1
|
Han Z, Luo Z, Li X, Xiong D, Tian C. SNARE genes CcSec22 and CcSso1 coordinate fungal growth, sporulation, cell wall stress tolerance, endocytosis and full virulence in Cytospora chrysosperma. Sci Rep 2025; 15:5034. [PMID: 39934168 PMCID: PMC11814409 DOI: 10.1038/s41598-025-88584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotic organisms, significantly influencing fungal growth, development, and pathogenicity. Despite their importance, the specific functions of individual SNARE subunits remain largely unexplored. In Cytospora chrysosperma, a pathogen causing substantial damage to woody plants and leading to considerable ecological and economic impacts, 22 SNAREs have been identified. Yet, their functional roles have not been previously characterized. In this study, we focused on two SNARE-encoding genes, CcSec22 and CcSso1 that are supposed to mediate endoplasmic reticulum (ER)-Golgi and trans-Golgi Network (TGN)-secretory vesicle transport respectively. Notably, both genes demonstrate significantly elevated expression during the infection process. Targeted deletion of either of them resulted in retarded mycelial growth and remarkably decreased tolerance towards different cell-wall stressors. Interestingly, CcSec22 deletion mutants formed more hyphal branches while CcSso1 was required for morphological maintenance of conidiospores. More importantly, lack of either of them significantly reduced hyphal endocytosis and fungal virulence on host poplar. Collectively, our data highlighted that the SNARE genes CcSec22 and CcSso1 play pleiotropic roles in mycelial growth and development, stress responses, conidiation, endocytosis and in particular, they are required for the full virulence of C. chrysosperma. This study provides an insight into the role of SNARE proteins in C. chrysosperma pathogenesis.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Zheng Luo
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Xueyan Li
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Evangelisti E, Govers F. Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors. Annu Rev Microbiol 2024; 78:493-512. [PMID: 39227351 DOI: 10.1146/annurev-micro-032421-121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.
Collapse
Affiliation(s)
- Edouard Evangelisti
- Current affiliation: Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France;
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
3
|
Li F, Zhang J, Zhong H, Yu K, Chen J. Genome-Wide Identification of SNARE Family Genes and Functional Characterization of an R-SNARE Gene BbSEC22 in a Fungal Insect Pathogen Beauveria bassiana. J Fungi (Basel) 2024; 10:393. [PMID: 38921379 PMCID: PMC11204939 DOI: 10.3390/jof10060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are central components of the machinery mediating cell membrane fusion and intracellular vesicular trafficking in eukaryotic cells, and have been well-documented to play critical roles in growth, development, and pathogenesis in the filamentous fungal plant pathogens. However, little is known about the contributions of SNAREs to the physiology and biocontrol potential in entomopathogenic filamentous fungi. Here, a genome-wide analysis of SNARE genes was performed taking advantage of the available whole genome sequence of Beauveria bassiana, a classical entomopathogenic fungus. Based on the compared genomic method, 22 genes encoding putative SNAREs were identified from the whole genome of B. bassiana, and were classified into four groups (7 Qa-, 4 Qb-, 6 Qc-, and 5 R-SNAREs) according to the conserved structural features of their encoding proteins. An R-SNARE encoding gene BbSEC22 was further functionally characterized by gene disruption and complementation. The BbSEC22 null mutant showed a fluffy appearance in mycelial growth and an obvious lag in conidial germination. The null mutant also exhibited significantly increased sensitivity to oxidative stress and cell wall perturbing agents and reduced the yield of conidia production by 43.1% compared with the wild-type strain. Moreover, disruption of BbSEC22 caused a significant decrease in conidial virulence to Spodoptera litura larvae. Overall, our results provide an overview of vesicle trafficking in B. bassiana and revealed that BbSec22 was a multifunctional protein associated with mycelial growth, sporulation, conidial germination, stress tolerance, and insecticidal virulence.
Collapse
Affiliation(s)
| | - Juefeng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| | | | | | - Jianming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (F.L.)
| |
Collapse
|
4
|
Pei Y, Ji P, Si J, Zhao H, Zhang S, Xu R, Qiao H, Duan W, Shen D, Yin Z, Dou D. A Phytophthora receptor-like kinase regulates oospore development and can activate pattern-triggered plant immunity. Nat Commun 2023; 14:4593. [PMID: 37524729 PMCID: PMC10390575 DOI: 10.1038/s41467-023-40171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
Plant cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) and receptor-like proteins (LRR-RLPs) form dynamic complexes to receive a variety of extracellular signals. LRR-RLKs are also widespread in oomycete pathogens, whereas it remains enigmatic whether plant and oomycete LRR-RLKs could mediate cell-to-cell communications between pathogen and host. Here, we report that an LRR-RLK from the soybean root and stem rot pathogen Phytophthora sojae, PsRLK6, can activate typical pattern-triggered immunity in host soybean and nonhost tomato and Nicotiana benthamiana plants. PsRLK6 homologs are conserved in oomycetes and also exhibit immunity-inducing activity. A small region (LRR5-6) in the extracellular domain of PsRLK6 is sufficient to activate BAK1- and SOBIR1-dependent immune responses, suggesting that PsRLK6 is likely recognized by a plant LRR-RLP. Moreover, PsRLK6 is shown to be up-regulated during oospore maturation and essential for the oospore development of P. sojae. Our data provide a novel type of microbe-associated molecular pattern that functions in the sexual reproduction of oomycete, and a scenario in which a pathogen LRR-RLK could be sensed by a plant LRR-RLP to mount plant immunity.
Collapse
Affiliation(s)
- Yong Pei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jierui Si
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanqing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sicong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofei Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Mugao L. Morphological and Molecular Variability of Alternaria solani and Phytophthora infestans Causing Tomato Blights. Int J Microbiol 2023; 2023:8951351. [PMID: 37274633 PMCID: PMC10239299 DOI: 10.1155/2023/8951351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Alternaria solani and Phytophthora infestans cause early and late blight diseases in tomato and potato, respectively. A. solani can survive for more than a decade in the soil, seed, or in plant residues at optimum temperature. The pathogen exhibits high molecular and genetic variation between isolates from potato and tomato plants, in different countries. Morphological studies reveal separate conidia borne singly on simple conidiophores. Spores are elongated, muriform, beaked, septate, and dark coloured. The mycelia are branched and septate. A. solani demonstrated a high genetic variability among isolates originating from the United States, Greece, Cuba, Canada, Russia, Turkey, South Africa, Brazil, and China based on vegetative compatibility groups and molecular markers (random amplified polymorphic DNA markers, random amplified microsatellite markers, and amplified fragment length polymorphisms). Different morphological and molecular variations indicate the presence of variability among the isolates. On the other hand, P. infestans is a diploid, obligate, heterothallic, and biotrophic oomycete, whose asexual lifecycle is characterized by alternating phases of sporangia germination, hyphal growth, and sporulation. The mycelia of P. infestans is coenocytic, multinucleate, and aseptate although the cross walls do not form in old cultures. Sporangia are borne singly on the branch tips of the alternately branched sporangiophore. Sporangium is hyaline and lemon shaped with a papilla at the distal end. Mating types A1 and A2 with different clonal lineages have been discovered in various parts of the world indicating variation in the species.
Collapse
Affiliation(s)
- Lydia Mugao
- Department of Agricultural Resource Management, University of Embu, P.O. Box 6-60100, Embu, Kenya
| |
Collapse
|
6
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|
7
|
Genome-Wide Identification and Expression Analysis of SNARE Genes in Brassica napus. PLANTS 2022; 11:plants11050711. [PMID: 35270180 PMCID: PMC8912762 DOI: 10.3390/plants11050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are central components that drive membrane fusion events during exocytosis and endocytosis and play important roles in different biological processes of plants. In this study, we identified 237 genes encoding SNARE family proteins in B. napus in silico at the whole-genome level. Phylogenetic analysis showed that BnaSNAREs could be classified into five groups (Q (a-, b-, c-, bc-) and R) like other plant SNAREs and clustered into twenty-five subclades. The gene structure and protein domain of each subclade were found to be highly conserved. In many subclades, BnaSNAREs are significantly expanded compared with the orthologous genes in Arabidopsis thaliana. BnaSNARE genes are expressed differentially in the leaves and roots of B. napus. RNA-seq data and RT-qPCR proved that some of the BnaSNAREs are involved in the plant response to S. sclerotiorum infection as well as treatments with toxin oxalic acid (OA) (a virulence factor often secreted by S. sclerotiorum) or abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA), which individually promote resistance to S. sclerotiorum. Moreover, the interacted proteins of BnaSNAREs contain some defense response-related proteins, which increases the evidence that BnaSNAREs are involved in plant immunity. We also found the co-expression of BnaSYP121/2s, BnaSNAPs, and BnaVAMP722/3s in B. napus due to S. sclerotiorum infection as well as the probable interaction among them.
Collapse
|
8
|
Sharma S, Sundaresha S, Bhardwaj V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 2021; 11:274. [PMID: 34040923 DOI: 10.1007/s13205-021-02810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/24/2021] [Indexed: 11/26/2022] Open
Abstract
Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host-pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.
Collapse
Affiliation(s)
- Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
9
|
RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. PLANTS 2021; 10:plants10040650. [PMID: 33805521 PMCID: PMC8067263 DOI: 10.3390/plants10040650] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.
Collapse
|
10
|
Liu D, Li K, Hu J, Wang W, Liu X, Gao Z. Biocontrol and Action Mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in Soybean Phytophthora Blight. Int J Mol Sci 2019; 20:E2908. [PMID: 31207889 PMCID: PMC6628291 DOI: 10.3390/ijms20122908] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023] Open
Abstract
With the improper application of fungicides, Phytophthora sojae begins to develop resistance to fungicides, and biological control is one of the potential ways to control it. We screened two strains of Bacillus; Bacillus amyloliquefaciens JDF3 and Bacillus subtilis RSS-1, which had an efficient inhibitory effect on P. sojae. They could inhibit mycelial growth, the germination of the cysts, and the swimming of the motile zoospores. To elucidate the response of P. sojae under the stress of B. amyloliquefaciens and B. subtilis, and the molecular mechanism of biological control, comparative transcriptome analysis was applied. Transcriptome analysis revealed that the expression gene of P. sojae showed significant changes, and a total of 1616 differentially expressed genes (DEGs) were detected. They participated in two major types of regulation, namely "specificity" regulation and "common" regulation. They might inhibit the growth of P. sojae mainly by inhibiting the activity of ribosome. A pot experiment indicated that B. amyloliquefaciens and B. subtilis enhanced the resistance of soybean to P. sojae, and their control effects of them were 70.7% and 65.5%, respectively. In addition, B. amyloliquefaciens fermentation broth could induce an active oxygen burst, NO production, callose deposition, and lignification. B. subtilis could also stimulate the systemic to develop the resistance of soybean by lignification, and phytoalexin.
Collapse
Affiliation(s)
- Dong Liu
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
- School of life sciences, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
- Department of Horticulture and Landscape, Anqing Vocational and Technical College, 99 North of Tianzhushan Road, Anqing 246003, Anhui, China.
| | - Kunyuan Li
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Jiulong Hu
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Weiyan Wang
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Xiao Liu
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| | - Zhimou Gao
- College of plant protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.
| |
Collapse
|
11
|
Wang J, Tian L, Zhang DD, Short DPG, Zhou L, Song SS, Liu Y, Wang D, Kong ZQ, Cui WY, Ma XF, Klosterman SJ, Subbarao KV, Chen JY, Dai XF. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:651-664. [PMID: 29419372 DOI: 10.1094/mpmi-12-17-0289-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle-fusion components that included 22 soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), four Sec1/Munc18 (SM) family proteins, and 10 Rab GTPases encoded in the genome of the vascular wilt pathogen Verticillium dahliae Vd991. Targeted deletion of two SNARE-encoding genes in V. dahliae, VdSec22 and VdSso1, significantly reduced virulence of both mutants on cotton, relative to the wild-type Vd991 strain. Comparative analyses of the secreted protein content (exoproteome) revealed that many enzymes involved in carbohydrate hydrolysis were regulated by VdSec22 or VdSso1. Consistent with a role of these enzymes in plant cell-wall degradation, pectin, cellulose, and xylan utilization were reduced in the VdSec22 or VdSso1 mutant strains along with a loss of exoproteome cytotoxic activity on cotton leaves. Comparisons with a pathogenicity-related exoproteome revealed that several known virulence factors were not regulated by VdSec22 or VdSso1, but some of the proteins regulated by VdSec22 or VdSso1 displayed different characteristics, including the lack of a typical signal peptide, suggesting that V. dahliae employs more than one secretory route to transport proteins to extracellular sites during infection.
Collapse
Affiliation(s)
- Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Tian
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang-Shuang Song
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Yan Liu
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Ye Cui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- 4 United States Department of Agriculture, Agricultural Research Service, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
12
|
Pan Y, Ye T, Gao Z. Cloning and functional analysis of succinate dehydrogenase gene PsSDHA in Phytophthora sojae. Microb Pathog 2017; 108:40-48. [PMID: 28438637 DOI: 10.1016/j.micpath.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenase (SDH) is one of the key enzymes of the tricarboxylic acid cycle (TCA cycle) and a proven target of fungicides for true fungi. To explore the roles of the SDHA gene in Phytophthora sojae, we first cloned PsSDHA to construct the PsSDHA silenced expression vector pHAM34-PsSDHA, and then utilized PEG to mediate the P. sojae protoplast transformation experiment. Through transformation screening, we obtained the silenced mutants A1 and A3, which have significant suppressive effect. Further study showed that the hyphae of the silenced mutant strains were shorter and more bifurcated; the growth of the silenced mutants was clearly inhibited in 10% V8 agar medium containing sodium chloride (NaCl), hydrogen peroxide (H2O2) or Congo Red, respectively. The pathogenicity of the silenced mutants was significantly reduced compared with the wild-type strain and the mock. The results could help us better to understand the position and function of SDH in P. sojae and provide a proven target of fungicides for the oomycete.
Collapse
Affiliation(s)
- Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tao Ye
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhimou Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Guo T, Wang XW, Shan K, Sun W, Guo LY. The Loricrin-Like Protein (LLP) of Phytophthora infestans Is Required for Oospore Formation and Plant Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:142. [PMID: 28232841 PMCID: PMC5298957 DOI: 10.3389/fpls.2017.00142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/24/2017] [Indexed: 05/20/2023]
Abstract
Loricrin-like protein (LLP) is characterized by a high content of glycine residues and is a major component of plant cell wall. Here, we identified a Phytophthora infestans ortholog of plant LLP, named PiLLP. In P. infestans, PiLLP is strongly expressed in asexual and sexual developmental stages, including in sporangia, zoospores and germinating cysts, and during oospore formation, as well as in the early stages of infection and during hydrogen peroxide stress. Compared with the wild type, the PiLLP-silenced transformants were defective in oospore formation, had slower colony expansion rates, produced less sporangia with lower germination and zoospore-release rates, and were more sensitive to hydrogen peroxide. Moreover, Nile red staining, and PiLLP-red fluorescent protein fusions indicated that PiLLP is involved in oogonia formation. The silenced transformants also had severely diminished virulence levels that could be partially restored with diphenyleneiodium treatments. The analysis of catalase activity showed a decrease of catalase activity in silenced transformants. Thus, PiLLP is important for sexual and asexual reproduction, and is required for oxidative stress tolerance and plant infection.
Collapse
Affiliation(s)
| | | | | | | | - Li-Yun Guo
- Department of Plant Pathology and the Key Laboratory for Plant Pathology MOA, China Agricultural UniversityBeijing, China
| |
Collapse
|
14
|
Jiang L, Ye W, Situ J, Chen Y, Yang X, Kong G, Liu Y, Tinashe RJ, Xi P, Wang Y, Jiang Z. A Puf RNA-binding protein encoding gene PlM90 regulates the sexual and asexual life stages of the litchi downy blight pathogen Peronophythora litchii. Fungal Genet Biol 2016; 98:39-45. [PMID: 27939344 DOI: 10.1016/j.fgb.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022]
Abstract
Sexual and asexual reproduction are two key processes in the pathogenic cycle of many filamentous pathogens. However in Peronophythora litchii, the causal pathogen for the litchi downy blight disease, critical regulator(s) of sexual or asexual differentiation has not been elucidated. In this study, we cloned a gene named PlM90 from P. litchii, which encodes a putative Puf RNA-binding protein. We found that PlM90 was highly expressed during asexual development, and much higher than that during sexual development, while relatively lower during cyst germination and plant infection. By polyethylene glycol (PEG)-mediated protoplast transformation, we generated three PlM90-silenced transformants and found a severely impaired ability in sexual spore production and a delay in stages of zoospore release and encystment. However, the pathogenicity of P. litchii was not affected by PlM90-silencing. Therefore we conclude that PlM90 specifically regulates the sexual and asexual differentiation of P. litchii.
Collapse
Affiliation(s)
- Liqun Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Yubin Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xinyu Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yaya Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Runyanga J Tinashe
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae. Sci Rep 2016; 6:29897. [PMID: 27412925 PMCID: PMC4944153 DOI: 10.1038/srep29897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens.
Collapse
|
16
|
Dobon A, Bunting DCE, Cabrera-Quio LE, Uauy C, Saunders DGO. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics 2016; 17:380. [PMID: 27207100 PMCID: PMC4875698 DOI: 10.1186/s12864-016-2684-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022] Open
Abstract
Background Understanding how plants and pathogens modulate gene expression during the host-pathogen interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection. Results We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (ii) substantially improved the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST infection on the expression of various defence components and host immune receptors. Conclusions Our data showed sequential, temporally coordinated activation and suppression of expression of a suite of immune-response regulators that varied between compatible and incompatible interactions. These findings provide the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the expression of defence components in wheat to successfully colonize a susceptible host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2684-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albor Dobon
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Luis Enrique Cabrera-Quio
- The Genome Analysis Centre, Norwich Research Park, Norwich, UK.,The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Diane G O Saunders
- John Innes Centre, Norwich Research Park, Norwich, UK. .,The Genome Analysis Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
17
|
Wang R, Zhang M, Liu H, Xu J, Yu J, He F, Zhang X, Dong S, Dou D. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae. Fungal Biol 2016; 120:620-630. [PMID: 27020161 DOI: 10.1016/j.funbio.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 12/29/2022]
Abstract
Pathogen nutrient acquisition and metabolism are critical for successful infection and colonization. However, the nutrient requirements and metabolic pathways related to pathogenesis in oomycete pathogens are unknown. In this study, we bioinformatically identified Phytophthora sojae aspartate aminotransferases (AATs), which are key enzymes that coordinate carbon and nitrogen metabolism. We demonstrated that P. sojae encodes more AATs than the analysed fungi. Some of the AATs contained additional prephenate dehydratase and/or prephenate dehydrogenase domains in their N-termini, which are unique to oomycetes. Silencing of PsAAT3, an infection-inducible expression gene, reduced P. sojae pathogenicity on soybean plants and affected the growth under N-starving condition, suggesting that PsAAT3 is involved in pathogen pathogenicity and nitrogen utilisation during infection. Our results suggest that P. sojae and other oomycete pathogens may have distinct amino acid metabolism pathways and that PsAAT3 is important for its full pathogenicity.
Collapse
Affiliation(s)
- Rongbo Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hong Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
18
|
Wang Q, Li T, Xu K, Zhang W, Wang X, Quan J, Jin W, Zhang M, Fan G, Wang MB, Shan W. The tRNA-Derived Small RNAs Regulate Gene Expression through Triggering Sequence-Specific Degradation of Target Transcripts in the Oomycete Pathogen Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2016; 7:1938. [PMID: 28066490 PMCID: PMC5177647 DOI: 10.3389/fpls.2016.01938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/07/2016] [Indexed: 05/05/2023]
Abstract
Along with the well-studied microRNA (miRNA) and small interfering RNA (siRNA) is a new class of transfer RNA-derived small RNA (tsRNA), which has recently been detected in multiple organisms and is implicated in gene regulation. However, while miRNAs and siRNAs are known to repress gene expression through sequence-specific RNA cleavage or translational repression, how tsRNAs regulate gene expression remains unclear. Here we report the identification and functional characterization of tsRNAs in the oomycete pathogen Phytophthora sojae. We show that multiple tRNAs are processed into abundant tsRNAs, which accumulate in a similar developmental stage-specific manner and are negatively correlated with the expression of predicted target genes. Degradome sequencing and 5' RLM RACE experiments indicate tsRNAs can trigger degradation of target transcripts. Transient expression assays using GUS sensor constructs confirmed the requirement of sequence complementarity in tsRNA-mediated RNA degradation in P. sojae. Our results show that the tsRNA are a class of functional endogenous sRNAs and suggest that tsRNA regulate gene expression through inducing sequence-specific degradation of target RNAs in oomycetes.
Collapse
Affiliation(s)
- Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Ke Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Wei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Xiaolong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Junli Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Weibo Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Meixiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Ming-Bo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
- CSIRO AgricultureCanberra, ACT, Australia
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityYangling, China
- *Correspondence: Weixing Shan,
| |
Collapse
|
19
|
Zhao W, Wang T, Liu S, Chen Q, Qi R. The histone acetyltransferase PsGcn5 mediates oxidative stress responses and is required for full virulence of Phytophthora sojae. Microb Pathog 2015; 87:51-8. [PMID: 26209751 DOI: 10.1016/j.micpath.2015.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/05/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
In eukaryotic organisms, histone acetyltransferase complexes are coactivators that are important for transcriptional activation by modifying chromatin. In this study, a gene (PsGcn5) from Phytophthora sojae encoding a histone acetyltransferase was identified as a homolog of one component of the histone acetyltransferase complex from yeasts to mammals. PsGcn5 was constitutively expressed in each stage tested, but had a slightly higher expression in sporulating hyphae and 3 h after infection. PsGcn5-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation. These mutants had normal development, but compared to wild type strains they had higher sensitivity to hydrogen peroxide (H2O2) and significantly reduced virulence in soybean. Diaminobenzidine staining revealed an accumulation of H2O2 around the infection sites of PsGcn5-silenced mutants but not for wild type strains. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H2O2 accumulation in soybean cells and restored infectious hyphal growth of the mutants. Thus, we concluded that PsGcn5 is important for growth under conditions of oxidative stress and contributes to the full virulence of P. sojae by suppressing the host-derived reactive oxygen species.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, Hefei, Anhui, China
| | - Tao Wang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, Hefei, Anhui, China
| | - Shusen Liu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Qingqing Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Rende Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, Hefei, Anhui, China.
| |
Collapse
|
20
|
Yang X, Ding F, Zhang L, Sheng Y, Zheng X, Wang Y. The importin α subunit PsIMPA1 mediates the oxidative stress response and is required for the pathogenicity of Phytophthora sojae. Fungal Genet Biol 2015; 82:108-15. [DOI: 10.1016/j.fgb.2015.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
21
|
Gao J, Cao M, Ye W, Li H, Kong L, Zheng X, Wang Y. PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean. MOLECULAR PLANT PATHOLOGY 2015; 16:61-70. [PMID: 24889742 PMCID: PMC6638454 DOI: 10.1111/mpp.12163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean.
Collapse
Affiliation(s)
- Jian Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grünwald NJ, Carrington JC. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS One 2013; 8:e77181. [PMID: 24204767 PMCID: PMC3804510 DOI: 10.1371/journal.pone.0077181] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/06/2013] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.
Collapse
Affiliation(s)
- Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Kristin D. Kasschau
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Josh T. Cuperus
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Caroline M. Press
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Christopher M. Sullivan
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Elisabeth J. Chapman
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - J. Steen Hoyer
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Niklaus J. Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
- * E-mail: (NJG); (JCC)
| | - James C. Carrington
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (NJG); (JCC)
| |
Collapse
|
23
|
Yang X, Zhao W, Hua C, Zheng X, Jing M, Li D, Govers F, Meijer HJG, Wang Y. Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain. Mol Microbiol 2013; 88:382-94. [PMID: 23448757 DOI: 10.1111/mmi.12191] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptors (GPCRs) are key cellular components that mediate extracellular signals into intracellular responses. Genome mining revealed that Phytophthora spp. have over 60 GPCR genes among which a prominent class of 12 encoding novel proteins with an N-terminal GPCR domain fused to a C-terminal phosphatidylinositol phosphate kinase (PIPK) domain. This study focuses on two GPCR-PIPKs (GKs) in Phytophthora sojae. PsGK4 and PsGK5 are differentially expressed during the life cycle with the highest expression in cysts and during cyst germination, and at late infection stages. In P. sojae transformants that constitutively express RFP-tagged PsGK4 and PsGK5, the fusion proteins in hyphae reside in small, rapidly moving vesicular-like structures. Functional analysis using gene silencing showed that PsGK4-silenced transformants displayed higher levels of encystment and a reduced cyst germination rate when compared with the recipient strain. Moreover, GK4 deficiency (or reduction) resulted in severe defects in zoospore chemotaxis towards isoflavones and soybean roots. In contrast, PsGK5-silenced transformants exhibited no obvious defects in asexual development but oospore production was severely impaired. Both, PsGK4- and PsGK5-silenced transformants showed reduced pathogenicity. These results point to involvement of GKs in zoospore behaviour, chemotaxis and oospore development, and suggest that PsGK4 and PsGK5 each head independent signalling pathways.
Collapse
Affiliation(s)
- X Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hua C, Meijer HJG, de Keijzer J, Zhao W, Wang Y, Govers F. GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase domain in Phytophthora infestans, is involved in sporangia development and virulence. Mol Microbiol 2013; 88:352-70. [PMID: 23448716 DOI: 10.1111/mmi.12190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
For dispersal and host infection plant pathogens largely depend on asexual spores. Pathogenesis and sporulation are complex processes that are governed by cellular signalling networks including G-protein and phospholipid signalling. Oomycetes possess a family of novel proteins called GPCR-PIPKs (GKs) that are composed of a seven-transmembrane spanning (7-TM) domain fused to a phosphatidylinositol phosphate kinase (PIPK) domain. Based on this domain structure GKs are anticipated to link G-protein and phospholipid signal pathways; however, their functions are currently unknown. Expression analyses of the 12 GK genes in Phytophthora infestans and their orthologues in Phytophthora sojae, revealed differential expression during asexual development. PiGK1 and PiGK4 were fused to monomeric red fluorescent protein (mRFP) and ectopically expressed in P. infestans. In growing hyphae different subcellular distribution patterns were observed indicating that these two GKs act independently during development. We focused on the functional analyses of PiGK4. Its localization suggested involvement in cell differentiation and elongation and its 7-TM domain showed a canonical GPCR membrane topology. Silencing of GK4 and overexpression of full-length and truncated constructs in P. infestans revealed that PiGK4 is not only involved in spore germination and hyphal elongation but also in sporangia cleavage and infection.
Collapse
Affiliation(s)
- Chenlei Hua
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Li D, Zhao Z, Huang Y, Lu Z, Yao M, Hao Y, Zhai C, Wang Y. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae. PLoS One 2013; 8:e58623. [PMID: 23516518 PMCID: PMC3597732 DOI: 10.1371/journal.pone.0058623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.
Collapse
Affiliation(s)
- Delong Li
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhijian Zhao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidan Huang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Lu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng Yao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yujuan Hao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhai
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Nunes CC, Dean RA. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. MOLECULAR PLANT PATHOLOGY 2012; 13:519-29. [PMID: 22111693 PMCID: PMC6638818 DOI: 10.1111/j.1364-3703.2011.00766.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease.
Collapse
Affiliation(s)
- Cristiano C Nunes
- Department of Plant Pathology, Fungal Genomics Laboratory, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
27
|
Zhao W, Yang X, Dong S, Sheng Y, Wang Y, Zheng X. Transient silencing mediated by in vitro synthesized double-stranded RNA indicates that PsCdc14 is required for sporangial development in a soybean root rot pathogen. SCIENCE CHINA. LIFE SCIENCES 2011; 54:1143-50. [PMID: 22227907 DOI: 10.1007/s11427-011-4250-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 10/18/2011] [Indexed: 11/27/2022]
Abstract
In many eukaryotic organisms, Cdc14 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdc14 is required for sporulation in the potato blight pathogen Phytophthora infestans; however, the role that the Cdc14 homolog (PsCdc14) plays in the soil-borne soybean root rot pathogen P. sojae remains ambiguous. PsCdc14 is highly expressed in sporulation, zoospore, and cyst life stages, but not in vegetative mycelia and infection stages, suggesting that it contributes to asexual reproduction and thus the spread of the disease. Double-stranded RNA (dsRNA) mediates gene silencing, a post-transcriptional and highly conserved process in eukaryotes, involving specific gene silencing through degradation of target mRNA. We combined in vitro dsRNA synthesis and a polyethylene glycol-mediated transformation system to construct a dsRNA-mediated transient gene silencing system; and then performed a functional analysis of PsCdc14 in P. sojae. PsCdc14 mRNA was dramatically reduced in transformants after protoplasts were exposed in in vitro synthesized PsCdc14 dsRNA, resulting in low sporangial production and abnormal development in P. sojae silencing lines. Furthermore, dsRNA-mediated transient gene silencing could enable elucidation of P. sojae rapid gene function, facilitating our understanding of the development and pathogenicity mechanisms of this oomycete fungus.
Collapse
Affiliation(s)
- Wei Zhao
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|