excellent DNA repair systems, and efficient enzymatic and non-enzymatic antioxidant systems. Here, we overview past and recent findings about radiation-resistance mechanisms in the three domains of life for potential usage of such radiationresistant microbes in the biotechnology industry.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
34
|
Sajjad W, Ahmad M, Khan S, Ilyas S, Hasan F, Celik C, McPhail K, Shah AA. Radio-protective and antioxidative activities of astaxanthin from newly isolated radio-resistant bacterium Deinococcus sp. strain WMA-LM9. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1269-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida. Appl Environ Microbiol 2017; 83:AEM.03236-16. [PMID: 28130298 DOI: 10.1128/aem.03236-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings.IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization.
Collapse
|
36
|
She Y, Jiang L, Zheng L, Zuo H, Chen M, Sun X, Li Q, Geng C, Yang G, Jiang L, Liu X. The role of oxidative stress in DNA damage in pancreatic β cells induced by di-(2-ethylhexyl) phthalate. Chem Biol Interact 2017; 265:8-15. [DOI: 10.1016/j.cbi.2017.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 02/02/2023]
|
37
|
Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med 2016; 12:3685-3693. [PMID: 28105098 PMCID: PMC5228579 DOI: 10.3892/etm.2016.3843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate whether pyrroloquinoline quinine (PQQ) serve a radioprotective role in parotid gland damage induced by total body irradiation (TBI) in C57BL/6J mice. A total of 15 female 8-week-old C57BL/6J mice were randomly assigned into three treatment groups: i) Untreated control (no irradiation); ii) 4 gray (Gy) X-ray irradiation; iii) 4 Gy X-ray irradiation with additional dietary PQQ (4 mg PQQ/kg in normal diet). Each group included five mice. After 4 weeks, all animals were collected for evaluating the phenotype, body weight, pathological and biochemical parameters. The results indicated that PQQ had biological effects on total body phenotype. PQQ could partially rescue TBI-induced damage to parotid glands. In addition, PQQ served radioprotective effects on parotid glands via multiple mechanisms, such as promoting proliferation, inhibiting apoptosis and senescence, upregulating antioxidant ability, scavenging reactive oxygen species and reducing DNA damage. The results of the present study demonstrate that PQQ serves a radioprotective role in parotid gland damage induced by TBI, possibly via inhibiting oxidative stress and participating in DNA damage repair. The study provides experimental and theoretical knowledge for the development of radioprotective clinical drugs.
Collapse
Affiliation(s)
- Yuanqing Huang
- Department of Stomatology, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Ning Chen
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
38
|
Lin JM, Tsai YT, Liu YH, Lin Y, Tai HC, Chen CS. Identification of 2-oxohistidine Interacting Proteins Using E. coli Proteome Chips. Mol Cell Proteomics 2016; 15:3581-3593. [PMID: 27644758 DOI: 10.1074/mcp.m116.060806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Cellular proteins are constantly damaged by reactive oxygen species generated by cellular respiration. Because of its metal-chelating property, the histidine residue is easily oxidized in the presence of Cu/Fe ions and H2O2 via metal-catalyzed oxidation, usually converted to 2-oxohistidine. We hypothesized that cells may have evolved antioxidant defenses against the generation of 2-oxohistidine residues on proteins, and therefore there would be cellular proteins which specifically interact with this oxidized side chain. Using two chemically synthesized peptide probes containing 2-oxohistidine, high-throughput interactome screening was conducted using the E. coli K12 proteome microarray containing >4200 proteins. Ten interacting proteins were identified, and successfully validated using a third peptide probe, fluorescence polarization assays, as well as binding constant measurements. We discovered that 9 out of 10 identified proteins seemed to be involved in redox-related cellular functions. We also built the functional interaction network to reveal their interacting proteins. The network showed that our interacting proteins were enriched in oxido-reduction processes, ion binding, and carbon metabolism. A consensus motif was identified among these 10 bacterial interacting proteins based on bioinformatic analysis, which also appeared to be present on human S100A1 protein. Besides, we found that the consensus binding motif among our identified proteins, including bacteria and human, were located within α-helices and faced the outside of proteins. The combination of chemically engineered peptide probes with proteome microarrays proves to be an efficient discovery platform for protein interactomes of unusual post-translational modifications, and sensitive enough to detect even the insertion of a single oxygen atom in this case.
Collapse
Affiliation(s)
- Jun-Mu Lin
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.,§Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| | - Yu-Ting Tsai
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Hsuan Liu
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yun Lin
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hwan-Ching Tai
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chien-Sheng Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan; .,§Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| |
Collapse
|
39
|
Tripathi C, Mahato NK, Rani P, Singh Y, Kamra K, Lal R. Draft genome sequence of Lampropedia cohaerens strain CT6(T) isolated from arsenic rich microbial mats of a Himalayan hot water spring. Stand Genomic Sci 2016; 11:64. [PMID: 27610214 PMCID: PMC5015223 DOI: 10.1186/s40793-016-0179-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/16/2016] [Indexed: 11/22/2022] Open
Abstract
Lampropedia cohaerens strain CT6T, a non-motile, aerobic and coccoid strain was isolated from arsenic rich microbial mats (temperature ~45 °C) of a hot water spring located atop the Himalayan ranges at Manikaran, India. The present study reports the first genome sequence of type strain CT6T of genus Lampropedia cohaerens. Sequencing data was generated using the Illumina HiSeq 2000 platform and assembled with ABySS v 1.3.5. The 3,158,922 bp genome was assembled into 41 contigs with a mean GC content of 63.5 % and 2823 coding sequences. Strain CT6T was found to harbour genes involved in both the Entner-Duodoroff pathway and non-phosphorylated ED pathway. Strain CT6T also contained genes responsible for imparting resistance to arsenic, copper, cobalt, zinc, cadmium and magnesium, providing survival advantages at a thermal location. Additionally, the presence of genes associated with biofilm formation, pyrroloquinoline-quinone production, isoquinoline degradation and mineral phosphate solubilisation in the genome demonstrate the diverse genetic potential for survival at stressed niches.
Collapse
Affiliation(s)
- Charu Tripathi
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Nitish K Mahato
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Pooja Rani
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Komal Kamra
- Ciliate Biology Laboratory, SGTB Khalsa College, University of Delhi, Delhi, 110007 India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
40
|
Wei Q, Ran T, Ma C, He J, Xu D, Wang W. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway. J Biol Chem 2016; 291:15575-87. [PMID: 27231346 PMCID: PMC4957043 DOI: 10.1074/jbc.m115.711226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/23/2016] [Indexed: 01/10/2023] Open
Abstract
Pyrroloquinoline quinone (PQQ) has received considerable attention due to its numerous important physiological functions. PqqA is a precursor peptide of PQQ with two conserved residues: glutamate and tyrosine. After linkage of the Cγ of glutamate and Cϵ of tyrosine by PqqE, these two residues are hypothesized to be cleaved from PqqA by PqqF. The linked glutamate and tyrosine residues are then used to synthesize PQQ. Here, we demonstrated that the pqqF gene is essential for PQQ biosynthesis as deletion of it eliminated the inhibition of prodigiosin production by glucose. We further determined the crystal structure of PqqF, which has a closed clamshell-like shape. The PqqF consists of two halves composed of an N- and a C-terminal lobe. The PqqF-N and PqqF-C lobes form a chamber with the volume of the cavity of ∼9400 Å(3) The PqqF structure conforms to the general structure of inverzincins. Compared with the most thoroughly characterized inverzincin insulin-degrading enzyme, the size of PqqF chamber is markedly smaller, which may define the specificity for its substrate PqqA. Furthermore, the 14-amino acid-residue-long tag formed by the N-terminal tag from expression vector precisely protrudes into the counterpart active site; this N-terminal tag occupies the active site and stabilizes the closed, inactive conformation. His-48, His-52, Glu-129 and His-14 from the N-terminal tag coordinate with the zinc ion. Glu-51 acts as a base catalyst. The observed histidine residue-mediated inhibition may be applicable for the design of a peptide for the inhibition of M16 metalloproteases.
Collapse
Affiliation(s)
- Qiaoe Wei
- From the Department of microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China and
| | - Tingting Ran
- From the Department of microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China and
| | - Chencui Ma
- From the Department of microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China and
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204 Shanghai, China
| | - Dongqing Xu
- From the Department of microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China and
| | - Weiwu Wang
- From the Department of microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China and
| |
Collapse
|
41
|
Zhu BQ, Simonis U, Cecchini G, Zhou HZ, Li L, Teerlink JR, Karliner JS. Comparison of Pyrroloquinoline Quinone and/or Metoprolol on Myocardial Infarct Size and Mitochondrial Damage in a Rat Model of Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther 2016; 11:119-28. [PMID: 16891289 DOI: 10.1177/1074248406288757] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cardioprotective effectiveness of low-dose pyrroloquinoline quinone (PQQ, 3 mg/kg) was compared with metoprolol, a β1-selective adrenoceptor antagonist. Rats underwent 30 minutes of left anterior descending coronary artery occlusion and 2 hours of reperfusion. Metoprolol and/or PQQ were given at the onset of reperfusion to mimic clinical treatment. Metoprolol and/or PQQ reduced infarct size and protected against ischemia-induced left ventricular dysfunction after 2 hours of reper-fusion. Combined therapy augmented left ventricular developed pressure at the end of reperfusion. Metoprolol or PQQ alone enhanced mitochondrial respiratory ratios in ischemic and nonischemic myocardium. Although the PQQ/metoprolol combination therapy increased respiratory ratio values, the effects were small when compared with PQQ alone. Only PQQ decreased lipid peroxidation. Metoprolol and/or PQQ given at the onset of reperfusion reduce infarct size and improve cardiac function. Combination therapy further reduces infarct size. PQQ is superior to metoprolol in protecting mitochondria from ischemia/reperfusion oxidative damage
Collapse
Affiliation(s)
- Bo-qing Zhu
- Cardiology Section, VA Medical Center, Department of Medicine, University of California-San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Ferrer A, Rivera J, Zapata C, Norambuena J, Sandoval Á, Chávez R, Orellana O, Levicán G. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1. Front Microbiol 2016; 7:748. [PMID: 27242761 PMCID: PMC4876134 DOI: 10.3389/fmicb.2016.00748] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022] Open
Abstract
Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.
Collapse
Affiliation(s)
- Alonso Ferrer
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Javier Rivera
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Claudia Zapata
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Javiera Norambuena
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Álvaro Sandoval
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Renato Chávez
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| | - Omar Orellana
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile Santiago, Chile
| | - Gloria Levicán
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago Santiago, Chile
| |
Collapse
|
43
|
Ito S, Hyodo F. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals. Sci Rep 2016; 6:21407. [PMID: 26892591 PMCID: PMC4759784 DOI: 10.1038/srep21407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
Abstract
Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), 14N-labeled carbamoyl-PROXYL (14N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for 14N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.
Collapse
Affiliation(s)
- Shinji Ito
- Innovation Center for Medical Redox Navigation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
44
|
Dietary supplementation of pyrroloquinoline quinone disodium protects against oxidative stress and liver damage in laying hens fed an oxidized sunflower oil-added diet. Animal 2016; 10:1129-36. [PMID: 26837542 DOI: 10.1017/s175173111600001x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protective effects of dietary pyrroloquinoline quinone disodium (PQQ.Na2) supplementation against oxidized sunflower oil-induced oxidative stress and liver injury in laying hens were examined. Three hundred and sixty 53-week-old Hy-Line Gray laying hens were randomly allocated into one of the five dietary treatments. The treatments included: (1) a diet containing 2% fresh sunflower oil; (2) a diet containing 2% thermally oxidized sunflower oil; (3) an oxidized sunflower oil diet with 100 mg/kg of added vitamin E; (4) an oxidized sunflower oil diet with 0.08 mg/kg of PQQ.Na2; and (5) an oxidized sunflower oil diet with 0.12 mg/kg of PQQ.Na2. Birds fed the oxidized sunflower oil diet showed a lower feed intake compared to birds fed the fresh oil diet or oxidized oil diet supplemented with vitamin E (P=0.009). Exposure to oxidized sunflower oil increased plasma malondialdehyde (P<0.001), hepatic reactive oxygen species (P<0.05) and carbonyl group levels (P<0.001), but decreased plasma glutathione levels (P=0.006) in laying hens. These unfavorable changes induced by the oxidized sunflower oil diet were modulated by dietary vitamin E or PQQ.Na2 supplementation to levels comparable to the fresh oil group. Dietary supplementation with PQQ.Na2 or vitamin E increased the activities of total superoxide dismutase and glutathione peroxidase in plasma and the liver, when compared with the oxidized sunflower oil group (P<0.05). PQQ.Na2 or vitamin E diminished the oxidized sunflower oil diet induced elevation of liver weight (P=0.026), liver to BW ratio (P=0.001) and plasma activities of alanine aminotransferase (P=0.001) and aspartate aminotransferase (P<0.001) and maintained these indices at the similar levels to the fresh oil diet. Furthermore, oxidized sunflower oil increased hepatic DNA tail length (P<0.05) and tail moment (P<0.05) compared with the fresh oil group. Dietary supplementation of PQQ.Na2 or vitamin E decreased the oxidized oil diet induced DNA tail length and tail moment to the basal levels in fresh oil diet. These results indicate that PQQ.Na2 is a potential antioxidant and is as effective against oxidized oil-related liver injury in laying hens as vitamin E. The protective effects of PQQ.Na2 against liver damage induced by oxidized oil may be partially due to its role in the scavenging of free radicals, inhibiting of lipid peroxidation and enhancing of antioxidant defense systems.
Collapse
|
45
|
Jeong SW, Jung JH, Kim MK, Seo HS, Lim HM, Lim S. The three catalases in Deinococcus radiodurans: Only two show catalase activity. Biochem Biophys Res Commun 2015; 469:443-8. [PMID: 26692481 DOI: 10.1016/j.bbrc.2015.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H2O2) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H2O2 treatments, whereas ΔdrA0146 showed no change in its H2O2 resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H2O2, but DRA0146 does not have catalase activity and is not involved in the resistance to H2O2 stress.
Collapse
Affiliation(s)
- Sun-Wook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea; Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Min-Kyu Kim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Heon-Man Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea.
| |
Collapse
|
46
|
Kuo YT, Shih PH, Kao SH, Yeh GC, Lee HM. Pyrroloquinoline Quinone Resists Denervation-Induced Skeletal Muscle Atrophy by Activating PGC-1α and Integrating Mitochondrial Electron Transport Chain Complexes. PLoS One 2015; 10:e0143600. [PMID: 26646764 PMCID: PMC4672922 DOI: 10.1371/journal.pone.0143600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Denervation-mediated skeletal muscle atrophy results from the loss of electric stimulation and leads to protein degradation, which is critically regulated by the well-confirmed transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α). No adequate treatments of muscle wasting are available. Pyrroloquinoline quinone (PQQ), a naturally occurring antioxidant component with multiple functions including mitochondrial modulation, demonstrates the ability to protect against muscle dysfunction. However, it remains unclear whether PQQ enhances PGC-1α activation and resists skeletal muscle atrophy in mice subjected to a denervation operation. This work investigates the expression of PGC-1α and mitochondrial function in the skeletal muscle of denervated mice administered PQQ. The C57BL6/J mouse was subjected to a hindlimb sciatic axotomy. A PQQ-containing ALZET® osmotic pump (equivalent to 4.5 mg/day/kg b.w.) was implanted subcutaneously into the right lower abdomen of the mouse. In the time course study, the mouse was sacrificed and the gastrocnemius muscle was prepared for further myopathological staining, energy metabolism analysis, western blotting, and real-time quantitative PCR studies. We observed that PQQ administration abolished the denervation-induced decrease in muscle mass and reduced mitochondrial activities, as evidenced by the reduced fiber size and the decreased expression of cytochrome c oxidase and NADH-tetrazolium reductase. Bioenergetic analysis demonstrated that PQQ reprogrammed the denervation-induced increase in the mitochondrial oxygen consumption rate (OCR) and led to an increase in the extracellular acidification rate (ECAR), a measurement of the glycolytic metabolism. The protein levels of PGC-1α and the electron transport chain (ETC) complexes were also increased by treatment with PQQ. Furthermore, PQQ administration highly enhanced the expression of oxidative fibers and maintained the type II glycolytic fibers. This pre-clinical in vivo study suggests that PQQ may provide a potent therapeutic benefit for the treatment of denervation-induced atrophy by activating PGC-1α and maintaining the mitochondrial ETC complex in skeletal muscles.
Collapse
Affiliation(s)
- Yung-Ting Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsiao Shih
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Geng-Chang Yeh
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Mo Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Qin J, Wu M, Yu S, Gao X, Zhang J, Dong X, Ji J, Zhang Y, Zhou L, Zhang Q, Ding F. Pyrroloquinoline quinone-conferred neuroprotection in rotenone models of Parkinson’s disease. Toxicol Lett 2015; 238:70-82. [DOI: 10.1016/j.toxlet.2015.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/22/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
|
48
|
Munteanu AC, Uivarosi V, Andries A. Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria. Extremophiles 2015; 19:707-19. [PMID: 26040496 DOI: 10.1007/s00792-015-0759-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/17/2015] [Indexed: 12/17/2022]
Abstract
The deleterious effects of ionizing radiation are a major concern of the modern world. In the last decades, outstanding interest has been given to developing new therapeutic tools designed for protection against the toxic effects of ionizing radiation. Deinococcus spp. are among the most radioresistant organisms on Earth, being able to survive extreme doses of radiation, 1000-fold higher than most vertebrates. The molecular mechanisms underlying DNA repair and biomolecular protection, which are responsible for the remarkable radioresistance of Deinococcus bacteria, have been a debatable subject for the last 60 years. This paper is focused on the most recent findings regarding the molecular background of radioresistance and on Deinococcus bacteria response to oxidative stress. Novel proteins and genes involved in the highly regulated DNA repair processes, and enzymatic and non- enzymatic antioxidant systems are presented. In addition, a recently proposed mechanism that may contribute to oxidative damage protection in Deinococcus bacteria is discussed. A better understanding of these molecular mechanisms may draw future perspectives for counteracting radiation-related toxicity.
Collapse
Affiliation(s)
- Alexandra- Cristina Munteanu
- Department of Industrial Drugs and Pharmaceutical Biotechnology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6, Traian Vuia Str., 020956, Bucharest, Romania,
| | | | | |
Collapse
|
49
|
Huang Y, Chen N, Miao D. Biological effects of pyrroloquinoline quinone on liver damage in Bmi-1 knockout mice. Exp Ther Med 2015; 10:451-458. [PMID: 26622336 DOI: 10.3892/etm.2015.2532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) has been demonstrated to function as an antioxidant by scavenging free radicals and subsequently protecting the mitochondria from oxidative stress-induced damage. The aim of the present study was to investigate whether PQQ is able to rescue premature senescence in the liver, induced by the deletion of B cell-specific Moloney MLV insertion site-1 (Bmi-1), by inhibiting oxidative stress. In vivo, the mice were allocated into three groups that underwent the following treatment protocols. WT mice received a normal diet, while BKO mice also received a normal diet. An additional group of BKO mice were fed a PQQ-supplemented diet (BKO + PQQ; 4 mg PQQ/kg in the normal diet). The results indicated that PQQ partially rescued the liver damage induced by the deletion of Bmi-1. PQQ was demonstrated to exhibit these therapeutic effects on liver damage through multiple aspects, including the promotion of proliferation, antiapoptotic effects, the inhibition of senescence, the upregulation of antioxidant ability, the downregulation of cell cycle protein expression, the scavenging of reactive oxygen species and the reduction of DNA damage. The results of these experiments indicated that treatment of BKO mice with a moderate dose of PQQ significantly protected the liver from deleterious effects by inhibiting oxidative stress and participating in DNA damage repair. Therefore, PQQ has great potential as a therapeutic agent against oxidative stress during liver damage.
Collapse
Affiliation(s)
- Yuanqing Huang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China ; Department of Stomatology, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Ning Chen
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
50
|
Growth retardation of Escherichia coli by artificial increase of intracellular ATP. J Ind Microbiol Biotechnol 2015; 42:915-24. [PMID: 25838237 DOI: 10.1007/s10295-015-1609-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/19/2015] [Indexed: 12/27/2022]
Abstract
Overexpression of phosphoenolpyruvate carboxykinase (PCK) was reported to cause the harboring of higher intracellular ATP concentration in Escherichia coli, accompanied with a slower growth rate. For systematic determination of the relationship between the artificial increase of ATP and growth retardation, PCKWT enzyme was directly evolved in vitro and further overexpressed. The evolved PCK67 showed a 60% greater catalytic efficiency than that of PCKWT. Consequently, the PCK67-overexpressing E. coli showed the highest ATP concentration at the log phase of 1.45 μmol/gcell, with the slowest growth rate of 0.66 h(-1), while the PCKWT-overexpressing cells displayed 1.00 μmol/gcell ATP concentration with the growth rate of 0.84 h(-1) and the control had 0.28 μmol/gcell with 1.03 h(-1). To find a plausible reason, PCK-overexpressing cells in a steady state during chemostat growth were applied to monitor intracellular reactive oxygen species (ROS). Higher amount of intracellular ROS were observed as the ATP levels increased. To confirm the hypothesis of slower growth rate without perturbation of the carbon flux by PCK-overexpression, phototrophic Gloeobacter rhodopsin (GR) was expressed. The GR-expressing strain under illumination harbored 81% more ATP concentration along with 82% higher ROS, with a 54% slower maximum growth rate than the control, while both the GR-expressing strain under dark and dicarboxylate transporter (a control membrane protein)-expressing strain showed a lower ATP and increased ROS, and slower growth rate. Regardless of carbon flux changes, the artificial ATP increase was related to the ROS increase and it was reciprocally correlated to the maximum growth rate. To verify that the accumulated intracellular ROS were responsible for the growth retardation, glutathione was added to the medium to reduce the ROS. As a result, the growth retardation was restored by the addition of 0.1 mM glutathione. Anaerobic culture even enabled the artificial ATP-increased E. coli to grow faster than control. Collectively, it was concluded that artificial ATP increases inhibit the growth of E. coli due to the overproduction of ROS.
Collapse
|