1
|
Wang S, Yu M, Liu C, Kong L, Huang M, Liu D, Li J, Porth I, Wang R. Integrating mitoflash, energy substrate, and hormone analyses to advance understanding of Magnolia endodormancy mechanisms. Int J Biol Macromol 2025; 315:144333. [PMID: 40389010 DOI: 10.1016/j.ijbiomac.2025.144333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/12/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Flower bud dormancy ensures trees can survive winter and successfully flower and reproduce in early spring, yet its activation mechanism remains elusive. In this study, four dormancy stages of the Magnolia flower buds were identified via a multidimensional analysis. Mitochondrial flash (mitoflash) increased during floral bud endodormancy release, and this redox signal aligns with the dynamics of ROS compounds and the expression of antioxidant-related genes, which is expected to be a physiological signal for dormancy release. At this stage, mitochondrial energy resources depend on the oxidation of pyruvate and fatty acids. In addition, transcriptome analysis showed that genes related to sugar metabolism were mostly upregulated, and targeted lipidome analysis showed significant upregulation of metabolites related to fatty acid degradation and linoleic acid metabolism at the endodormancy-release stage, confirming that energy supply and metabolism increase at this period. Moreover, hormone content dynamics showed an opposite trend between active GA and ABA from dormancy to release. The expression of MdMYB91 is upregulated following ABA application, and it directly binds to the promoter of protein phosphatase type 2C (MdPP2C37-like) to negatively regulate its expression, which positions MdMYB91 as a promising regulator of dormancy by affecting ABA signaling.
Collapse
Affiliation(s)
- Siqin Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Lingdie Kong
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Mengsha Huang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Dongye Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Li
- Imaging Core Facility, Technology Center for Protein Sciences, Tsinghua University, Beijing 10084, PR China
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Ruohan Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Zhang D, Zhou H, Zhang Y, Zhao Y, Zhang Y, Feng X, Lin H. Diverse roles of MYB transcription factors in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:539-562. [PMID: 40013511 DOI: 10.1111/jipb.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
MYB transcription factors (TFs), one of the largest TF families in plants, are involved in various plant-specific processes as the central regulators, such as in phenylpropanoid metabolism, cell cycle, formation of root hair and trichome, phytohormones responses, reproductive growth and abiotic or biotic stress responses. Here we summarized multiple roles and explained the molecular mechanisms of MYB TFs in plant development and stress adaptation. The exploration of MYB TFs contributes to a better comprehension of molecular regulation in plant development and environmental adaptability.
Collapse
Affiliation(s)
- Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Huapeng Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yang Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yiyi Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xixian Feng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
3
|
Lin Y, Zheng J, Wan Q, Chen Z, Chen Q, Wan S, Chen J. Identification of Key Pathways and Candidate Genes Controlling Organ Size Through Transcriptome and Weighted Gene Co-Expression Network Analyses in Navel Orange Plants ( Citrus sinensis). Genes (Basel) 2025; 16:259. [PMID: 40149411 PMCID: PMC11942113 DOI: 10.3390/genes16030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Organ size is a critical target trait in fruit-tree breeding programs, as it significantly impacts the economic value of plants by influencing their biomass, yield, and quality. Understanding the molecular mechanisms underlying organ size in citrus is essential for breeding new cultivars with superior fruit quality. Methods: In this study, we investigated the regulatory network involved in organ size using the Citrus sinensis 'Newhall' navel orange variety and its large-organ mutant, 'M25'. Results: Ploidy analysis indicated that the organ enlargement observed in 'M25' was not attributable to changes in chromosome ploidy. Furthermore, RNA sequencing of tender leaves and young fruits from both 'M25' and 'Newhall' oranges identified 1817 and 1605 differentially expressed genes (DEGs), respectively. Functional enrichment analysis revealed that these DEGs were enriched in pathways associated with organ size regulation, including those related to cell division, DNA replication, protein biosynthesis, plant hormone signal transduction, and cell wall metabolism. Weighted gene co-expression network analysis identified the grey 60 and orange modules as the key modules influencing organ enlargement; from these modules, we identified 51 and 35 hub genes, respectively. Combined homologous function annotation and expression analysis identified four transcription-factor-encoding hub genes (Cs_ont_6g005380, Cs_ont_8g025330, Cs_ont_9g019400, and Cs_ont_9g008010) as candidate genes potentially related to organ size. Conclusions: Among these, Cs_ont_8g025330 (CsMYB73) was inferred to be the key gene influencing organ size through auxin and cytokinin regulation. These findings lay the foundation for further investigations of the regulatory mechanism of organ size in navel orange varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianmei Chen
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Y.L.); (J.Z.); (Q.W.); (Z.C.); (Q.C.); (S.W.)
| |
Collapse
|
4
|
Cheng Y, Gui S, Hao S, Li X, Zhuang C, Shi Y, Zhou W, Kai G. Mining the Candidate Transcription Factors Modulating Tanshinones' and Phenolic Acids' Biosynthesis Under Low Nitrogen Stress in Salvia miltiorrhiza. Int J Mol Sci 2025; 26:1774. [PMID: 40004237 PMCID: PMC11855394 DOI: 10.3390/ijms26041774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Mining valuable genes is helpful to breed high-quality Salvia miltiorrhiza exhibiting efficient nitrogen fertilizer utilization efficiency. In the present study, transcriptome sequencing was introduced to select the candidate transcription factors (TFs) involved in tanshinones' (TAs) and phenolic acids' (PHAs) biosynthesis as well as low nitrogen (LN) stress. In totally, 97.71 Gb clean data was obtained from fifteen sequencing samples and 30,975 unigenes were assembled. Among of them, 27,843 unigenes were successfully annotated. Overall, 8663 differential expression genes (DEGs) were identified, among of which 5034 unigenes were up-regulated, and 3629 unigenes were down-regulated. By enrichment of DEGs together with gene co-expression network construction, 10 candidate TFs including HSFB2b, LBD12, ERF1A, ERF98, LBD25, HSF24, RAM1, HSFA4B, TCP8, and WRKY24 were finally retrieved, which are predicted to participate in modulating TA and PHA biosynthesis under LN stress. Quantitative real-time polymerase chain reaction (qRT-PCR) detection was introduced to further detect the expression profile of candidate TFs under LN stress. These findings offer a valuable resource for in-depth study of TAs 'and PHAs' biosynthesis under LN stress in S. miltiorrhiza.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Zhou
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
5
|
Zhao H, Dong X, Yang D, Ge Q, Lu P, Liu C. New insights into the salt-responsive regulation in eelgrass at transcriptional and post-transcriptional levels. FRONTIERS IN PLANT SCIENCE 2025; 16:1497064. [PMID: 39980478 PMCID: PMC11840677 DOI: 10.3389/fpls.2025.1497064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
Introduction The adaptation mechanisms of marine plants to the environments have garnered significant attention in recent years. Eelgrass (Zostera marina), a representative marine angiosperm, serves as an ideal model for investigating the mechanisms underlying salt tolerance. Methods This study integrated mRNA, sRNA, and degradome sequencing data to identify key genes associated with salt tolerance in eelgrass. Results The results indicate that a series of genes involved in biological processes such as "in response to water deprivation" and "biosynthesis of secondary metabolites" respond to salt stress. Analysis of cis-regulatory elements and expression similarities suggests that the ABA synthase 9-cis-epoxycarotenoid dioxygenase (NCED) may be regulated by ERF members, while phenylalanine ammonia-lyase (PAL) may be regulated by MYB members. At the post-transcriptional regulation level, miRNA156 and miRNA166 might be involved in the response by regulating potential target genes, such as members of the WRKY and HD-ZIP families. Additionally, eelgrass exhibits unique responses to salt, such as the up-regulation of genes involved in the "fucose biosynthetic process". These findings enhance our understanding of how eelgrass adapts to the marine environment. Discussion As a marine monocotyledon, eelgrass is helpful to find conserved salt tolerance mechanisms by cross-species comparison. By examining the transcriptional responses of homologous genes in eelgrass, rice, and maize, we identified several groups of genes that are conserved in their response to salt stress. These conserved gene resources may provide targets for genetic engineering to improve the salt tolerance of crops.
Collapse
Affiliation(s)
- Huan Zhao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Xu Dong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Dazuo Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Qingchao Ge
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Peng Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Chang Liu
- Key Laboratory of Marine Bio-resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, China
- Department of Nursing, Zibo Vocational Institute, Zibo, China
| |
Collapse
|
6
|
Wang X, Shang W, Li M, Cao F, Wang D, Wang M, Lu Y, Zhang H, Shen F, Liu J. Identification and characterization of CmPP2C31 playing a positive role in the abiotic stress resistance of Chinese chestnut via an integrated strategy. FRONTIERS IN PLANT SCIENCE 2024; 15:1491269. [PMID: 39735773 PMCID: PMC11671270 DOI: 10.3389/fpls.2024.1491269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
Chinese chestnut (Castanea mollissima Blume) is an important economic forest tree species and mainly cultivated in mountainous areas and wastelands, subjecting it to various abiotic stresses. The protein phosphatase 2C (PP2C) genes contributes largely to stress responses in plants. However, the characteristics and functions of PP2C genes in C. mollissima remain unknown. This study provides comprehensive analyses (including phylogenetic, synteny, RNA-seq, transgenic and yeast one-hybrid methods) revealing the characteristics of CmPP2C gene, which plays an important role in response to abiotic stress. Here, we identified 68 CmPP2Cs in the Chinese chestnut genome, and analyzed their characteristics and phylogenetic relationships. Furthermore, synteny analysis revealed that segmental and tandem duplication drove the expansion of the CmPP2C family to adapt to natural environmental pressures. RNA sequencing and co-expression analyses indicated that four hub CmPP2Cs in two key modules probably play important roles in the resistance to abiotic stress in chestnut. Among them, CmPP2C31 was significantly down-regulated under drought stress. Transgenic experiments via pollen magnetofection revealed that CmPP2C31 could positively and significantly regulate the drought resistance of Chinese chestnut seedlings. Subcellular localization showed that CmPP2C31 was a nuclear protein. Yeast one-hybrid assays suggested that EVM0007407 could regulate CmPP2C31 expression by binding to its promoter, thereby participating in abiotic stress resistance. These findings in our study provided detailed information on the CmPP2C family genes and laid a foundation for further elucidating the molecular mechanism of resistance to abiotic stress chestnut.
Collapse
Affiliation(s)
- Xuan Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Wenli Shang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Mingyuan Li
- Rural Revitalization Research Center, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Fei Cao
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Meng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Yi Lu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Liu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
7
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024; 282:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
8
|
Tribhuvan KU, Shivakumaraswamy M, Mishra T, Kaur S, Sarkar B, Pattanayak A, Singh BK. Identification, genomic localization, and functional validation of salt-stress-related lncRNAs in Indian Mustard (Brassica juncea L.). BMC Genomics 2024; 25:1121. [PMID: 39567864 PMCID: PMC11580500 DOI: 10.1186/s12864-024-10964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Indian Mustard (Brassica juncea L.) is a globally cultivated winter oilseed crop of the rapeseed-mustard group. It is predominantly grown in the semi-arid northwest agroclimatic zone of India, characterized by high soil salinity. Enhancing tolerance to salt stress in B. juncea is therefore crucial for sustaining its production in this region. Long non-coding RNAs (lncRNAs) play critical roles in coordinating gene expression under various abiotic stresses, including salt stress, but their involvement in the salt stress response in B. juncea remains largely unknown. In this study, we conducted RNA-seq analysis on control, salt-stressed, and salt-shocked young leaves of the salt-tolerant B. juncea cv CS-52. We identified a total of 3,602 differentially expressed transcripts between stress versus control and shock versus control samples. Among these, 61 were identified as potential lncRNAs, with 21 specific to salt stress and 40 specific to salt shock. Of the 21 lncRNAs specific to salt stress, 15 were upregulated and six were downregulated, while all 40 lncRNAs unique to salt shock were downregulated. Chromosomal distribution analysis of the lncRNAs revealed their uneven placement across 18 chromosomes in B. juncea. RNA-RNA interaction analysis between salt stress-upregulated lncRNAs and salt stress-related miRNAs identified 26 interactions between 10 lncRNAs and 23 miRNAs and predicted 13 interactions between six miRNAs and 13 mRNAs. Finally, six lncRNA-miRNA-mRNA interaction networks were established, involving five lncRNAs, 13 miRNAs, and 23 mRNAs. RT-qPCR analysis revealed the upregulation of four out of five lncRNAs, along with their target mRNAs, supporting their involvement in the salt stress response in B. juncea.
Collapse
Affiliation(s)
- Kishor U Tribhuvan
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - M Shivakumaraswamy
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Twinkle Mishra
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Simardeep Kaur
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India
| | - Biplab Sarkar
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - A Pattanayak
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Binay K Singh
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India.
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India.
| |
Collapse
|
9
|
Feng Z, Gao B, Qin C, Lian B, Wu J, Wang J. Overexpression of PsMYB62 from Potentilla sericea confers cadmium tolerance in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109146. [PMID: 39342660 DOI: 10.1016/j.plaphy.2024.109146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Excessive cadmium (Cd) content in soil poses serious hazard to the survival and development of various organisms. Potentilla sericea, characterized by strong resistance and high utility value, is an excellent choice for urban ecological greening. Plant MYB transcription factors can participate in respondind to a variety of abiotic stresses such as heavy metals and salinity. In this study, PsMYB62 was transformed into tobacco by leaf disc infestation to obtain PsMYB62 overexpressing tobacco lines, and its mechanism in response to Cd stress was further investigated. The results showed that with Cd treatment, PsMYB62 overexpressing tobacco exhibited significantly higher net photosynthetic rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, chlorophyll content, as well as enhanced activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase enzymes, along with increased levels of reduced glutathione, proline, and soluble protein compared to the control. Conversely, levels of O2- and H2O2, and malondialdehyde were markedly lower than those in the control(P<0.05). Moreover, the aboveground Cd content was notably higher in the control than in the transgenic lines, whereas the control was much lower than the transgenic lines in the belowground fraction, with Cd subcellular distribution ratios ranking as follows: cell wall fraction > soluble fraction > organelle fraction (P<0.05). The expression of NtHMA3, NtYSL, NtPDR4 and NtPDR5B were much lower in transgenic lines compared to the control, while NtNAS3, NtSOD, and NtGSH2 exhibited significantly higher expression. Consequently, this study provides genetic resources for molecular breeding of Cd-tolerant plants through genetic engineering and lays a theoretical foundation for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Zhenghong Feng
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Bing Gao
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Chongyuan Qin
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Bing Lian
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Jianhui Wu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| | - Jinghong Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Zhang H, Yao T, Wang J, Ji G, Cui C, Song J, Sun N, Qi S, Xu N, Zhang H. Genome-wide identification of R2R3-MYB transcription factors in Betula platyphylla and functional analysis of BpMYB95 in salt tolerance. Int J Biol Macromol 2024; 279:135193. [PMID: 39216584 DOI: 10.1016/j.ijbiomac.2024.135193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The Myeloblastosis (MYB) transcription factor (TF) family is one of the largest transcription factor families in plants and plays an important role in various physiological processes. At present, there are few reports on birch (Betula platyphylla Suk.) of R2R3-MYB-TFs, and most BpMYBs still need to be characterized. In this study, 111 R2R3-MYB-TFs with conserved R2 and R3 MYB domains were identified. Phylogenetic tree analysis showed that the MYB family members of Arabidopsis thaliana and birch were divided into 23 and 21 subgroups, respectively. The latter exhibited an uneven distribution across 14 chromosomes. There were five tandem duplication events and 17 segmental duplication events between BpMYBs, and repeat events play an important role in the expansion of the family. In addition, the promoter region of MYBs was rich in various cis-acting elements, and MYB-TFs were involved in plant growth and development, light responses, biotic stress, and abiotic stress. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results revealed that most R2R3-MYB-TFs in birch responded to salt stress. In particular, the expression of BpMYBs in the S20 subfamily was significantly induced by salt, drought, abscisic acid, and methyl jasmonate stresses. Based on the weighted co-expression network analysis of physiological and RNA-seq data of birch under salt stress, a key MYB-TF BpMYB95 (BPChr12G24087), was identified in response to salt stress, and its expression level was induced by salt stress. BpMYB95 is a nuclear localization protein with transcriptional activation activity in yeast and overexpression of this gene significantly enhanced salt tolerance in Saccharomyces cerevisiae. The qRT-PCR and histochemical staining results showed that BpMYB95 exhibited the highest expression in the roots, young leaves, and petioles of birch plants. Overexpression of BpMYB95 significantly improved salt-induced browning and wilting symptoms in birch leaves and alleviated the degree of PSII photoinhibition caused by salt stress in birch seedlings. In conclusion, most R2R3-MYB-TFs found in birch were involved in the salt stress response mechanisms. Among these, BpMYB95 was a key regulatory factor that significantly enhanced salt tolerance in birch. The findings of this study provide valuable genetic resources for the development of salt-tolerant birch varieties.
Collapse
Affiliation(s)
- Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Tongtong Yao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyue Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Xu
- Harbin Univ, Sch Geog & Tourism, Key Lab Heilongjiang Prov Cold Reg Wetlands Ecol &, Harbin, China.
| | - Huiui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
11
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
12
|
Simiyu DC, Bayaraa U, Jang JH, Lee OR. The R2R3-MYB transcription factor PgTT2 from Panax ginseng interacts with the WD40-repeat protein PgTTG1 during the regulation of proanthocyanidin biosynthesis and the response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108877. [PMID: 38950460 DOI: 10.1016/j.plaphy.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Proanthocyanidins (PAs) are flavonoid compounds with important defensive roles in plants. The application of PAs in industries such as the pharmaceutical industry has led to increased interest in enhancing their biosynthesis. In Arabidopsis thaliana, PAs are biosynthesized under the regulation of an R2R3-MYB transcription factor TRANSPARENT TESTA 2 (TT2), which can interact with other proteins, including TRANSPARENT TESTA GLABRA 1 (TTG1), while also regulating a plant's response to abiotic stressors. However, the regulation of PA biosynthesis in the high-value medicinal plant Panax ginseng (ginseng) has not yet been studied. Understanding the mechanism of PAs biosynthesis regulation in ginseng may be helpful in increasing the plant's range of pharmacological applications. This study found that the overexpression of PgTT2 increased PA biosynthesis by an average of 67.3% in ginseng adventitious roots and 50.5% in arabidopsis seeds. Furthermore, transgenic arabidopsis plants overexpressing PgTT2 produced increased reactive oxygen species (ROS) scavenging ability by influencing abscisic acid synthesis and signaling. However, under high salinity stress, seed germination and growth rate of seedlings were decreased. An expression analysis of plants facing salt stress revealed increased transcripts of an ABA biosynthetic gene, NCED3, and ABA signaling genes ABI5 and ABI3. Moreover, the PgTT2 protein showed a direct interaction with PgTTG1 in yeast two-hybrid assays. This study therefore reveals novel information on the transcriptional regulation of PA production in ginseng and shows how PgTT2 influences the ABA response pathway to regulate responses to ROS and salt stress.
Collapse
Affiliation(s)
- David Charles Simiyu
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Botany Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35091, Dar es Salaam, Tanzania
| | - Unenzaya Bayaraa
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
13
|
Jiao C, Sun J. SlbHLH1 mediates ABA treatment-retarded chilling injury by repressing SlPP2C29 in tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112086. [PMID: 38599246 DOI: 10.1016/j.plantsci.2024.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Low-temperature storage can facilitate to the preservation of postharvest fruits. However, tomato fruit are vulnerable to chilling injury (CI) throughout refrigerated storage, resulting in economic losses. Abscisic acid (ABA) treatment weakened the CI progression in tomato fruit. Protein phosphatase 2 C 29 (SlPP2C29) acted as the negative regulator in the ABA-enhanced chilling tolerance. The gene expression of SlPP2C29 and activity of PP2C were down regulated by ABA treatment. Furthermore, SlPP2C29 was shown to be the negative downstream messenger in the ABA-alleviated oxidative damage. Moreover, basic helix-loop-helix 1 (SlbHLH1) bound to the E-box element within SlPP2C29 promoter, and negatively modulated its expression. SlbHLH1 mediated the ABA-boosted chilling tolerance. It turned out that SlbHLH1 was the positive modulator involved in the ABA-inhibited SlPP2C29 expression and PP2C activity. SlbHLH1 was furtherly found to work as the positive regulator in the ABA-lowered oxidative damage. Thus, SlbHLH1 alleviated the CI severity by repressing SlPP2C29 under ABA treatment in tomato fruit.
Collapse
Affiliation(s)
- Caifeng Jiao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| |
Collapse
|
14
|
Mishra SK, Chaudhary C, Baliyan S, Poonia AK, Sirohi P, Kanwar M, Gazal S, Kumari A, Sircar D, Germain H, Chauhan H. Heat-stress-responsive HvHSFA2e gene regulates the heat and drought tolerance in barley through modulation of phytohormone and secondary metabolic pathways. PLANT CELL REPORTS 2024; 43:172. [PMID: 38874775 DOI: 10.1007/s00299-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE The heat stress transcription factor HSFA2e regulates both temperature and drought response via hormonal and secondary metabolism alterations. High temperature and drought are the primary yield-limiting environmental constraints for staple food crops. Heat shock transcription factors (HSF) terminally regulate the plant abiotic stress responses to maintain growth and development under extreme environmental conditions. HSF genes of subclass A2 predominantly express under heat stress (HS) and activate the transcriptional cascade of defense-related genes. In this study, a highly heat-inducible HSF, HvHSFA2e was constitutively expressed in barley (Hordeum vulgare L.) to investigate its role in abiotic stress response and plant development. Transgenic barley plants displayed enhanced heat and drought tolerance in terms of increased chlorophyll content, improved membrane stability, reduced lipid peroxidation, and less accumulation of ROS in comparison to wild-type (WT) plants. Transcriptome analysis revealed that HvHSFA2e positively regulates the expression of abiotic stress-related genes encoding HSFs, HSPs, and enzymatic antioxidants, contributing to improved stress tolerance in transgenic plants. The major genes of ABA biosynthesis pathway, flavonoid, and terpene metabolism were also upregulated in transgenics. Our findings show that HvHSFA2e-mediated upregulation of heat-responsive genes, modulation in ABA and flavonoid biosynthesis pathways enhance drought and heat stress tolerance.
Collapse
Affiliation(s)
- Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Magadh University, BodhGaya, 824234, Bihar, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Meenakshi Kanwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Snehi Gazal
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Annu Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India.
| |
Collapse
|
15
|
Madhu, Kaur A, Singh K, Upadhyay SK. Ascorbate oxidases in bread wheat: gene regulatory network, transcripts profiling, and interaction analyses provide insight into their role in plant development and stress response. PLANT GROWTH REGULATION 2024; 103:209-224. [DOI: 10.1007/s10725-023-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/24/2023] [Indexed: 10/09/2024]
|
16
|
Daldoul S, Hanzouli F, Boubakri H, Nick P, Mliki A, Gargouri M. Deciphering the regulatory networks involved in mild and severe salt stress responses in the roots of wild grapevine Vitis vinifera spp. sylvestris. PROTOPLASMA 2024; 261:447-462. [PMID: 37963978 DOI: 10.1007/s00709-023-01908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Transcriptional regulatory networks are pivotal components of plant's response to salt stress. However, plant adaptation strategies varied as a function of stress intensity, which is mainly modulated by climate change. Here, we determined the gene regulatory networks based on transcription factor (TF) TF_gene co-expression, using two transcriptomic data sets generated from the salt-tolerant "Tebaba" roots either treated with 50 mM NaCl (mild stress) or 150 mM NaCl (severe stress). The analysis of these regulatory networks identified specific TFs as key regulatory hubs as evidenced by their multiple interactions with different target genes related to stress response. Indeed, under mild stress, NAC and bHLH TFs were identified as central hubs regulating nitrogen storage process. Moreover, HSF TFs were revealed as a regulatory hub regulating various aspects of cellular metabolism including flavonoid biosynthesis, protein processing, phenylpropanoid metabolism, galactose metabolism, and heat shock proteins. These processes are essentially linked to short-term acclimatization under mild salt stress. This was further consolidated by the protein-protein interaction (PPI) network analysis showing structural and plant growth adjustment. Conversely, under severe salt stress, dramatic metabolic changes were observed leading to novel TF members including MYB family as regulatory hubs controlling isoflavonoid biosynthesis, oxidative stress response, abscisic acid signaling pathway, and proteolysis. The PPI network analysis also revealed deeper stress defense changes aiming to restore plant metabolic homeostasis when facing severe salt stress. Overall, both the gene co-expression and PPI network provided valuable insights on key transcription factor hubs that can be employed as candidates for future genetic crop engineering programs.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| | - Faouzia Hanzouli
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, El Manar II, 2092, Tunis, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, B.P 901, 2050, Hammam-Lif, Tunisia
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| |
Collapse
|
17
|
Li T, Zhang S, Li Y, Zhang L, Song W, Chen C. Overexpression of AtMYB2 Promotes Tolerance to Salt Stress and Accumulations of Tanshinones and Phenolic Acid in Salvia miltiorrhiza. Int J Mol Sci 2024; 25:4111. [PMID: 38612919 PMCID: PMC11012609 DOI: 10.3390/ijms25074111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Salvia miltiorrhiza is a prized traditional Chinese medicinal plant species. Its red storage roots are primarily used for the treatment of cardiovascular and cerebrovascular diseases. In this study, a transcription factor gene AtMYB2 was cloned and introduced into Salvia miltiorrhiza for ectopic expression. Overexpression of AtMYB2 enhanced salt stress resistance in S. miltiorrhiza, leading to a more resilient phenotype in transgenic plants exposed to high-salinity conditions. Physiological experiments have revealed that overexpression of AtMYB2 can decrease the accumulation of reactive oxygen species (ROS) during salt stress, boost the activity of antioxidant enzymes, and mitigate oxidative damage to cell membranes. In addition, overexpression of AtMYB2 promotes the synthesis of tanshinones and phenolic acids by upregulating the expression of biosynthetic pathway genes, resulting in increased levels of these secondary metabolites. In summary, our findings demonstrate that AtMYB2 not only enhances plant tolerance to salt stress, but also increases the accumulation of secondary metabolites in S. miltiorrhiza. Our study lays a solid foundation for uncovering the molecular mechanisms governed by AtMYB2 and holds significant implications for the molecular breeding of high-quality S. miltiorrhiza varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China; (T.L.); (S.Z.); (Y.L.); (L.Z.); (W.S.)
| |
Collapse
|
18
|
Chen C, Zhang Z, Lei YY, Chen WJ, Zhang ZH, Li XM, Dai HY. MdMYB44-like positively regulates salt and drought tolerance via the MdPYL8-MdPP2CA module in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:24-41. [PMID: 38102874 DOI: 10.1111/tpj.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
Abscisic acid (ABA) is involved in salt and drought stress responses, but the underlying molecular mechanism remains unclear. Here, we demonstrated that the overexpression of MdMYB44-like, an R2R3-MYB transcription factor, significantly increases the salt and drought tolerance of transgenic apples and Arabidopsis. MdMYB44-like inhibits the transcription of MdPP2CA, which encodes a type 2C protein phosphatase that acts as a negative regulator in the ABA response, thereby enhancing ABA signaling-mediated salt and drought tolerance. Furthermore, we found that MdMYB44-like and MdPYL8, an ABA receptor, form a protein complex that further enhances the transcriptional inhibition of the MdPP2CA promoter by MdMYB44-like. Significantly, we discovered that MdPP2CA can interfere with the physical association between MdMYB44-like and MdPYL8 in the presence of ABA, partially blocking the inhibitory effect of the MdMYB44-like-MdPYL8 complex on the MdPP2CA promoter. Thus, MdMYB44-like, MdPYL8, and MdPP2CA form a regulatory loop that tightly modulates ABA signaling homeostasis under salt and drought stress. Our data reveal that MdMYB44-like precisely modulates ABA-mediated salt and drought tolerance in apples through the MdPYL8-MdPP2CA module.
Collapse
Affiliation(s)
- Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Ying-Ying Lei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Wen-Jun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Zhi-Hong Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Xiao-Ming Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hong-Yan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| |
Collapse
|
19
|
Wang S, Jiang R, Feng J, Zou H, Han X, Xie X, Zheng G, Fang C, Zhao J. Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:32. [PMID: 38512490 DOI: 10.1007/s11103-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Rongyi Jiang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haodong Zou
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaohuan Han
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guanghui Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
20
|
Wang Y, Yang X, Hu Y, Liu X, Shareng T, Cao G, Xing Y, Yang Y, Li Y, Huang W, Wang Z, Bai G, Ji Y, Wang Y. Transcriptome-Based Identification of the SaR2R3-MYB Gene Family in Sophora alopecuroides and Function Analysis of SaR2R3-MYB15 in Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:586. [PMID: 38475433 DOI: 10.3390/plants13050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
As one of the most prominent gene families, R2R3-MYB transcription factors significantly regulate biochemical and physiological processes under salt stress. However, in Sophora alopecuroides, a perennial herb known for its exceptional saline alkali resistance, the comprehensive identification and characterization of SaR2R3-MYB genes and their potential functions in response to salt stress have yet to be determined. We investigated the expression profiles and biological functions of SaR2R3-MYB transcription factors in response to salt stress, utilizing a transcriptome-wide mining method. Our analysis identified 28 SaR2R3-MYB transcription factors, all sharing a highly conserved R2R3 domain, which were further divided into 28 subgroups through phylogenetic analysis. Some SaR2R3-MYB transcription factors showed induction under salt stress, with SaR2R3-MYB15 emerging as a potential regulator based on analysis of the protein-protein interaction network. Validation revealed the transcriptional activity and nuclear localization of SaR2R3-MYB15. Remarkably, overexpression of SaR2R3-MYB15 in transgenic plants could increase the activity of antioxidant enzymes and the accumulation of proline but decrease the content of malondialdehyde (MDA), compared with wild-type plants. Moreover, several salt stress-related genes showed higher expression levels in transgenic plants, implying their potential to enhance salt tolerance. Our findings shed light on the role of SaR2R3-MYB genes in salt tolerance in S. alopecuroides.
Collapse
Affiliation(s)
- Yuan Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongning Hu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Xinqian Liu
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Tuya Shareng
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Gongxiang Cao
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yukun Xing
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yuewen Yang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Ordos Forest Ecosystem Research Station, Ordos 016100, China
| | - Yinxiang Li
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Weili Huang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
- Inner Mongolia Engineering Laboratory of Economic Forest Sterile Virus-Free Cultivation, Hohhot 010021, China
| | - Zhibo Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Gaowa Bai
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuanyuan Ji
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| | - Yuzhi Wang
- Inner Mongolia Academy of Forestry Science, Hohhot 010021, China
| |
Collapse
|
21
|
Azab O, Ben Romdhane W, El-Hendawy S, Ghazy A, Zakri AM, Abd-ElGawad AM, Al-Doss A. Ectopic Expression of a Wheat R2R3-Type MYB Gene in Transgenic Tobacco Enhances Osmotic Stress Tolerance via Maintaining ROS Balance and Improving Root System Architecture. BIOLOGY 2024; 13:128. [PMID: 38392346 PMCID: PMC10886976 DOI: 10.3390/biology13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Water scarcity is a critical cause of plant yield loss and decreased quality. Manipulation of root system architecture to minimize the impact of water scarcity stresses may greatly contribute towards an improved distribution of roots in the soil and enhanced water and nutrient uptake abilities. In this study, we explored the potential of TaMYB20 gene, a wheat gene belonging to the R2R3-MYB transcription factor family, to improve root system architecture in transgenic tobacco plants. The full-length TaMYB20 gene was isolated from Triticum aestivum.cv. Sakha94 and used to produce genetically engineered tobacco plants. The transgenic plants exhibited enhanced tolerance to extended osmotic stress and were able to maintain their root system architecture traits, including total root length (TRL), lateral root number (LRN), root surface area (RSa), and root volume (RV), while the wild-type plants failed to maintain the same traits. The transgenic lines presented greater relative water content in their roots associated with decreased ion leakage. The oxidative stress resulted in the loss of mitochondrial membrane integrity in the wild-type (WT) plants due to the overproduction of reactive oxygen species (ROS) in the root cells, while the transgenic lines were able to scavenge the excess ROS under stressful conditions through the activation of the redox system. Finally, we found that the steady-state levels of three PIN gene transcripts were greater in the TaMYB20-transgenic lines compared to the wild-type tobacco. Taken together, these findings confirm that TaMYB20 is a potentially useful gene candidate for engineering drought tolerance in cultivated plants.
Collapse
Affiliation(s)
- Omar Azab
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Salah El-Hendawy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdelhalim Ghazy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Adel M Zakri
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ahmed M Abd-ElGawad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Wang Z, Li X, Gao XR, Dai ZR, Peng K, Jia LC, Wu YK, Liu QC, Zhai H, Gao SP, Zhao N, He SZ, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. PLANT PHYSIOLOGY 2024; 194:787-804. [PMID: 37815230 DOI: 10.1093/plphys/kiad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu Li
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-Ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yin-Kui Wu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qing-Chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Zhen He
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Fang L, Wang Z, Su L, Gong L, Xin H. Vitis Myb14 confer cold and drought tolerance by activating lipid transfer protein genes expression and reactive oxygen species scavenge. Gene 2024; 890:147792. [PMID: 37714279 DOI: 10.1016/j.gene.2023.147792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The R2R3 Myb transcription factor exhibits a wide range of functions and participates in various biological processes in plant development, secondary metabolism, and abiotic stress tolerance, among others. Vitis Myb14 initially identified for its involvement in resveratrol synthesis in grapevines. In this study, we investigate its role in abiotic stress tolerance. Significant differences in expression were observed between two grape varieties, Vitis amurensis (Cold-hardy) and V. vinifera (Cold-sentitive), under abiotic and hormone treatments. Both VvMyb14 and VaMyb14 demonstrated responsiveness to cold, drought and high salt treatment, but VaMyb14 exhibited a quicker and more pronounced response. To investigate further, we overexpressed VaMyb14 in A. thalina and found that VaMyb14 OE plants showed significantly enhanced cold and drought tolerance compared to wild-type plants. Additionally, the transgenic lines exhibited increased antioxidant enzyme activity, particularly POD activity, and reduced MDA content. Microarray analysis of VaMyb14 OE plants revealed up-regulation of several ABA metabolism and signal transduction genes, including several LTPs, PP2Cs, RD29B, COR78 and other structural genes, indicating that VaMyb14 has the capacity to reprogram a significant signaling pathway. Furthermore, comparative mRNA sequencing profiling of 35S:VaMyb14 grapevine callus indicated its involvement its function involved in ROS scavenging and ABA signaling. These findings collectively demonstrate that Vitis Myb14 serves as a critical regulator in grapevine stress responses, contributing to improved defense against necrotrophic pathogens, enhanced phytoalexin resveratrol production, and increased drought or cold tolerance.
Collapse
Affiliation(s)
| | - Zeming Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Lingye Su
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Linzhong Gong
- Institute of Fruit Trees and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
24
|
Lu M, Chen Z, Dang Y, Li J, Wang J, Zheng H, Li S, Wang X, Du X, Sui N. Identification of the MYB gene family in Sorghum bicolor and functional analysis of SbMYBAS1 in response to salt stress. PLANT MOLECULAR BIOLOGY 2023; 113:249-264. [PMID: 37964053 DOI: 10.1007/s11103-023-01386-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Salt stress adversely affects plant growth and development. It is necessary to understand the underlying salt response mechanism to improve salt tolerance in plants. MYB transcription factors can regulate plant responses to salt stress. However, only a few studies have explored the role of MYB TFs in Sorghum bicolor (L.) Moench. So we decided to make a systematic analysis and research on the sorghum MYB family. A total of 210 MYB genes in sorghum were identified in this study. Furthermore, 210 MYB genes were distributed across ten chromosomes, named SbMYB1-SbMYB210. To study the phylogeny of the identified TFs, 210 MYB genes were divided into six subfamilies. We further demonstrated that SbMYB genes have evolved under strong purifying selection. SbMYBAS1 (SbMYB119) was chosen as the study object, which the expression decreased under salt stress conditions. Further study of the SbMYBAS1 showed that SbMYBAS1 is located in the nucleus. Under salt stress conditions, Arabidopsis plants overexpressed SbMYBAS1 showed significantly lower dry/fresh weight and chlorophyll content but significantly higher membrane permeability, MDA content, and Na+/K+ ratio than the wild-type Arabidopsis plants. Yeast two-hybrid screening result showed that SbMYBAS1 might interact with proteins encoded by SORBI_302G184600, SORBI_3009G247900 and SORBI_3004G59600. Results also showed that SbMYBAS1 could regulate the expression of AtGSTU17, AtGSTU16, AtP5CS2, AtUGT88A1, AtUGT85A2, AtOPR2 and AtPCR2 under salt stress conditions. This work laid a foundation for the study of the response mechanism of sorghum MYB gene family to salt stress.
Collapse
Affiliation(s)
- Mei Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
25
|
Kamran HM, Fu X, Wang H, Yang N, Chen L. Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family in Wintersweet ( Chimonanthus praecox). Int J Mol Sci 2023; 24:13462. [PMID: 37686265 PMCID: PMC10487621 DOI: 10.3390/ijms241713462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites biosynthesis, growth, and development in plants. However, the systematic analysis of the bHLH family members and their role in the regulation of floral traits in Wintersweet remains insufficiently understood. To bridge this knowledge gap, we conducted a comprehensive genome-wide analysis of the C. praecox bHLH (CpbHLH) gene family, identifying a total of 131 CpbHLH genes across 11 chromosomes. Phylogenetic analysis classified these CpbHLH genes into 23 subfamilies, wherein most members within the same subfamily exhibited analogous intron/exon patterns and motif composition. Moreover, the expansion of the CpbHLH gene family was primarily driven by segmental duplication, with duplicated gene pairs experiencing purifying selection during evolution. Transcriptomic analysis revealed diverse expression patterns of CpbHLH genes in various tissues and distinct stages of Wintersweet flower development, thereby suggesting their involvement in a diverse array of physiological processes. Furthermore, yeast 2-hybrid assay demonstrated interaction between CpbHLH25 and CpbHLH59 (regulators of floral scent and color) as well as with CpbHLH112 and CpMYB2, suggesting potential coordinately regulation of secondary metabolites biosynthesis in Wintersweet flowers. Collectively, our comprehensive analysis provides valuable insights into the structural attributes, evolutionary dynamics, and expression profiles of the CpbHLH gene family, laying a solid foundation for further explorations of the multifaceted physiological and molecular roles of bHLH TFs in Wintersweet.
Collapse
Affiliation(s)
| | | | | | - Nan Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| |
Collapse
|
26
|
Li K, Zhai L, Fu S, Wu T, Zhang X, Xu X, Han Z, Wang Y. Genome-wide analysis of the MdZR gene family revealed MdZR2.2-induced salt and drought stress tolerance in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111755. [PMID: 37290593 DOI: 10.1016/j.plantsci.2023.111755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The DNL-type zinc finger protein constitutes a zinc ribbon protein (ZR) family, which belongs to a branch of zinc finger protein and plays an essential role in response to abiotic stress. Here, we identified six apple (Malus domestica) MdZR genes. Based on their phylogenetic relationship and gene structure, the MdZR genes were divided into three categories, including MdZR1, MdZR2, and MdZR3. Subcellular results showed that the MdZRs are located on the nuclear and membrane. The transcriptome data showed that MdZR2.2 is expressed in various tissues. The expression analysis results showed that MdZR2.2 was significantly upregulated under salt and drought treatments. Thus, we selected MdZR2.2 for further research. Overexpression of MdZR2.2 in apple callus improved their tolerance to drought and salt stress and ability to scavenge reactive oxygen species (ROS). In contrast, transgenic apple roots with silenced MdZR2.2 grew more poorly than the wild type when subjected to salt and drought stress, which reduced their ability to scavenge ROS. To our knowledge, this is the first study to analyze the MdZR protein family. This study identified a gene that responds to drought and salt stress. Our findings lay a foundation for a comprehensive analysis of the MdZR family members.
Collapse
Affiliation(s)
- Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Sitong Fu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China.
| |
Collapse
|
27
|
Ji C, Liang Z, Cao H, Chen Z, Kong X, Xin Z, He M, Wang J, Wei Z, Xing J, Li C, Zhang Y, Zhang H, Sun F, Li J, Li K. Transcriptome-based analysis of the effects of compound microbial agents on gene expression in wheat roots and leaves under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1109077. [PMID: 37235031 PMCID: PMC10206238 DOI: 10.3389/fpls.2023.1109077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Salt stress inhibits the beneficial effects of most plant growth-promoting rhizobacteria. The synergistic relationship between beneficial rhizosphere microorganisms and plants helps achieve more stable growth-promoting effects. This study aimed 1) to elucidate changes in gene expression profiles in the roots and leaves of wheat after inoculation with compound microbial agents and 2) to determine the mechanisms by which plant growth-promoting rhizobacteria mediate plant responses to microorganisms. Methods Following inoculation with compound bacteria, transcriptome characteristics of gene expression profiles of wheat, roots, and leaves at the flowering stage were investigated using Illumina high-throughput sequencing technology. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes that were significantly differentially expressed. Results The expression of 231 genes in the roots of bacterial preparations (BIO) -inoculated wheat changed significantly (including 35 upregulated and 196 downregulated genes) compared with that of non-inoculated wheat. The expression of 16,321 genes in leaves changed significantly, including 9651 upregulated genes and 6670 downregulated genes. The differentially expressed genes were involved in the metabolism of carbohydrates, amino acids, and secondary compounds as well as signal transduction pathways. The ethylene receptor 1 gene in wheat leaves was significantly downregulated, and genes related to ethylene-responsive transcription factor were significantly upregulated. GO enrichment analysis showed that metabolic and cellular processes were the main functions affected in the roots and leaves. The main molecular functions altered were binding and catalytic activities, among which the cellular oxidant detoxification enrichment rate was highly expressed in the roots. The expression of peroxisome size regulation was the highest in the leaves. KEGG enrichment analysis showed that linoleic acid metabolism expression was highest in the roots, and the expression of photosynthesis-antenna proteins was the highest in leaves. After inoculation with a complex biosynthesis agent, the phenylalanine ammonia lyase (PAL) gene of the phenylpropanoid biosynthesis pathway was upregulated in wheat leaf cells while 4CL, CCR, and CYP73A were downregulated. Additionally, CYP98A and REF1 genes involved in the flavonoid biosynthesis pathway were upregulated, while F5H, HCT, CCR, E2.1.1.104, and TOGT1-related genes were downregulated. Discussion Differentially expressed genes may play key roles in improving salt tolerance in wheat. Compound microbial inoculants promoted the growth of wheat under salt stress and improved disease resistance by regulating the expression of metabolism-related genes in wheat roots and leaves and activating immune pathway-related genes.
Collapse
Affiliation(s)
- Chao Ji
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
| | - Zengwen Liang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Shandong Yongsheng Agricultural Development Co., Ltd., Yongsheng (Shouguang) Vegetable Technology Research Institute Co., Ltd, Weifang, China
| | - Hui Cao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zhizhang Chen
- College of Foreign Languages, Weifang University, Weifang, Shandong, China
| | - Xuehua Kong
- Weifang Hanting Vestibule School, Weifang Education Bureau, Weifang, Shandong, China
| | - Zhiwen Xin
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Mingchao He
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jie Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zichao Wei
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jiahao Xing
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Chunyu Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Yingxiang Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Hua Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Fujin Sun
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Runxin Fruit and Vegetable Cultivation Cooperative of Weifang Economic Development Zone, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Jianlin Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Weifang Nuode Biotechnology Co., LTD, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Kun Li
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
- College of Forestry, Shandong Agriculture University, Taian, Shandong, China
| |
Collapse
|
28
|
Zhu N, Duan B, Zheng H, Mu R, Zhao Y, Ke L, Sun Y. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107648. [PMID: 37001303 DOI: 10.1016/j.plaphy.2023.107648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.
Collapse
Affiliation(s)
- Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bailin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
29
|
Yu Y, Guo DD, Min DH, Cao T, Ning L, Jiang QY, Sun XJ, Zhang H, Tang WS, Gao SQ, Zhou YB, Xu ZS, Chen J, Ma YZ, Chen M, Zhang XH. Foxtail millet MYB-like transcription factor SiMYB16 confers salt tolerance in transgenic rice by regulating phenylpropane pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:310-321. [PMID: 36657296 DOI: 10.1016/j.plaphy.2022.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 05/20/2023]
Abstract
R2R3-MYB transcription factors play an important role in the synthesis of phenylpropanoid-derived compounds, which in turn provide salt tolerance in plant. In this study, we found that the expression of foxtail millet R2R3-MYB factor SiMYB16 can be induced by salt and drought. SiMYB16 is localized in the nucleus and acts as a transcriptional activator. Phylogenetic analysis indicates that SiMYB16 belongs to the R2R3-MYB transcription factor family subgroup 24. Transgenic rice expressing SiMYB16 (OX16) had a higher survival rate, lower malondialdehyde content, and heavier fresh weight compared with type (WT) under salt stress conditions. The transgenic plants also had a higher germination rate in salt treatment conditions and higher yield in the field compared with wild-type plants. Transcriptome analysis revealed that the up-regulated differential expression genes in the transgenic rice were mainly involved in phenylpropanoid biosynthesis, fatty acid elongation, phenylalanine metabolism, and flavonoid biosynthesis pathways. Quantitative real-time PCR analysis also showed that the genes encoding the major enzymes in the lignin and suberin biosynthesis pathways had higher expression level in SiMYB16 transgenic plants. Correspondingly, the content of flavonoid and lignin, and the activity of fatty acid synthase increased in SiMYB16 transgenic rice compared with wild-type plants under salt stress treatment. These results indicate that SiMYB16 gene can enhance plant salt tolerance by regulating the biosynthesis of lignin and suberin.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Dong-Dong Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| | - Tao Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Lei Ning
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Qi-Yan Jiang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Xian-Jun Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Wen-Si Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Shi-Qing Gao
- Beijing Hybrid Wheat Engineering Technology Research Center, Beijing, 100097, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Xiao-Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
30
|
Wu Z, Luo L, Wan Y, Liu F. Genome-wide characterization of the PP2C gene family in peanut ( Arachis hypogaea L.) and the identification of candidate genes involved in salinity-stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1093913. [PMID: 36778706 PMCID: PMC9911800 DOI: 10.3389/fpls.2023.1093913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Plant protein phosphatase 2C (PP2C) play important roles in response to salt stress by influencing metabolic processes, hormone levels, growth factors, etc. Members of the PP2C family have been identified in many plant species. However, they are rarely reported in peanut. In this study, 178 PP2C genes were identified in peanut, which were unevenly distributed across the 20 chromosomes, with segmental duplication in 78 gene pairs. AhPP2Cs could be divided into 10 clades (A-J) by phylogenetic analysis. AhPP2Cs had experienced segmental duplications and strong purifying selection pressure. 22 miRNAs from 14 different families were identified, targeting 57 AhPP2C genes. Gene structures and motifs analysis exhibited PP2Cs in subclades AI and AII had high structural and functional similarities. Phosphorylation sites of AhPP2C45/59/134/150/35/121 were predicted in motifs 2 and 4, which located within the catalytic site at the C-terminus. We discovered multiple MYB binding factors and ABA response elements in the promoter regions of the six genes (AhPP2C45/59/134/150/35/121) by cis-elements analysis. GO and KEGG enrichment analysis confirmed AhPP2C-A genes in protein binding, signal transduction, protein modification process response to abiotic stimulus through environmental information processing. Based on RNA-Seq data of 22 peanut tissues, clade A AhPP2Cs showed a varying degree of tissue specificity, of which, AhPP2C35 and AhPP2C121 specifically expressed in seeds, while AhPP2C45/59/134/150 expressed in leaves and roots. qRT-PCR indicated that AhPP2C45 and AhPP2C134 displayed significantly up-regulated expression in response to salt stress. These results indicated that AhPP2C45 and AhPP2C134 could be candidate PP2Cs conferring salt tolerance. These results provide further insights into the peanut PP2C gene family and indicate PP2Cs potentially involved in the response to salt stress, which can now be further investigated in peanut breeding efforts to obtain cultivars with improved salt tolerance.
Collapse
Affiliation(s)
- Zhanwei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Lu Luo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yongshan Wan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
31
|
Genome-Wide Identification and Transcriptional Analysis of the MYB Gene Family in Pearl Millet ( Pennisetum glaucum). Int J Mol Sci 2023; 24:ijms24032484. [PMID: 36768807 PMCID: PMC9916650 DOI: 10.3390/ijms24032484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
The MYB gene family widely exists in the plant kingdom and participates in the regulation of plant development and stress response. Pearl millet (Pennisetum glaucum (L.) R. Br.), as one of the most important cereals, is not only considered a good source of protein and nutrients but also has excellent tolerances to various abiotic stresses (e.g., salinity, water deficit, etc.). Although the genome sequence of pearl millet was recently published, bioinformatics and expression pattern analysis of the MYB gene family are limited. Here, we identified 208 PgMYB genes in the pearl millet genome and employed 193 high-confidence candidates for downstream analysis. Phylogenetic and structural analysis classified these PgMYBs into four subgroups. Eighteen pairs of segmental duplications of the PgMYB gene were found using synteny analysis. Collinear analysis revealed pearl millet had the closest evolutionary relationship with foxtail millet. Nucleotide substitution analysis (Ka/Ks) revealed PgMYB genes were under purifying positive selection pressure. Reverse transcription-quantitative PCR analysis of eleven R2R3-type PgMYB genes revealed they were preferentially expressed in shoots and seeds and actively responded to various environment stimuli. Current results provide insightful information regarding the molecular features of the MYB family in pearl millet to support further functional characterizations.
Collapse
|
32
|
Wang Z, Yao X, Jia C, Zheng Y, Lin Q, Wang J, Liu J, Zhu Z, Peng L, Xu B, Cong X, Jin Z. Genome-Wide Characterization and Analysis of R2R3-MYB Genes Related to Fruit Ripening and Stress Response in Banana ( Musa acuminata L. AAA Group, cv. 'Cavendish'). PLANTS (BASEL, SWITZERLAND) 2022; 12:152. [PMID: 36616281 PMCID: PMC9823626 DOI: 10.3390/plants12010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
MYB is an important type of transcription factor in eukaryotes. It is widely involved in a variety of biological processes and plays a role in plant morphogenesis, growth and development, primary and secondary metabolite synthesis, and other life processes. In this study, bioinformatics methods were used to identify the R2R3-MYB transcription factor family members in the whole Musa acuminata (DH-Pahang) genome, one of the wild ancestors of banana. A total of 280 MaMYBs were obtained, and phylogenetic analysis indicated that these MaMYBs could be classified into 33 clades with MYBs from Arabidopsis thaliana. The amino acid sequences of the R2 and R3 Myb-DNA binding in all MaMYB protein sequences were quite conserved, especially Arg-12, Arg-13, Leu-23, and Leu-79. Distribution mapping results showed that 277 MaMYBs were localized on the 11 chromosomes in the Musa acuminata genome. The MaMYBs were distributed unevenly across the 11 chromosomes. More than 40.0% of the MaMYBs were located in collinear fragments, and segmental duplications likely played a key role in the expansion of the MaMYBs. Moreover, the expression profiles of MaMYBs in different fruit development and ripening stages and under various abiotic and biotic stresses were investigated using available RNA-sequencing data to obtain fruit development, ripening-specific, and stress-responsive candidate genes. Weighted gene co-expression network analysis (WGCNA) was used to analyze transcriptome data of banana from the above 11 samples. We found MaMYBs participating in important metabolic biosynthesis pathways in banana. Collectively, our results represent a comprehensive genome-wide study of the MaMYB gene family, which should be helpful in further detailed studies on MaMYBs functions related to fruit development, postharvest ripening, and the seedling response to stress in an important banana cultivar.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | | | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yunke Zheng
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Qiumei Lin
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhao Zhu
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Long Peng
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
33
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
34
|
Wang H, Yin X, Du D, Liang Z, Han Z, Nian H, Ma Q. GsMYB7 encoding a R2R3-type MYB transcription factor enhances the tolerance to aluminum stress in soybean (Glycine max L.). BMC Genomics 2022; 23:529. [PMID: 35869448 PMCID: PMC9306046 DOI: 10.1186/s12864-022-08744-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Background MYB transcription factor (TF) is one of the largest families of TFs in plants and play essential roles in plant growth and development, and is involved in responses to biological and abiotic stress. However, there are few reports on GsMYB7 gene in soybean under aluminum acid stress, and its regulatory mechanism remains unclear. Results The GsMYB7 protein is localized in the nucleus and has transcriptional activation ability. Quantitative real-time PCR (qRT-PCR) results showed that GsMYB7 held a constitutive expression pattern rich in roots. When AlCl3 concentration was 25 µM, the total root surface area (SA) of GsMYB7 transgenic lines were 34.97% higher than that of wild-type Huachun 6 (HC6). While the accumulation of Al3+ in root tip of transgenic plants after aluminum treatment was 17.39% lower than that of wild-type. RNA-sequencing analysis indicated that over 1181 genes were regulated by GsMYB7 and aluminum stress. Among all the regulated genes, the expression levels of glutathione peroxidase, protein kinase, cytochrome and other genes in the transgenic lines were significantly higher than those in wild type by acidic aluminum stress. The bioinformatics and qRT-PCR results showed that 9 candidate genes were induced under the treatments of acidic aluminum stress which were indirectly and/or directly regulated by GsMYB7. After AlCl3 treatments, the transcripts of these genes in GsMYB7 transgenic seedlings were significantly higher than those of wide-type HC6. Conclusions The results suggested that GsMYB7 may enhance soybean tolerance to acidic aluminum stress by regulating the downstream genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08744-w.
Collapse
|
35
|
Zhao B, Shao Z, Wang L, Zhang F, Chakravarty D, Zong W, Dong J, Song L, Qiao H. MYB44-ENAP1/2 restricts HDT4 to regulate drought tolerance in Arabidopsis. PLoS Genet 2022; 18:e1010473. [PMID: 36413574 PMCID: PMC9681084 DOI: 10.1371/journal.pgen.1010473] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Histone acetylation has been shown to involve in stress responses. However, the detailed molecular mechanisms that how histone deacetylases and transcription factors function in drought stress response remain to be understood. In this research, we show that ENAP1 and ENAP2 are positive regulators of drought tolerance in plants, and the enap1enap2 double mutant is more sensitive to drought stress. Both ENAP1 and ENAP2 interact with MYB44, a transcription factor that interacts with histone deacetylase HDT4. Genetics data show that myb44 null mutation enhances the sensitivity of enap1enap2 to drought stress. Whereas, HDT4 negatively regulates plant drought response, the hdt4 mutant represses enap1enap2myb44 drought sensitive phenotype. In the normal condition, ENAP1/2 and MYB44 counteract the HDT4 function for the regulation of H3K27ac. Upon drought stress, the accumulation of MYB44 and reduction of HDT4 leads to the enrichment of H3K27ac and the activation of target gene expression. Overall, this research provides a novel molecular mechanism by which ENAP1, ENAP2 and MYB44 form a complex to restrict the function of HDT4 in the normal condition; under drought condition, accumulated MYB44 and reduced HDT4 lead to the elevation of H3K27ac and the expression of drought responsive genes, as a result, plants are drought tolerant.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Zhengyao Shao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Likai Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Fan Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Daveraj Chakravarty
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Juan Dong
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
36
|
Han G, Qiao Z, Li Y, Yang Z, Zhang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B. LbMYB48 positively regulates salt gland development of Limonium bicolor and salt tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039984. [PMID: 36388592 PMCID: PMC9644043 DOI: 10.3389/fpls.2022.1039984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Limonium bicolor is a dicotyledonous recretohalophyte with several multicellular salt glands on the leaves. The plant can directly secrete excess salt onto the leaf surface through the salt glands to maintain ion homeostasis under salt stress. Therefore, it is of great significance to study the functions of genes related to salt gland development and salt tolerance. In this study, an R1-type MYB transcription factor gene was screened from L. bicolor, named LbMYB48, and its expression was strongly induced by salt stress. Subcellular localization analysis showed that LbMYB48 was localized in the nucleus. LbMYB48 protein has transcriptional activation activity shown by transcriptional activation experiments. The density of salt glands in the leaves and the salt secretion capacity of LbMYB48-silenced lines were decremented, as demonstrated by the leaf disc method to detect sodium ion secretion. Furthermore, salt stress index experiments revealed that the ability of LbMYB48-silenced lines to resist salt stress was significantly reduced. LbMYB48 regulates salt gland development and salt tolerance in L. bicolor mainly by regulating the expression of epidermal cell development related genes such as LbCPC-like and LbDIS3 and salt stress-related genes (LbSOSs, LbRLKs, and LbGSTs) as demonstrated by RNA-seq analysis of LbMYB48-silenced lines. The heterologous over-expression of LbMYB48 in Arabidopsis thaliana improves salt tolerance of plants by stabilizing ion and osmotic balance and is likely to be involved in the abscisic acid signaling pathway. Therefore, LbMYB48, a transcriptional activator regulates the salt gland development of L. bicolor and salt tolerance of L. bicolor and A. thaliana.
Collapse
|
37
|
Prodhan ZH, Islam SA, Alam MS, Li S, Jiang M, Tan Y, Shu Q. Impact of OsBadh2 Mutations on Salt Stress Response in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:2829. [PMID: 36365282 PMCID: PMC9656462 DOI: 10.3390/plants11212829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Mutations in the Betaine aldehyde dehydrogenase 2 (OsBadh2) gene resulted in aroma, which is a highly preferred grain quality attribute in rice. However, research on naturally occurring aromatic rice has revealed ambiguity and controversy regarding aroma emission, stress tolerance, and response to salinity. In this study, mutant lines of two non-aromatic varieties, Huaidao#5 (WT_HD) and Jiahua#1 (WT_JH), were generated by targeted mutagenesis of OsBadh2 using CRISPR/Cas9 technology. The mutant lines of both varieties became aromatic; however, WT_HD mutants exhibited an improved tolerance, while those of WT_JH showed a reduced tolerance to salt stress. To gain insight into the molecular mechanism leading to the opposite effects, comparative analyses of the physiological activities and expressions of aroma- and salinity-related genes were investigated. The WT_HD mutants had a lower mean increment rate of malondialdehyde, superoxide dismutase, glutamate, and proline content, with a higher mean increment rate of γ-aminobutyric acid, hydrogen peroxide, and catalase than the WT_JH mutants. Fluctuations were also detected in the salinity-related gene expression. Thus, the response mechanism of OsBadh2 mutants is complicated where the genetic makeup of the rice variety and interactions of several genes are involved, which requires more in-depth research to explore the possibility of producing highly tolerant aromatic rice genotypes.
Collapse
Affiliation(s)
- Zakaria H. Prodhan
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
- College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Shah A. Islam
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
- Agronomy Division, Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh
| | - Mohammad S. Alam
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Shan Li
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Meng Jiang
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Pan Y, Li Y, Liu Z, Zou J, Li Q. Computational genomics insights into cold acclimation in wheat. Front Genet 2022; 13:1015673. [PMID: 36338961 PMCID: PMC9632429 DOI: 10.3389/fgene.2022.1015673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Development of cold acclimation in crops involves transcriptomic reprograming, metabolic shift, and physiological changes. Cold responses in transcriptome and lipid metabolism has been examined in separate studies for various crops. In this study, integrated computational approaches was employed to investigate the transcriptomics and lipidomics data associated with cold acclimation and vernalization in four wheat genotypes of distinct cold tolerance. Differential expression was investigated between cold treated and control samples and between the winter-habit and spring-habit wheat genotypes. Collectively, 12,676 differentially expressed genes (DEGs) were identified. Principal component analysis of these DEGs indicated that the first, second, and third principal components (PC1, PC2, and PC3) explained the variance in cold treatment, vernalization and cold hardiness, respectively. Differential expression feature extraction (DEFE) analysis revealed that the winter-habit wheat genotype Norstar had high number of unique DEGs (1884 up and 672 down) and 63 winter-habit genes, which were clearly distinctive from the 64 spring-habit genes based on PC1, PC2 and PC3. Correlation analysis revealed 64 cold hardy genes and 39 anti-hardy genes. Cold acclimation encompasses a wide spectrum of biological processes and the involved genes work cohesively as revealed through network propagation and collective association strength of local subnetworks. Integration of transcriptomics and lipidomics data revealed that the winter-habit genes, such as COR413-TM1, CIPKs and MYB20, together with the phosphatidylglycerol lipids, PG(34:3) and PG(36:6), played a pivotal role in cold acclimation and coordinated cohesively associated subnetworks to confer cold tolerance.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies, National Research Council Canada, Ottawa, ON, Canada
| | - Yifeng Li
- Digital Technologies, National Research Council Canada, Ottawa, ON, Canada
- Department of Computer Science, Department of Biological Science, Brock University, St. Catharines, ON, Canada
| | - Ziying Liu
- Digital Technologies, National Research Council Canada, Ottawa, ON, Canada
| | - Jitao Zou
- Aquatic and Crop Research and Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Qiang Li
- Aquatic and Crop Research and Development, National Research Council Canada, Saskatoon, SK, Canada
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
39
|
Komatsuzaki A, Hoshino A, Otagaki S, Matsumoto S, Shiratake K. Genome-wide analysis of R2R3-MYB transcription factors in Japanese morning glory. PLoS One 2022; 17:e0271012. [PMID: 36264987 PMCID: PMC9584510 DOI: 10.1371/journal.pone.0271012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The R2R3-MYB transcription factor is one of the largest transcription factor families in plants. R2R3-MYBs play a variety of functions in plants, such as cell fate determination, organ and tissue differentiations, primary and secondary metabolisms, stress and defense responses and other physiological processes. The Japanese morning glory (Ipomoea nil) has been widely used as a model plant for flowering and morphological studies. In the present study, 127 R2R3-MYB genes were identified in the Japanese morning glory genome. Information, including gene structure, protein motif, chromosomal location and gene expression, were assigned to the InR2R3-MYBs. Phylogenetic tree analysis revealed that the 127 InR2R3-MYBs were classified into 29 subfamilies (C1-C29). Herein, physiological functions of the InR2R3-MYBs are discussed based on the functions of their Arabidopsis orthologues. InR2R3-MYBs in C9, C15, C16 or C28 may regulate cell division, flavonol biosynthesis, anthocyanin biosynthesis or response to abiotic stress, respectively. C16 harbors the known anthocyanin biosynthesis regulator, InMYB1 (INIL00g10723), and putative anthocyanin biosynthesis regulators, InMYB2 (INIL05g09650) and InMYB3 (INIL05g09651). In addition, INIL05g09649, INIL11g40874 and INIL11g40875 in C16 were suggested as novel anthocyanin biosynthesis regulators. We organized the R2R3-MYB transcription factors in the morning glory genome and assigned information to gene and protein structures and presuming their functions. Our study is expected to facilitate future research on R2R3-MYB transcription factors in Japanese morning glory.
Collapse
Affiliation(s)
- Ayane Komatsuzaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Hoshino
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
40
|
Lim I, Kang M, Kim BC, Ha J. Metabolomic and transcriptomic changes in mungbean ( Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1030677. [PMID: 36325566 PMCID: PMC9618701 DOI: 10.3389/fpls.2022.1030677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Mungbean (Vigna radiata) sprouts are consumed globally as a healthy food with high nutritional values, having antioxidant and anticancer capacity. Under mild salinity stress, plants accumulate more secondary metabolites to alleviate oxidative stress. In this study, metabolomic and transcriptomic changes in mungbean sprouts were identified using a reference cultivar, sunhwa, to understand the regulatory mechanisms of secondary metabolites in response to salinity stress. Under salinity conditions, the contents of phenylpropanoid-derived metabolites, including catechin, chlorogenic acid, isovitexin, p-coumaric acid, syringic acid, ferulic acid, and vitexin, significantly increased. Through RNA sequencing, 728 differentially expressed genes (DEGs) were identified and 20 DEGs were detected in phenylpropanoid and flavonoid biosynthetic pathways. Among them, 11 DEGs encoding key enzymes involved in the biosynthesis of the secondary metabolites that increased after NaCl treatment were significantly upregulated, including dihydroflavonol 4-reductase (log2FC 1.46), caffeoyl-CoA O-methyltransferase (1.38), chalcone synthase (1.15), and chalcone isomerase (1.19). Transcription factor families, such as MYB, WRKY, and bHLH, were also identified as upregulated DEGs, which play a crucial role in stress responses in plants. Furthermore, this study showed that mild salinity stress can increase the contents of phenylpropanoids and flavonoids in mungbean sprouts through transcriptional regulation of the key enzymes involved in the biosynthetic pathways. Overall, these findings will provide valuable information for molecular breeders and scientists interested in improving the nutritional quality of sprout vegetables.
Collapse
|
41
|
Liu M, Li K, Sheng S, Wang M, Hua P, Wang Y, Chen P, Wang K, Zhao M, Wang Y, Zhang M. Transcriptome analysis of MYB transcription factors family and PgMYB genes involved in salt stress resistance in Panax ginseng. BMC PLANT BIOLOGY 2022; 22:479. [PMID: 36209052 PMCID: PMC9547452 DOI: 10.1186/s12870-022-03871-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND As the king of all herbs, the medicinal value of ginseng is self-evident. The perennial nature of ginseng causes its quality to be influenced by various factors, one of which is the soil environment. During plant growth and development, MYB transcription factors play an important role in responding to abiotic stresses and regulating the synthesis of secondary metabolites. However, there are relatively few reports on the MYB transcription factor family in Panax ginseng. RESULTS This study identified 420 PgMYB transcripts under 117 genes ID in the Jilin ginseng transcriptome database. Phylogenetic analysis showed that PgMYB transcripts in Jilin ginseng were classified into 19 functional subclasses. The GO annotation result indicated that the functional differentiation of PgMYB transcripts was annotated to 11 functional nodes at GO Level 2 in ginseng. Expression pattern analysis of PgMYB transcripts based on the expression data (TPM) that PgMYB transcripts were revealed spatiotemporally specific in expression patterns. We performed a weighted network co-expression network analysis on the expression of PgMYB transcripts from different samples. The co-expression network containing 51 PgMYB transcripts was formed under a soft threshold of 0.85, revealing the reciprocal relationship of PgMYB in ginseng. Treatment of adventitious roots of ginseng with different concentrations of NaCl revealed four up-regulated expression of PgMYB transcripts that can candidate genes for salt resistance studies in ginseng. CONCLUSIONS The present findings provide data resources for the subsequent study of the functions of MYB transcription factor family members in ginseng, and provide an experimental basis for the anti-salt functions of MYB transcription factors in Panax ginseng.
Collapse
Affiliation(s)
- Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Ke Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Shichao Sheng
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Mingyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Panpan Hua
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yanfang Wang
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| |
Collapse
|
42
|
IbMYB308, a Sweet Potato R2R3-MYB Gene, Improves Salt Stress Tolerance in Transgenic Tobacco. Genes (Basel) 2022; 13:genes13081476. [PMID: 36011387 PMCID: PMC9408268 DOI: 10.3390/genes13081476] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family plays an important role in plant growth, development, and response to biotic and abiotic stresses. However, the gene functions of MYB transcription factors in sweet potato (Ipomoea batatas (L.) Lam) have not been elucidated. In this study, an MYB transcription factor gene, IbMYB308, was identified and isolated from sweet potato. Multiple sequence alignment showed that IbMYB308 is a typical R2R3-MYB transcription factor. Further, quantitative real-time PCR (qRT-PCR) analysis revealed that IbMYB308 was expressed in root, stem, and, especially, leaf tissues. Moreover, it showed that IbMYB308 had a tissue-specific profile. The experiment also showed that the expression of IbMYB308 was induced by different abiotic stresses (20% PEG-6000, 200 mM NaCl, and 20% H2O2). After a 200 mM NaCl treatment, the expression of several stress-related genes (SOD, POD, APX, and P5CS) was upregulation in transgenic plants, and the CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. In conclusion, this study demonstrated that IbMYB308 could improve salt stress tolerance in transgenic tobacco. These findings lay a foundation for future studies on the R2R3-MYB gene family of sweet potato and suggest that IbMYB308 could potentially be used as an important positive factor in transgenic plant breeding to improve salt stress tolerance in sweet potato plants.
Collapse
|
43
|
Chen Z, Wu Z, Dong W, Liu S, Tian L, Li J, Du H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Int J Mol Sci 2022; 23:ijms23169262. [PMID: 36012533 PMCID: PMC9409031 DOI: 10.3390/ijms23169262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Wenyu Dong
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lulu Tian
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-182-2348-0008
| |
Collapse
|
44
|
Zhu Y, Yuan G, Gao B, An G, Li W, Si W, Sun D, Liu J. Comparative Transcriptome Profiling Provides Insights into Plant Salt Tolerance in Watermelon ( Citrullus lanatus). Life (Basel) 2022; 12:1033. [PMID: 35888121 PMCID: PMC9320501 DOI: 10.3390/life12071033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023] Open
Abstract
Salt stress seriously reduced the yield and quality of watermelon and restricted the sustainable development of the watermelon industry. However, the molecular mechanism of watermelon in response to salt stress is still unclear. In this study, 150 mmol·L-1 NaCl was used to deal with the seedlings of salt-tolerant and salt-sensitive watermelon varieties. Physiological characteristics showed that salt stress significantly reduced the biomass of watermelon seedlings and the accumulation of K+ in roots and leaves and significantly increased the content of Na+, Cl-, and malondialdehyde (MDA). Compared with the salt-sensitive variety, the salt-tolerant variety had higher K+ accumulation, lower Cl-, Cl- accumulation, and MDA content in roots and leaves. Then, RNA-seq was performed on roots and leaves in normal culture and under 150 mmol·L-1 NaCl treatment. A total of 21,069 genes were identified by RNA-seq analysis, of which 1412 were genes encoding transcription factors (TFs). In the comparison groups of roots and leaves, 122 and 123 shared differentially expressed genes (DEGs) were obtained, respectively. Gene ontology (GO) annotation and KEGG enrichment results showed that there were many identical GO terms and KEGG pathways in roots and leaves, especially the pathways that related to sugar or energy (ATP or NADP+/NADPH). In addition, some DEGs related to salt tolerance were identified, such as plant hormone indole-3-acetic acid (IAA) and gibberellin (GA) signal transduction pathway-related genes, K+/Na+/Ca2+-related genes, lignin biosynthesis-related genes, etc. At the same time, we also identified some TFs related to salt tolerance, such as AP2-EREBP, bZIP, bHLH, MYB, NAC, OFP, TCP, and WRKY and found that these TFs had high correlation coefficients with salt tolerance-related genes, indicating that they might have a potential regulatory relationship. Interestingly, one TCP TF (Cla97C09G174040) co-exists both in roots and leaves, and it is speculated that it may be regulated by miR319 to improve the salt tolerance of watermelon.
Collapse
|
45
|
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, Zhuo R, Lu MZ, Zhang J. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. FORESTRY RESEARCH 2022; 2:9. [PMID: 39525415 PMCID: PMC11524291 DOI: 10.48130/fr-2022-0009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/13/2022] [Indexed: 11/16/2024]
Abstract
Woody plants have to experience various abiotic stresses due to their immobility and perennial characteristics. However, woody plants have evolved a series of specific regulation pathways in physiological and molecular mechanisms to deal with adverse environments. Compared with herbaceous plants, perennial woody plants have the advantages of developed roots and hard stems, and increased secondary xylem, which can strengthen the vascular system of the plants. The lignification process involves the lignin deposition on the cell wall by oxidation and polymerization of lignin monomer, which plays an important role in abiotic stress tolerance. This review focuses on recent progress in the biosynthesis, content, and accumulation of lignin in response to various abiotic stresses in plants. The role of transcription factors is also discussed in regulating lignin biosynthesis to enhance abiotic stress tolerance via changing cell wall lignification. Although woody plants shared similar lignin biosynthesis mechanisms with herbaceous plants, the temporal and spatial expression and stress response profiles of lignin biosynthetic genes provide the basis for the differences in stress tolerance of various species. An in-depth understanding of the role of lignin in the abiotic stress tolerance of woody plants will lay the foundation for the next step in tree resistance breeding through genetic engineering.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yinjie Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
46
|
Li Y, Tian B, Wang Y, Wang J, Zhang H, Wang L, Sun G, Yu Y, Zhang H. The Transcription Factor MYB37 Positively Regulates Photosynthetic Inhibition and Oxidative Damage in Arabidopsis Leaves Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:943153. [PMID: 35903240 PMCID: PMC9315438 DOI: 10.3389/fpls.2022.943153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
MYB transcription factors (TFs) mediate plant responses and defenses to biotic and abiotic stresses. The effects of overexpression of MYB37, an R2R3 MYB subgroup 14 transcription factors in Arabidopsis thaliana, on chlorophyll content, chlorophyll fluorescence parameters, reactive oxygen species (ROS) metabolism, and the contents of osmotic regulatory substances were studied under 100 mM NaCl stress. Compared with the wild type (Col-0), MYB37 overexpression significantly alleviated the salt stress symptoms in A. thaliana plants. Chlorophyll a (Chl a) and chlorophyll b (Chl b) contents were significantly decreased in OE-1 and OE-2 than in Col-0. Particularly, the Chl a/b ratio was also higher in OE-1 and OE-2 than in Col-0 under NaCl stress. However, MYB37 overexpression alleviated the degradation of chlorophyll, especially Chl a. Salt stress inhibited the activities of PSII and PSI in Arabidopsis leaves, but did not affect the activity of PSII electron donor side oxygen-evolving complex (OEC). MYB37 overexpression increased photosynthesis in Arabidopsis by increasing PSII and PSI activities. MYB37 overexpression also promoted the transfer of electrons from Q A to Q B on the PSII receptor side of Arabidopsis under NaCl stress. Additionally, MYB37 overexpression increased Y(II) and Y(NPQ) of Arabidopsis under NaCl stress and decreased Y(NO). These results indicate that MYB37 overexpression increases PSII activity and regulates the proportion of energy dissipation in Arabidopsis leaves under NaCl stress, thus decreasing the proportion of inactivated reaction centers. Salt stress causes excess electrons and energy in the photosynthetic electron transport chain of Arabidopsis leaves, resulting in the release of reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, leading to oxidative damage. Nevertheless, MYB37 overexpression reduced accumulation of malondialdehyde in Arabidopsis leaves under NaCl stress and alleviated the degree of membrane lipid peroxidation caused by ROS. Salt stress also enhanced the accumulation of soluble sugar (SS) and proline (Pro) in Arabidopsis leaves, thus reducing salt stress damage to plants. Salt stress also degraded soluble protein (SP). Furthermore, the accumulation of osmoregulation substances SS and Pro in OE-1 and OE-2 was not different from that in Col-0 since MYB37 overexpression in Arabidopsis OE-1, and OE-2 did not significantly affect plants under NaCl stress. However, SP content was significantly higher in OE-1 and OE-2 than in Col-0. These results indicate that MYB37 overexpression can alleviate the degradation of Arabidopsis proteins under NaCl stress, promote plant growth and improve salt tolerance.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Bei Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
47
|
Wang Z, Yan S, Ren W, Liu Y, Sun W, Liu M, Lu J, Mi Y, Ma W. Genome-Wide Identification of MAPK, MAPKK, and MAPKKK Gene Families in Fagopyrum tataricum and Analysis of Their Expression Patterns Under Abiotic Stress. Front Genet 2022; 13:894048. [PMID: 35899198 PMCID: PMC9313540 DOI: 10.3389/fgene.2022.894048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signal transduction pathway, ubiquitous in eukaryotes, such as animals and plants. The MAPK cascade has a dominant role in regulating plant adaptation to the environment, such as through stress responses, osmotic adjustment, and processes that modulate pathogenicity. In the present study, the MAPK cascade gene family was identified in Fagopyrum tataricum (Tartary buckwheat), based on complete genome sequence data. Using phylogenetic tree, conservative motif, and chromosome location analyses, a total of 65 FtMAPK cascade genes, distributed on five chromosomes, were classified into three families: MAPK (n = 8), MAPKK (n = 1), and MAPKKK (n = 56). Transcriptome data from Tartary buckwheat seedlings grown under different light conditions demonstrated that, under blue and red light, the expression levels of 18 and 36 FtMAPK cascade genes were up-regulated and down-regulated, respectively. Through qRT-PCR experiments, it was observed that FtMAPK5, FtMAPKK1, FtMAPKKK8, FtMAPKKK10, and FtMAPKKK24 gene expression levels in the Tartary buckwheat seedlings increased under three types of abiotic stress: drought, salt, and high temperature. A co-expression network of FtMAPK cascade genes was constructed, based on gene expression levels under different light conditions, and co-expressed genes annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, which identified numerous transcription factors related to plant abiotic stress. The authors conclude that FtMAPK cascade genes have important roles in the growth and development of Tartary buckwheat, as well as its responses to abiotic stress.
Collapse
Affiliation(s)
- Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Song Yan
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiqi Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaxin Lu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yaolei Mi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yaolei Mi, ; Wei Ma,
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Yaolei Mi, ; Wei Ma,
| |
Collapse
|
48
|
Liu L, Chao N, Yidilisi K, Kang X, Cao X. Comprehensive analysis of the MYB transcription factor gene family in Morus alba. BMC PLANT BIOLOGY 2022; 22:281. [PMID: 35676625 PMCID: PMC9175366 DOI: 10.1186/s12870-022-03626-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The V-myb myeloblastosis viral oncogene homolog (MYB) family of proteins is large, containing functionally diverse transcription factors. However, MYBs in Morus are still poorly annotated and a comprehensive functional analysis of these transcription factors is lacking. RESULTS In the present study, a genome-wide identification of MYBs in Morus alba was performed. In total 166 MaMYBs were identified, including 103 R2R3-MYBs and four 3R-MaMYBs. Comprehensive analyses, including the phylogenetic analysis with putative functional annotation, motif and structure analysis, gene structure organization, promoter analysis, chromosomal localization, and syntenic relationships of R2R3-MaMYBs and 3R-MaMYBs, provided primary characterization for these MaMYBs. R2R3-MaMYBs covered the subgroups reported for R2R3-MYBs in Arabidopsis and Populus, and had two Morus-specific subgroups, indicating the high retention of MYBs in Morus. Motif analysis revealed high conservative residues at the start and end of each helix and residues consisting of the third helix in R2 and R3 repeats. Thirteen intron/exon patterns (a-m) were summarized, and the intron/exon pattern of two introns with phase numbers of 0 and 2 was the prevalent pattern for R2R3-MaMYBs. Various cis-elements in promoter regions were identified, and were mainly related to light response, development, phytohormone response, and abiotic and biotic stress response and secondary metabolite production. Expression patterns of R2R3-MaMYBs in different organs showed that MaMYBs involved in secondary cell wall components and stress responsiveness were preferentially expressed in roots or stems. R2R3-MaMYBs involved in flavonoid biosynthesis and anthocyanin accumulation were identified and characterized based on functional annotation and correlation of their expression levels with anthocyanin contents. CONCLUSION Based on a comprehensive analysis, this work provided functional annotation for R2R3-MYBs and an informative reference for further functional dissection of MYBs in Morus.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| |
Collapse
|
49
|
The R2R3 MYB Transcription Factor MYB71 Regulates Abscisic Acid Response in Arabidopsis. PLANTS 2022; 11:plants11101369. [PMID: 35631794 PMCID: PMC9143609 DOI: 10.3390/plants11101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to abiotic stresses via regulating the expression of downstream genes, yet the functions of many ABA responsive genes remain unknown. We report here the characterization of MYB71, a R2R3 MYB transcription factor in regulating ABA responses in Arabidopsis. RT-PCR results show that the expression level of MYB71 was increased in response to ABA treatment. Arabidopsis protoplasts transfection results show that MYB71 was specifically localized in nucleus and it activated the Gal4:GUS reporter gene when recruited to the Gal4 promoter by a fused DNA binding domain GD. Roles of MYB71 in regulating plant response to ABA were analyzed by generating Arabidopsis transgenic plants overexpression MYB71 and gene edited mutants of MYB71. The results show that ABA sensitivity was increased in the transgenic plants overexpression MYB71, but decreased in the MYB71 mutants. By using a DEX inducible system, we further identified genes are likely regulated by MYB71, and found that they are enriched in biological process to environmental stimuli including abiotic stresses, suggesting that MYB71 may regulate plant response to abiotic stresses. Taken together, our results suggest that MYB71 is an ABA responsive gene, and MYB71 functions as a transcription activator and it positively regulates ABA response in Arabidopsis.
Collapse
|
50
|
Wang H, Li Z, Ren H, Zhang C, Xiao D, Li Y, Hou X, Liu T. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [ Brassica campestris (syn. Brassica rapa) ssp. chinensis]. HORTICULTURE RESEARCH 2022; 9:uhac113. [PMID: 35836472 PMCID: PMC9273956 DOI: 10.1093/hr/uhac113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 06/05/2023]
Abstract
Salinity is a universal environmental stress that causes yield reduction in plants. WRKY33, which has been extensively studied in plant defense against necrotrophic pathogens, has recently been found to be important in salt-responsive pathways. However, the underlying molecular mechanisms controlling the involvement of WRKY33 in salt tolerance have not been fully characterized. Here, we explored the function of BcWRKY33A in non-heading Chinese cabbage (NHCC). Under salt stress, BcWRKY33A expression is significantly induced in roots. As a nuclear protein, BcWRKY33A has strong transcriptional activation activity. Overexpression of BcWRKY33A confers salt tolerance in Arabidopsis, whereas silencing of BcWRKY33A causes salt sensitivity in NHCC. Furthermore, BcHSFA4A, a protein that interacts with BcWRKY33A, could directly bind to the HSE motif within the promoters of BcZAT12 and BcHSP17.6A, which are involved in the plant response to salt stress. Finally, we found that BcWRKY33A could enhance the transcriptional activity of BcHSFA4A and affect its downstream genes (e.g. BcZAT12 and BcHSP17.6A), and co-overexpression of BcWRKY33A and BcHSFA4A could promote the expression of salt-related genes, suggesting that the regulatory interaction between BcWRKY33A and BcHSFA4A improves salt tolerance in plants. Overall, our results provide insight into the molecular framework of the BcWRKY33A-BcHSFA4A signaling pathway, which also aids in our understanding of the molecular mechanism of salt tolerance in plants.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibo Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|