1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Sidhu SK, Mishra S. A cholesterol-centric outlook on steroidogenesis. VITAMINS AND HORMONES 2023; 124:405-428. [PMID: 38408806 DOI: 10.1016/bs.vh.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cholesterol, an essential and versatile lipid, is the precursor substrate for the biosynthesis of steroid hormones, and a key structural and functional component of organelle membranes in eukaryotic cells. Consequently, the framework of steroidogenesis across main steroidogenic cell types is built around cholesterol, including its cellular uptake, mobilization from intracellular storage, and finally, its transport to the mitochondria where steroidogenesis begins. This setup, which is controlled by different trophic hormones in their respective target tissues, allows steroidogenic cells to meet their steroidogenic need of cholesterol effectively without impinging on the basic need for organelle membranes and their functions. However, our understanding of the basal steroidogenesis (i.e., independent of trophic hormone stimulation), which is a cell-intrinsic trait, remains poor. Particularly, the role that cholesterol itself plays in the regulation of steroidogenic factors and events in steroid hormone-producing cells remains largely unexplored. This is likely because of challenges in selectively targeting the steroidogenic intracellular cholesterol pool in studies. New evidence suggests that cholesterol plays a role in steroidogenesis. These new findings have created new opportunities to advance our understanding in this field. In this book chapter, we will provide a cholesterol-centric view on steroidogenesis and emphasize the importance of the interplay between cholesterol and the mitochondria in steroidogenic cells. Moreover, we will discuss a novel mitochondrial player, prohibitin-1, in this context. The overall goal is to provide a stimulating perspective on cholesterol as an important regulator of steroidogenesis (i.e., more than just a substrate for steroid hormones) and present the mitochondria as a potential cell-intrinsic factor in regulating steroidogenic cholesterol homeostasis.
Collapse
Affiliation(s)
- Simarjit Kaur Sidhu
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suresh Mishra
- Department of Physiology & Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Internal Medicine, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Pezzotti G, Adachi T, Imamura H, Bristol DR, Adachi K, Yamamoto T, Kanamura N, Marin E, Zhu W, Kawai T, Mazda O, Kariu T, Waku T, Nichols FC, Riello P, Rizzolio F, Limongi T, Okuma K. In Situ Raman Study of Neurodegenerated Human Neuroblastoma Cells Exposed to Outer-Membrane Vesicles Isolated from Porphyromonas gingivalis. Int J Mol Sci 2023; 24:13351. [PMID: 37686157 PMCID: PMC10488263 DOI: 10.3390/ijms241713351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid β (Aβ) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Davide Redolfi Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.)
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (O.M.)
| | - Toru Kariu
- Department of Life Science, Shokei University, Chuo-ku, Kuhonji, Kumamoto 862-8678, Japan;
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Frank C. Nichols
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, 263 Farmington Avenue, Storrs, CT 06030, USA;
| | - Pietro Riello
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (P.R.); (F.R.)
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy;
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| |
Collapse
|
4
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
5
|
Lin J, de Rezende VL, de Aguiar da Costa M, de Oliveira J, Gonçalves CL. Cholesterol metabolism pathway in autism spectrum disorder: From animal models to clinical observations. Pharmacol Biochem Behav 2023; 223:173522. [PMID: 36717034 DOI: 10.1016/j.pbb.2023.173522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by a persistent impairment of social skills, including aspects of perception, interpretation, and response, combined with restricted and repetitive behavior. ASD is a complex and multifactorial condition, and its etiology could be attributed to genetic and environmental factors. Despite numerous clinical and experimental studies, no etiological factor, biomarker, and specific model of transmission have been consistently associated with ASD. However, an imbalance in cholesterol levels has been observed in many patients, more specifically, a condition of hypocholesterolemia, which seems to be shared between ASD and ASD-related genetic syndromes such as fragile X syndrome (FXS), Rett syndrome (RS), and Smith- Lemli-Opitz (SLO). Furthermore, it is known that alterations in cholesterol levels lead to neuroinflammation, oxidative stress, impaired myelination and synaptogenesis. Thus, the aim of this review is to discuss the cholesterol metabolic pathways in the ASD context, as well as in genetic syndromes related to ASD, through clinical observations and animal models. In fact, SLO, FXS, and RS patients display early behavioral markers of ASD followed by cholesterol disturbances. Several studies have demonstrated the role of cholesterol in psychiatric conditions and how its levels modulate brain neurodevelopment. This review suggests an important relationship between ASD pathology and cholesterol metabolism impairment; thus, some strategies could be raised - at clinical and pre-clinical levels - to explore whether cholesterol metabolism disturbance has a generally adverse effect in exacerbating the symptoms of ASD patients.
Collapse
Affiliation(s)
- Jaime Lin
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jade de Oliveira
- Laboratory for Research in Metabolic Disorders and Neurodegenerative Diseases, Graduate Program in Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
6
|
Mittal A, Sharma R, Sardana S, Goyal PK, Piplani M, Pandey A. A Systematic Review of Updated Mechanistic Insights Towards Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1232-1242. [PMID: 35538829 DOI: 10.2174/1871527321666220510144127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative neurological disorder that impairs memory, cognitive abilities, and the ability to do everyday activities. This neurodegenerative disease is growing increasingly common as the world's population ages. Here, we reviewed some of the key findings showing the function of Aβ peptide, oxidative stress, free radical damage Triggering Receptors Expressed cn Myeloid Cells 2 (TREM2), Nitric Oxide (NO) and gut microbiota in the aetiology of AD. METHODS The potentially relevant online medical databases, namely PubMed, Scopus, Google Scholar, Cochrane Library, and JSTOR, were exhaustively researched. In addition, the data reported in the present study were primarily intervened on the basis of the timeline selected from 1 January 2000 to 31 October 2021. The whole framework was designed substantially based on key terms and studies selected by virtue of their relevance to our investigations. RESULTS Findings suggested that channels of free radicals, such as transition metal accumulation and genetic factors, are mainly accountable for the redox imbalance that assist to understand better the pathogenesis of AD and incorporating new therapeutic approaches. Moreover, TREM2 might elicit a protective function for microglia in AD. NO causes an increase in oxidative stress and mitochondrial damage, compromising cellular integrity and viability. The study also explored that the gut and CNS communicate with one another and that regulating gut commensal flora might be a viable therapeutic for neurodegenerative illnesses like AD. CONCLUSION There are presently no viable therapies for Alzheimer's disease, but recent breakthroughs in our knowledge of the disease's pathophysiology may aid in the discovery of prospective therapeutic targets.
Collapse
Affiliation(s)
- Arun Mittal
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, Gurgaon, Haryana-122413, India
| | - Rupali Sharma
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, Gurgaon, Haryana-122413, India
| | - Satish Sardana
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, Gurgaon, Haryana-122413, India
| | - Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana-122413, India
| | - Mona Piplani
- Maharaja Agarsen School of Pharmacy, Maharaja Agarsen University, Solan, Himachal Pardesh, India
| | - Anima Pandey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
7
|
Jennings MJ, Hathazi D, Nguyen CDL, Munro B, Münchberg U, Ahrends R, Schenck A, Eidhof I, Freier E, Synofzik M, Horvath R, Roos A. Intracellular Lipid Accumulation and Mitochondrial Dysfunction Accompanies Endoplasmic Reticulum Stress Caused by Loss of the Co-chaperone DNAJC3. Front Cell Dev Biol 2021; 9:710247. [PMID: 34692675 PMCID: PMC8526738 DOI: 10.3389/fcell.2021.710247] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Recessive mutations in DNAJC3, an endoplasmic reticulum (ER)-resident BiP co-chaperone, have been identified in patients with multisystemic neurodegeneration and diabetes mellitus. To further unravel these pathomechanisms, we employed a non-biased proteomic approach and identified dysregulation of several key cellular pathways, suggesting a pathophysiological interplay of perturbed lipid metabolism, mitochondrial bioenergetics, ER-Golgi function, and amyloid-beta processing. Further functional investigations in fibroblasts of patients with DNAJC3 mutations detected cellular accumulation of lipids and an increased sensitivity to cholesterol stress, which led to activation of the unfolded protein response (UPR), alterations of the ER-Golgi machinery, and a defect of amyloid precursor protein. In line with the results of previous studies, we describe here alterations in mitochondrial morphology and function, as a major contributor to the DNAJC3 pathophysiology. Hence, we propose that the loss of DNAJC3 affects lipid/cholesterol homeostasis, leading to UPR activation, β-amyloid accumulation, and impairment of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Matthew J. Jennings
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Denisa Hathazi
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Chi D. L. Nguyen
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Benjamin Munro
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ute Münchberg
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rita Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, Children’s Hospital University of Essen, Essen, Germany
| |
Collapse
|
8
|
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer's Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46:3103-3122. [PMID: 34386919 DOI: 10.1007/s11064-021-03418-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer's disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.,Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | | | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
9
|
Shi W, Wu H, Liu S, Wu Z, Wu H, Liu J, Hou Y. Progesterone Suppresses Cholesterol Esterification in APP/PS1 mice and a cell model of Alzheimer's Disease. Brain Res Bull 2021; 173:162-173. [PMID: 34044033 DOI: 10.1016/j.brainresbull.2021.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
AIMS Cholesteryl ester(CE), generated from the mitochondria associated membrane (MAM), is involved in the pathogenesis of Alzheimer's Disease (AD). In theory, the different neuroprotective effects of progesterone in AD are all linked to MAM, yet the effect on cholesterol esterification has not been reported. Therefore, this study was aimed to investigate the regulation of progesterone on intracerebral CE in AD models and the underlying mechanism. METHODS APP/PS1 mice and AD cell model induced by Aβ 25-35 were selected as the research objects. APP/PS1 mice were daily administrated intragastrically with progesterone and The Morris Water Maze test was performed to detect the learning and memory abilities. Intracellular cholesterol was measured by Cholesterol/Cholesteryl Ester Quantitation Assay. The structure of MAMs were observed with transmission electron microscopy. The expression of acyl-CoA: cholesterol acyltransferase 1 (ACAT1), ERK1/2 and p-ERK1/2 were detected with western blotting, immunohistochemistry or immunofluorescence. RESULTS Progesterone suppressed the accumulation of intracellular CE, shortened the length of abnormally prolonged MAM in cortex of APP/PS1 mice. Progesterone decreased the expression of ACAT1, which could be blocked by progesterone receptor membrane component 1 (PGRMC1) inhibitor AG205. The ERK1/2 pathway maybe involved in the progesterone mediated regulation of ACAT1 in AD models, rather than the PI3K/Akt and the P38 MEPK pathways. SIGNIFICANCE The results supported a line of evidence that progesterone regulates CE level and the structure of MAM in neurons of AD models, providing a promising treatment against AD on the dysfunction of cholesterol metabolism.
Collapse
Affiliation(s)
- Wenjing Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China.
| | - Hang Wu
- Department of Pharmacy, Heze University, Heze 274000, Shandong Province, China.
| | - Sha Liu
- Department of Pharmacy, the Third Hospital of Shijiazhuang, Shijiazhuang 050000, Hebei Province, China.
| | - Zhigang Wu
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China.
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Jianfang Liu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Yanning Hou
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| |
Collapse
|
10
|
Park JC, Jang SY, Lee D, Lee J, Kang U, Chang H, Kim HJ, Han SH, Seo J, Choi M, Lee DY, Byun MS, Yi D, Cho KH, Mook-Jung I. A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nat Commun 2021; 12:280. [PMID: 33436582 PMCID: PMC7804132 DOI: 10.1038/s41467-020-20440-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Developing effective drugs for Alzheimer's disease (AD), the most common cause of dementia, has been difficult because of complicated pathogenesis. Here, we report an efficient, network-based drug-screening platform developed by integrating mathematical modeling and the pathological features of AD with human iPSC-derived cerebral organoids (iCOs), including CRISPR-Cas9-edited isogenic lines. We use 1300 organoids from 11 participants to build a high-content screening (HCS) system and test blood-brain barrier-permeable FDA-approved drugs. Our study provides a strategy for precision medicine through the convergence of mathematical modeling and a miniature pathological brain model using iCOs.
Collapse
Affiliation(s)
- Jong-Chan Park
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG United Kingdom
| | - So-Yeong Jang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Dongjoon Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jeongha Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Uiryong Kang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Hongjun Chang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Haeng Jun Kim
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Sun-Ho Han
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jinsoo Seo
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Sciences and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Murim Choi
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dong Young Lee
- grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Psychiatry, College of medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Min Soo Byun
- grid.412480.b0000 0004 0647 3378Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| | - Dahyun Yi
- grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Kwang-Hyun Cho
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Inhee Mook-Jung
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| |
Collapse
|
11
|
Sanderson JM. Far from Inert: Membrane Lipids Possess Intrinsic Reactivity That Has Consequences for Cell Biology. Bioessays 2020; 42:e1900147. [PMID: 31995246 DOI: 10.1002/bies.201900147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Indexed: 12/19/2022]
Abstract
In this article, it is hypothesized that a fundamental chemical reactivity exists between some non-lipid constituents of cellular membranes and ester-based lipids, the significance of which is not generally recognized. Many peptides and smaller organic molecules have now been shown to undergo lipidation reactions in model membranes in circumstances where direct reaction with the lipid is the only viable route for acyl transfer. Crucially, drugs like propranolol are lipidated in vivo with product profiles that are comparable to those produced in vitro. Some compounds have also been found to promote lipid hydrolysis. Drugs with high lytic activity in vivo tend to have higher toxicity in vitro. Deacylases and lipases are proposed as key enzymes that protect cells against the effects of intrinsic lipidation. The toxic effects of intrinsic lipidation are hypothesized to include a route by which nucleation can occur during the formation of amyloid fibrils.
Collapse
|
12
|
McFarlane O, Kędziora-Kornatowska K. Cholesterol and Dementia: A Long and Complicated Relationship. Curr Aging Sci 2020; 13:42-51. [PMID: 31530269 PMCID: PMC7403650 DOI: 10.2174/1874609812666190917155400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a huge demand for efficient strategies for maintaining cognitive wellbeing with age, especially in the context of population aging. Dementia constitutes the main reason for disability and dependency in the elderly. Identification of potential risk and protective factors, as well as determinants of conversion from MCI to dementia, is therefore crucial. In case of Alzheimer's disease, the most prevalent dementia syndrome amongst the members of modern societies, neurodegenerative processes in the brain can begin many years before first clinical symptoms appear. First functional changes typically mean advanced neuron loss, therefore, the earliest possible diagnosis is critical for implementation of promising early pharmaceutical interventions. OBJECTIVE The study aimed to discuss the relationships between both circulating and brain cholesterol with cognition, and explore its potential role in early diagnosis of cognitive disorders. METHODS Literature review. RESULTS The causal role of high cholesterol levels in AD or MCI has not been confirmed. It has been postulated that plasma levels of 24(S)-OHC can potentially be used as an early biochemical marker of altered cholesterol homeostasis in the CNS. Some studies brought conflicting results, finding normal or lowered levels of 24(S)-OHC in dementia patients compared to controls. In spite of decades of research on the relationship between cholesterol and dementia, so far, no single trusted indicator of an early cognitive deterioration has been identified. CONCLUSION The current state of knowledge makes the use of cholesterol markers of cognitive decline in clinical practice impossible.
Collapse
Affiliation(s)
- Oliwia McFarlane
- Address correspondence to this author at the Department of Public Health, Faculty of Health Sciences, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, P.O. Box: 85-830, Bydgoszcz, Poland; Tel/Fax: ++48-52-585-5408; E-mail:
| | | |
Collapse
|
13
|
Nutritional Lipidomics in Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:95-104. [DOI: 10.1007/978-3-030-32633-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Wu Y, Wang Z, Jia X, Zhang H, Zhang H, Li J, Zhang K. Prediction of Alzheimer's disease with serum lipid levels in Asian individuals: a meta-analysis. Biomarkers 2019; 24:341-351. [PMID: 30663433 DOI: 10.1080/1354750x.2019.1571633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: The serum lipid profile has become a routine clinical test and used as an important predictor for Alzheimer's disease (AD), although its predictive value remains undetermined. Objective: To evaluate the role of serum lipid levels in predicting the risk of AD. Methods: Meta-analyses were conducted using Comprehensive Meta-analyses (CMA) software to investigate the association between four conventional serum lipid profile parameters and the risk of AD, focused on samples from Asian. Results: In total, 3423 AD patients and 6127 healthy participants were involved. The results demonstrated that AD patients showed higher LDL-C and TC levels (SMD = 0.27, 95% CI: 0.04-0.51, p = 0.02 for LDL-C; SMD = 0.25, 95% CI: 0.05-0.46, p = 0.02 for TC) compared with those of healthy controls. People with higher LDL-C and/or TC levels had an increased risk of AD (OR = 1.64, 95% CI: 1.07-2.51 for LDL-C and OR = 1.58, 95% CI: 1.10-2.92 for TC). Conclusions: This study provided evidence that serum LDL-C and TC levels were associated with the risk of AD in Asian individuals. The routine lipid profile may be useful for AD diagnosis, monitoring and treatment.
Collapse
Affiliation(s)
- Yufei Wu
- a College of Life Science, Institute of Health & Population Northwest University , Xi'an , China
| | - Zhibin Wang
- a College of Life Science, Institute of Health & Population Northwest University , Xi'an , China
| | - Xueping Jia
- a College of Life Science, Institute of Health & Population Northwest University , Xi'an , China
| | - Huan Zhang
- b The 2nd Affiliated Hospital , Xi'an Jiaotong University , Xi'an , China
| | - Hong Zhang
- c Neurology Department , Shaanxi Provincial People's Hospital , Xi'an , China
| | - Junlin Li
- a College of Life Science, Institute of Health & Population Northwest University , Xi'an , China.,d Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) , Northwest University , Xi'an , China
| | - Kejin Zhang
- a College of Life Science, Institute of Health & Population Northwest University , Xi'an , China.,d Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) , Northwest University , Xi'an , China
| |
Collapse
|
15
|
Crabtree GW, Gogos JA. Role of Endogenous Metabolite Alterations in Neuropsychiatric Disease. ACS Chem Neurosci 2018; 9:2101-2113. [PMID: 30044078 DOI: 10.1021/acschemneuro.8b00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The potential role in neuropsychiatric disease risk arising from alterations and derangements of endogenous small-molecule metabolites remains understudied. Alterations of endogenous metabolite concentrations can arise in multiple ways. Marked derangements of single endogenous small-molecule metabolites are found in a large group of rare genetic human diseases termed "inborn errors of metabolism", many of which are associated with prominent neuropsychiatric symptomology. Whether such metabolites act neuroactively to directly lead to distinct neural dysfunction has been frequently hypothesized but rarely demonstrated unequivocally. Here we discuss this disease concept in the context of our recent findings demonstrating that neural dysfunction arising from accumulation of the schizophrenia-associated metabolite l-proline is due to its structural mimicry of the neurotransmitter GABA that leads to alterations in GABA-ergic short-term synaptic plasticity. For cases in which a similar direct action upon neurotransmitter binding sites is suspected, we lay out a systematic approach that can be extended to assessing the potential disruptive action of such candidate disease metabolites. To address the potentially important and broader role in neuropsychiatric disease, we also consider whether the more subtle yet more ubiquitous variations in endogenous metabolites arising from natural allelic variation may likewise contribute to disease risk but in a more complex and nuanced manner.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
- Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
16
|
Nunes VS, Cazita PM, Catanozi S, Nakandakare ER, Quintão ECR. Decreased content, rate of synthesis and export of cholesterol in the brain of apoE knockout mice. J Bioenerg Biomembr 2018; 50:283-287. [DOI: 10.1007/s10863-018-9757-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|
17
|
Canale C, Oropesa-Nuñez R, Diaspro A, Dante S. Amyloid and membrane complexity: The toxic interplay revealed by AFM. Semin Cell Dev Biol 2017; 73:82-94. [PMID: 28860102 DOI: 10.1016/j.semcdb.2017.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023]
Abstract
Lipid membranes play a fundamental role in the pathological development of protein misfolding diseases. Several pieces of evidence suggest that the lipid membrane could act as a catalytic surface for protein aggregation. Furthermore, a leading theory indicates the interaction between the cell membrane and misfolded oligomer species as the responsible for cytotoxicity, hence, for neurodegeneration in disorders such as Alzheimer's and Parkinson's disease. The definition of the mechanisms that drive the interaction between pathological protein aggregates and plasma membrane is fundamental for the development of effective therapies for a large class of diseases. Atomic force microscopy (AFM) has been employed to study how amyloid aggregates affect the cell physiological properties. Considerable efforts were spent to characterize the interaction with model systems, i.e., planar supported lipid bilayers, but some works also addressed the problem directly on living cells. Here, an overview of the main works involving the use of the AFM on both model system and living cells will be provided. Different kind of approaches will be presented, as well as the main results derived from the AFM analysis.
Collapse
Affiliation(s)
- Claudio Canale
- Department of Nanophysics. Istituto Italiano di Tecnologia. Via Morego 30, 16163 Genova, Italy; Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy.
| | - Reinier Oropesa-Nuñez
- Department of Nanophysics. Istituto Italiano di Tecnologia. Via Morego 30, 16163 Genova, Italy; DIBRIS Department, University of Genova, viale Causa 13, 16145, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics. Istituto Italiano di Tecnologia. Via Morego 30, 16163 Genova, Italy; Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Silvia Dante
- Department of Nanophysics. Istituto Italiano di Tecnologia. Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
18
|
Ungureanu AA, Benilova I, Krylychkina O, Braeken D, De Strooper B, Van Haesendonck C, Dotti CG, Bartic C. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons. Sci Rep 2016; 6:25841. [PMID: 27173984 PMCID: PMC4865860 DOI: 10.1038/srep25841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/22/2016] [Indexed: 01/09/2023] Open
Abstract
Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer's disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration.
Collapse
Affiliation(s)
- Andreea-Alexandra Ungureanu
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium.,imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Iryna Benilova
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium
| | | | | | - Bart De Strooper
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium
| | - Chris Van Haesendonck
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium
| | - Carlos G Dotti
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium.,CSIC, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Campus Cantoblanco, 28049 Madrid, Spain
| | - Carmen Bartic
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium.,imec, Kapeldreef 75, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Vanmierlo T, Bogie JF, Mailleux J, Vanmol J, Lütjohann D, Mulder M, Hendriks JJ. Plant sterols: Friend or foe in CNS disorders? Prog Lipid Res 2015; 58:26-39. [DOI: 10.1016/j.plipres.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
|
20
|
Brachet A, Norwood S, Brouwers JF, Palomer E, Helms JB, Dotti CG, Esteban JA. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. ACTA ACUST UNITED AC 2015; 208:791-806. [PMID: 25753037 PMCID: PMC4362467 DOI: 10.1083/jcb.201407122] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol acts as a sensor of NMDA receptor activation and as a trigger of downstream signaling by engaging small GTPase activation and AMPA receptor synaptic delivery during long-term potentiation. Neurotransmitter receptor trafficking during synaptic plasticity requires the concerted action of multiple signaling pathways and the protein transport machinery. However, little is known about the contribution of lipid metabolism during these processes. In this paper, we addressed the question of the role of cholesterol in synaptic changes during long-term potentiation (LTP). We found that N-methyl-d-aspartate–type glutamate receptor (NMDAR) activation during LTP induction leads to a rapid and sustained loss or redistribution of intracellular cholesterol in the neuron. A reduction in cholesterol, in turn, leads to the activation of Cdc42 and the mobilization of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptors (AMPARs) from Rab11-recycling endosomes into the synaptic membrane, leading to synaptic potentiation. This process is accompanied by an increase of NMDAR function and an enhancement of LTP. These results imply that cholesterol acts as a sensor of NMDAR activation and as a trigger of downstream signaling to engage small GTPase (guanosine triphosphatase) activation and AMPAR synaptic delivery during LTP.
Collapse
Affiliation(s)
- Anna Brachet
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Stephanie Norwood
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, Netherlands
| | - Ernest Palomer
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, Netherlands
| | - Carlos G Dotti
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José A Esteban
- Departamento de Neurobiología, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
21
|
Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL. H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 2014; 35:1511.e1-12. [DOI: 10.1016/j.neurobiolaging.2013.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
|
22
|
Influence of Alzheimer's β-amyloid peptide on the lateral diffusion of lipids in raft-forming bilayers. MENDELEEV COMMUNICATIONS 2013. [DOI: 10.1016/j.mencom.2013.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Walter J, van Echten-Deckert G. Cross-talk of membrane lipids and Alzheimer-related proteins. Mol Neurodegener 2013; 8:34. [PMID: 24148205 PMCID: PMC4016522 DOI: 10.1186/1750-1326-8-34] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is neuropathologically characterized by the combined occurrence of extracellular β-amyloid plaques and intracellular neurofibrillary tangles in the brain. While plaques contain aggregated forms of the amyloid β-peptide (Aβ), tangles are formed by fibrillar forms of the microtubule associated protein tau. All mutations identified so far to cause familial forms of early onset AD (FAD) are localized close to or within the Aβ domain of the amyloid precursor protein (APP) or in the presenilin proteins that are essential components of a protease complex involved in the generation of Aβ. Mutations in the tau gene are not associated with FAD, but can cause other forms of dementia. The genetics of FAD together with biochemical and cell biological data, led to the formulation of the amyloid hypothesis, stating that accumulation and aggregation of Aβ is the primary event in the pathogenesis of AD, while tau might mediate its toxicity and neurodegeneration. The generation of Aβ involves sequential proteolytic cleavages of the amyloid precursor protein (APP) by enzymes called β-and γ-secretases. Notably, APP itself as well as the secretases are integral membrane proteins. Thus, it is very likely that membrane lipids are involved in the regulation of subcellular transport, activity, and metabolism of AD related proteins. Indeed, several studies indicate that membrane lipids, including cholesterol and sphingolipids (SLs) affect Aβ generation and aggregation. Interestingly, APP and other AD associated proteins, including β-and γ-secretases can, in turn, influence lipid metabolic pathways. Here, we review the close connection of cellular lipid metabolism and AD associated proteins and discuss potential mechanisms that could contribute to initiation and progression of AD.
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Sigmund-Freud-Str, 25, 53127, Bonn, Germany.
| | | |
Collapse
|
24
|
Kyrtsos CR, Baras JS. Studying the role of ApoE in Alzheimer's disease pathogenesis using a systems biology model. J Bioinform Comput Biol 2013; 11:1342003. [PMID: 24131052 DOI: 10.1142/s0219720013420031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Even with its well-known symptoms of memory loss and well-characterized pathology of beta amyloid (Aβ) plaques and neurofibrillary tangles, the disease pathogenesis and initiating factors are still not well understood. To tackle this problem, a systems biology model has been developed and used to study the varying effects of variations in the ApoE allele present, as well as the effects of short term and periodic inflammation at low to moderate levels. Simulations showed a late onset peak of Aβ in the ApoE4 case that lead to localized neuron loss which could be ameliorated in part by application of short-term pro-inflammatory mediators. The model that has been developed herein represents one of the first attempts to model AD from a systems approach to study physiologically relevant parameters that may prove useful to physicians in the future.
Collapse
|
25
|
Gene-based testing of interactions in association studies of quantitative traits. PLoS Genet 2013; 9:e1003321. [PMID: 23468652 PMCID: PMC3585009 DOI: 10.1371/journal.pgen.1003321] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/31/2012] [Indexed: 01/05/2023] Open
Abstract
Various methods have been developed for identifying gene–gene interactions in genome-wide association studies (GWAS). However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that confer advantage in both statistical power and biological interpretation. The framework of gene-based gene–gene interaction (GGG) tests combine marker-based interaction tests between all pairs of markers in two genes to produce a gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein–protein interaction to test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as well as emerging, association studies. Epistasis is likely to play a significant role in complex diseases or traits and is one of the many possible explanations for “missing heritability.” However, epistatic interactions have been difficult to detect in genome-wide association studies (GWAS) due to the limited power caused by the multiple-testing correction from the large number of tests conducted. Gene-based gene–gene interaction (GGG) tests might hold the key to relaxing the multiple-testing correction burden and increasing the power for identifying epistatic interactions in GWAS. Here, we developed GGG tests of quantitative traits by extending four P value combining methods and evaluated their type I error rates and power using extensive simulations. All four GGG tests are more powerful than a principal component-based test. We also applied our GGG tests to data from the Atherosclerosis Risk in Communities study and found five gene-level interactions associated with the levels of total cholesterol and high-density lipoprotein cholesterol (HDL-C). One interaction between SMAD3 and NEDD9 on HDL-C was further replicated in an independent sample from the Multi-Ethnic Study of Atherosclerosis.
Collapse
|
26
|
Anchisi L, Dessì S, Pani A, Mandas A. Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol 2013; 3:486. [PMID: 23316166 PMCID: PMC3539713 DOI: 10.3389/fphys.2012.00486] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
Neurodegeneration, a common feature for many brain disorders, has severe consequences on the mental and physical health of an individual. Typically human neurodegenerative diseases are devastating illnesses that predominantly affect elderly people, progress slowly, and lead to disability and premature death; however they may occur at all ages. Despite extensive research and investments, current therapeutic interventions against these disorders treat solely the symptoms. Therefore, since the underlying mechanisms of damage to neurons are similar, in spite of etiology and background heterogeneous, it will be of interest to identify possible trigger point of neurodegeneration enabling development of drugs and/or prevention strategies that target many disorders simultaneously. Among the factors that have been identified so far to cause neurodegeneration, failures in cholesterol homeostasis are indubitably the best investigated. The aim of this review is to critically discuss some of the main results reported in the recent years in this field mainly focusing on the mechanisms that, by recovering perturbations of cholesterol homeostasis in neuronal cells, may correct clinically relevant features occurring in different neurodegenerative disorders and, in this regard, also debate the current potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Anchisi
- Child Neuropsychiatry Unit, Azienda Sanitaria Locale (ASL) n°5 Oristano, Italy ; Department of Clinical and Experimental Medicine and Pharmacology, University of Messina Messina, Italy
| | | | | | | |
Collapse
|
27
|
Solé-Domènech S, Sjövall P, Vukojević V, Fernando R, Codita A, Salve S, Bogdanović N, Mohammed AH, Hammarström P, Nilsson KPR, LaFerla FM, Jacob S, Berggren PO, Giménez-Llort L, Schalling M, Terenius L, Johansson B. Localization of cholesterol, amyloid and glia in Alzheimer's disease transgenic mouse brain tissue using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and immunofluorescence imaging. Acta Neuropathol 2013; 125:145-57. [PMID: 22996963 DOI: 10.1007/s00401-012-1046-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/18/2022]
Abstract
The spatial distributions of lipids, amyloid-beta deposits, markers of neurons and glial cells were imaged, at submicrometer lateral resolution, in brain structures of a mouse model of Alzheimer's disease using a new methodology that combines time-of-flight secondary ion mass spectrometry (ToF-SIMS) and confocal fluorescence microscopy. The technology, which enabled us to simultaneously image the lipid and glial cell distributions in Tg2576 mouse brain structures, revealed micrometer-sized cholesterol accumulations in hippocampal regions undergoing amyloid-beta deposition. Such cholesterol granules were either associated with individual amyloid deposits or spread over entire regions undergoing amyloidogenesis. Subsequent immunohistochemical analysis of the same brain regions showed increased microglial and astrocytic immunoreactivity associated with the amyloid deposits, as expected from previous studies, but did not reveal any particular astrocytic or microglial feature correlated with cholesterol granulation. However, dystrophic neurites as well as presynaptic vesicles presented a distribution similar to that of cholesterol granules in regions undergoing amyloid-beta accumulation, thus indicating that these neuronal endpoints may retain cholesterol in areas with lesions. In conclusion, the present study provides evidence for an altered cholesterol distribution near amyloid deposits that would have been missed by several other lipid analysis methods, and opens for the possibility to study in detail the putative liaison between lipid environment and protein structure and function in Alzheimer's disease.
Collapse
|
28
|
van Echten-Deckert G, Walter J. Sphingolipids: Critical players in Alzheimer’s disease. Prog Lipid Res 2012; 51:378-93. [DOI: 10.1016/j.plipres.2012.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
|
29
|
Vanmierlo T, Weingärtner O, van der Pol S, Husche C, Kerksiek A, Friedrichs S, Sijbrands E, Steinbusch H, Grimm M, Hartmann T, Laufs U, Böhm M, de Vries HE, Mulder M, Lütjohann D. Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. J Lipid Res 2012; 53:726-35. [PMID: 22279184 DOI: 10.1194/jlr.m017244] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant sterols such as sitosterol and campesterol are frequently administered as cholesterol-lowering supplements in food. Recently, it has been shown in mice that, in contrast to the structurally related cholesterol, circulating plant sterols can enter the brain. We questioned whether the accumulation of plant sterols in murine brain is reversible. After being fed a plant sterol ester-enriched diet for 6 weeks, C57BL/6NCrl mice displayed significantly increased concentrations of plant sterols in serum, liver, and brain by 2- to 3-fold. Blocking intestinal sterol uptake for the next 6 months while feeding the mice with a plant stanol ester-enriched diet resulted in strongly decreased plant sterol levels in serum and liver, without affecting brain plant sterol levels. Relative to plasma concentrations, brain levels of campesterol were higher than sitosterol, suggesting that campesterol traverses the blood-brain barrier more efficiently. In vitro experiments with brain endothelial cell cultures showed that campesterol crossed the blood-brain barrier more efficiently than sitosterol. We conclude that, over a 6-month period, plant sterol accumulation in murine brain is virtually irreversible.
Collapse
Affiliation(s)
- Tim Vanmierlo
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Williams TL, Serpell LC. Membrane and surface interactions of Alzheimer’s Aβ peptide - insights into the mechanism of cytotoxicity. FEBS J 2011; 278:3905-17. [DOI: 10.1111/j.1742-4658.2011.08228.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Shih PH, Wu CH, Yeh CT, Yen GC. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1683-1689. [PMID: 21302893 DOI: 10.1021/jf103822h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Alzheimer's disease is neuropathologically characterized by amyloid β-protein (Aβ) deposition, resulting in neurotoxicity. Herein, we focused on the prevention of anthocyanins from amyloid-mediated neurodysfunction. The data demonstrated that combined exposure of Aβ(1-40) and Aβ(25-35) to Neuro-2A cells resulted in reactive oxygen species (ROS) production and perturbation of calcium homeostasis. The expressions of LXRα, ApoE, ABCA1, and seladin-1 genes were significantly down-regulated upon Aβ challenge. β-Secretase, the rate-limiting enzyme that catalyzes amyloid precursor protein transform to Aβ, was up-regulated by Aβ treatment. For the duration of Aβ stimulation, malvidin (Mal) or oenin (Oen; malvidin-3-O-glucoside) was added, and the protective effects were observed. Mal and Oen showed protective effects against Aβ-induced neurotoxicity through blocking ROS formation, preserving Ca(2+) homeostasis, and preventing Aβ-mediated perturbation of certain genes involved in Aβ metabolism and cellular defense. The present study implicates anthocyanin as a potential therapeutic candidate for the prevention of amyloid-mediated neurodysfunction.
Collapse
Affiliation(s)
- Ping-Hsiao Shih
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
32
|
Membrane cholesterol enrichment prevents Aβ-induced oxidative stress in Alzheimer's fibroblasts. Neurobiol Aging 2011; 32:210-22. [DOI: 10.1016/j.neurobiolaging.2009.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 01/13/2023]
|
33
|
Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, Tolksdorf K, Heneka MT, Lütjohann D, Wunderlich P, Walter J. Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J Biol Chem 2010; 285:37405-14. [PMID: 20876579 DOI: 10.1074/jbc.m110.149468] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidemiological studies indicate that intake of statins decrease the risk of developing Alzheimer disease. Cellular and in vivo studies suggested that statins might decrease the generation of the amyloid β-peptide (Aβ) from the β-amyloid precursor protein. Here, we show that statins potently stimulate the degradation of extracellular Aβ by microglia. The statin-dependent clearance of extracellular Aβ is mainly exerted by insulin-degrading enzyme (IDE) that is secreted in a nonconventional pathway in association with exosomes. Stimulated IDE secretion and Aβ degradation were also observed in blood of mice upon peripheral treatment with lovastatin. Importantly, increased IDE secretion upon lovastatin treatment was dependent on protein isoprenylation and up-regulation of exosome secretion by fusion of multivesicular bodies with the plasma membrane. These data demonstrate a novel pathway for the nonconventional secretion of IDE via exosomes. The modulation of this pathway could provide a new strategy to enhance the extracellular clearance of Aβ.
Collapse
Affiliation(s)
- Irfan Y Tamboli
- Departments of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Merlo S, Spampinato S, Canonico PL, Copani A, Sortino MA. Alzheimer's disease: brain expression of a metabolic disorder? Trends Endocrinol Metab 2010; 21:537-44. [PMID: 20541952 DOI: 10.1016/j.tem.2010.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is of rapidly increasing health, social and economic impact. Recent evidence suggests a strict link between metabolic disorders and AD. In the last decade much attention has focused specifically on the connection between dysfunction of lipid metabolism and AD. Here we discuss aspects of lipid regulation, including changes in cholesterol levels, function of apolipoproteins and leptin, and how these relate to AD pathogenesis. Despite the vast literature available, many aspects still need clarification. Nevertheless, the route is already delineated to directly connect aspects of lipid regulation to AD. This could represent a starting point to identify novel potential targets for a preventive and/or treatment strategy of the disease.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Experimental and Clinical Pharmacology, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
35
|
Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 2010; 34:1366-79. [PMID: 20470821 PMCID: PMC2900496 DOI: 10.1016/j.neubiorev.2010.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 02/07/2023]
Abstract
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute and Department of Physiology and Pharmacology, West Virginia University School of Medicine, BRNI Building, Morgantown, WV 26505-3409-08, USA.
| |
Collapse
|
36
|
Nilsson P, Iwata N, Muramatsu SI, Tjernberg LO, Winblad B, Saido TC. Gene therapy in Alzheimer's disease - potential for disease modification. J Cell Mol Med 2010; 14:741-57. [PMID: 20158567 PMCID: PMC3823109 DOI: 10.1111/j.1582-4934.2010.01038.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/09/2010] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| | - Shin-ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical SchoolShimotsuke, Tochigi, Japan
| | - Lars O Tjernberg
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Bengt Winblad
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| |
Collapse
|
37
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Harris JR, Milton NGN. Cholesterol in Alzheimer's disease and other amyloidogenic disorders. Subcell Biochem 2010; 51:47-75. [PMID: 20213540 DOI: 10.1007/978-90-481-8622-8_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The complex association of cholesterol metabolism and Alzheimer's disease is presented in depth, including the possible benefits to be gained from cholesterol-lowering statin therapy. Then follows a survey of the role of neuronal membrane cholesterol in Abeta pore formation and Abeta fibrillogenesis, together with the link with membrane raft domains and gangliosides. The contribution of structural studies to Abeta fibrillogenesis, using TEM and AFM, is given some emphasis. The role of apolipoprotein E and its isoforms, in particular ApoE4, in cholesterol and Abeta binding is presented, in relation to genetic risk factors for Alzheimer's disease. Increasing evidence suggests that cholesterol oxidation products are of importance in generation of Alzheimer's disease, possibly induced by Abeta-produced hydrogen peroxide. The body of evidence for a link between cholesterol in atherosclerosis and Alzheimer's disease is increasing, along with an associated inflammatory response. The possible role of cholesterol in tau fibrillization, tauopathies and in some other non-Abeta amyloidogenic disorders is surveyed.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099, Mainz, Germany.
| | | |
Collapse
|
39
|
Insulin Action in the Brain and the Pathogenesis of Alzheimer’s Disease. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Pani A, Mandas A, Diaz G, Abete C, Cocco PL, Angius F, Brundu A, Muçaka N, Pais ME, Saba A, Barberini L, Zaru C, Palmas M, Putzu PF, Mocali A, Paoletti F, La Colla P, Dessì S. Accumulation of neutral lipids in peripheral blood mononuclear cells as a distinctive trait of Alzheimer patients and asymptomatic subjects at risk of disease. BMC Med 2009; 7:66. [PMID: 19883495 PMCID: PMC2777188 DOI: 10.1186/1741-7015-7-66] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease is the most common progressive neurodegenerative disease. In recent years, numerous progresses in the discovery of novel Alzheimer's disease molecular biomarkers in brain as well as in biological fluids have been made. Among them, those involving lipid metabolism are emerging as potential candidates. In particular, an accumulation of neutral lipids was recently found by us in skin fibroblasts from Alzheimer's disease patients. Therefore, with the aim to assess whether peripheral alterations in cholesterol homeostasis might be relevant in Alzheimer's disease development and progression, in the present study we analyzed lipid metabolism in plasma and peripheral blood mononuclear cells from Alzheimer's disease patients and from their first-degree relatives. METHODS Blood samples were obtained from 93 patients with probable Alzheimer's disease and from 91 of their first-degree relatives. As controls we utilized 57, cognitively normal, over-65 year-old volunteers and 113 blood donors aged 21-66 years, respectively. Data are reported as mean +/- standard error. Statistical calculations were performed using the statistical analysis software Origin 8.0 version. Data analysis was done using the Student t-test and the Pearson test. RESULTS Data reported here show high neutral lipid levels and increased ACAT-1 protein in about 85% of peripheral blood mononuclear cells freshly isolated (ex vivo) from patients with probable sporadic Alzheimer's disease compared to about 7% of cognitively normal age-matched controls. A significant reduction in high density lipoprotein-cholesterol levels in plasma from Alzheimer's disease blood samples was also observed. Additionally, correlation analyses reveal a negative correlation between high density lipoprotein-cholesterol and cognitive capacity, as determined by Mini Mental State Examination, as well as between high density lipoprotein-cholesterol and neutral lipid accumulation. We observed great variability in the neutral lipid-peripheral blood mononuclear cells data and in plasma lipid analysis of the subjects enrolled as Alzheimer's disease-first-degree relatives. However, about 30% of them tend to display a peripheral metabolic cholesterol pattern similar to that exhibited by Alzheimer's disease patients. CONCLUSION We suggest that neutral lipid-peripheral blood mononuclear cells and plasma high density lipoprotein-cholesterol determinations might be of interest to outline a distinctive metabolic profile applying to both Alzheimer's disease patients and asymptomatic subjects at higher risk of disease.
Collapse
Affiliation(s)
- Alessandra Pani
- Department of Internal Medical Science, University of Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen P, Shen A, Zhao W, Baek SJ, Yuan H, Hu J. Raman signature from brain hippocampus could aid Alzheimer's disease diagnosis. APPLIED OPTICS 2009; 48:4743-4748. [PMID: 19696863 DOI: 10.1364/ao.48.004743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Micro-Raman spectroscopy (MRS) is used for the first time to our knowledge to investigate brain hippocampus tissue from Alzheimer's disease (AD) infected rats. In situ Raman analysis of tissue sections provides distinct spectra useful for distinguishing AD from normal state. The biochemical changes of brain hippocampus tissue including the deposit of beta-amyloid (Abeta) protein, the increase of cholesterol, and hyperphosphorylated tau are observed through MRS when AD occurs. A more convincing multi-Raman criterion based on single Raman peaks, and further in combination with statistical analysis of the entire Raman spectrum, is found capable of classifying brain hippocampus tissues with different pathological features. This study demonstrates the brain hippocampus is an important candidate for considering the early pathological state of AD, and Raman signatures from the brain hippocampus could aid AD diagnosis. In addition, Raman results undoubtedly confirm simultaneous changes of cholesterol and Abeta in the progression of AD.
Collapse
Affiliation(s)
- Pu Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
42
|
Lin MS, Chen XB, Wang SSS, Chang Y, Chen WY. Dynamic fluorescence imaging analysis to investigate the cholesterol recruitment in lipid monolayer during the interaction between beta-amyloid (1-40) and lipid monolayers. Colloids Surf B Biointerfaces 2009; 74:59-66. [PMID: 19619991 DOI: 10.1016/j.colsurfb.2009.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/25/2022]
Abstract
Extracellular beta-amyloid (Abeta) deposit is considered as one of the primary factors in inducing Alzheimer's disease (AD). However, the mechanism of Abeta deposition on the cell membrane and the induced cytotoxicity are still unclear. On the basis of the previous reports and results, we propose the "Recruiting Hypothesis" on the interaction between the plasma membrane and Abeta. Recently, many studies focused on cholesterol, which is considered as an important factor for AD. The most challenging issue in studying the cholesterol is non-ideal mixing behavior and non-dynamic analysis. In the present study, we investigated the cholesterol recruitment in the lipid monolayer during the interaction between beta-amyloid peptides Abeta (1-40) and lipid monolayers by dynamic fluorescent imaging analysis. Results from lipid monolayer trough studies showed that the rate of Abeta adsorption onto lipid monolayer is mainly due to the electrostatic effect which is sensitive to the lipid monolayer composition. From the fluorescence imaging analysis, the interaction of Abeta with lipid monolayer containing negative charge lipid and cholesterol brings out the recruiting behavior of the cholesterol and reduces the fluidity of lipid. The present study not only demonstrates the technical application for monitoring the dynamic molecular behaviors at the interface but also reveals the roles to distinguish lipid molecules on the Abeta-membrane interaction.
Collapse
Affiliation(s)
- Ming-Shen Lin
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhong-Ta Rd, Jhong-Li 320, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009; 10:333-44. [PMID: 19339974 DOI: 10.1038/nrn2620] [Citation(s) in RCA: 811] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) cases are late-onset and their development is probably influenced by both genetic and environmental risk factors. A strong genetic risk factor for late-onset AD is the presence of the epsilon4 allele of the apolipoprotein E (APOE) gene, which encodes a protein with crucial roles in cholesterol metabolism. There is mounting evidence that APOE4 contributes to AD pathogenesis by modulating the metabolism and aggregation of amyloid-beta peptide and by directly regulating brain lipid metabolism and synaptic functions through APOE receptors. Emerging knowledge of the contribution of APOE to the pathophysiology of AD presents new opportunities for AD therapy.
Collapse
|
44
|
Recuero M, Vicente MC, Martínez-García A, Ramos MC, Carmona-Saez P, Sastre I, Aldudo J, Vilella E, Frank A, Bullido MJ, Valdivieso F. A free radical-generating system induces the cholesterol biosynthesis pathway: a role in Alzheimer's disease. Aging Cell 2009; 8:128-39. [PMID: 19239419 DOI: 10.1111/j.1474-9726.2009.00457.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging - the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking the situation in AD brains, are therefore of great interest. This paper reports that, in human neuronal cells, oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system leads to apoptotic cell death. Microarray analyses showed a potent activation of the cholesterol biosynthesis pathway following reductions in the cell cholesterol synthesis caused by the X-XOD treatment; furthermore, the apoptosis was reduced by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) expression with an interfering RNA. The potential importance of this mechanism in AD was investigated by genetic association, and it was found that HMGCR, a key gene in cholesterol metabolism and among those most strongly upregulated, was associated with AD risk. In summary, this work presents a human cell model prepared to mimic the effect of oxidative stress in neurons that might be useful in clarifying the mechanism involved in free radical-induced neurodegeneration. Gene expression analysis followed by genetic association studies indicates a possible link among oxidative stress, cholesterol metabolism and AD.
Collapse
Affiliation(s)
- María Recuero
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sannerud R, Annaert W. Trafficking, a key player in regulated intramembrane proteolysis. Semin Cell Dev Biol 2009; 20:183-90. [DOI: 10.1016/j.semcdb.2008.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 01/03/2023]
|
46
|
Interaction between Alzheimer's Aβ(25–35) peptide and phospholipid bilayers: The role of cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2710-6. [DOI: 10.1016/j.bbamem.2008.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/20/2022]
|
47
|
de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. ACTA ACUST UNITED AC 2008; 3:505-530. [PMID: 19649144 DOI: 10.2217/17460875.3.5.505] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol can be detrimental or vital, and must be present in the right place at the right time and in the right amount. This is well known in the heart and the vascular system. However, in the CNS cholesterol is still an enigma, although several of its fundamental functions in the brain have been identified. Brain cholesterol has attracted additional attention owing to its close connection to ApoE, a key polymorphic transporter of extracellular cholesterol in humans. Indeed, both cholesterol and ApoE are so critical to fundamental activities of the brain, that the brain regulates their synthesis autonomously. Yet, similar control mechanisms of ApoE and cholesterol homeostasis may exist on either sides of the blood-brain barrier. One indication is that the APOE ε4 allele is associated with hypercholesterolemia and a proatherogenic profile on the vascular side and with increased risk of Alzheimer's disease on the CNS side. In this review, we draw attention to the association between cholesterol and ApoE in the aging and diseased brain, and to the behavior of the ApoE4 protein at the molecular level. The attempt to correlate in vivo and in vitro observations is challenging but crucial for developing future strategies to address ApoE-related aberrations in cholesterol metabolism selectively in the brain.
Collapse
|
48
|
Hooijmans CR, Kiliaan AJ. Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 2008; 585:176-96. [PMID: 18378224 DOI: 10.1016/j.ejphar.2007.11.081] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/11/2007] [Accepted: 11/15/2007] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is the most common form of dementia in the elderly. The cause of Alzheimer's disease is still unknown and there is no cure for the disease yet despite 100 years of extensive research. Cardiovascular risk factors such as high serum cholesterol, presence of the Apolipoprotein epsilon4 (APOE epsilon4) allele and hypertension, play important roles in the development of Alzheimer's disease. We postulate that a combination of diet, lifestyle, vascular, genetic, and amyloid related factors, which enhance each other's contribution in the onset and course of Alzheimer's disease, will be more likely the cause of the disease instead of one sole mechanism. The possibility that the risk for Alzheimer's disease can be reduced by diet or lifestyle is of great importance and suggests a preventative treatment in Alzheimer's disease. Because of the great importance of lipid diets and metabolism in preventative treatment against both Alzheimer's disease and cardiovascular disease, long-chain polyunsaturated fatty acids from fish oil, ApoE genotype and cholesterol metabolism in correlation with Alzheimer's disease will be reviewed.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anatomy and Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Room M245/0.24 PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
49
|
Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, Herz J, Muglia L, Bu G. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 2008; 56:66-78. [PMID: 17920016 DOI: 10.1016/j.neuron.2007.08.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/06/2007] [Accepted: 08/13/2007] [Indexed: 12/13/2022]
Abstract
Mutations in the amyloid precursor protein (APP) cause early-onset Alzheimer's disease (AD), but the only genetic risk factor for late-onset AD is the varepsilon4 allele of apolipoprotein E (apoE), a major cholesterol carrier. Using Cre-lox conditional knockout mice, we demonstrate that lipoprotein receptor LRP1 expression regulates apoE and cholesterol levels within the CNS. We also found that deletion of APP and its homolog APLP2, or components of the gamma-secretase complex, significantly enhanced the expression and function of LRP1, which was reversed by forced expression of the APP intracellular domain (AICD). We further show that AICD, together with Fe65 and Tip60, interacts with the LRP1 promoter and suppresses its transcription. Together, our findings support that the gamma-secretase cleavage of APP plays a central role in regulating apoE and cholesterol metabolism in the CNS via LRP1 and establish a biological linkage between APP and apoE, the two major genetic determinants of AD.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bronfman FC. Metalloproteases and gamma-secretase: new membrane partners regulating p75 neurotrophin receptor signaling? J Neurochem 2008; 103 Suppl 1:91-100. [PMID: 17986144 DOI: 10.1111/j.1471-4159.2007.04781.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signaling by the p75 neurotrophin receptor (p75) has been implicated in diverse neuronal responses, including the control of neuronal survival versus death and axonal regeneration and growth cone collapse, involving p75 in different neuropathological conditions. There are different levels of complexity regulating p75-mediated signaling. First, p75 can interact with different ligands and co-receptors in the plasma membrane, forming tripartite complexes, whose activation result in different cellular outcomes. Moreover, it was recently described that trafficking capacities of p75 in neurons are regulating, in addition to p75 downstream interactions, also the sequential cleavage of p75. The proteolytical processing of p75 involves, first, a shedding event that releases a membrane-bound carboxiterminal fragment (p75-CTF), followed by a gamma-secretase mediated cleavage, generating a soluble intracellular domain (p75-ICD) with signaling capabilities. The first shedding event, generating a p75-CTF, is the key step to regulating the production of p75-ICD, and although the generation of p75-ICD is important for both p75-mediated control of neuronal survival and the control of neurite outgrowth, little is known how both cleavage events are regulated. In this review, we argue that both sheddases and gamma-secretase are key membrane components regulating p75-mediated signaling transduction; therefore, further attention should be paid to their roles as p75 signaling regulators.
Collapse
Affiliation(s)
- Francisca C Bronfman
- Center for Cellular Regulation and Pathology Joaquin V. Luco, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|