1
|
Garcia N, Kalicharan RE, Kinch L, Fernandez J. Regulating Death and Disease: Exploring the Roles of Metacaspases in Plants and Fungi. Int J Mol Sci 2022; 24:ijms24010312. [PMID: 36613753 PMCID: PMC9820594 DOI: 10.3390/ijms24010312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Identified over twenty years ago and distantly related to animal caspases are a group of cysteine proteases known as metacaspases. Throughout the years, much like caspase roles in metazoans, metacaspases have been shown to be involved in regulating cellular death in non-metazoan organisms. Yet, continued research on metacaspases describes these proteins as intricate and multifunctional, displaying striking diversity on distinct biological functions. In this review, we intend to describe the recent advances in our understanding of the divergence of metacaspase functionality in plants and fungi. We will dissect the duality of metacaspase activity in the context of plant-pathogen interactions, providing a unique lens from which to characterize metacaspases in the development, immunity, and stress responses of plants, and the development and virulence of fungi. Furthermore, we explore the evolutionary trajectory of fungal metacaspases to delineate their structure and function. Bridging the gap between metacaspase roles in immunity and pathogenicity of plant-pathogen interactions can enable more effective and targeted phytopathogen control efforts to increase production of globally important food crops. Therefore, the exploitation and manipulation of metacaspases in plants or fungi represent new potential avenues for developing mitigation strategies against plant pathogens.
Collapse
Affiliation(s)
- Nalleli Garcia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rachel E. Kalicharan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Correspondence:
| |
Collapse
|
2
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Rico-Ramírez AM, Pedro Gonçalves A, Louise Glass N. Fungal Cell Death: The Beginning of the End. Fungal Genet Biol 2022; 159:103671. [PMID: 35150840 DOI: 10.1016/j.fgb.2022.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - A Pedro Gonçalves
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
4
|
Marcianò D, Ricciardi V, Marone Fassolo E, Passera A, Bianco PA, Failla O, Casati P, Maddalena G, De Lorenzis G, Toffolatti SL. RNAi of a Putative Grapevine Susceptibility Gene as a Possible Downy Mildew Control Strategy. FRONTIERS IN PLANT SCIENCE 2021; 12:667319. [PMID: 34127927 PMCID: PMC8196239 DOI: 10.3389/fpls.2021.667319] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 05/07/2023]
Abstract
Downy mildew, caused by the oomycete Plasmopara viticola, is one of the diseases causing the most severe economic losses to grapevine (Vitis vinifera) production. To date, the application of fungicides is the most efficient method to control the pathogen and the implementation of novel and sustainable disease control methods is a major challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great potential for controlling fungal pathogens. Recently, a candidate susceptibility gene (VviLBDIf7) to downy mildew has been identified in V. vinifera. In this work, the efficacy of RNAi triggered by exogenous double-stranded RNA (dsRNA) in controlling P. viticola infections has been assessed in a highly susceptible grapevine cultivar (Pinot noir) by knocking down VviLBDIf7 gene. The effects of dsRNA treatment on this target gene were assessed by evaluating gene expression, disease severity, and development of vegetative and reproductive structures of P. viticola in the leaf tissues. Furthermore, the effects of dsRNA treatment on off-target (EF1α, GAPDH, PEPC, and PEPCK) and jasmonic acid metabolism (COI1) genes have been evaluated. Exogenous application of dsRNA led to significant reductions both in VviLBDIf7 gene expression, 5 days after the treatment, and in the disease severity when artificial inoculation was carried out 7 days after dsRNA treatments. The pathogen showed clear alterations to both vegetative (hyphae and haustoria) and reproductive structures (sporangiophores) that resulted in stunted growth and reduced sporulation. Treatment with dsRNA showed signatures of systemic activity and no deleterious off-target effects. These results demonstrated the potential of RNAi for silencing susceptibility factors in grapevine as a sustainable strategy for pathogen control, underlying the possibility to adopt this promising biotechnological tool in disease management strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Wang M, Zhang L, Lin F, Zheng Q, Xu X, Mei L. Dynamic study into autophagy and apoptosis during orthodontic tooth movement. Exp Ther Med 2021; 21:430. [PMID: 33747169 PMCID: PMC7967888 DOI: 10.3892/etm.2021.9847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Orthodontic tooth movement (OTM) has been widely observed worldwide. The OTM process is involved in several biological activities and can result in temporary hypoxia. The dynamic changes of autophagy and apoptosis during OTM have not, to the best of our knowledge, been previously reported. In the present study, an OTM animal model was established. Periodontal ligament cells (PDLCs) and osteoclasts were investigated using H&E and tartrate-resistant acid phosphatase staining. The changes in the expression levels of certain autophagy and apoptotic markers were investigated using immunohistochemical staining. A significant decrease in PDLC and an increase in osteoclast numbers were observed 1 day following OTM induction. The expression levels of Beclin-1 and LC3-II peaked at 1 h post-OTM, followed by a gradual decrease. The expression levels of P62 in each experimental group were significantly lower than those noted in the 0 h group. The expression levels of Bcl-2 were markedly increased 1 h following OTM and reached a maximum at 1 day post-OTM. The highest expression levels of Bax and caspase-3 were observed 7 days following OTM induction. The present study provided additional information regarding the involvement of autophagy and apoptotic markers in the OTM process and aided the understanding of the initiation and pathophysiological progression of this condition.
Collapse
Affiliation(s)
- Maoying Wang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Zhang
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fuwei Lin
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qian Zheng
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaomei Xu
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Mei
- Oral and Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Orthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
6
|
The Antifungal Protein AfpB Induces Regulated Cell Death in Its Parental Fungus Penicillium digitatum. mSphere 2020; 5:5/4/e00595-20. [PMID: 32848004 PMCID: PMC7449623 DOI: 10.1128/msphere.00595-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications. Filamentous fungi produce small cysteine-rich proteins with potent, specific antifungal activity, offering the potential to fight fungal infections that severely threaten human health and food safety and security. The genome of the citrus postharvest fungal pathogen Penicillium digitatum encodes one of these antifungal proteins, namely AfpB. Biotechnologically produced AfpB inhibited the growth of major pathogenic fungi at minimal concentrations, surprisingly including its parental fungus, and conferred protection to crop plants against fungal infections. This study reports an in-depth characterization of the AfpB mechanism of action, showing that it is a cell-penetrating protein that triggers a regulated cell death program in the target fungus. We prove the importance of AfpB interaction with the fungal cell wall to exert its killing activity, for which protein mannosylation is required. We also show that the potent activity of AfpB correlates with its rapid and efficient uptake by fungal cells through an energy-dependent process. Once internalized, AfpB induces a transcriptional reprogramming signaled by reactive oxygen species that ends in cell death. Our data show that AfpB activates a self-injury program, suggesting that this protein has a biological function in the parental fungus beyond defense against competitors, presumably more related to regulation of the fungal population. Our results demonstrate that this protein is a potent antifungal that acts through various targets to kill fungal cells through a regulated process, making AfpB a promising compound for the development of novel biofungicides with multiple fields of application in crop and postharvest protection, food preservation, and medical therapies. IMPORTANCE Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications.
Collapse
|
7
|
Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Appl Environ Microbiol 2018; 84:AEM.00445-18. [PMID: 29980550 PMCID: PMC6122000 DOI: 10.1128/aem.00445-18] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022] Open
Abstract
Rice (Oryza sativa L.) is the most important crop and a primary food source for more than half of the world's population. Notably, scientists in China have developed several types of rice that can be grown in seawater, avoiding the use of precious freshwater resources and potentially creating enough food for 200 million people. The plant-affecting fungus Magnaporthe grisea is the causal agent of rice blast disease, and biological rather than chemical control of this threatening disease is highly desirable. In this work, we discovered fengycin BS155, a cyclic lipopeptide material produced by the marine bacterium Bacillus subtilis BS155, which showed strong activity against M. grisea. Our results elucidate the mechanism of fengycin BS155-mediated M. grisea growth inhibition and highlight the potential of B. subtilis BS155 as a biocontrol agent against M. grisea in rice cultivation under both fresh- and saltwater conditions. Rice blast caused by the phytopathogen Magnaporthe grisea poses a serious threat to global food security and is difficult to control. Bacillus species have been extensively explored for the biological control of many fungal diseases. In the present study, the marine bacterium Bacillus subtilis BS155 showed a strong antifungal activity against M. grisea. The active metabolites were isolated and identified as cyclic lipopeptides (CLPs) of the fengycin family, named fengycin BS155, by the combination of high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Analyses using scanning and transmission electron microscopy revealed that fengycin BS155 caused morphological changes in the plasma membrane and cell wall of M. grisea hyphae. Using comparative proteomic and biochemical assays, fengycin BS155 was demonstrated to reduce the mitochondrial membrane potential (MMP), induce bursts of reactive oxygen species (ROS), and downregulate the expression level of ROS-scavenging enzymes. Simultaneously, fengycin BS155 caused chromatin condensation in fungal hyphal cells, which led to the upregulation of DNA repair-related protein expression and the cleavage of poly(ADP-ribose) polymerase (PARP). Altogether, our results indicate that fengycin BS155 acts by inducing membrane damage and dysfunction of organelles, disrupting MMP, oxidative stress, and chromatin condensation, resulting in M. grisea hyphal cell death. Therefore, fengycin BS155 and its parent bacterium are very promising candidates for the biological control of M. grisea and the associated rice blast and should be further investigated as such. IMPORTANCE Rice (Oryza sativa L.) is the most important crop and a primary food source for more than half of the world's population. Notably, scientists in China have developed several types of rice that can be grown in seawater, avoiding the use of precious freshwater resources and potentially creating enough food for 200 million people. The plant-affecting fungus Magnaporthe grisea is the causal agent of rice blast disease, and biological rather than chemical control of this threatening disease is highly desirable. In this work, we discovered fengycin BS155, a cyclic lipopeptide material produced by the marine bacterium Bacillus subtilis BS155, which showed strong activity against M. grisea. Our results elucidate the mechanism of fengycin BS155-mediated M. grisea growth inhibition and highlight the potential of B. subtilis BS155 as a biocontrol agent against M. grisea in rice cultivation under both fresh- and saltwater conditions.
Collapse
|
8
|
Shlezinger N, Irmer H, Dhingra S, Beattie SR, Cramer RA, Braus GH, Sharon A, Hohl TM. Response to Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death". Science 2018; 360:360/6395/eaas9457. [PMID: 29930111 DOI: 10.1126/science.aas9457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Aouacheria et al question the interpretation of contemporary assays to monitor programmed cell death with apoptosis-like features (A-PCD) in Aspergillus fumigatus Although our study focuses on fungal A-PCD for host immune surveillance and infectious outcomes, the experimental approach incorporates multiple independent A-PCD markers and genetic manipulations based on fungal rather than mammalian orthologs to circumvent the limitations associated with any single approach.
Collapse
Affiliation(s)
- Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10075, USA
| | - Henriette Irmer
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Sarah R Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10075, USA. .,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10075, USA
| |
Collapse
|
9
|
Meyer V, Jung S. Antifungal Peptides of the AFP Family Revisited: Are These Cannibal Toxins? Microorganisms 2018; 6:microorganisms6020050. [PMID: 29865265 PMCID: PMC6027536 DOI: 10.3390/microorganisms6020050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
Abstract
The emergence and spread of pathogenic fungi resistant to currently used antifungal drugs represents a serious challenge for medicine and agriculture. The use of smart antimicrobials, so-called “dirty drugs” which affect multiple cellular targets, is one strategy to prevent resistance. Of special interest is the exploitation of the AFP family of antimicrobial peptides, which include its founding member AFP from Aspergillus giganteus. This latter is a highly potent inhibitor of chitin synthesis and affects plasma membrane integrity in many human and plant pathogenic fungi. A transcriptomic meta-analysis of the afp-encoding genes in A. giganteus and A. niger predicts a role for these proteins during asexual sporulation, autophagy, and nutrient recycling, suggesting that AFPs are molecules important for the survival of A. niger and A. giganteus under nutrient limitation. In this review, we discuss parallels which exist between AFPs and bacterial cannibal toxins and provide arguments that the primary function of AFPs could be to kill genetically identical siblings. We hope that this review inspires computational and experimental biologists studying alternative explanations for the nature and function of antimicrobial peptides beyond the general assumption that they are mere defense molecules to fight competitors.
Collapse
Affiliation(s)
- Vera Meyer
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Sascha Jung
- Department Applied and Molecular Microbiology, Technische Universität Berlin, Institute of Biotechnology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
10
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Büttner S, Cavalieri D, Chang M, Cooper KF, Côrte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Fröhlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jiménez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nyström T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polčic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vögtle FN, Westermann B, Winderickx J, Wissing S, Wölfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F. Guidelines and recommendations on yeast cell death nomenclature. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:4-31. [PMID: 29354647 PMCID: PMC5772036 DOI: 10.15698/mic2018.01.607] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Collapse
Affiliation(s)
| | - Maria Anna Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andrés Aguilera
- Centro Andaluz de Biología, Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Sevilla, Spain
| | | | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Rena Balzan
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA
- Department of Neurology, University of Miami Miller School of Medi-cine, Miami, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, USA
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Ralf J. Braun
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrina F. Cooper
- Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, USA
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Ian Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, USA
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Birthe Fahrenkrog
- Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris M. Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Jürgen Heinisch
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Helmut Jungwirth
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS & Université de Bordeaux, Bordeaux, France
| | - Enzo Martegani
- Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Cristina Mazzoni
- Instituto Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Lynn A. Megeney
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heinz D. Osiewacz
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Stephane Picot
- Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France
- Institut of Parasitology and Medical Mycology, Hospices Civils de Lyon, Lyon, France
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, Davis, California, USA
| | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Kassel, Germany
| | - Maria Segovia
- Department of Ecology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Fedor F. Severin
- A.N. Belozersky Institute of physico-chemical biology, Moscow State University, Moscow, Russia
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Sommer-Ruck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel B. Toledano
- Institute for Integrative Biology of the Cell (I2BC), SBIGEM, CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee, Belgium
| | | | - Stefan Wölfl
- Institute of Pharmacy and Molecu-lar Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Zhaojie J. Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
11
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
12
|
Tomada S, Sonego P, Moretto M, Engelen K, Pertot I, Perazzolli M, Puopolo G. Dual RNA-Seq of Lysobacter capsici
AZ78 - Phytophthora infestans
interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses. Environ Microbiol 2017; 19:4113-4125. [DOI: 10.1111/1462-2920.13861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Selena Tomada
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre; Fondazione Edmund Mach (FEM); San Michele all'Adige Italy
- Agricultural Science and Biotechnology, Department of Agricultural, Food, Environmental and Animal Sciences; University of Udine; Udine Italy
| | - Paolo Sonego
- Department of Computational Biology, Research and Innovation Centre; Fondazione Edmund Mach (FEM); San Michele all'Adige Italy
| | - Marco Moretto
- Department of Computational Biology, Research and Innovation Centre; Fondazione Edmund Mach (FEM); San Michele all'Adige Italy
| | - Kristof Engelen
- Department of Computational Biology, Research and Innovation Centre; Fondazione Edmund Mach (FEM); San Michele all'Adige Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre; Fondazione Edmund Mach (FEM); San Michele all'Adige Italy
- Center Agriculture Food Environment; University of Trento; San Michele all'Adige Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre; Fondazione Edmund Mach (FEM); San Michele all'Adige Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre; Fondazione Edmund Mach (FEM); San Michele all'Adige Italy
| |
Collapse
|
13
|
Amoebicidal Activity of Caffeine and Maslinic Acid by the Induction of Programmed Cell Death in Acanthamoeba. Antimicrob Agents Chemother 2017; 61:AAC.02660-16. [PMID: 28320723 DOI: 10.1128/aac.02660-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/12/2017] [Indexed: 01/07/2023] Open
Abstract
Free-living amoebae of the genus Acanthamoeba are the causal agents of a sight-threatening ulceration of the cornea called Acanthamoeba keratitis, as well as the rare but usually fatal disease granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba infections, they are generally lengthy and/or have limited efficacy. For the best clinical outcome, treatments should target both the trophozoite and the cyst stages, as cysts are known to confer resistance to treatment. In this study, we document the activities of caffeine and maslinic acid against both the trophozoite and the cyst stages of three clinical strains of Acanthamoeba These drugs were chosen because they are reported to inhibit glycogen phosphorylase, which is required for encystation. Maslinic acid is also reported to be an inhibitor of extracellular proteases, which may be relevant since the protease activities of Acanthamoeba species are correlated with their pathogenicity. We also provide evidence for the first time that both drugs exert their anti-amoebal effects through programmed cell death.
Collapse
|
14
|
Role of HxkC, a mitochondrial hexokinase-like protein, in fungal programmed cell death. Fungal Genet Biol 2016; 97:36-45. [DOI: 10.1016/j.fgb.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/21/2022]
|
15
|
Tian J, Wang Y, Lu Z, Sun C, Zhang M, Zhu A, Peng X. Perillaldehyde, a Promising Antifungal Agent Used in Food Preservation, Triggers Apoptosis through a Metacaspase-Dependent Pathway in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7404-7413. [PMID: 27622540 DOI: 10.1021/acs.jafc.6b03546] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the present study, we provide detailed insights into perillaldehyde (PAE)'s mechanisms of action on Aspergillus flavus and offer evidence in favor of the induction of an apoptosis-like phenotype. Specifically, PAE's antifungal mode of action was investigated through the detection of mitochondrial membrane potential (MtΔψ) and phosphatidylserine (PS) exposure, as well as intracellular Ca2+ level, reactive oxygen species accumulation, and metacaspase activation. This was done by way of fluorometry, measuring DNA fragmentation, and condensation by fluorescent microscopy. Furthermore, we searched for phenotypic changes characteristic of apoptosis by transmission electron microscopy and flow cytometry, determining the amount of cytochrome c released using Western blotting. Results indicated that cultivation of A. flavus in the presence of PAE caused depolarization of MtΔψ, rapid DNA condensation, large-scale DNA fragmentation, and an elevation of intracellular Ca2+ level. The percentage of early apoptotic cells with exposure of PS were 27.4% and 48.7%, respectively, after 9 h incubations with 0.25 and 0.5 μL/mL of PAE. The percentage of stained cells with activated intracellular metacaspases exposed to PAE at concentrations of 0.25 and 0.5 μL/mL compared with control subjects were increased by 28.4 ± 3.25% and 37.9 ± 4.24%, respectively. The above results has revealed that PAE induces fungal apoptosis through a caspase-dependent mitochondrial pathway. In all, our findings provide a novel mechanism for exploring a possible antifungal agent used in food preservation.
Collapse
Affiliation(s)
- Jun Tian
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
- Key Lab for New Drug Research of TCM and Shenzhen Branch, State R&D Centre for Viro-Biotech, Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057, Guangdong, People's Republic of China
| | - Yanzhen Wang
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Zhaoqun Lu
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Chunhui Sun
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Man Zhang
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Aihua Zhu
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Xue Peng
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| |
Collapse
|
16
|
The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies. Future Med Chem 2016; 8:1503-20. [PMID: 27485839 DOI: 10.4155/fmc-2016-0051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The risks for toxicity of novel antifungal compounds, together with the emergence of resistance, makes the use of inhibitors of resistance, in combination with antifungal compounds, a suitable strategy for developing novel antifungal formulations. Among them, inhibitors of efflux pumps are suitable candidates. Increasing drug influx or interfering with the stress response may also improve the efficacy of antifungals. Therapies as induction of fungal apoptosis or immunostimulation are also good strategies for reducing the risks for resistance and to improve antifungals' efficacy. Understanding the effect of the acquisition of resistance on the fungal physiology and determining the collateral sensitivity networks are useful for the development of novel strategies based on combination of antifungals for improving the efficacy of the therapy.
Collapse
|
17
|
Statins and voriconazole induce programmed cell death in Acanthamoeba castellanii. Antimicrob Agents Chemother 2015; 59:2817-24. [PMID: 25733513 DOI: 10.1128/aac.00066-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba.
Collapse
|
18
|
Poly(ADP-ribose) polymerase is a substrate recognized by two metacaspases of Podospora anserina. EUKARYOTIC CELL 2013; 12:900-12. [PMID: 23584991 DOI: 10.1128/ec.00337-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two metacaspases MCA1 and MCA2 of the fungal aging model organism Podospora anserina (PaMCA1 and PaMCA2, respectively) have previously been demonstrated to be involved in the control of programmed cell death (PCD) and life span. In order to identify specific pathways and components which are controlled by the activity of these enzymes, we set out to characterize them further. Heterologous overexpression in Escherichia coli of the two metacaspase genes resulted in the production of proteins which aggregate and form inclusion bodies from which the active protein has been recovered via refolding in appropriate buffers. The renaturated proteins are characterized by an arginine-specific activity and are active in caspase-like self-maturation leading to the generation of characteristic small protein fragments. Both activities are dependent on the presence of calcium. Incubation of the two metacaspases with recombinant poly(ADP-ribose) polymerase (PARP), a known substrate of mammalian caspases, led to the identification of PARP as a substrate of the two P. anserina proteases. Using double mutants in which P. anserina Parp (PaParp) is overexpressed and PaMca1 is either overexpressed or deleted, we provide evidence for in vivo degradation of PaPARP by PaMCA1. These results support the idea that the substrate profiles of caspases and metacaspases are at least partially overlapping. Moreover, they link PCD and DNA maintenance in the complex network of molecular pathways involved in aging and life span control.
Collapse
|
19
|
Shlezinger N, Goldfinger N, Sharon A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front Oncol 2012; 2:97. [PMID: 22891165 PMCID: PMC3412994 DOI: 10.3389/fonc.2012.00097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.
Collapse
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Nir Goldfinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| |
Collapse
|
20
|
Szilágyi M, Pócsi I, Forgács K, Emri T. MeaB-dependent nutrition sensing regulates autolysis in carbon starved Aspergillus nidulans cultures. Indian J Microbiol 2010; 50:104-8. [PMID: 23100816 PMCID: PMC3450277 DOI: 10.1007/s12088-010-0023-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 01/24/2009] [Indexed: 11/30/2022] Open
Abstract
Carbon starvation induced autolysis is an active process of self-digestion and is under complex regulation in Aspergillus nidulans. In this study we investigated how autolysis depends on the composition of the culture medium, especially on the presence of yeast extract. We demonstrated that the rate of autolytic cell wall degradation as well as the extracellular chitinase and proteinase productions significantly decreased in the presence of this nutrient. The effect of yeast extract on carbon starved cultures was independent of loss-of-function mutations in the carbon and nitrogen regulatory genes creA and areA and in the heterotrimeric G protein signalling genes fadA and ganB. In contrast, the nitrogen regulating transcription factor MeaB was involved in the yeast-extract-mediated repression of autolysis. Reverse transcriptase - polymerase chain reaction (RT-PCR) experiments demonstrated that MeaB affects the FluG-BrlA sporulation regulatory pathway by affecting transcription of brlA, a gene also initiating the autolytic cell wall degradation in this fungus.
Collapse
Affiliation(s)
- Melinda Szilágyi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Katalin Forgács
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Sharon A, Finkelstein A, Shlezinger N, Hatam I. Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 2009; 33:833-54. [PMID: 19416362 DOI: 10.1111/j.1574-6976.2009.00180.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cells of all living organisms are programmed to self-destruct under certain conditions. The most well known form of programmed cell death is apoptosis, which is essential for proper development in higher eukaryotes. In fungi, apoptotic-like cell death occurs naturally during aging and reproduction, and can be induced by environmental stresses and exposure to toxic metabolites. The core apoptotic machinery in fungi is similar to that in mammals, but the apoptotic network is less complex and of more ancient origin. Only some of the mammalian apoptosis-regulating proteins have fungal homologs, and the number of protein families is drastically reduced. Expression in fungi of animal proteins that do not have fungal homologs often affects apoptosis, suggesting functional conservation of these components despite the absence of protein-sequence similarity. Functional analysis of Saccharomyces cerevisiae apoptotic genes, and more recently of those in some filamentous species, has revealed partial conservation, along with substantial differences in function and mode of action between fungal and human proteins. It has been suggested that apoptotic proteins might be suitable targets for novel antifungal treatments. However, implementation of this approach requires a better understanding of fungal apoptotic networks and identification of the key proteins regulating apoptotic-like cell death in fungi.
Collapse
Affiliation(s)
- Amir Sharon
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
22
|
Ramsdale M. Programmed cell death in pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1369-80. [DOI: 10.1016/j.bbamcr.2008.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 01/27/2023]
|
23
|
Tlalka M, Bebber D, Darrah P, Watkinson S, Fricker M. Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina. Fungal Genet Biol 2008; 45:1111-21. [DOI: 10.1016/j.fgb.2008.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/25/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
24
|
Hamann A, Brust D, Osiewacz HD. Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 2008; 16:276-83. [PMID: 18440231 DOI: 10.1016/j.tim.2008.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/22/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Apoptosis is one type of programmed cell death with great importance for development and homeostasis of multicellular organisms. Unexpectedly, during the past decade, evidence has been obtained for the existence of a basal apoptosis machinery in yeast, as unicellular fungus, and in some filamentous fungi, a group of microorganisms that are neither true unicellular nor true multicellular biological systems but something in between. Here, we review evidence for a role of apoptotic processes in fungal pathogenicity, competitiveness, propagation, ageing and lifespan control.
Collapse
Affiliation(s)
- Andrea Hamann
- Institute for Molecular Biosciences, Department of Biosciences and Cluster of Excellence Macromolecular Complexes, J.W. Goethe-University, Max-von-Laue-Strasse 9, Frankfurt, Germany
| | | | | |
Collapse
|
25
|
Regulation of autolysis in Aspergillus nidulans. Appl Biochem Biotechnol 2008; 151:211-20. [PMID: 18975147 DOI: 10.1007/s12010-008-8174-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
In terms of cell physiology, autolysis is the centerpiece of carbon-starving fungal cultures. In the filamentous fungus model organism Aspergillus nidulans, the last step of carbon-starvation-triggered autolysis was the degradation of the cell wall of empty hyphae, and this process was independent of concomitantly progressing cell death at the level of regulation. Autolysis-related proteinase and chitinase activities were induced via FluG signaling, which initiates sporulation and inhibits vegetative growth in surface cultures of A. nidulans. Extracellular hydrolase production was also subjected to carbon repression, which was only partly dependent on CreA, the main carbon catabolite repressor in this fungus. These data support the view that one of the main functions of autolysis is supplying nutrients for sporulation, when no other sources of nutrients are available. The divergent regulation of cell death and cell wall degradation provides the fungus with the option to keep dead hyphae intact to help surviving cells to absorb biomaterials from dead neighboring cells before these are released into the extracellular space. The industrial significance of these observations is also discussed in this paper.
Collapse
|
26
|
Lim HW, Kim SJ, Park EH, Lim CJ. Overexpression of a metacaspase gene stimulates cell growth and stress response in Schizosaccharomyces pombe. Can J Microbiol 2008; 53:1016-23. [PMID: 17898859 DOI: 10.1139/w07-067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A unique gene named pca1(+), encoding a metacaspase, was cloned from the fission yeast Schizosaccharomyces pombe and was used to create a recombinant plasmid, pPMC. The metacaspase mRNA level was markedly elevated in the fission yeast cells harboring the plasmid pPMC. Overexpressed Pca1(+) appeared to stimulate the growth of the fission yeast cells instead of arresting their growth. Its expression was enhanced by stress-inducing agents such as H(2)O(2), sodium nitroprusside, and CdCl(2), and it conferred cytoprotection, especially against CdCl(2). However, such protection was not reproducible in the budding yeast Saccharomyces cerevisiae harboring pPMC. Taken together, these results propose that Pca1(+) may be involved in the growth and stress response of the fission yeast.
Collapse
Affiliation(s)
- Hye-Won Lim
- Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University, College of Natural Sciences, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | | | | | | |
Collapse
|
27
|
Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol 2007; 74:245-50. [PMID: 17981948 DOI: 10.1128/aem.02068-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypocrea atroviridis is frequently used as a photomorphogenetic model due to its ability to conidiate upon exposure to light. Light is thereby believed to be the primary trigger for spore formation. In contrast, we show here that conidiation is primarily carbon source dependent and that illumination plays a catalytic role; of a total of 95 tested carbon sources, only a small set of carbohydrates, polyols, and sugar acids allowed conidiation in darkness, and on most of them, conidiation was significantly more strongly expressed in light. In addition, there are also a number of carbon sources on which H. atroviridis conidiates in darkness, but light does not further stimulate the process. Yet on another small set of carbon sources (L-sorbitol, D-fucose, D- and L-arabinose, and erythritol), H. atroviridis shows better sporulation in darkness than in light. No sporulation was observed on organic acids and amino acids. Mutants with deletions in the two blue-light receptor proteins BLR-1 and BLR-2 generally showed weaker conidiation on a smaller number of carbon sources than did the parental strain, yet they clearly sporulated on 15 and 27 of the 95 carbon sources tested, respectively. Of the carbon sources supporting sporulation, only 11 supported the conidiation of both mutants, suggesting that the BLR-1 and BLR-2 receptors are variously involved in the carbon source-dependent regulation of spore formation. The addition of cyclic AMP, which has been reported to lead to conidiation in darkness, both positively and negatively affected sporulation and resulted in different effects in the parental strain and the two Deltablr mutants. Our data show that the carbon source is the prime determinant for conidiation and that it influences the organism's regulation of conidiation by means of BLR-1 and BLR-2 and their cross talk with cyclic AMP.
Collapse
|
28
|
Lee N, Gannavaram S, Selvapandiyan A, Debrabant A. Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania. EUKARYOTIC CELL 2007; 6:1745-57. [PMID: 17715367 PMCID: PMC2043384 DOI: 10.1128/ec.00123-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this report, we have characterized two metacaspases of Leishmania donovani, L. donovani metacaspase-1 (LdMC1) and LdMC2. These two proteins show 98% homology with each other, and both contain a characteristic C-terminal proline-rich domain. Both genes are transcribed in promastigotes and axenic amastigotes of L. donovani; however, LdMC1 shows increased mRNA levels in axenic amastigotes. An anti-LdMC antibody was obtained and showed reactivity with a single approximately 42-kDa protein band in both promastigote and axenic amastigote parasite whole-cell lysates by Western blotting. Pulse-chase experiments suggest that LdMCs are not synthesized as proenzymes, and immunofluorescence studies show that LdMCs are associated with the acidocalcisome compartments of L. donovani. Enzymatic assays of immunoprecipitated LdMCs show that native LdMCs efficiently cleave trypsin substrates and are unable to cleave caspase-specific substrates. Consistently, LdMC activity is insensitive to caspase inhibitors and is efficiently inhibited by trypsin inhibitors, such as leupeptin, antipain, and N(alpha)-tosyl-L-lysine-chloromethyl ketone (TLCK). In addition, our results show that LdMC activity was induced in parasites treated with hydrogen peroxide, a known trigger of programmed cell death (PCD) in Leishmania and that parasites overexpressing metacaspases are more sensitive to hydrogen peroxide-induced PCD. These findings suggest that Leishmania metacaspases are not responsible for the caspase-like activities reported in this organism and suggest a possible role for LdMCs as effector molecules in Leishmania PCD.
Collapse
Affiliation(s)
- Nancy Lee
- Laboratory of Bacterial, Parasitic, and Unconventional Agents, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Abstract
In an earlier study, intracellular accumulation of metabolites such as pyruvate and citrate in Xanthomonas campestris pv. glycines (Xcg) was found to result in a caspase dependent stationary phase rapid cell death (RCD). In the present study, the presence of poly ADP-ribose polymerase (PARP)-like activity associated with caspase-3-like protein of Xcg is reported. This activity was found to be responsible for depletion of cellular NAD(+) levels in RCD-promoting media such as Luria-Bertani medium and starch medium fortified with citrate. Addition of PARP-specific inhibitors such as 3-aminobenzamide to RCD-promoting media restored the intracellular NAD(+) levels and thereby prevented RCD. The inherent association of PARP-like activity with the caspase protein was demonstrated by PARP cellular assay, immuno-precipitation and Western analysis. A truncated polysaccharide deacetylase gene having a caspase-like domain was cloned. The expressed protein though found to be inactive, cross-reacted with human caspase and PARP antibodies. This is the first report demonstrating the presence of a PARP-like activity in a prokaryote and its involvement in cell death.
Collapse
Affiliation(s)
- K K Raju
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | |
Collapse
|
30
|
Le Chat L, Sinden RE, Dessens JT. The role of metacaspase 1 in Plasmodium berghei development and apoptosis. Mol Biochem Parasitol 2007; 153:41-7. [PMID: 17335919 PMCID: PMC2075530 DOI: 10.1016/j.molbiopara.2007.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 12/26/2022]
Abstract
The malaria parasite encodes a wide range of proteases necessary to facilitate its many developmental transitions in vertebrate and insect hosts. Amongst these is a predicted cysteine protease structurally related to caspases, named Plasmodium metacaspase 1 (PxMC1). We have generated Plasmodium berghei parasites in which the PbMC1coding sequence is removed and replaced with a green fluorescent reporter gene to investigate the expression of PbMC1, its contribution to parasite development, and its involvement in previously reported apoptosis-like cell death of P. berghei ookinetes. Our results show that the pbmc1 gene is expressed in female gametocytes and all downstream mosquito stages including sporozoites, but not in asexual blood stages. We failed to detect an apparent loss-of-function phenotype, suggesting that PbMC1 constitutes a functionally redundant gene. We discuss these findings in the context of two other putative Plasmodium metacaspases that we describe here.
Collapse
Affiliation(s)
- Ludovic Le Chat
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Robert E. Sinden
- Division of Cell & Molecular Biology, Imperial College, London SW7 2AZ, United Kingdom
| | - Johannes T. Dessens
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
- Corresponding author. Tel.: +44 2076127865; fax: +44 2074365389.
| |
Collapse
|
31
|
Barhoom S, Sharon A. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol 2007; 44:32-43. [PMID: 16950636 DOI: 10.1016/j.fgb.2006.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 06/05/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Proteins belonging to the Bcl-2 family regulate apoptosis in mammals by controlling mitochondria efflux of cytochrome c and other apoptosis-related proteins. Homologues of human Bcl-2 proteins are found in different metazoan organisms where they play a similar role, while they seem to be absent in plants and fungi. Nonetheless, Bcl-2 protein members can induce or prevent yeast cell death, suggesting that enough functional conservation exists between apoptotic machineries of mammals and fungi. Here we show that induction or prevention of apoptosis by Bcl-2 proteins in the fungal plant pathogen Colletotrichum gloeosporioides is tightly linked with growth and morphogenetic adaptation that occur throughout the entire fungal life cycle. Isolates expressing the pro-apoptotic Bax protein underwent cell death with apoptotic characteristics, and showed alterations in conidial germination that are associated with pathogenic and non-pathogenic life styles. Isolates expressing the anti-apoptotic Bcl-2 protein had prolonged longevity, were protected from Bax-induced cell death, and exhibited enhanced stress resistance. These isolates also had enhanced mycelium and conidia production, and were hyper virulent to host plants. Our findings show that apoptotic-associated machinery regulates morphogenetic switches, which are critical for proper responses and adaptation fungi to different environments.
Collapse
Affiliation(s)
- Sima Barhoom
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
32
|
Richie DL, Miley MD, Bhabhra R, Robson GD, Rhodes JC, Askew DS. TheAspergillus fumigatusmetacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol Microbiol 2006; 63:591-604. [PMID: 17176258 DOI: 10.1111/j.1365-2958.2006.05534.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have examined the contribution of metacaspases to the growth and stress response of the opportunistic human mould pathogen, Aspergillus fumigatus, based on increasing evidence implicating the yeast metacaspase Yca1p in apoptotic-like programmed cell death. Single metacaspase-deficient mutants were constructed by targeted disruption of each of the two metacaspase genes in A. fumigatus, casA and casB, and a metacaspase-deficient mutant, DeltacasA/DeltacasB, was constructed by disrupting both genes. Stationary phase cultures of wild-type A. fumigatus were associated with the appearance of typical markers of apoptosis, including elevated proteolytic activity against caspase substrates, phosphatidylserine exposure on the outer leaflet of the membrane, and loss of viability. By contrast, phosphatidylserine exposure was not observed in stationary phase cultures of the DeltacasA/DeltacasB mutant, although caspase activity and viability was indistinguishable from wild type. The mutant retained wild-type virulence and showed no difference in sensitivity to a range of pro-apoptotic stimuli that have been reported to initiate yeast apoptosis. However, the DeltacasA/DeltacasB mutant showed a growth detriment in the presence of agents that disrupt endoplasmic reticulum homeostasis. These findings demonstrate that metacaspase activity in A. fumigatus contributes to the apoptotic-like loss of membrane phospholipid asymmetry at stationary phase, and suggest that CasA and CasB have functions that support growth under conditions of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Daryl L Richie
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | | | | | |
Collapse
|
33
|
Glass NL, Dementhon K. Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 2006; 9:553-8. [PMID: 17035076 DOI: 10.1016/j.mib.2006.09.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Non-self recognition resulting in programmed cell death is a ubiquitous phenomenon in filamentous ascomycete fungi and is termed heterokaryon incompatibility (HI). Recent analyses show that genes containing predicted HET domains are often involved in HI; however, the function of the HET domain is unknown. Autophagy is induced as a consequence of HI, whereas the presence of a predicted transcription factor, VIB-1, is required for HI. Morphological features associated with apoptosis in filamentous fungi are induced by various stresses and drugs, and also during HI. Future analyses will reveal whether common or different genetic mechanisms trigger death by non-self recognition and death by various environmental onslaughts.
Collapse
Affiliation(s)
- N Louise Glass
- The Plant and Microbial Biology Department, The University of California Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
34
|
Dementhon K, Iyer G, Glass NL. VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa. EUKARYOTIC CELL 2006; 5:2161-73. [PMID: 17012538 PMCID: PMC1694810 DOI: 10.1128/ec.00253-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, such as Neurospora crassa, nonself recognition and heterokaryon incompatibility (HI) are regulated by genetic differences at het loci. In N. crassa, mutations at the vib-1 locus suppress nonself recognition and HI mediated by genetic differences at het-c/pin-c, mat, and un-24/het-6. vib-1 is a homolog of Saccharomyces cerevisiae NDT80, which is a transcriptional activator of genes during meiosis. For this study, we determined that vib-1 encodes a nuclear protein and showed that VIB-1 localization varies during asexual reproduction and during HI. vib-1 is required for the expression of genes involved in nonself recognition and HI, including pin-c, tol, and het-6; all of these genes encode proteins containing a HET domain. vib-1 is also required for the production of downstream effectors associated with HI, including the production of extracellular proteases upon carbon and nitrogen starvation. Our data support a model in which mechanisms associated with starvation and nonself recognition/HI are interconnected. VIB-1 is a major regulator of responses to nitrogen and carbon starvation and is essential for the expression of genes involved in nonself recognition and death in N. crassa.
Collapse
Affiliation(s)
- Karine Dementhon
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
35
|
A type-1 metacaspase from Acanthamoeba castellanii. Microbiol Res 2006; 163:414-23. [PMID: 16891103 DOI: 10.1016/j.micres.2006.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/29/2006] [Indexed: 01/10/2023]
Abstract
The complete sequence of a type-1 metacaspase from Acanthamoeba castellanii is reported comprising 478 amino acids. The metacaspase was recovered from an expression library using sera specific for membrane components implicated in stimulating encystation. A central domain of 155 amino acid residues contains the Cys/His catalytic dyad and is the most conserved region containing at least 30 amino acid identities in all metacaspases. The Acanthamoeba castellanii metacaspase has the most proline-rich N-terminus so far reported in type-1 metacaspases with over 40 prolines in the first 150 residues. Ala-Pro-Pro is present 11 times. Phylogenies constructed using only the conserved proteolytic domains or the complete sequences show identical branching patterns, differing only in the rates of change.
Collapse
|
36
|
Ronning CM, Fedorova ND, Bowyer P, Coulson R, Goldman G, Kim HS, Turner G, Wortman JR, Yu J, Anderson MJ, Denning DW, Nierman WC. Genomics of Aspergillus fumigatus. Rev Iberoam Micol 2006; 22:223-8. [PMID: 16499415 DOI: 10.1016/s1130-1406(05)70047-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungal saprophyte that is ubiquitous in the environment. It is also a human pathogen and induces allergenic response, negatively impacting health care and associated costs significantly around the world. Much of the basic biology of this organism is only poorly understood, but the recent completion and publication of its genome sequence provides an excellent tool for researchers to gain insight into these processes. In this review we will summarize some of the more salient features revealed by analysis of the genome, including the search for candidate pathogenicity genes and the switch to a pathogenic lifestyle, allergen proteins, DNA repair, secondary metabolite gene clusters that produce compounds both useful and toxic, a theoretical capability of this asexual organism to reproduce sexually, signalling, and transcription. A. fumigatus was compared with the food biotechnology fungus Aspergillus oryzae and sexual fungus Aspergillus nidulans, as well as other fungi, in an attempt to discern key differences between these organisms.
Collapse
Affiliation(s)
- Catherine M Ronning
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Semighini CP, Savoldi M, Goldman GH, Harris SD. Functional characterization of the putative Aspergillus nidulans poly(ADP-ribose) polymerase homolog PrpA. Genetics 2006; 173:87-98. [PMID: 16510786 PMCID: PMC1461448 DOI: 10.1534/genetics.105.053199] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is a highly conserved enzyme involved in multiple aspects of animal and plant cell physiology. For example, PARP is thought to be intimately involved in the early signaling events that trigger the DNA damage response. However, the genetic dissection of PARP function has been hindered by the presence of multiple homologs in most animal and plant species. Here, we present the first functional characterization of a putative PARP homolog (PrpA) in a microbial system (Aspergillus nidulans). PrpA belongs to a group of PARP homologs that includes representatives from filamentous fungi and protists. The genetic analysis of prpA demonstrates that it is an essential gene whose role in the DNA damage response is sensitive to gene dosage. Notably, temporal patterns of prpA expression and PrpA-GFP nuclear localization suggest that PrpA acts early in the A. nidulans DNA damage response. Additional studies implicate PrpA in farnesol-induced cell death and in the initiation of asexual development. Collectively, our results provide a gateway for probing the diverse functions of PARP in a sophisticated microbial genetic system.
Collapse
Affiliation(s)
- Camile P Semighini
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln 68588-0660, USA
| | | | | | | |
Collapse
|
38
|
Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Lafton A, Latgé JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O'Neil S, Paulsen I, Peñalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Córdoba S, Rodríguez-Peña JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sánchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2006; 438:1151-6. [PMID: 16372009 DOI: 10.1038/nature04332] [Citation(s) in RCA: 1012] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 10/12/2005] [Indexed: 11/09/2022]
Abstract
Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.
Collapse
|
39
|
Robson GD. Programmed cell death in the aspergilli and other filamentous fungi. Med Mycol 2006; 44:S109-S114. [DOI: 10.1080/13693780600835765] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
40
|
Fedorova ND, Badger JH, Robson GD, Wortman JR, Nierman WC. Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 2005; 6:177. [PMID: 16336669 PMCID: PMC1325252 DOI: 10.1186/1471-2164-6-177] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 12/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. RESULTS Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. CONCLUSION Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.
Collapse
Affiliation(s)
- Natalie D Fedorova
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Jonathan H Badger
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Geoff D Robson
- Faculty of Life Sciences, 1.800 Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer R Wortman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - William C Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, 2300 Eye Street, NW Washington, DC 20837, USA
| |
Collapse
|
41
|
Elias BC, Said S, de Albuquerque S, Pupo MT. The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck. Microbiol Res 2005; 161:273-80. [PMID: 16765844 DOI: 10.1016/j.micres.2005.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2005] [Indexed: 11/17/2022]
Abstract
A Brazilian strain of Penicillium verrucosum was cultivated under different conditions in a two-step process, in order to verify the influence of nutrients, and of time periods of pre-fermentative and fermentative steps on the biosynthesis of metabolites. Extracellular and intracellular extracts were obtained from each culture in the four different production media used. Chemical profiles of the extracts were obtained by HPLC. Extract trypanocidal activities against trypomastigote forms of Trypanosoma cruzi were evaluated. The time period of incubation in the pre-fermentative and fermentative media, as well as the different nutrients tested, qualitatively and quantitatively modified the production of secondary metabolites by P. verrucosum, and the extract trypanocidal activities.
Collapse
Affiliation(s)
- Barbara Casellato Elias
- Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café s/n, CEP 14040-903 Ribeirão Preto, SP Brazil
| | | | | | | |
Collapse
|
42
|
Emri T, Molnár Z, Pócsi I. The appearances of autolytic and apoptotic markers are concomitant but differently regulated in carbon-starvingAspergillus nidulanscultures. FEMS Microbiol Lett 2005; 251:297-303. [PMID: 16165325 DOI: 10.1016/j.femsle.2005.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/19/2005] [Accepted: 08/11/2005] [Indexed: 11/17/2022] Open
Abstract
In ageing, carbon-depleted cultures of Aspergillus nidulans strain FGSC 26 progressing apoptotic-type cell death was detected, characterised by increasing numbers of Annexin V and TUNEL stained cells after protoplastation. DAPI staining of autolysing mycelia revealed numerous nuclei with elongated, stick-like morphology, which was not observed in surviving hyphal fragments representing a cell population adapted to carbon starvation. Apoptotic cell death was also progressing in aging cultures of the non-autolysing loss-of-function fluG and DeltabrlA mutants, indicating that apoptotic cell death and autolysis were regulated independently. In accordance with this, sphingosine derivatives added to A. nidulans cultures increased cell death rates without influencing autolytic biomass losses and hydrolase production.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Microbiology and Biotechnology, Faculty of Science, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary.
| | | | | |
Collapse
|
43
|
Leiter É, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F. Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 2005; 49:2445-53. [PMID: 15917545 PMCID: PMC1140496 DOI: 10.1128/aac.49.6.2445-2453.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The small, basic, and cysteine-rich antifungal protein PAF is abundantly secreted into the supernatant by the beta-lactam producer Penicillium chrysogenum. PAF inhibits the growth of various important plant and zoopathogenic filamentous fungi. Previous studies revealed the active internalization of the antifungal protein and the induction of multifactorial detrimental effects, which finally resulted in morphological changes and growth inhibition in target fungi. In the present study, we offer detailed insights into the mechanism of action of PAF and give evidence for the induction of a programmed cell death-like phenotype. We proved the hyperpolarization of the plasma membrane in PAF-treated Aspergillus nidulans hyphae by using the aminonaphtylethenylpyridinium dye di-8-ANEPPS. The exposure of phosphatidylserine on the surface of A. nidulans protoplasts by Annexin V staining and the detection of DNA strand breaks by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) gave evidence for a PAF-induced apoptotic-like mechanism in A. nidulans. The localization of reactive oxygen species (ROS) by dichlorodihydrofluorescein diacetate and the abnormal cellular ultrastructure analyzed by transmission electron microscopy suggested that ROS-elicited membrane damage and the disintegration of mitochondria played a major role in the cytotoxicity of PAF. Finally, the reduced PAF sensitivity of A. nidulans strain FGSC1053, which carries a dominant-interfering mutation in fadA, supported our assumption that G-protein signaling was involved in PAF-mediated toxicity.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Henrietta Szappanos
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Christoph Oberparleiter
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Lydia Kaiserer
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - László Csernoch
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Tünde Pusztahelyi
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Tamás Emri
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Willibald Salvenmoser
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Florentine Marx
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
- Corresponding author. Mailing address: Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl Strasse 3, A-6020 Innsbruck, Austria. Phone: 43-512-5073607. Fax: 43-512-5079880. E-mail:
| |
Collapse
|
44
|
Emri T, Molnár Z, Pusztahelyi T, Varecza Z, Pócsi I. The FluG-BrlA pathway contributes to the initialisation of autolysis in submerged Aspergillus nidulans cultures. ACTA ACUST UNITED AC 2005; 109:757-63. [PMID: 16121561 DOI: 10.1017/s0953756205003023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The fluG gene proved to be essential in the initialisation of autolysis in Aspergillus nidulans (teleomorph Emericella nidulans) cultures, while a loss-of-function mutation in only one out of the flbB-E genes had only minor effects on autolysis. In contrast to its important role in sporulation, brlA regulated only some, but not all, elements of the autolytic process. The tightly coupled autolytic events (chitinase and proteinase production, hyphal fragmentation, disorganisation of pellets, autolytic loss of biomass) observable in ageing cultures of A. nidulans were disconnected by loss-of-function mutations in some genes of the FluG-BrlA regulatory network. The tight correlation between pellet morphology and size and hydrolase production was also erased by these mutations. On the other hand, the mutations studied did not affect the glutathione metabolism of the fungus.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Microbiology and Biotechnology, Faculty of Science, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Apoptosis is a highly regulated cellular suicide program crucial for metazoan development. However, dysfunction of apoptosis also leads to several diseases. Yeast undergoes apoptosis after application of acetic acid, sugar- or salt-stress, plant antifungal peptides, or hydrogen peroxide. Oxygen radicals seem to be key elements of apoptotic execution, conserved during evolution. Furthermore, several yeast orthologues of central metazoan apoptotic regulators have been identified, such as a caspase and a caspase-regulating serine protease. In addition, physiological occurrence of cell death has been detected during aging and mating in yeast. The finding of apoptosis in yeast, other fungi and parasites is not only of great medical relevance but will also help to understand some of the still unknown molecular mechanisms at the core of apoptotic execution.
Collapse
Affiliation(s)
- Frank Madeo
- IMB, Karl-Franzens University, Universitätsplatz 2, A-8010 Graz, Austria; Department of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|