1
|
Jolivet G, Daniel-Carlier N, Harscoët E, Airaud E, Dewaele A, Pierson C, Giton F, Boulanger L, Daniel N, Mandon-Pépin B, Pannetier M, Pailhoux E. Fetal Estrogens are not Involved in Sex Determination But Critical for Early Ovarian Differentiation in Rabbits. Endocrinology 2022; 163:6382335. [PMID: 34614143 PMCID: PMC8598387 DOI: 10.1210/endocr/bqab210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
AROMATASE is encoded by the CYP19A1 gene and is the cytochrome enzyme responsible for estrogen synthesis in vertebrates. In most mammals, a peak of CYP19A1 gene expression occurs in the fetal XX gonad when sexual differentiation is initiated. To elucidate the role of this peak, we produced 3 lines of TALEN genetically edited CYP19A1 knockout (KO) rabbits that were devoid of any estradiol production. All the KO XX rabbits developed as females with aberrantly small ovaries in adulthood, an almost empty reserve of primordial follicles, and very few large antrum follicles. Ovulation never occurred. Our histological, immunohistological, and transcriptomic analyses showed that the estradiol surge in the XX fetal rabbit gonad is not essential to its determination as an ovary, or for meiosis. However, it is mandatory for the high proliferation and differentiation of both somatic and germ cells, and consequently for establishment of the ovarian reserve.
Collapse
Affiliation(s)
- Geneviève Jolivet
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
- Correspondence: Geneviève Jolivet, domaine de Vilvert, INRAE, 78350 Jouy-en-Josas, France.
| | | | - Erwana Harscoët
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Eloïse Airaud
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Aurélie Dewaele
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Cloé Pierson
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Frank Giton
- AP-HP, Pôle biologie-Pathologie Henri Mondor, Créteil, France; INSERM IMRB U955, Créteil, France
| | - Laurent Boulanger
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Nathalie Daniel
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | | | - Maëlle Pannetier
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Eric Pailhoux
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| |
Collapse
|
2
|
Thomson E, Zhao L, Chen YS, Longmuss E, Ng ET, Sreenivasan R, Croft B, Song X, Sinclair A, Weiss M, Koopman P, Pelosi E. Generation and mutational analysis of a transgenic mouse model of human SRY. Hum Mutat 2021; 43:362-379. [PMID: 34918413 DOI: 10.1002/humu.24318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 12/15/2021] [Indexed: 01/31/2023]
Abstract
SRY is the Y-chromosomal gene that determines male sex development in humans and most other mammals. After three decades of study, we still lack a detailed understanding of which domains of the SRY protein are required to engage the pathway of gene activity leading to testis development. Some insight has been gained from the study of genetic variations underlying differences/disorders of sex determination (DSD), but the lack of a system of experimentally generating SRY mutations and studying their consequences in vivo has limited progress in the field. To address this issue, we generated a mouse model carrying a human SRY transgene able to drive testis determination in XX mice. Using CRISPR-Cas9 gene editing, we generated novel genetic modifications in each of SRY's three domains (N-terminal, HMG box, and C-terminal) and performed a detailed analysis of their molecular and cellular effects on embryonic testis development. Our results provide new functional insights unique to human SRY and present a versatile and powerful system in which to functionally analyze variations of SRY including known and novel pathogenic variants found in DSD.
Collapse
Affiliation(s)
- Ella Thomson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yen-Shan Chen
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Enya Longmuss
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ee Ting Ng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Rajini Sreenivasan
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Brittany Croft
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Xin Song
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Sinclair
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Weiss
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Emanuele Pelosi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Roco ÁS, Ruiz-García A, Bullejos M. Interaction between sex-determining genes from two species: clues from Xenopus hybrids. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200104. [PMID: 34304589 PMCID: PMC8310712 DOI: 10.1098/rstb.2020.0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hybrids provide an interesting model to study the evolution of sex-determining genes and sex chromosome systems as they offer the opportunity to see how independently evolving sex-determining pathways interact in vivo. In this context, the genus Xenopus represents a stimulating model, since species with non-homologous sex chromosomes and different sex-determining genes have been identified. In addition, the possibility of interspecies breeding is favoured in this group, which arose by alloploidization events, with species ploidy ranging from 2n = 2x = 20 in X. tropicalis (the only diploid representative of the genus) to 2n = 12x = 108 in X. ruwenzoriensis. To study how two sex-determining genes interact in vivo, X. laevis × X. tropicalis hybrids were produced. Gonadal differentiation in these hybrids revealed that the dm-w gene is dominant over X. tropicalis male-determining sex chromosomes (Y or Z), even though the Y chromosome is dominant in X. tropicalis (Y > W>Z). In the absence of the dm-w gene (the Z chromosome from X. laevis is present), the W chromosome from X. tropicalis is able to trigger ovarian development. Testicular differentiation will take place in the absence of W chromosomes from any of the parental species. The dominance/recessivity relationships between these sex-determining loci in the context of either parental genome remains unknown. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Álvaro S. Roco
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| | - Adrián Ruiz-García
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| |
Collapse
|
4
|
Ogata Y, Nishikata M, Kitada K, Mizushima S, Jogahara T, Kuroiwa A. Spiny rat SRY lacks a long Q-rich domain and is not stable in transgenic mice. Dev Dyn 2019; 248:784-794. [PMID: 31219647 DOI: 10.1002/dvdy.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although Tokudaia muenninki has multiple extra copies of the Sry gene on the Y chromosome, loss of function of these sequences is indicated. To examine the Sry gene function for sex determining in T. muenninki, we screened a BAC library and identified a clone (SRY26) containing complete SRY coding and promoter sequences. RESULTS SRY26 showed high identity to mouse and rat SRY. In an in vitro reporter gene assay, SRY26 was unable to activate testis-specific enhancer of Sox9. Four lines of BAC transgenic mice carrying SRY26 were generated. Although the embryonic gonads of XX transgenic mice displayed sufficient expression levels of SRY26 mRNA, these mice exhibited normal female phenotypes in the external and internal genitalia, and up-regulation of Sox9 was not observed. Expression of the SRY26 protein was confirmed in primate-derived COS7 cells transfected with a SRY26 expression vector. However, the SRY26 protein was not expressed in the gonads of BAC transgenic mice. CONCLUSIONS Overall, these results support a previous study demonstrated a long Q-rich domain plays essential roles in protein stabilization in mice. Therefore, the original aim of this study, to examine the function of the Sry gene of this species, was not achieved by creating TG mice.
Collapse
Affiliation(s)
- Yuka Ogata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mana Nishikata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhiro Kitada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shusei Mizushima
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takamichi Jogahara
- Division of Bio-Resources, Frontier Science Research Center, Kiyotake Campus, University of Miyazaki, Miyazaki, Japan.,Department of Law and Economics, Okinawa University, Naha, Okinawa, Japan
| | - Asato Kuroiwa
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Imaimatsu K, Fujii W, Hiramatsu R, Miura K, Kurohmaru M, Kanai Y. CRISPR/Cas9-mediated knock-in of the murine Y chromosomal Sry gene. J Reprod Dev 2018; 64:283-287. [PMID: 29657232 PMCID: PMC6021606 DOI: 10.1262/jrd.2017-161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian zygote-mediated genome editing via the clustered regularly interspaced short palindromic repeats/CRISPR-associated endonuclease 9 (CRISPR/Cas9) system is widely used to generate
genome-modified animals. This system allows for the production of loss-of-function mutations in various Y chromosome genes, including Sry, in mice. Here, we report the
establishment of a CRISPR-Cas9-mediated knock-in line of Flag-tag sequences into the Sry locus at the C-terminal coding end of the Y chromosome
(YSry-flag). In the F1 and successive generations, all male pups carrying the YSry-flag chromosome had normal testis differentiation
and proper spermatogenesis at maturity, enabling complete fertility and the production of viable offspring. To our knowledge, this study is the first to produce a stable Sry
knock-in line at the C-terminal region, highlighting a novel approach for examining the significance of amino acid changes at the naive Sry locus in mammals.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kento Miura
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Han CM, Chen R, Li T, Chen XL, Zheng YF, Ma MT, Gao QH. The bovine sex-determining region Y (Sry) gene and its mRNA transcript are present in Y sperm but not X sperm of bulls. ANIM BIOL 2018. [DOI: 10.1163/15707563-17000105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The aims of this study were to establish whether the sex-determining region Y gene and its mRNA transcript are present in the Y sperm and X sperm of bulls and, if present, determine their cellular localization. Semen was collected from three bulls and sorted by flow cytometry into X- and Y-chromosome populations. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine Sry mRNA expression in X sperm and Y sperm. The presence and localization of Sry DNA and RNA were investigated by fluorescence in situ hybridization (FISH). RT-PCR detected a single Sry transcript of 142 bp in Y sperm but not in X sperm. In Y sperm, the FISH-positive rates for Sry DNA and Sry RNA did not differ significantly from the re-analyzed Y sperm purity. In further experiments, there were no significant differences between the FISH-positive rate for Sry RNA and the re-analyzed Y sperm purity for X-sorted, Y-sorted, or unsorted sperm. In conclusion, FISH analysis revealed that Sry transcripts are present at the edges of the sperm heads of Y sperm but are absent from X sperm.
Collapse
Affiliation(s)
- Chun-Mei Han
- 1College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Rong Chen
- 1College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Tao Li
- 1College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Xiao-Li Chen
- 2College of Life Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yong-Fu Zheng
- 1College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Meng-Ting Ma
- 2College of Life Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Qing-Hua Gao
- 1College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| |
Collapse
|
7
|
She ZY, Yang WX. Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development? Semin Cell Dev Biol 2016; 63:13-22. [PMID: 27481580 DOI: 10.1016/j.semcdb.2016.07.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 01/27/2023]
Abstract
In mammals, sex determination defines the differentiation of the bipotential genital ridge into either testes or ovaries. Sry, the mammalian Y-chromosomal testis-determining gene, is a master regulator of male sex determination. It acts to switch the undifferentiated genital ridge towards testis development, triggering the adoption of a male fate. Sry initiates a cascade of gene networks through the direct regulation of Sox9 expression and promotes supporting cell differentiation, Leydig cell specification, vasculature formation and testis cord development. In the absence of Sry, alternative genetic cascades, including female sex-determining genes RSPO1, Wnt4/β-catenin and Foxl2, are involved in the formation of female genitalia and the maintenance of female ovarian development. The mutual antagonisms between male and female sex-determining pathways are crucial in not just the initiation but also the maintenance of the somatic sex of the gonad throughout the organism's lifetime. Any imbalances in above sex-determining genes can cause disorders of sex development in humans and mice. In this review, we provide a detailed summary of the expression profiles, biochemical properties and developmental functions of Sry and SoxE genes in embryonic testis development and adult gonadal development. We also briefly summarize the dedicate balances between male and female sex-determining genes in mammalian sex development, with particular highlights on the molecular actions of Sry and Sox9 transcription factors.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Herpin A, Schartl M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep 2015; 16:1260-74. [PMID: 26358957 DOI: 10.15252/embr.201540667] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves.
Collapse
Affiliation(s)
- Amaury Herpin
- Department Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany INRA, UR1037 Fish Physiology and Genomics, Sex Differentiation and Oogenesis Group (SDOG), Rennes, France
| | - Manfred Schartl
- Department Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Kimura R, Murata C, Kuroki Y, Kuroiwa A. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia. PLoS One 2014; 9:e108779. [PMID: 25265165 PMCID: PMC4181316 DOI: 10.1371/journal.pone.0108779] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023] Open
Abstract
SRY (sex-determining region Y) is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES) with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s) were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.
Collapse
Affiliation(s)
- Ryutaro Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chie Murata
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoko Kuroki
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Asato Kuroiwa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory of Animal Cytogenetics, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
10
|
Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination. Proc Natl Acad Sci U S A 2014; 111:11768-73. [PMID: 25074915 DOI: 10.1073/pnas.1400666111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.
Collapse
|
11
|
Larney C, Bailey TL, Koopman P. Switching on sex: transcriptional regulation of the testis-determining gene Sry. Development 2014; 141:2195-205. [PMID: 24866114 DOI: 10.1242/dev.107052] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mammalian sex determination hinges on the development of ovaries or testes, with testis fate being triggered by the expression of the transcription factor sex-determining region Y (Sry). Reduced or delayed Sry expression impairs testis development, highlighting the importance of its accurate spatiotemporal regulation and implying a potential role for SRY dysregulation in human intersex disorders. Several epigenetic modifiers, transcription factors and kinases are implicated in regulating Sry transcription, but it remains unclear whether or how this farrago of factors acts co-ordinately. Here we review our current understanding of Sry regulation and provide a model that assembles all known regulators into three modules, each converging on a single transcription factor that binds to the Sry promoter. We also discuss potential future avenues for discovering the cis-elements and trans-factors required for Sry regulation.
Collapse
Affiliation(s)
- Christian Larney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
12
|
Szatkowska I, Jędrzejczak M, Dybus A, Wiszniewska B, Udała J, Zaborski D, Wójcik J, Stankiewicz T. Histological, molecular and transcriptional analysis of PIS goats. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2013.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Chen YS, Racca JD, Sequeira PW, Phillips NB, Weiss MA. Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty. Proc Natl Acad Sci U S A 2013; 110:E3061-70. [PMID: 23901118 PMCID: PMC3746911 DOI: 10.1073/pnas.1300860110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The male program of therian mammals is determined by Sry, a transcription factor encoded by the Y chromosome. Specific DNA binding is mediated by a high mobility group (HMG) box. Expression of Sry in the gonadal ridge activates a Sox9-dependent gene regulatory network leading to testis formation. A subset of Sry alleles in superfamily Muroidea (order Rodentia) is remarkable for insertion of an unstable DNA microsatellite, most commonly encoding (as in mice) a CAG repeat-associated glutamine-rich domain. We provide evidence, based on an embryonic pre-Sertoli cell line, that this domain functions at a threshold length as a genetic capacitor to facilitate accumulation of variation elsewhere in the protein, including the HMG box. The glutamine-rich domain compensates for otherwise deleterious substitutions in the box and absence of nonbox phosphorylation sites to ensure occupancy of DNA target sites. Such compensation enables activation of a male transcriptional program despite perturbations to the box. Whereas human SRY requires nucleocytoplasmic shuttling and coupled phosphorylation, mouse Sry contains a defective nuclear export signal analogous to a variant human SRY associated with inherited sex reversal. We propose that the rodent glutamine-rich domain has (i) fostered accumulation of cryptic intragenic variation and (ii) enabled unmasking of such variation due to DNA replicative slippage. This model highlights genomic contingency as a source of protein novelty at the edge of developmental ambiguity and may underlie emergence of non-Sry-dependent sex determination in the radiation of Muroidea.
Collapse
Affiliation(s)
| | | | | | | | - Michael A. Weiss
- Departments of Biochemistry
- Biomedical Engineering, and
- Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
14
|
|
15
|
An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 2012; 22:1423-8. [PMID: 22727696 DOI: 10.1016/j.cub.2012.05.045] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/14/2012] [Accepted: 05/22/2012] [Indexed: 11/20/2022]
Abstract
Since the discovery of Sry in mammals [1, 2], few other master sex-determining genes have been identified in vertebrates [3-7]. To date, all of these genes have been characterized as well-known factors in the sex differentiation pathway, suggesting that the same subset of genes have been repeatedly and independently selected throughout evolution as master sex determinants [8, 9]. Here, we characterized in rainbow trout an unknown gene expressed only in the testis, with a predominant expression during testicular differentiation. This gene is a male-specific genomic sequence that is colocalized along with the sex-determining locus. This gene, named sdY for sexually dimorphic on the Y chromosome, encodes a protein that displays similarity to the C-terminal domain of interferon regulatory factor 9. The targeted inactivation of sdY in males using zinc-finger nuclease induces ovarian differentiation, and the overexpression of sdY in females using additive transgenesis induces testicular differentiation. Together, these results demonstrate that sdY is a novel vertebrate master sex-determining gene not related to any known sex-differentiating gene. These findings highlight an unexpected evolutionary plasticity in vertebrate sex determination through the demonstration that master sex determinants can arise from the de novo evolution of genes that have not been previously implicated in sex differentiation.
Collapse
|
16
|
Zhao L, Koopman P. SRY protein function in sex determination: thinking outside the box. Chromosome Res 2012; 20:153-62. [PMID: 22161124 DOI: 10.1007/s10577-011-9256-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Even though the mammalian sex-determining gene Sry has been intensively studied for the two decades since its discovery, the regions outside the conserved HMG box DNA-binding domain have received less attention due to a lack of sequence conservation and of obvious structural/functional motifs. Here, we summarize the available evidence for function beyond the HMG box, identify the known and postulated biochemical functions of the non-HMG-box domains in sex determination, and present possible explanations for the puzzling diversity of these non-HMG-box domains.
Collapse
Affiliation(s)
- Liang Zhao
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
17
|
Silversides DW, Raiwet DL, Souchkova O, Viger RS, Pilon N. Transgenic mouse analysis of Sry expression during the pre- and peri-implantation stage. Dev Dyn 2012; 241:1192-204. [PMID: 22539273 DOI: 10.1002/dvdy.23798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The SRY/Sry gene is expressed in pre-Sertoli cells of the male genital ridge and functions as the mammalian testis determining factor (TDF). In addition, expression of SRY/Sry outside the genital ridge has been reported, including preimplantation embryos, although the functional significance of this is not well understood. RESULTS Using Cre-mediated lineage studies and transgenic reporter mouse models, we now show that promoter sequences of human, pig and mouse SRY drive robust reporter gene expression in epiblast cells of peri-implantation embryos between embryonic day (E) 4.5 and E6.5. Analysis of endogenous Sry expression revealed that linear transcripts are produced by means of multiple polyadenylation sites in E4.5 embryos. Within the epiblast, SRY reporter expression mimics the expression seen using a Gata4 reporter model, but is dissimilar to that seen using an Oct4 reporter model. In addition, we report that overexpression of mouse Sry in embryonic stem cells leads to down-regulation of the core pluripotency markers Sox2 and Nanog. CONCLUSION We propose that SRY/Sry may function as a male-specific maturation factor in the peri-implantation mammalian embryo, providing a genetic mechanism to help explain the observation that male embryos are developmentally more advanced compared with female embryos, and suggesting a role for SRY beyond that of TDF.
Collapse
Affiliation(s)
- David W Silversides
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Gonadal cellular organization is very similar in all vertebrates, though different processes can trigger bipotential gonads to develop into either testes or ovaries. While mammals and birds, apart from some exceptions, show genetic sex determination (GSD), other animals, like turtles and crocodiles, express temperature-dependent sex determination. In some groups of animals, GSD can also be overridden by hormone or temperature influences, indicating how fragile this system can be. This review aims to explain the fundamental molecular mechanisms involved in mammalian GSD, mainly referring to mouse as a major model. Conceivably, other mammals might show a molecular mechanism different from the commonly investigated murine species.
Collapse
Affiliation(s)
- P Parma
- Department of Animal Science, Agricultural Faculty of Science, Milan University, Milan, Italy.
| | | |
Collapse
|
19
|
Abstract
In mouse sex determination, the presence or absence of Sertoli cells in the developing gonad is essential for the decision to form either a testis or an ovary. The transcription factor SOX9 has emerged as the master regulator of Sertoli cell differentiation during testis development and thus the crucial gene to determine sex. It is the target of two sets of regulatory controls, one positive and one negative, where one set tries to gain dominance over the other in the early gonad and then to establish and maintain the activity or silence of Sox9 throughout life. The data reveal the importance of the positive regulatory loops to reinforce initial decisions, whereas the maintenance of the gonadal phenotype appears to rely on the active repression of the opposite pathway.
Collapse
Affiliation(s)
- Susanne Jakob
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, UK.
| | | |
Collapse
|
20
|
Abstract
SRY, the mammalian Y-chromosomal testis-determining gene, induces male sex determination. Recent studies in mice reveal that the major role of SRY is to achieve sufficient expression of the related gene Sox9, in order to induce Sertoli cell differentiation, which in turn drives testis formation. Here, we discuss the cascade of events triggered by SRY and the mechanisms that reinforce the differentiation of the testes in males while actively inhibiting ovarian development.
Collapse
Affiliation(s)
- Kenichi Kashimada
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
21
|
Montazer-Torbati F, Kocer A, Auguste A, Renault L, Charpigny G, Pailhoux E, Pannetier M. A study of goat SRY protein expression suggests putative new roles for this gene in the developing testis of a species with long-lasting SRY expression. Dev Dyn 2010; 239:3324-35. [DOI: 10.1002/dvdy.22452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
22
|
Goat RSPO1 over-expression rescues sex-reversal in Rspo1-knockout XX mice but does not perturb testis differentiation in XY or sex-reversed XX mice. Transgenic Res 2009; 18:649-54. [PMID: 19184501 DOI: 10.1007/s11248-009-9247-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
RSPO1 is a newly discovered gene involved in sex differentiation. Two goat BAC clones encompassing the RSPO1 gene (gRSPO1) were injected into mouse oocytes and several transgenic lines derived. Both clones induced gRSPO1 over-expression in various tissues, including male and female gonads, with no obvious phenotype and normal sex-ratios. Introgression of the gRSPO1 transgene into a mouse RSPO1 knockout genotype resulted in the rescue of the fertility and the disappearance of the masculinized gonadic features of the females, demonstrating the functionality of the goat protein in a mouse context. On the contrary, over-expression of gRSPO1 within a mSRY or a gSRY-XX genotypes did not interfere with the SRY-induced male phenotype.
Collapse
|
23
|
Sekido R, Lovell-Badge R. Sex determination and SRY: down to a wink and a nudge? Trends Genet 2009; 25:19-29. [PMID: 19027189 DOI: 10.1016/j.tig.2008.10.008] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/25/2008] [Accepted: 10/25/2008] [Indexed: 01/04/2023]
Abstract
Sex-determining region Y (Sry) is the crucial gene that initiates male sex determination in most mammals. Although several components of the pathway regulating sexual differentiation have been elucidated, the mechanism of Sry action within this was unclear. However, recent discoveries in cellular, genetic and molecular aspects of gonad development are shedding light on the precise role of SRY in the regulation of Sox9, a crucial downstream target gene. SRY is thought to act synergistically with SF1, a nuclear receptor, through an enhancer of Sox9 to promote Sertoli cell differentiation in mice. In this review, we focus on the regulation of these genes and their interaction with other genes involved in promoting testis or ovary development. We also explore the common features between sex determination in mammals and in other vertebrates that lack Sry.
Collapse
Affiliation(s)
- Ryohei Sekido
- Division of Developmental Genetics, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
24
|
|
25
|
Ross DGF, Bowles J, Koopman P, Lehnert S. New insights into SRY regulation through identification of 5' conserved sequences. BMC Mol Biol 2008; 9:85. [PMID: 18851760 PMCID: PMC2572636 DOI: 10.1186/1471-2199-9-85] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SRY is the pivotal gene initiating male sex determination in most mammals, but how its expression is regulated is still not understood. In this study we derived novel SRY 5' flanking genomic sequence data from bovine and caprine genomic BAC clones. RESULTS We identified four intervals of high homology upstream of SRY by comparison of human, bovine, pig, goat and mouse genomic sequences. These conserved regions contain putative binding sites for a large number of known transcription factor families, including several that have been implicated previously in sex determination and early gonadal development. CONCLUSION Our results reveal potentially important SRY regulatory elements, mutations in which might underlie cases of idiopathic human XY sex reversal.
Collapse
Affiliation(s)
- Diana G F Ross
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
26
|
A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol 2008; 9:44. [PMID: 18445271 PMCID: PMC2387164 DOI: 10.1186/1471-2199-9-44] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background In mammals, sex determination is genetically controlled. The SRY gene, located on Y chromosome, functions as the dominant genetic switch for testis development. The SRY gene is specifically expressed in a subpopulation of somatic cells (pre-Sertoli cells) of the developing urogenital ridge for a brief period during gonadal differentiation. Despite this tight spatiotemporal expression pattern, the molecular mechanisms that regulate SRY transcription remain poorly understood. Sry expression has been shown to be markedly reduced in transgenic mice harboring a mutant GATA4 protein (a member of the GATA family of transcription factors) disrupted in its ability to interact with its transcriptional partner FOG2, suggesting that GATA4 is involved in SRY gene transcription. Results Although our results show that GATA4 directly targets the pig SRY promoter, we did not observe similar action on the mouse and human SRY promoters. In the mouse, Wilms' tumor 1 (WT1) is an important regulator of both Sry and Müllerian inhibiting substance (Amh/Mis) expression and in humans, WT1 mutations are associated with abnormalities of sex differentiation. GATA4 transcriptionally cooperated with WT1 on the mouse, pig, and human SRY promoters. Maximal GATA4/WT1 synergism was dependent on WT1 but not GATA4 binding to their consensus regulatory elements in the SRY promoter and required both the zinc finger and C-terminal regions of the GATA4 protein. Although both isoforms of WT1 synergized with GATA4, synergism was stronger with the +KTS rather than the -KTS isoform. WT1/GATA4 synergism was also observed on the AMH promoter. In contrast to SRY, WT1/GATA4 action on the mouse Amh promoter was specific for the -KTS isoform and required both WT1 and GATA4 binding. Conclusion Our data therefore provide new insights into the molecular mechanisms that contribute to the tissue-specific expression of the SRY and AMH genes in both normal development and certain syndromes of abnormal sex differentiation.
Collapse
|
27
|
Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JAM. Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Res 2008; 15:949-59. [PMID: 18185981 DOI: 10.1007/s10577-007-1185-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/01/2007] [Accepted: 11/01/2007] [Indexed: 11/25/2022]
Abstract
In eutherian ('placental') mammals, sex is determined by the presence or absence of the Y chromosome-borne gene SRY, which triggers testis determination. Marsupials also have a Y-borne SRY gene, implying that this mechanism is ancestral to therians, the SRY gene having diverged from its X-borne homologue SOX3 at least 180 million years ago. The rare exceptions have clearly lost and replaced the SRY mechanism recently. Other vertebrate classes have a variety of sex-determining mechanisms, but none shares the therian SRY-driven XX female:XY male system. In monotreme mammals (platypus and echidna), which branched from the therian lineage 210 million years ago, no orthologue of SRY has been found. In this study we show that its partner SOX3 is autosomal in platypus and echidna, mapping among human X chromosome orthologues to platypus chromosome 6, and to the homologous chromosome 16 in echidna. The autosomal localization of SOX3 in monotreme mammals, as well as non-mammal vertebrates, implies that SRY is absent in Prototheria and evolved later in the therian lineage 210-180 million years ago. Sex determination in platypus and echidna must therefore depend on another male-determining gene(s) on the Y chromosomes, or on the different dosage of a gene(s) on the X chromosomes.
Collapse
Affiliation(s)
- M C Wallis
- Comparative Genomics Group, Research School of Biological Sciences, the Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Waters PD, Wallis MC, Marshall Graves JA. Mammalian sex--Origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol 2007; 18:389-400. [PMID: 17400006 DOI: 10.1016/j.semcdb.2007.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/16/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Sex determination in vertebrates is accomplished through a highly conserved genetic pathway. But surprisingly, the downstream events may be activated by a variety of triggers, including sex determining genes and environmental cues. Amongst species with genetic sex determination, the sex determining gene is anything but conserved, and the chromosomes that bear this master switch subscribe to special rules of evolution and function. In mammals, with a few notable exceptions, female are homogametic (XX) and males have a single X and a small, heterochromatic and gene poor Y that bears a male dominant sex determining gene SRY. The bird sex chromosome system is the converse in that females are the heterogametic sex (ZW) and males the homogametic sex (ZZ). There is no SRY in birds, and the dosage-sensitive Z-borne DMRT1 gene is a credible candidate sex determining gene. Different sex determining switches seem therefore to have evolved independently in different lineages, although the complex sex chromosomes of the platypus offer us tantalizing clues that the mammal XY system may have evolved directly from an ancient reptile ZW system. In this review we will discuss the organization and evolution of the sex chromosomes across a broad range of mammals, and speculate on how the Y chromosome, and SRY, evolved.
Collapse
Affiliation(s)
- Paul D Waters
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, ACT 2601, Canberra, Australia.
| | | | | |
Collapse
|
29
|
Polanco JC, Koopman P. Sry and the hesitant beginnings of male development. Dev Biol 2007; 302:13-24. [PMID: 16996051 DOI: 10.1016/j.ydbio.2006.08.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/14/2006] [Accepted: 08/21/2006] [Indexed: 01/01/2023]
Abstract
In mammals, Sry (sex-determining region Y gene) is the master regulator of male sex determination. The discovery of Sry in 1990 was expected to provide the key to unravelling the network of gene regulation underlying testis development. Intriguingly, no target gene of SRY protein has yet been discovered, and the mechanisms by which it mediates its developmental functions are still elusive. What is clear is that instead of the robust gene one might expect as the pillar of male sexual development, Sry function hangs by a thin thread, a situation that has profound biological, medical and evolutionary implications.
Collapse
Affiliation(s)
- Juan Carlos Polanco
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|