1
|
Schardl CL, Florea S, Nagabhyru P, Pan J, Farman ML, Young CA, Rahnama M, Leuchtmann A, Sabzalian MR, Torkian M, Mirlohi A, Iannone LJ. Chemotypic diversity of bioprotective grass endophytes based on genome analyses, with new insights from a Mediterranean-climate region in Isfahan Province, Iran. Mycologia 2025; 117:34-59. [PMID: 39661454 DOI: 10.1080/00275514.2024.2430174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Epichloë species are systemic, often seed-transmissible symbionts (endophytes) of cool-season grasses (Poaceae subfam. Poöideae) that produce up to four classes of bioprotective alkaloids. Whereas haploid Epichloë species may reproduce sexually and transmit between host plants (horizontally), many Epichloë species are polyploid hybrids that are exclusively transmitted via seeds (vertically). Therefore, the generation of, and selection on, chemotypic (alkaloid) profiles and diversity should differ between haploids and hybrids. We undertook a genome-level analysis of haploids and polyploid hybrids, emphasizing hybrids that produce lolines, which are potent broad-spectrum anti-invertebrate alkaloids that can accumulate to levels up to 2% of plant dry mass. Prior phylogenetic analysis had indicated that loline alkaloid gene clusters (LOL) in many hybrids are from the haploid species Epichloë bromicola, but no LOL-containing E. bromicola strains were previously identified. We discovered LOL-containing E. bromicola from host grasses Bromus tomentellus and Melica persica in a Mediterranean-climate region (MCR) in Isfahan Province, Iran, and from Thinopyrum intermedium in Poland. The isolates from B. tomentellus and M. persica were closely related and had nearly identical alkaloid gene profiles, and their LOL clusters were most closely related to those of several Epichloë hybrids. In contrast, several LOL genes in the isolate from T. intermedium were phylogenetically more basal in genus Epichloë, indicating trans-species polymorphism. While identifying likely hybrid ancestors, this study also revealed novel host ranges in central Iran, with the first observation of E. bromicola in host tribe Meliceae and of Epichloë festucae in host tribe Bromeae. We discuss the possibility that MCRs may be hotspots for diversification of grass-Epichloë symbioses via extended host ranges and interspecific hybridization of the symbionts.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Simona Florea
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Carolyn A Young
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mostafa Rahnama
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee 38505, USA
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mehran Torkian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Leopoldo J Iannone
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- CONICET-Instituto de Micología y Botánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2
|
Miura A, Imano S, Ashida A, Sato I, Chiba S, Tanaka A, Camagna M, Takemoto D. Draft genome sequences of Epichloë bromicola strains isolated from Elymus ciliaris. Microbiol Resour Announc 2024; 13:e0031724. [PMID: 39248521 PMCID: PMC11465769 DOI: 10.1128/mra.00317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
Epichloë species are endophytic fungi that systemically colonize grass species. Here, we report the genome sequences of Epichloë bromicola strains HS and DP isolated for the first time from Elymus ciliaris in Nagoya, Japan.
Collapse
Affiliation(s)
- Atsushi Miura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sayaka Imano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Akira Ashida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Hibbard T, McLellan RM, Stevenson LJ, Richardson AT, Nicholson MJ, Parker EJ. Functional Crosstalk between Discrete Indole Terpenoid Gene Clusters in Tolypocladium album. Org Lett 2023; 25:7470-7475. [PMID: 37797949 PMCID: PMC10595974 DOI: 10.1021/acs.orglett.3c02412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 10/07/2023]
Abstract
Indole terpenoids make up a large group of secondary metabolites that display an enticing array of bioactivities. While indole diterpene (IDT) and rarely indole sesquiterpene (IST) pathways have been found individually in filamentous fungi, here we show that both cluster types are encoded within the genome of Tolypocladium album. Through heterologous reconstruction, we demonstrate the SES cluster encodes for IST biosynthesis and can tailor IDT substrates produced by the TER cluster.
Collapse
Affiliation(s)
- Taylor
R. Hibbard
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rose M. McLellan
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Luke J. Stevenson
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Alistair T. Richardson
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Matthew J. Nicholson
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Wellington
UniVentures, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Emily J. Parker
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
4
|
Ozaki T. Structural diversification of fungal natural products by oxidative enzymes. Biosci Biotechnol Biochem 2023; 87:809-818. [PMID: 37197900 DOI: 10.1093/bbb/zbad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Ascomycota and basidiomycota fungi are prolific producers of biologically active natural products. Fungal natural products exhibit remarkable structural diversity and complexity, which are generated by the enzymes involved in their biosynthesis. After the formation of core skeletons, oxidative enzymes play a critical role in converting them into mature natural products. Besides simple oxidations, more complex transformations, such as multiple oxidations by single enzymes, oxidative cyclization, and skeletal rearrangement, are often observed. Those oxidative enzymes are of significant interest for the identification of new enzyme chemistry and have the potential to be biocatalysts for the synthesis of complex molecules. This review presents selected examples of unique oxidative transformations that have been found in the biosynthesis of fungal natural products. The development of strategies for refactoring the fungal biosynthetic pathways with an efficient genome-editing method is also introduced.
Collapse
Affiliation(s)
- Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
5
|
Quach QN, Clay K, Lee ST, Gardner DR, Cook D. Phylogenetic patterns of bioactive secondary metabolites produced by fungal endosymbionts in morning glories (Ipomoeeae, Convolvulaceae). THE NEW PHYTOLOGIST 2023; 238:1351-1361. [PMID: 36727281 DOI: 10.1111/nph.18785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.
Collapse
Affiliation(s)
- Quynh N Quach
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Stephen T Lee
- United States Department of Agriculture, Agricultural Research Service, Logan, UT, 84341, USA
| | - Dale R Gardner
- United States Department of Agriculture, Agricultural Research Service, Logan, UT, 84341, USA
| | - Daniel Cook
- United States Department of Agriculture, Agricultural Research Service, Logan, UT, 84341, USA
| |
Collapse
|
6
|
Miller TA, Hudson DA, Johnson RD, Singh JS, Mace WJ, Forester NT, Maclean PH, Voisey CR, Johnson LJ. Dissection of the epoxyjanthitrem pathway in Epichloë sp. LpTG-3 strain AR37 by CRISPR gene editing. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:944234. [PMID: 37746172 PMCID: PMC10512260 DOI: 10.3389/ffunb.2022.944234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/18/2022] [Indexed: 09/26/2023]
Abstract
Epichloë festucae var. lolii and Epichloë sp. LpTG-3 are filamentous fungal endophytes of perennial ryegrass (Lolium perenne) that have a substantial impact on New Zealand's agricultural economy by conferring biotic advantages to the host grass. Overall, Epichloë endophytes contribute NZ$200 million to the economy annually, with strain AR37 estimated to contribute NZ$3.6 billion to the New Zealand economy over a 20-year period. This strain produces secondary metabolites, including epoxyjanthitrems, which are a class of indole diterpenes, associated with the observed effects of AR37 on livestock and insect pests. Until very recently, AR37 was intractable to genetic modification but this has changed with the application of CRISPR-Cas9 based gene editing techniques. In this paper, gene inactivation by CRISPR-Cas9 was used to deconvolute the genetic basis for epoxyjanthitrem biosynthesis, including creating an AR37 strain that has been edited to remove the biosynthesis of all indole diterpenes. We show that gene editing of Epichloë can be achieved without off-target events or introduction of foreign DNA (footprint-less) through an AMA1-based plasmid that simultaneously expresses the CRISPR-Cas9 system and selectable marker. Genetic modification events in these transformants were investigated through genome sequencing and in planta chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Linda J. Johnson
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
7
|
Schatz DJ, Kuenstner EJ, George DT, Pronin SV. Synthesis of rearranged indole diterpenes of the paxilline type. Nat Prod Rep 2022; 39:946-968. [PMID: 34931646 PMCID: PMC10122275 DOI: 10.1039/d1np00062d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2021Rearranged indole diterpenes of the paxilline type comprise a large group of fungal metabolites that possess diverse structural features and potentially useful biological effects. The unique indoloterpenoid motif, which is common to all congeners, was first confirmed by crystallographic studies of paxilline. This family of natural products has fascinated organic chemists for the past four decades and has inspired numerous syntheses and synthetic approaches. The present review highlights efforts that have laid the foundation and introduced new directions to this field of natural product synthesis. The introduction includes a summary of biosynthetic considerations and biological activities, the main body of the manuscript provides a detailed discussion of selected syntheses, and the review concludes with a brief outlook on the future of the field.
Collapse
Affiliation(s)
- Devon J Schatz
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA.
| | - Eric J Kuenstner
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA.
| | - David T George
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA.
| | - Sergey V Pronin
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA.
| |
Collapse
|
8
|
Wei X, Wang WG, Matsuda Y. Branching and converging pathways in fungal natural product biosynthesis. Fungal Biol Biotechnol 2022; 9:6. [PMID: 35255990 PMCID: PMC8902786 DOI: 10.1186/s40694-022-00135-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractIn nature, organic molecules with great structural diversity and complexity are synthesized by utilizing a relatively small number of starting materials. A synthetic strategy adopted by nature is pathway branching, in which a common biosynthetic intermediate is transformed into different end products. A natural product can also be synthesized by the fusion of two or more precursors generated from separate metabolic pathways. This review article summarizes several representative branching and converging pathways in fungal natural product biosynthesis to illuminate how fungi are capable of synthesizing a diverse array of natural products.
Collapse
|
9
|
Fernando K, Reddy P, Guthridge KM, Spangenberg GC, Rochfort SJ. A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites. Metabolites 2022; 12:metabo12010037. [PMID: 35050159 PMCID: PMC8781816 DOI: 10.3390/metabo12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Epichloë endophytes, fungal endosymbionts of Pooidae grasses, are commonly utilized in forage and turf industries because they produce beneficial metabolites that enhance resistance against environmental stressors such as insect feeding and disease caused by phytopathogen infection. In pastoral agriculture, phytopathogenic diseases impact both pasture quality and animal production. Recently, bioactive endophyte strains have been reported to secrete compounds that significantly inhibit the growth of phytopathogenic fungi in vitro. A screen of previously described Epichloë-produced antifeedant and toxic alkaloids determined that the antifungal bioactivity observed is not due to the production of these known metabolites, and so there is a need for methods to identify new bioactive metabolites. The process described here is applicable more generally for the identification of antifungals in new endophytes. This study aims to characterize the fungicidal potential of novel, ‘animal friendly’ Epichloë endophyte strains NEA12 and NEA23 that exhibit strong antifungal activity using an in vitro assay. Bioassay-guided fractionation, followed by metabolite analysis, identified 61 metabolites that, either singly or in combination, are responsible for the observed bioactivity. Analysis of the perennial ryegrass-endophyte symbiota confirmed that NEA12 and NEA23 produce the prospective antifungal metabolites in symbiotic association and thus are candidates for compounds that promote disease resistance in planta. The “known unknown” suite of antifungal metabolites identified in this study are potential biomarkers for the selection of strains that enhance pasture and turf production through better disease control.
Collapse
Affiliation(s)
- Krishni Fernando
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Priyanka Reddy
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
| | - Kathryn M. Guthridge
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
| | - German C. Spangenberg
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence: ; Tel.: +61-390327110
| |
Collapse
|
10
|
Liu M, Findlay W, Dettman J, Wyka SA, Broders K, Shoukouhi P, Dadej K, Kolařík M, Basnyat A, Menzies JG. Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model. Toxins (Basel) 2021; 13:toxins13110799. [PMID: 34822583 PMCID: PMC8625505 DOI: 10.3390/toxins13110799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.
Collapse
Affiliation(s)
- Miao Liu
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
- Correspondence: ; Tel.: +1-613-759-1385
| | - Wendy Findlay
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Jeremy Dettman
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Stephen A. Wyka
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kirk Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA;
| | - Parivash Shoukouhi
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Kasia Dadej
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences CAS, 14220 Prague, Czech Republic;
| | - Arpeace Basnyat
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Jim G. Menzies
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| |
Collapse
|
11
|
Hettiarachchige IK, Vander Jagt CJ, Mann RC, Sawbridge TI, Spangenberg GC, Guthridge KM. Global Changes in Asexual Epichloë Transcriptomes during the Early Stages, from Seed to Seedling, of Symbiotum Establishment. Microorganisms 2021; 9:microorganisms9050991. [PMID: 34064362 PMCID: PMC8147782 DOI: 10.3390/microorganisms9050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Asexual Epichloë fungi are strictly seed-transmitted endophytic symbionts of cool-season grasses and spend their entire life cycle within the host plant. Endophyte infection can confer protective benefits to its host through the production of bioprotective compounds. Inversely, plants provide nourishment and shelter to the resident endophyte in return. Current understanding of the changes in global gene expression of asexual Epichloë endophytes during the early stages of host-endophyte symbiotum is limited. A time-course study using a deep RNA-sequencing approach was performed at six stages of germination, using seeds infected with one of three endophyte strains belonging to different representative taxa. Analysis of the most abundantly expressed endophyte genes identified that most were predicted to have a role in stress and defence responses. The number of differentially expressed genes observed at early time points was greater than those detected at later time points, suggesting an active transcriptional reprogramming of endophytes at the onset of seed germination. Gene ontology enrichment analysis revealed dynamic changes in global gene expression consistent with the developmental processes of symbiotic relationships. Expression of pathway genes for biosynthesis of key secondary metabolites was studied comprehensively and fuzzy clustering identified some unique expression patterns. Furthermore, comparisons of the transcriptomes from three endophyte strains in planta identified genes unique to each strain, including genes predicted to be associated with secondary metabolism. Findings from this study highlight the importance of better understanding the unique properties of individual endophyte strains and will serve as an excellent resource for future studies of host-endophyte interactions.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Christy J. Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Ross C. Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (C.J.V.J.); (R.C.M.); (T.I.S.); (G.C.S.)
- Correspondence:
| |
Collapse
|
12
|
Biosynthesis of Indole Diterpene Lolitrems: Radical‐Induced Cyclization of an Epoxyalcohol Affording a Characteristic Lolitremane Skeleton. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Jiang Y, Ozaki T, Harada M, Miyasaka T, Sato H, Miyamoto K, Kanazawa J, Liu C, Maruyama J, Adachi M, Nakazaki A, Nishikawa T, Uchiyama M, Minami A, Oikawa H. Biosynthesis of Indole Diterpene Lolitrems: Radical‐Induced Cyclization of an Epoxyalcohol Affording a Characteristic Lolitremane Skeleton. Angew Chem Int Ed Engl 2020; 59:17996-18002. [DOI: 10.1002/anie.202007280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yulu Jiang
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Taro Ozaki
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Tadachika Miyasaka
- Graduate School of Bioagricultural Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Hajime Sato
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Chengwei Liu
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- Present address: College of Life Sciences Northeast Forestry University Harbin 150040 China
| | - Jun‐ichi Maruyama
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3. Aoba, Aramaki Aoba-ku Sendai 980-8578 Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Atsushi Minami
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Hideaki Oikawa
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
14
|
Green KA, Berry D, Feussner K, Eaton CJ, Ram A, Mesarich CH, Solomon P, Feussner I, Scott B. Lolium perenne apoplast metabolomics for identification of novel metabolites produced by the symbiotic fungus Epichloë festucae. THE NEW PHYTOLOGIST 2020; 227:559-571. [PMID: 32155669 PMCID: PMC7317419 DOI: 10.1111/nph.16528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/28/2020] [Indexed: 05/05/2023]
Abstract
Epichloë festucae is an endophytic fungus that forms a symbiotic association with Lolium perenne. Here we analysed how the metabolome of the ryegrass apoplast changed upon infection of this host with sexual and asexual isolates of E. festucae. A metabolite fingerprinting approach was used to analyse the metabolite composition of apoplastic wash fluid from uninfected and infected L. perenne. Metabolites enriched or depleted in one or both of these treatments were identified using a set of interactive tools. A genetic approach in combination with tandem MS was used to identify a novel product of a secondary metabolite gene cluster. Metabolites likely to be present in the apoplast were identified using MarVis in combination with the BioCyc and KEGG databases, and an in-house Epichloë metabolite database. We were able to identify the known endophyte-specific metabolites, peramine and epichloëcyclins, as well as a large number of unknown markers. To determine whether these methods can be applied to the identification of novel Epichloë-derived metabolites, we deleted a gene encoding a NRPS (lgsA) that is highly expressed in planta. Comparative MS analysis of apoplastic wash fluid from wild-type- vs mutant-infected plants identified a novel Leu/Ile glycoside metabolite present in the former.
Collapse
Affiliation(s)
- Kimberly A. Green
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Daniel Berry
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Kirstin Feussner
- Department of Plant BiochemistryAlbrecht von Haller Institute for Plant SciencesUniversity of GoettingenD‐37077GoettingenGermany
- Service Unit for Metabolomics and LipidomicsGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenD‐37077GoettingenGermany
| | - Carla J. Eaton
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Arvina Ram
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Carl H. Mesarich
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
- School of Agriculture and EnvironmentMassey UniversityPalmerston North4442New Zealand
| | - Peter Solomon
- Research School of BiologyAustralian National UniversityCanberraACT0200Australia
| | - Ivo Feussner
- Department of Plant BiochemistryAlbrecht von Haller Institute for Plant SciencesUniversity of GoettingenD‐37077GoettingenGermany
- Service Unit for Metabolomics and LipidomicsGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenD‐37077GoettingenGermany
- Department of Plant BiochemistryGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenD‐37077GoettingenGermany
| | - Barry Scott
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
15
|
Bharadwaj R, Jagadeesan H, Kumar SR, Ramalingam S. Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity. World J Microbiol Biotechnol 2020; 36:92. [PMID: 32562008 DOI: 10.1007/s11274-020-02868-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
All plants harbor many microbial species including bacteria and fungi in their tissues. The interactions between the plant and these microbes could be symbiotic, mutualistic, parasitic or commensalistic. Mutualistic microorganisms are endophytic in nature and are known to play a role in plant growth, development and fitness. Endophytes display complex diversity depending upon the agro-climatic conditions and this diversity could be exploited for crop improvement and sustainable agriculture. Plant-endophyte partnerships are highly specific, several genetic and molecular cascades play a key role in colonization of endophytes in host plants leading to rapid changes in host and endophyte metabolism. This results in the accumulation of secondary metabolites, which play an important role in plant defense against biotic and abiotic stress conditions. Alkaloids are one of the important class of metabolites produced by Epichloë genus and other related classes of endophytes and confer protection against insect and mammalian herbivory. In this context, this review discusses the evolutionary aspects of the Epichloë genus along with key molecular mechanisms determining the lifestyle of Epichloë endophytes in host system. Novel hypothesis is proposed to outline the initial cellular signaling events during colonization of Epichloë in cool season grasses. Complex clustering of alkaloid biosynthetic genes and molecular mechanisms involved in the production of alkaloids have been elaborated in detail. The natural defense and advantages of the endophyte derived metabolites have also been extensively discussed. Finally, this review highlights the importance of endophyte-arbitrated plant immunity to develop novel approaches for eco-friendly agriculture.
Collapse
Affiliation(s)
- R Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - H Jagadeesan
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India
| | - S R Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - S Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
16
|
Oikawa H. Reconstitution of biosynthetic machinery of fungal natural products in heterologous hosts. Biosci Biotechnol Biochem 2020; 84:433-444. [DOI: 10.1080/09168451.2019.1690976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
Ascomycota and basidiomycota fungi are prolific sources of biologically active natural products. Recent genomic data and bioinformatic analysis indicate that fungi possess a large number of biosynthetic gene clusters for bioactive natural products but more than 90% are silent. Heterologous expression in the filamentous fungi as hosts is one of the powerful tools to expression of the silent gene clusters. This review introduces recent studies on the total biosynthesis of representative family members via common platform intermediates, genome mining of novel di- and sesterterpenoids including detailed cyclization pathway, and development of expression host for basidiomycota genes with efficient genome editing method. In addition, this review will discuss the several strategies, for the generation of structural diversity, which are found through these studies.
Collapse
Affiliation(s)
- Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster. Folia Microbiol (Praha) 2020; 65:605-613. [PMID: 32077051 PMCID: PMC7244603 DOI: 10.1007/s12223-020-00777-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022]
Abstract
Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali–Paspalum spp. associations.
Collapse
|
18
|
Tanifuji R, Minami A, Oguri H, Oikawa H. Total synthesis of alkaloids using both chemical and biochemical methods. Nat Prod Rep 2020; 37:1098-1121. [DOI: 10.1039/c9np00073a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemoenzymatic approach to synthesize structurally complex natural alkaloids (tetrahydroisoquinoline antibiotics, indole diterpenes, and monoterpene indole alkaloids) has been reviewed.
Collapse
Affiliation(s)
- Ryo Tanifuji
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Atsushi Minami
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| | - Hiroki Oguri
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Hideaki Oikawa
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
19
|
Ludlow EJ, Vassiliadis S, Ekanayake PN, Hettiarachchige IK, Reddy P, Sawbridge TI, Rochfort SJ, Spangenberg GC, Guthridge KM. Analysis of the Indole Diterpene Gene Cluster for Biosynthesis of the Epoxy-Janthitrems in Epichloë Endophytes. Microorganisms 2019; 7:microorganisms7110560. [PMID: 31766147 PMCID: PMC6921081 DOI: 10.3390/microorganisms7110560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023] Open
Abstract
Epoxy-janthitrems are a class of indole diterpenes with structural similarity to lolitrem B. Two taxa of asexual Epichloë endophytes have been reported to produce epoxy-janthitrems, LpTG-3 (Lolium perenne Taxonomic Group 3; e.g., NEA12) and LpTG-4 (e.g., E1). Epichloë epoxy-janthitrems are not well understood, the biosynthetic pathway and associated gene complement have not been described and while the literature suggests they are associated with superior protection against pasture insect pests and are tremorgenic in grazing mammals, these properties have not been confirmed using isolated and purified compounds. Whole genome sequence analysis was used to identify candidate genes for epoxy-janthitrem biosynthesis that are unique to epoxy-janthitrem producing strains of Epichloë. A gene, jtmD, was identified with homology to aromatic prenyl transferases involved in synthesis of indole diterpenes. The location of the epoxy-janthitrem biosynthesis gene cluster (JTM locus) was determined in the assembled nuclear genomes of NEA12 and E1. The JTM locus contains cluster 1 and cluster 2 of the lolitrem B biosynthesis gene cluster (LTM locus), as well as four genes jtmD, jtmO, jtm01, and jtm02 that are unique to Epichloë spp. that produce epoxy-janthitrems. Expression of each of the genes identified was confirmed using transcriptome analysis of perennial ryegrass-NEA12 and perennial ryegrass-E1 symbiota. Sequence analysis confirmed the genes are functionally similar to those involved in biosynthesis of related indole diterpene compounds. RNAi silencing of jtmD and in planta assessment in host-endophyte associations confirms the role of jtmD in epoxy-janthitrem production. Using LCMS/MS technologies, a biosynthetic pathway for the production of epoxy-janthitrems I-IV in Epichloë endophytes is proposed.
Collapse
Affiliation(s)
- Emma J. Ludlow
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Simone Vassiliadis
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Inoka K. Hettiarachchige
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Priyanka Reddy
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- Correspondence:
| |
Collapse
|
20
|
Infection Rates and Alkaloid Patterns of Different Grass Species with Systemic Epichloë Endophytes. Appl Environ Microbiol 2019; 85:AEM.00465-19. [PMID: 31227553 DOI: 10.1128/aem.00465-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
Symbiotic Epichloë species are fungal endophytes of cool-season grasses that can produce alkaloids with toxicity to vertebrates and/or invertebrates. Monitoring infections and presence of alkaloids in grasses infected with Epichloë species can provide an estimate of possible intoxication risks for livestock. We sampled 3,046 individuals of 13 different grass species in three regions on 150 study sites in Germany. We determined infection rates and used PCR to identify Epichloë species diversity based on the presence of different alkaloid biosynthesis genes, then confirmed the possible chemotypes with high-performance liquid chromatography (HPLC)/ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) measurements. Infections of Epichloë spp. were found in Festuca pratensis Huds. (81%), Festuca ovina L. aggregate (agg.) (73%), Lolium perenne L. (15%), Festuca rubra L. (15%) and Dactylis glomerata L. (8%). The other eight grass species did not appear to be infected. For the majority of Epichloë-infected L. perenne samples (98%), the alkaloids lolitrem B and peramine were present, but ergovaline was not detected, which was consistent with the genetic evaluation, as dmaW, the gene encoding the first step of the ergot alkaloid biosynthesis pathway, was absent. Epichloë uncinata in F. pratensis produced anti-insect loline compounds. The Epichloë spp. observed in the F. ovina agg. samples showed the greatest level of diversity, and different intermediates of the indole-diterpene pathway could be detected. Epichloë infection rates alone are insufficient to estimate intoxication risks for livestock, as other factors, like the ability of the endophyte to produce the alkaloids, also need to be assessed.IMPORTANCE Severe problems of livestock intoxication from Epichloë-infected forage grasses have been reported from New Zealand, Australia, and the United States, but much less frequently from Europe, and particularly not from Germany. Nevertheless, it is important to monitor infection rates and alkaloids of grasses with Epichloë fungi to estimate possible intoxication risks. Most studies focus on agricultural grass species like Lolium perenne and Festuca arundinacea, but other cool-season grass species can also be infected. We show that in Germany, infection rates and alkaloids differ between grass species and that some of the alkaloids can be toxic to livestock. Changes in grassland management due to changing climate, especially with a shift toward grasslands dominated with Epichloë-infected species such as Lolium perenne, may result in greater numbers of intoxicated livestock in the near future. We therefore suggest regular monitoring of grass species for infections and alkaloids and call for maintaining heterogenous grasslands for livestock.
Collapse
|
21
|
Cook D, Lee ST, Panaccione DG, Leadmon CE, Clay K, Gardner DR. Biodiversity of Convolvulaceous species that contain Ergot Alkaloids, Indole Diterpene Alkaloids, and Swainsonine. BIOCHEM SYST ECOL 2019; 86. [PMID: 31496550 DOI: 10.1016/j.bse.2019.103921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Convolvulaceous species have been reported to contain several bioactive principles thought to be toxic to livestock including the calystegines, swainsonine, ergot alkaloids, and indole diterpene alkaloids. Swainsonine, ergot alkaloids, and indole diterpene alkaloids are produced by seed transmitted fungal symbionts associated with their respective plant host, while the calystegines are produced by the plant. To date, Ipomoea asarifolia and Ipomoea muelleri represent the only Ipomoea species and members of the Convolvulaceae known to contain indole diterpene alkaloids, however several other Convolvulaceous species are reported to contain ergot alkaloids. To further explore the biodiversity of species that may contain indole diterpenes, we analyzed several Convolvulaceous species (n=30) for indole diterpene alkaloids, representing four genera, Argyreia, Ipomoea, Stictocardia, and Turbina, that had been previously reported to contain ergot alkaloids. These species were also verified to contain ergot alkaloids and subsequently analyzed for swainsonine. Ergot alkaloids were detected in 18 species representing all four genera screened, indole diterpenes were detected in two Argyreia species and eight Ipomoea species of the 18 that contained ergot alkaloids, and swainsonine was detected in two Ipomoea species. The data suggest a strong association exists between the relationship of the Periglandula species associated with each host and the occurrence of the ergot alkaloids and/or the indole diterpenes reported here. Likewise there appears to be an association between the occurrence of the respective bioactive principle and the genetic relatedness of the respective host plant species.
Collapse
Affiliation(s)
- Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| | - Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| | - Daniel G Panaccione
- West Virginia University, Division of Plant and Soil Sciences, Morgantown, WV 26506, USA
| | - Caroline E Leadmon
- West Virginia University, Division of Plant and Soil Sciences, Morgantown, WV 26506, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT 84341, USA
| |
Collapse
|
22
|
Van de Bittner KC, Cameron RC, Bustamante LY, Bundela R, Kessans SA, Vorster J, Nicholson MJ, Parker EJ. Nodulisporic acid E biosynthesis: in vivo characterisation of NodD1, an indole-diterpene prenyltransferase that acts on an emindole SB derived indole-diterpene scaffold. MEDCHEMCOMM 2019; 10:1160-1164. [PMID: 31391888 PMCID: PMC6640557 DOI: 10.1039/c9md00143c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022]
Abstract
Prenylation of aromatic compounds is a key tailoring reaction in biosynthesis of bioactive indole-diterpenes. Here, we identify NodD1 as the enzyme responsible for the bisprenylation of nodulisporic acid F. This prenyltransferase showed a preference for its natural indole-diterpene substrate whereas other related enzymes were not able to catalyse this conversion.
Collapse
Affiliation(s)
- Kyle C Van de Bittner
- Ferrier Research Institute , Victoria University of Wellington , Kelburn , Wellington 6012 , New Zealand . ;
| | - Rosannah C Cameron
- Ferrier Research Institute , Victoria University of Wellington , Kelburn , Wellington 6012 , New Zealand . ;
| | - Leyla Y Bustamante
- Ferrier Research Institute , Victoria University of Wellington , Kelburn , Wellington 6012 , New Zealand . ;
| | - Rudranuj Bundela
- Ferrier Research Institute , Victoria University of Wellington , Kelburn , Wellington 6012 , New Zealand . ;
| | - Sarah A Kessans
- Biomolecular Interaction Centre and School of Biological Sciences , University of Canterbury , PO Box 4800 , Christchurch 8140 , New Zealand
| | - Jan Vorster
- School of Chemical and Physical Sciences , Victoria University of Wellington , PO Box 6012 , Wellington , New Zealand
| | - Matthew J Nicholson
- Ferrier Research Institute , Victoria University of Wellington , Kelburn , Wellington 6012 , New Zealand . ;
| | - Emily J Parker
- Ferrier Research Institute , Victoria University of Wellington , Kelburn , Wellington 6012 , New Zealand . ;
- Maurice Wilkins Centre for Molecular Biodiscovery , New Zealand
| |
Collapse
|
23
|
Lukito Y, Chujo T, Hale TK, Mace W, Johnson LJ, Scott B. Regulation of subtelomeric fungal secondary metabolite genes by H3K4me3 regulators CclA and KdmB. Mol Microbiol 2019; 112:837-853. [DOI: 10.1111/mmi.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Yonathan Lukito
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Tetsuya Chujo
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Tracy K. Hale
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Wade Mace
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Linda J. Johnson
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
24
|
Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 2019; 125:71-83. [DOI: 10.1016/j.fgb.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
|
25
|
Kozák L, Szilágyi Z, Tóth L, Pócsi I, Molnár I. Tremorgenic and neurotoxic paspaline-derived indole-diterpenes: biosynthetic diversity, threats and applications. Appl Microbiol Biotechnol 2019; 103:1599-1616. [PMID: 30613899 DOI: 10.1007/s00253-018-09594-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Indole-diterpenes (IDTs) such as the aflatrems, janthitrems, lolitrems, paspalitrems, penitrems, shearinines, sulpinines, and terpendoles are biogenetically related but structurally varied tremorgenic and neurotoxic mycotoxins produced by fungi. All these metabolites derive from the biosynthetic intermediate paspaline, a frequently occurring IDT on its own right. In this comprehensive review, we highlight the similarities and differences of the IDT biosynthetic pathways that lead to the generation of the main paspaline-derived IDT subgroups. We survey the taxonomic distribution and the regulation of IDT production in various fungi and compare the organization of the known IDT biosynthetic gene clusters. A detailed assessment of the highly diverse biological activities of these mycotoxins leads us to emphasize the significant losses that paspaline-derived IDTs cause in agriculture, and compels us to warn about the various hazards they represent towards human and livestock health. Conversely, we also describe the potential utility of these versatile molecules as lead compounds for pharmaceutical drug discovery, and examine the prospects for their industrial scale manufacture in genetically manipulated IDT producers or domesticated host microorganisms in synthetic biological production systems.
Collapse
Affiliation(s)
- László Kozák
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Teva Pharmaceutical Works Ltd., Debrecen, Hungary
| | | | - László Tóth
- Teva Pharmaceutical Works Ltd., Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | - István Molnár
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, University of Arizona, Tucson, USA.
| |
Collapse
|
26
|
Berry D, Mace W, Rehner SA, Grage K, Dijkwel PP, Young CA, Scott B. Orthologous peramine and pyrrolopyrazine-producing biosynthetic gene clusters in Metarhizium rileyi, Metarhizium majus and Cladonia grayi. Environ Microbiol 2018; 21:928-939. [PMID: 30452111 DOI: 10.1111/1462-2920.14483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
Peramine is a non-ribosomal peptide-derived pyrrolopyrazine (PPZ)-containing molecule with anti-insect properties. Peramine is known to be produced by fungi from genus Epichloë, which form mutualistic endophytic associations with cool-season grass hosts. Peramine biosynthesis has been proposed to require only the two-module non-ribosomal peptide synthetase (NRPS) peramine synthetase (PerA), which is encoded by the 8.3 kb gene perA, though this has not been conclusively proven. Until recently, both peramine and perA were thought to be exclusive to fungi of genus Epichloë; however, a putative perA homologue was recently identified in the genome of the insect-pathogenic fungus Metarhizium rileyi. We use a heterologous expression system and a hydrophilic interaction chromatography-based analysis method to confirm that PerA is the only pathway-specific protein required for peramine biosynthesis. The perA homologue from M. rileyi (MR_perA) is shown to encode a functional peramine synthetase, establishing a precedent for distribution of perA orthologs beyond genus Epichloë. Furthermore, perA is part of a larger seven-gene PPZ cluster in M. rileyi, Metarhizium majus and the stalked-cup lichen fungus Cladonia grayi. These PPZ genes encode proteins predicted to derivatize peramine into more complex PPZ metabolites, with the orphaned perA gene of Epichloë spp. representing an example of reductive evolution.
Collapse
Affiliation(s)
- Daniel Berry
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Wade Mace
- AgResearch Ltd., Grasslands Research Center, Palmerston North, New Zealand
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Katrin Grage
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Barry Scott
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Kudo K, Liu C, Matsumoto T, Minami A, Ozaki T, Toshima H, Gomi K, Oikawa H. Heterologous Biosynthesis of Fungal Indole Sesquiterpene Sespendole. Chembiochem 2018; 19:1492-1497. [DOI: 10.1002/cbic.201800187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Kosei Kudo
- Division of ChemistryGraduate School of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Chengwei Liu
- Division of ChemistryGraduate School of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Tomoyuki Matsumoto
- Division of ChemistryGraduate School of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Atsushi Minami
- Division of ChemistryGraduate School of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Taro Ozaki
- Division of ChemistryGraduate School of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Hiroaki Toshima
- Department of Bioresource ScienceCollege of AgricultureIbaraki University Inashiki Ibaraki 300-0393 Japan
| | - Katsuya Gomi
- Graduate School of Agricultural ScienceTohoku University Sendai 981-8555 Japan
| | - Hideaki Oikawa
- Division of ChemistryGraduate School of ScienceHokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
28
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
29
|
van Dolleweerd CJ, Kessans SA, Van de Bittner KC, Bustamante LY, Bundela R, Scott B, Nicholson MJ, Parker EJ. MIDAS: A Modular DNA Assembly System for Synthetic Biology. ACS Synth Biol 2018; 7:1018-1029. [PMID: 29620866 DOI: 10.1021/acssynbio.7b00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.
Collapse
Affiliation(s)
- Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Sarah A. Kessans
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Kyle C. Van de Bittner
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Leyla Y. Bustamante
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Rudranuj Bundela
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Matthew J. Nicholson
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Emily J. Parker
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| |
Collapse
|
30
|
Shi C, An S, Yao Z, Young CA, Panaccione DG, Lee ST, Schardl CL, Li C. Toxin-producing Epichloë bromicola strains symbiotic with the forage grass Elymus dahuricus in China. Mycologia 2018. [PMID: 29528270 DOI: 10.1080/00275514.2018.1426941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cool-season grasses (Poaceae subfamily Poöideae) are an important forage component for livestock in western China, and many have seed-transmitted symbionts of the genus Epichloë, fungal endophytes that are broadly distributed geographically and in many tribes of the Poöideae. Epichloë strains can produce any of several classes of alkaloids, of which ergot alkaloids and indole-diterpenes can be toxic to mammalian and invertebrate herbivores, whereas lolines and peramine are more selective against invertebrates. The authors characterized genotypes and alkaloid profiles of Epichloë bromicola isolates symbiotic with Elymus dahuricus, an important forage grass in rangelands of China. The endophyte was seed-transmitted and occasionally produced fruiting bodies (stromata), but its sexual state was not observed on this host. The genome sequence of E. bromicola isolate E7626 from El. dahuricus in Xinjiang Province revealed gene sets for peramine, ergot alkaloids, and indole-diterpenes. In multiplex polymerase chain reaction (PCR) screens of El. dahuricus-endophyte isolates from Beijing and two locations in Shanxi Province, most were also positive for these genes. Ergovaline and other ergot alkaloids, terpendoles and other indole-diterpenes, and peramine were confirmed in El. dahuricus plants with E. bromicola. The presence of ergot alkaloids and indole-diterpenes in this grass is a potential concern for managers of grazing livestock.
Collapse
Affiliation(s)
- Chong Shi
- a College of Grassland and Environmental Science, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Shazhou An
- a College of Grassland and Environmental Science, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Zhengpei Yao
- b College of Agriculture, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Carolyn A Young
- c Noble Research Institute , 2510 Sam Noble Parkway, Ardmore , Oklahoma 73401
| | - Daniel G Panaccione
- d Division of Plant and Soil Sciences , West Virginia University , Morgantown , West Virginia 26506-6108
| | - Stephen T Lee
- e Poisonous Plant Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1150 E. 1400 N., Logan , Utah 84341
| | - Christopher L Schardl
- f Department of Plant Pathology , University of Kentucky , Lexington , Kentucky 40546-0312
| | - Chunjie Li
- g State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University , Lanzhou , Gansu , China 730000
| |
Collapse
|
31
|
Bauer JI, Gross M, Cramer B, Humpf HU, Hamscher G, Usleber E. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:315-322. [PMID: 29237259 DOI: 10.1021/acs.jafc.7b05580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.
Collapse
Affiliation(s)
- Julia I Bauer
- Dairy Sciences, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| | - Madeleine Gross
- Junior Professorship of Veterinary Food Diagnostics, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, Münster 48149, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, Münster 48149, Germany
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen , Heinrich-Buff-Ring 17-19, Giessen 35392, Germany
| | - Ewald Usleber
- Dairy Sciences, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| |
Collapse
|
32
|
Van de Bittner KC, Nicholson MJ, Bustamante LY, Kessans SA, Ram A, van Dolleweerd CJ, Scott B, Parker EJ. Heterologous Biosynthesis of Nodulisporic Acid F. J Am Chem Soc 2018; 140:582-585. [DOI: 10.1021/jacs.7b10909] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kyle C. Van de Bittner
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Matthew J. Nicholson
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Leyla Y. Bustamante
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Sarah A. Kessans
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Arvina Ram
- Institute
of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Barry Scott
- Institute
of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Emily J. Parker
- Ferrier
Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| |
Collapse
|
33
|
Soto-Barajas MC, Zabalgogeazcoa I, González-Martin I, Vázquez-de-Aldana BR. Qualitative and quantitative analysis of endophyte alkaloids in perennial ryegrass using near-infrared spectroscopy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5028-5036. [PMID: 28417464 DOI: 10.1002/jsfa.8383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Near-infrared reflectance spectroscopy (NIRS) has been widely used in forage quality control because it is faster, cleaner and less expensive than conventional chemical procedures. In Lolium perenne (perennial ryegrass), one of the most important forage grasses, the infection by asymptomatic Epichloë fungal endophytes alters the plant nutritional quality due to the production of alkaloids. In this research, we developed a rapid method based on NIRS to detect and quantify endophyte alkaloids (peramine, lolitrem B and ergovaline) using a heterogeneous set of L. perenne plants obtained from wild grasslands and cultivars. RESULTS NIR spectra from dried grass samples were recorded and classified according to the absence or presence of alkaloids, based on reference methods. The best discriminant equations for detection of alkaloids classified correctly 94.4%, 87.5% and 92.9% of plants containing peramine, lolitrem B and ergovaline, respectively. The quantitative NIR equations obtained by modified partial least squares (MPLS) algorithm had coefficients of correlation of 0.93, 0.41, and 0.76 for peramine, lolitrem B and ergovaline respectively. CONCLUSION NIRS is a suitable tool for qualitative analysis of endophyte alkaloids in grasses and for the accurate quantification of peramine and ergovaline. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Milton C Soto-Barajas
- Institute of Natural Resources and Agrobiology (IRNASA-CSIC), Cordel de Merinas, Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology (IRNASA-CSIC), Cordel de Merinas, Salamanca, Spain
| | - Inmaculada González-Martin
- Department of Analytical Chemistry, Nutrition and Bromatology, University of Salamanca, Plaza de los Caidos s/n, Salamanca, Spain
| | | |
Collapse
|
34
|
Studt L, Rösler SM, Burkhardt I, Arndt B, Freitag M, Humpf HU, Dickschat JS, Tudzynski B. Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ Microbiol 2016; 18:4037-4054. [PMID: 27348741 PMCID: PMC5118082 DOI: 10.1111/1462-2920.13427] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023]
Abstract
Filamentous fungi produce a vast array of secondary metabolites (SMs) and some play a role in agriculture or pharmacology. Sequencing of the rice pathogen Fusarium fujikuroi revealed the presence of far more SM-encoding genes than known products. SM production is energy-consuming and thus tightly regulated, leaving the majority of SM gene clusters silent under laboratory conditions. One important regulatory layer in SM biosynthesis involves histone modifications that render the underlying genes either silent or poised for transcription. Here, we show that the majority of the putative SM gene clusters in F. fujikuroi are located within facultative heterochromatin marked by trimethylated lysine 27 on histone 3 (H3K27me3). Kmt6, the methyltransferase responsible for establishing this histone mark, appears to be essential in this fungus, and knock-down of Kmt6 in the KMT6kd strain shows a drastic phenotype affecting fungal growth and development. Transcription of four so far cryptic and otherwise silent putative SM gene clusters was induced in the KMT6kd strain, in which decreased expression of KMT6 is accompanied by reduced H3K27me3 levels at the respective gene loci and accumulation of novel metabolites. One of the four putative SM gene clusters, named STC5, was analysed in more detail thereby revealing a novel sesquiterpene.
Collapse
Affiliation(s)
- Lena Studt
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Corresponding author: L. Studt, Division of Microbial Genetics and Pathogen Interaction, Department of Applied Genetics and Cell Biology, Campus-Tulln, BOKU-University of Natural Resources and Life Science, Vienna, Austria, , phone: (+43) 1 / 47654-6722
| | - Sarah M. Rösler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Immo Burkhardt
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, 97331 Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Jeroen S. Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany
| |
Collapse
|
35
|
Abstract
Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops, food distribution, and human environments.
Collapse
Affiliation(s)
- Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77054
| | - James B Gloer
- Department of Chemistry, University of Iowa, Iowa City, IA 52245
| |
Collapse
|
36
|
Liu C, Minami A, Dairi T, Gomi K, Scott B, Oikawa H. Biosynthesis of Shearinine: Diversification of a Tandem Prenyl Moiety of Fungal Indole Diterpenes. Org Lett 2016; 18:5026-5029. [PMID: 27632559 DOI: 10.1021/acs.orglett.6b02482] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The late-stage biosynthetic pathway of the indole diterpene shearinine involving four enzymatic reactions (JanQDOJ) was elucidated by an efficient heterologous expression system using Aspergillus oryzae. Key oxidative cyclization, forming a characteristic A/B bicyclic shearinine core by flavoprotein oxidase, was studied using a substrate analogue and a buffer containing H218O. These experimental data provided evidence that JanO catalyzes two-step oxidation via a hydroxylated product and that the JanO reaction involves the hydride-transfer mechanism.
Collapse
Affiliation(s)
- Chengwei Liu
- Division of Chemistry, Graduate School of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University , Sapporo 060-8628, Japan
| | - Katsuya Gomi
- Graduate School of Agricultural Science, Tohoku University , Sendai 981-8555, Japan
| | - Barry Scott
- Institute of Fundamental Sciences, Massey University , Palmerston North 4442, New Zealand
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University , Sapporo 060-0810, Japan
| |
Collapse
|
37
|
Abstract
Covering: up to September 2015. Meroterpenoids are hybrid natural products that partially originate from the terpenoid pathway. The meroterpenoids derived from fungi display quite diverse structures, with a wide range of biological properties. This review summarizes the molecular bases for their biosyntheses, which were recently elucidated with modern techniques, and also discusses the plausible biosynthetic pathways of other related natural products lacking genetic information. (Complementary to the coverage of literature by Geris and Simpson in Nat. Prod. Rep., 2009, 26, 1063-1094.).
Collapse
Affiliation(s)
- Yudai Matsuda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
38
|
Saikkonen K, Young CA, Helander M, Schardl CL. Endophytic Epichloë species and their grass hosts: from evolution to applications. PLANT MOLECULAR BIOLOGY 2016; 90:665-75. [PMID: 26542393 PMCID: PMC4819788 DOI: 10.1007/s11103-015-0399-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 05/21/2023]
Abstract
The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.
Collapse
Affiliation(s)
- Kari Saikkonen
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 3, 20520, Turku, Finland.
| | - Carolyn A Young
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Marjo Helander
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Itäinen Pitkäkatu 3, 20520, Turku, Finland
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
39
|
Philippe G. Lolitrem B and Indole Diterpene Alkaloids Produced by Endophytic Fungi of the Genus Epichloë and Their Toxic Effects in Livestock. Toxins (Basel) 2016; 8:47. [PMID: 26891327 PMCID: PMC4773800 DOI: 10.3390/toxins8020047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 01/12/2023] Open
Abstract
Different group of alkaloids are produced during the symbiotic development of fungal endophytes of the genus Epichloë in grass. The structure and toxicity of the compounds vary considerably in mammalian herbivores and in crop pests. Alkaloids of the indole-diterpene group, of which lolitrem B is the most toxic, were first characterized in endophyte-infected perennial ryegrass, and are responsible for “ryegrass staggers.” Ergot alkaloids, of which ergovaline is the most abundant ergopeptide alkaloid produced, are also found in ryegrass, but generally at a lower rate than lolitrem B. Other alkaloids such as lolines and peramine are toxic for crop pests but have weak toxicological properties in mammals. The purpose of this review is to present indole-diterpene alkaloids produced in endophyte infected ryegrass from the first characterization of ryegrass staggers to the determination of the toxicokinetics of lolitrem B and of their mechanism of action in mammals, focusing on the different factors that could explain the worldwide distribution of the disease. Other indole diterpene alkaloids than lolitrem B that can be found in Epichloë infected ryegrass, and their tremorgenic properties, are presented in the last section of this review.
Collapse
Affiliation(s)
- Guerre Philippe
- Université de Toulouse, INP, ENVT, UR Mycotoxicologie, F-31076 Toulouse, France.
| |
Collapse
|
40
|
Biosynthesis and Regulation of Bioprotective Alkaloids in the Gramineae Endophytic Fungi with Implications for Herbivores Deterrents. Curr Microbiol 2015; 71:719-24. [DOI: 10.1007/s00284-015-0906-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/27/2015] [Indexed: 01/27/2023]
|
41
|
Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem. Angew Chem Int Ed Engl 2015; 54:5748-52. [DOI: 10.1002/anie.201501072] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 12/18/2022]
|
43
|
Eaton CJ, Dupont PY, Solomon P, Clayton W, Scott B, Cox MP. A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in Epichloë spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:218-31. [PMID: 25496592 DOI: 10.1094/mpmi-09-14-0293-fi] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. In contrast, phytopathogenic fungi fall at the opposite end of the symbiotic spectrum, causing reduced host growth or even death. In order to exploit beneficial interactions and prevent pathogenic ones, it is essential to understand the molecular differences underlying these alternative states. The association between the endophyte Epichloë festucae and Lolium perenne (perennial ryegrass) is an excellent system for studying these molecular patterns due to the existence of several fungal mutants that have an antagonistic rather than a mutualistic interaction with the host plant. By comparing gene expression in a wild-type beneficial association with three mutant antagonistic associations disrupted in key signaling genes, we identified a core set of 182 genes that show common differential expression patterns between these two states. These gene expression changes are indicative of a nutrient-starvation response, as supported by the upregulation of genes encoding degradative enzymes, transporters, and primary metabolism, and downregulation of genes encoding putative small-secreted proteins and secondary metabolism. These results suggest that disruption of a mutualistic symbiotic interaction may lead to an elevated uptake and degradation of host-derived nutrients and cell-wall components, reminiscent of phytopathogenic interactions.
Collapse
|
44
|
Young CA, Charlton ND, Takach JE, Swoboda GA, Trammell MA, Huhman DV, Hopkins AA. Characterization of Epichloë coenophiala within the US: are all tall fescue endophytes created equal? Front Chem 2014; 2:95. [PMID: 25408942 PMCID: PMC4219521 DOI: 10.3389/fchem.2014.00095] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/14/2014] [Indexed: 11/13/2022] Open
Abstract
Tall fescue (Lolium arundinaceum) is a valuable and broadly adapted forage grass that occupies approximately 14 million hectares across the United States. A native to Europe, tall fescue was likely introduced into the US around the late 1800's. Much of the success of tall fescue can be attributed to Epichloë coenophiala (formerly Neotyphodium coenophialum) a seed borne symbiont that aids in host persistence. Epichloë species are capable of producing a range of alkaloids (ergot alkaloids, indole-diterpenes, lolines, and peramine) that provide protection to the plant host from herbivory. Unfortunately, most tall fescue within the US, commonly referred to as "Kentucky-31" (KY31), harbors the endophyte E. coenophiala that causes toxicity to grazing livestock due to the production of ergot alkaloids. Molecular analyses of tall fescue endophytes have identified four independent associations, representing tall fescue with E. coenophiala, Epichloë sp. FaTG-2, Epichloë sp. FaTG-3, or Epichloë sp. FaTG-4. Each of these Epichloë species can be further distinguished based on genetic variation that equates to differences in the alkaloid gene loci. Tall fescue samples were evaluated using markers to simple sequence repeats (SSRs) and alkaloid biosynthesis genes to determine endophyte strain variation present within continental US. Samples represented seed and tillers from the Suiter farm (Menifee County, KY), which is considered the originating site of KY31, as well as plant samples collected from 14 states, breeder's seed and plant introduction lines (National Plant Germplasm System, NPGS). This study revealed two prominent E. coenophiala genotypes based on presence of alkaloid biosynthesis genes and SSR markers and provides insight into endophyte variation within continental US across historical and current tall fescue samples.
Collapse
Affiliation(s)
- Carolyn A Young
- The Samuel Roberts Noble Foundation, Forage Improvement Division Ardmore, OK, USA
| | - Nikki D Charlton
- The Samuel Roberts Noble Foundation, Forage Improvement Division Ardmore, OK, USA
| | - Johanna E Takach
- The Samuel Roberts Noble Foundation, Forage Improvement Division Ardmore, OK, USA
| | - Ginger A Swoboda
- The Samuel Roberts Noble Foundation, Forage Improvement Division Ardmore, OK, USA
| | - Michael A Trammell
- The Samuel Roberts Noble Foundation, Forage Improvement Division Ardmore, OK, USA
| | - David V Huhman
- The Samuel Roberts Noble Foundation, Forage Improvement Division Ardmore, OK, USA
| | - Andrew A Hopkins
- The Samuel Roberts Noble Foundation, Forage Improvement Division Ardmore, OK, USA
| |
Collapse
|
45
|
Abstract
This review provides a summary of recent research advances in elucidating the biosynthesis of fungal indole alkaloids. The different strategies used to incorporate and derivatize the indole/indoline moieties in various families of fungal indole alkaloids will be discussed, including tryptophan-containing nonribosomal peptides, polyketide-nonribosomal peptide hybrids, and alkaloids derived from other indole building blocks. This review also includes a discussion regarding the downstream modifications that generate chemical and structural diversity among indole alkaloids.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90096, USA.
| | | | | |
Collapse
|
46
|
Morton JB, Benedito VA, Panaccione DG, Jenks MA. Potential for Industrial Application of Microbes in Symbioses that Influence Plant Productivity and Sustainability in Agricultural, Natural, or Restored Ecosystems. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2014.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Joseph B. Morton
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| | - Vagner A. Benedito
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| | - Matthew A. Jenks
- Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV
| |
Collapse
|
47
|
Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA. Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 2014; 90:276-89. [PMID: 25065688 DOI: 10.1111/1574-6941.12393] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/27/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
Studying geographic variation of microbial mutualists, especially variation in traits related to benefits they provide their host, is critical for understanding how these associations impact key ecological processes. In this study, we investigate the phylogenetic population structure of Epichloë species within Bromus laevipes, a native cool-season bunchgrass found predominantly in California. Phylogenetic classification supported inference of three distinct Epichloë taxa, of which one was nonhybrid and two were interspecific hybrids. Inheritance of mating-type idiomorphs revealed that at least one of the hybrid species arose from independent hybridization events. We further investigated the geographic variation of endophyte-encoded alkaloid genes, which is often associated with key benefits of natural enemy protection for the host. Marker diversity at the ergot alkaloid, loline, indole-diterpene, and peramine loci revealed four alkaloid genotypes across the three identified Epichloë species. Predicted chemotypes were tested using endophyte-infected plant material that represented each endophyte genotype, and 11 of the 13 predicted alkaloids were confirmed. This multifaceted approach combining phylogenetic, genotypic, and chemotypic analyses allowed us to reconstruct the diverse evolutionary histories of Epichloë species present within B. laevipes and highlight the complex and dynamic processes underlying these grass-endophyte symbioses.
Collapse
Affiliation(s)
- Nikki D Charlton
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | | | | | | | | |
Collapse
|
48
|
Chujo T, Scott B. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Mol Microbiol 2014; 92:413-34. [PMID: 24571357 DOI: 10.1111/mmi.12567] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 12/17/2022]
Abstract
Epichloё festucae is a filamentous fungus that forms a mutually beneficial symbiotic association with Lolium perenne. This endophyte synthesizes bioprotective lolitrems (ltm) and ergot alkaloids (eas) in planta but the mechanisms regulating expression of the corresponding subtelomeric gene clusters are not known. We show here that the status of histone H3 lysine 9 and lysine 27 trimethylation (H3K9me3/H3K27me3) at these alkaloid gene loci are critical determinants of transcriptional activity. Using ChIP-qPCR we found that levels of H3K9me3 and H3K27me3 were reduced at these loci in plant infected tissue compared to axenic culture. Deletion of E. festucae genes encoding the H3K9- (ClrD) or H3K27- (EzhB) methyltransferases led to derepression of ltm and eas gene expression under non-symbiotic culture conditions and a further enhancement of expression in the double deletion mutant. These changes in gene expression were matched by corresponding reductions in H3K9me3 and H3K27me3 marks. Both methyltransferases are also important for the symbiotic interaction between E. festucae and L. perenne. Our results show that the state of H3K9 and H3K27 trimethylation of E. festucae chromatin is an important regulatory layer controlling symbiosis-specific expression of alkaloid bioprotective metabolites and the ability of this symbiont to form a mutualistic interaction with its host.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
49
|
Liu C, Noike M, Minami A, Oikawa H, Dairi T. A fungal prenyltransferase catalyzes the regular di-prenylation at positions 20 and 21 of paxilline. Biosci Biotechnol Biochem 2014; 78:448-54. [DOI: 10.1080/09168451.2014.882759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
A putative indole diterpene biosynthetic gene cluster composed of eight genes was identified in a genome database of Phomopsis amygdali, and from it, biosynthetic genes of fusicoccin A were cloned and characterized. The six genes showed significant similarities to pax genes, which are essential to paxilline biosynthesis in Penicillium paxilli. Recombinants of the three putative prenyltransferase genes in the cluster were overexpressed in Escherichia coli and characterized by means of in vitro experiments. AmyG is perhaps a GGDP synthase. AmyC and AmyD were confirmed to be prenyltransferases catalyzing the transfer of GGDP to IGP and a regular di-prenylation at positions 20 and 21 of paxilline, respectively. AmyD is the first know example of an enzyme with this function. The Km values for AmyD were calculated to be 7.6 ± 0.5 μM for paxilline and 17.9 ± 1.7 μM for DMAPP at a kcat of 0.12 ± 0.003/s.
Collapse
Affiliation(s)
- Chengwei Liu
- Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Motoyoshi Noike
- Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Atsushi Minami
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Hideaki Oikawa
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
50
|
|