1
|
Li Y, Yan X, Luo L, Tong J, Zhao C. The Effects of Experimental Warming on Phyllosphere Microbial Communities of Picea asperata and Fargesia nitida in Eastern Tibetan Plateau, China. Curr Microbiol 2025; 82:202. [PMID: 40116955 DOI: 10.1007/s00284-025-04186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
Phyllosphere microbiomes play a crucial role in leaf physiological functions, yet their responses to climate warming remain unclear. In this study, we examined the effects of a 3-year experimental warming on the composition and potential functions of phyllosphere bacterial and fungal communities, as well as leaf physiochemical properties of two dominant species (Picea asperata and Fargesia nitida) in the eastern Tibetan Plateau. The results indicated that the phyllosphere bacterial diversity in P. asperata was higher than in F. nitida, but the fungal diversity showed no significant difference between the two species under unwarmed conditions. Warming decreased bacterial and fungal diversity in P. asperata, while increased these parameters in F. nitida. The compositions of the phyllosphere microbial community differed between the two species (p < 0.05), but Rhizobiales and Capnodiales remained the dominant orders within the bacterial and fungal community for both species, respectively. The bacterial community composition of P. asperata needles and the fungal community composition of F. nitida leaves were more sensitive to warming. Additionally, the two species exhibited significant differences in most leaf physiochemical properties, including leaf water content, C, N, P, and photosynthetic pigment content (p < 0.05). The compositions and predictive functions of the phyllosphere microbial communities were significantly correlated with the leaf physiochemical properties. In summary, phyllosphere microbial communities and their responses to warming were significantly affected by host plant species and were closely related to the distinct physiochemical traits of their leaves.
Collapse
Affiliation(s)
- Yunyi Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Xiaoyan Yan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Lin Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, People's Republic of China
| | - Jin Tong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Chunzhang Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| |
Collapse
|
2
|
Catanzaro I, Gerrits R, Feldmann I, Gorbushina AA, Onofri S, Schumacher J. Deletion of the polyketide synthase-encoding gene pks1 prevents melanization in the extremophilic fungus Cryomyces antarcticus. IUBMB Life 2024; 76:1072-1090. [PMID: 39011777 PMCID: PMC11580375 DOI: 10.1002/iub.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
Cryomyces antarcticus, a melanized cryptoendolithic fungus endemic to Antarctica, can tolerate environmental conditions as severe as those in space. Particularly, its ability to withstand ionizing radiation has been attributed to the presence of thick and highly melanized cell walls, which-according to a previous investigation-may contain both 1,8-dihydroxynaphthalene (DHN) and L-3,4 dihydroxyphenylalanine (L-DOPA) melanin. The genes putatively involved in the synthesis of DHN melanin were identified in the genome of C. antarcticus. Most important is capks1 encoding a non-reducing polyketide synthase (PKS) and being the ortholog of the functionally characterized kppks1 from the rock-inhabiting fungus Knufia petricola. The co-expression of CaPKS1 or KpPKS1 with a 4'-phosphopantetheinyl transferase in Saccharomyces cerevisiae resulted in the formation of a yellowish pigment, suggesting that CaPKS1 is the enzyme providing the precursor for DHN melanin. To dissect the composition and function of the melanin layer in the outer cell wall of C. antarcticus, non-melanized mutants were generated by CRISPR/Cas9-mediated genome editing. Notwithstanding its slow growth (up to months), three independent non-melanized Δcapks1 mutants were obtained. The mutants exhibited growth similar to the wild type and a light pinkish pigmentation, which is presumably due to carotenoids. Interestingly, visible light had an adverse effect on growth of both melanized wild-type and non-melanized Δcapks1 strains. Further evidence that light can pass the melanized cell walls derives from a mutant expressing a H2B-GFP fusion protein, which can be detected by fluorescence microscopy. In conclusion, the study reports on the first genetic manipulation of C. antarcticus, resulting in non-melanized mutants and demonstrating that the melanin is rather of the DHN type. These mutants will allow to elucidate the relevance of melanization for surviving extreme conditions found in the natural habitat as well as in space.
Collapse
Affiliation(s)
- Ilaria Catanzaro
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Department of Ecological and Biological Sciences (DEB)Università degli Studi della TusciaViterboItaly
| | - Ruben Gerrits
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
| | - Ines Feldmann
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
| | - Anna A. Gorbushina
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB)Università degli Studi della TusciaViterboItaly
| | - Julia Schumacher
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| |
Collapse
|
3
|
Catanzaro I, Gorbushina AA, Onofri S, Schumacher J. 1,8-Dihydroxynaphthalene (DHN) melanin provides unequal protection to black fungi Knufia petricola and Cryomyces antarcticus from UV-B radiation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70043. [PMID: 39548356 PMCID: PMC11567843 DOI: 10.1111/1758-2229.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Black fungi on rock surfaces endure a spectrum of abiotic stresses, including UV radiation. Their ability to tolerate extreme conditions is attributed to the convergent evolution of adaptive traits, primarily highly melanized cell walls. However, studies on fungal melanins have not provided univocal results on their photoprotective functions. Here, we investigated whether the black fungi Knufia petricola and Cryomyces antarcticus only use DHN melanin or may employ alternative mechanisms to counteract UV-induced damage. For this, melanized wild types and non-melanized Δpks1 mutants were exposed to different doses of UV-B (312 nm) followed by incubation in constant darkness or in light-dark cycles to allow light-dependent DNA repair by photolyases (photoreactivation). C. antarcticus could tolerate higher UV-B doses but was sensitive to white light, whereas K. petricola showed the opposite trend. DHN melanin provided UV-B protection in C. antarcticus, whereas the same pigment or even carotenoids proved ineffective in K. petricola. Both fungi demonstrated functional photoreactivation in agreement with the presence of photolyase-encoding genes. Our findings reveal that although the adaptive trait of DHN melanization commonly occurs across black fungi, it is not equally functional and that there are species-specific adaptations towards either UV-induced lesion avoidance or repair strategies.
Collapse
Affiliation(s)
- Ilaria Catanzaro
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Università degli Studi della TusciaViterboItaly
| | - Anna A. Gorbushina
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| | | | - Julia Schumacher
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| |
Collapse
|
4
|
Hamilton GE, Wadkovsky KN, Gladfelter AS. A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers. Mol Biol Cell 2024; 35:ar132. [PMID: 39196657 PMCID: PMC11481698 DOI: 10.1091/mbc.e24-05-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024] Open
Abstract
Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. Knufia petricola is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized KpAspE, a Group 5 septin from K. petricola. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. KpAspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in K. petricola cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.
Collapse
Affiliation(s)
- Grace E. Hamilton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Amy S. Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708
| |
Collapse
|
5
|
Erdmann EA, Brandhorst AKM, Gorbushina AA, Schumacher J. The Tet-on system for controllable gene expression in the rock-inhabiting black fungus Knufia petricola. Extremophiles 2024; 28:38. [PMID: 39105933 PMCID: PMC11303440 DOI: 10.1007/s00792-024-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis (melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes.
Collapse
Affiliation(s)
- Eileen A Erdmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Antonia K M Brandhorst
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Anna A Gorbushina
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.
- Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Chander AM, de Melo Teixeira M, Singh NK, Williams MP, Parker CW, Leo P, Stajich JE, Torok T, Tighe S, Mason CE, Venkateswaran K. Genomic and morphological characterization of Knufia obscura isolated from the Mars 2020 spacecraft assembly facility. Sci Rep 2024; 14:12249. [PMID: 38806503 PMCID: PMC11133487 DOI: 10.1038/s41598-024-61115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Members of the family Trichomeriaceae, belonging to the Chaetothyriales order and the Ascomycota phylum, are known for their capability to inhabit hostile environments characterized by extreme temperatures, oligotrophic conditions, drought, or presence of toxic compounds. The genus Knufia encompasses many polyextremophilic species. In this report, the genomic and morphological features of the strain FJI-L2-BK-P2 presented, which was isolated from the Mars 2020 mission spacecraft assembly facility located at the Jet Propulsion Laboratory in Pasadena, California. The identification is based on sequence alignment for marker genes, multi-locus sequence analysis, and whole genome sequence phylogeny. The morphological features were studied using a diverse range of microscopic techniques (bright field, phase contrast, differential interference contrast and scanning electron microscopy). The phylogenetic marker genes of the strain FJI-L2-BK-P2 exhibited highest similarities with type strain of Knufia obscura (CBS 148926T) that was isolated from the gas tank of a car in Italy. To validate the species identity, whole genomes of both strains (FJI-L2-BK-P2 and CBS 148926T) were sequenced, annotated, and strain FJI-L2-BK-P2 was confirmed as K. obscura. The morphological analysis and description of the genomic characteristics of K. obscura FJI-L2-BK-P2 may contribute to refining the taxonomy of Knufia species. Key morphological features are reported in this K. obscura strain, resembling microsclerotia and chlamydospore-like propagules. These features known to be characteristic features in black fungi which could potentially facilitate their adaptation to harsh environments.
Collapse
Affiliation(s)
- Atul Munish Chander
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Marcus de Melo Teixeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- School of Medicine, University of Brasilia, Brasília, DF, Brazil
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Michael P Williams
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Patrick Leo
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of CA-Riverside, Riverside, CA, USA
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Scott Tighe
- Vermont Integrative Genomics Lab, University of Vermont, Burlington, VT, USA
| | - Christopher E Mason
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, 1305 York Avenue, Room Y-13.15, New York, NY, 10021, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA.
| |
Collapse
|
7
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
8
|
Thitla T, Kumla J, Hongsanan S, Senwanna C, Khuna S, Lumyong S, Suwannarach N. Exploring diversity rock-inhabiting fungi from northern Thailand: a new genus and three new species belonged to the family Herpotrichiellaceae. Front Cell Infect Microbiol 2023; 13:1252482. [PMID: 37692164 PMCID: PMC10485699 DOI: 10.3389/fcimb.2023.1252482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Members of the family Herpotrichiellaceae are distributed worldwide and can be found in various habitats including on insects, plants, rocks, and in the soil. They are also known to be opportunistic human pathogens. In this study, 12 strains of rock-inhabiting fungi that belong to Herpotrichiellaceae were isolated from rock samples collected from forests located in Lamphun and Sukhothai provinces of northern Thailand during the period from 2021 to 2022. On the basis of the morphological characteristics, growth temperature, and multi-gene phylogenetic analyses of a combination of the internal transcribed spacer, the large subunit, and the small subunit of ribosomal RNA, beta tubulin and the translation elongation factor 1-a genes, the new genus, Petriomyces gen. nov., has been established to accommodate the single species, Pe. obovoidisporus sp. nov. In addition, three new species of Cladophialophora have also been introduced, namely, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis. Descriptions, illustrations, and a phylogenetic trees indicating the placement of these new taxa are provided. Here, we provide updates and discussions on the phylogenetic placement of other fungal genera within Herpotrichiellaceae.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Chanokned Senwanna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Isola D, Prigione VP, Zucconi L, Varese GC, Poli A, Turchetti B, Canini F. Knufia obscura sp. nov. and Knufia victoriae sp. nov., two new species from extreme environments. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six strains of black meristematic fungi were isolated from Antarctic soils, gasoline car tanks and from the marine alga Flabellia petiolata. These fungi were characterized by morphological, physiological and phylogenetic analyses. According to the maximum-likelihood analysis reconstructed with ITS and LSU sequences, these strains belonged to the genus Knufia. Knufia obscura sp. nov. (holotype CBS 148926) and Knufia victoriae sp. nov. (holotype CBS 149015) are proposed as two novel species and descriptions of their morphological, physiological and phylogenetic features are presented. Based on the maximum-likelihood analyses, K. obscura was closely related to Knufia hypolithi (99 % bootstrap support), while K. victoriae clustered in the clade of Knufia cryptophialidica and Knufia perfecta (93 % bootstrap support). Knufia victoriae, recorded in Antarctic soil samples, had a psychrophilic behaviour, with optimal growth between 10 and 15 °C and no growth recorded at 20 °C. Knufia obscura, from a gasoline car tank and algae, displayed optimal growth between 20 and 25 °C and was more tolerant to salinity than K. victoriae.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università, Viterbo 01100, Italy
| | - Valeria Paola Prigione
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis, University of Torino, Viale Mattioli 25, 10125, Torino, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università, Viterbo 01100, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis, University of Torino, Viale Mattioli 25, 10125, Torino, Italy
| | - Anna Poli
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis, University of Torino, Viale Mattioli 25, 10125, Torino, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università, Viterbo 01100, Italy
| |
Collapse
|
10
|
Black Fungi on Stone-Built Heritage: Current Knowledge and Future Outlook. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Black fungi are considered as one of the main group of microorganisms responsible for the biodeterioration of stone cultural heritage artifacts. In this paper, we provide a critical analysis and review of more than 30 years of studies on black fungi isolated from stone-built heritage from 1990 to date. More than 109 papers concerning the fungal biodeterioration activity of stone were analysed. The main findings were a check list of the black fungal taxa involved in the biodeterioration of stone-built heritage, with a particular reference to meristematic black fungi, the main biodeterioration pattern attributed to them, and the methods of study including the new molecular advances. A particular focus was to discuss the current approaches to control black fungi from stone-built heritage and future perspectives. Black fungi are notoriously hard to remove or mitigate, so new methods of study and of control are needed, but it is also important to combine classical methods with new approaches to improve current knowledge to implement future conservation strategies.
Collapse
|
11
|
Erdmann EA, Nitsche S, Gorbushina AA, Schumacher J. Genetic Engineering of the Rock Inhabitant Knufia petricola Provides Insight Into the Biology of Extremotolerant Black Fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:862429. [PMID: 37746170 PMCID: PMC10512386 DOI: 10.3389/ffunb.2022.862429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 09/26/2023]
Abstract
Black microcolonial fungi (Ascomycetes from Arthonio-, Dothideo-, and Eurotiomycetes) are stress-tolerant and persistent dwellers of natural and anthropogenic extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) melanin in the multilayered cell walls. To understand how black fungi live, survive, colonize mineral substrates, and interact with phototrophs genetic methods are needed to test these functions and interactions. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a model for developing methods for genetic manipulation. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and the implementation of the three resistance selection markers genR (geneticin/nptII), baR (glufosinate/bar), and suR (chlorimuron ethyl/sur). The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter. The black-white screening due to the concurrent elimination of pks1 and phs1 (carotenoids) allows to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. The co-localization and interaction of the two K. petricola White Collar orthologs were demonstrated. Two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for a broad implementation in other fungi. This variety of genetic tools is opening a completely new perspective for mechanistic and very detailed study of expression, functioning and regulation of the genes/proteins encoded by the genomes of black fungi.
Collapse
Affiliation(s)
- Eileen A. Erdmann
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Sarah Nitsche
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Anna A. Gorbushina
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Julia Schumacher
- Department of Materials and the Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Department of Biology Chemistry Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Liu B, Fu R, Wu B, Liu X, Xiang M. Rock-inhabiting fungi: terminology, diversity, evolution and adaptation mechanisms. Mycology 2022; 13:1-31. [PMID: 35186410 PMCID: PMC8856086 DOI: 10.1080/21501203.2021.2002452] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rock-inhabiting fungi (RIF) constitute an ecological group associated with terrestrial rocks. This association is generally restricted to the persistent colonisation of rocks and peculiar morphological features based on melanisation and slow growth, which endow RIF with significance in eukaryotic biology, special status in ecology, and exotic potential in biotechnology. There is a need to achieve a better understanding of the hidden biodiversity, antistress biology, origin and convergent evolution of RIF, which will facilitate cultural relic preservation, exploitation of the biogeochemical cycle of rock elements and biotechnology applications. This review focuses on summarising the current knowledge of rock-inhabiting fungi, with particular reference to terminology, biodiversity and geographic distribution, origin and evolution, and stress adaptation mechanisms. We especially teased out the definition through summing up the terms related to rock-inhabting fungi, and also provided a checklist of rock-inhabiting fungal taxa recorded following updated classification schemes.
Collapse
Affiliation(s)
- Bingjie Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Fu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Black Fungi and Stone Heritage Conservation: Ecological and Metabolic Assays for Evaluating Colonization Potential and Responses to Traditional Biocides. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identifying species involved in biodeterioration processes is helpful, however further effort is needed to assess their ecological requirements and actual activity. Black fungi (BF) represent one of the most underestimated threats to stone cultural heritage in the Mediterranean basin; they are difficult to kill or remove due to their ability to grow inside the rock and cope with several stresses. Despite this, little is known about BF and factors favoring their growth on stone surfaces. Eighteen BF species were here investigated for temperature and salt tolerance, and metabolic traits by plate assays. The relation between some highly damaged monuments and their BF settlers was assessed using X-ray diffraction analysis, mercury intrusion porosimetry, and SEM. The sensitiveness to four commonly used traditional biocides was also tested. All strains were able to grow within the range of 5–25 °C and in the presence of 3.5% NaCl. Instrumental analyses were fundamental in discovering the relation between halophilic strains and weathered marble sculptures. The acid, cellulase, esterase, and protease production recorded proved BF’s potential to produce a chemical action on carbonate stones and likely affect other materials/historical artefacts. Besides, the use of carboxymethylcellulose and Tween 20 should be evaluated in restoration practice to prevent tertiary bioreceptivity. Agar diffusion tests helped identify the most resistant species to biocides, opening the perspective of its use as reference organisms in material testing procedures.
Collapse
|
14
|
Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol 2021; 125:1026-1035. [PMID: 34776230 DOI: 10.1016/j.funbio.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
The diversity and functionality of ericoid mycorrhizal (ErM) fungi are still being understudied. Members of Chaetothyriomycetidae evolved a specific lifestyle of inhabiting extreme, poor, or toxic environments. Some taxa in this subclass, especially in Chaetothyriales, are also putative ErM taxa, but their mycorrhizal ability is mostly unknown because the members are generally hard to isolate from roots. This study herein focused on eight root isolates and provided their phylogeny and morphology of root colonization. Phylogenetic analysis based on rRNA sequences clarified that the isolated strains were not classified into Chaetothyriales, but in an unnamed lineage in Chaetothyriomycetidae. This lineage also contains rock isolates, bryosymbionts, and a resinicolous species as well as various environmental sequences obtained from soil/root samples. All strains grew extremely slow by mycelia on cornmeal or malt extract agar (2.9-8.5 mm/month) and formed hyphal coils in vital rhizodermal cells of sterile blueberry seedlings in vitro. This study illustrated the presence of a novel putative ErM lineage in Chaetothyriomycetidae.
Collapse
|
15
|
Quan Y, Ahmed SA, Menezes da Silva N, Al-Hatmi AMS, Mayer VE, Deng S, Kang Y, Sybren de Hoog G, Shi D. Novel black yeast-like species in chaetothyriales with ant-associated life styles. Fungal Biol 2021; 125:276-284. [PMID: 33766306 DOI: 10.1016/j.funbio.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Among ancestral fungi in Chaetothyriales, several groups have a life style in association with tropical ants, either in domatia or in carton-nests. In the present study, two strains collected from ant carton in Thailand and Malaysia were found to represent hitherto undescribed species. Morphological, physiological, phylogenetic data and basic genome information are provided for their classification. Because of the relatively large phylogenetic distances with known species confirmed by overall genome data, large subunit (LSU) and Internal Transcribed Spacer (ITS) ribosomal DNA sequences were sufficient for taxonomic circumscription of the species. The analyzed strains clustered with high statistical support as a clade in the family Trichomeriaceae. Morphologically they were rather similar, lacking sporulation in vitro. In conclusion, Incumbomyces delicatus and Incumbomyces lentus were described as new species based on morphological, physiological and phylogenetic analysis.
Collapse
Affiliation(s)
- Yu Quan
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Sarah A Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Nickolas Menezes da Silva
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Curitiba, Brazil
| | - Abdullah M S Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Ministry of Health, Directorate General of Health Services, Ibri, Oman
| | - Veronika E Mayer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Wien, Austria
| | - Shuwen Deng
- Department of Medical Microbiology, People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Jiangsu, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Dongmei Shi
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China.
| |
Collapse
|
16
|
Tesei D, Chiang AJ, Kalkum M, Stajich JE, Mohan GBM, Sterflinger K, Venkateswaran K. Effects of Simulated Microgravity on the Proteome and Secretome of the Polyextremotolerant Black Fungus Knufia chersonesos. Front Genet 2021; 12:638708. [PMID: 33815472 PMCID: PMC8012687 DOI: 10.3389/fgene.2021.638708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Black fungi are a group of melanotic microfungi characterized by remarkable polyextremotolerance. Due to a broad ecological plasticity and adaptations at the cellular level, it is predicted that they may survive in a variety of extreme environments, including harsh niches on Earth and Mars, and in outer space. However, the molecular mechanisms aiding survival, especially in space, are yet to be fully elucidated. Based on these premises, the rock-inhabiting black fungus Knufia chersonesos (Wt) and its non-melanized mutant (Mut) were exposed to simulated microgravity-one of the prevalent features characterizing space conditions-by growing the cultures in high-aspect-ratio vessels (HARVs). Qualitative and quantitative proteomic analyses were performed on the mycelia and supernatant of culture medium (secretome) to assess alterations in cell physiology in response to low-shear simulated microgravity (LSSMG) and to ultimately evaluate the role of cell-wall melanization in stress survival. Differential expression was observed for proteins involved in carbohydrate and lipid metabolic processes, transport, and ribosome biogenesis and translation via ribosomal translational machinery. However, no evidence of significant activation of stress components or starvation response was detected, except for the scytalone dehydratase, enzyme involved in the synthesis of dihydroxynaphthalene (DNH) melanin, which was found to be upregulated in the secretome of the wild type and downregulated in the mutant. Differences in protein modulation were observed between K. chersonesos Wt and Mut, with several proteins being downregulated under LSSMG in the Mut when compared to the Wt. Lastly, no major morphological alterations were observed following exposure to LSSMG. Similarly, the strains' survivability was not negatively affected. This study is the first to characterize the response to simulated microgravity in black fungi, which might have implications on future astrobiological missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J. Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Ganesh Babu Malli Mohan
- Department of Biotechnology, Centre for Research and Infectious Diseases, SASTRA Deemed University, Thanjavur, India
| | - Katja Sterflinger
- Institute for Natural Sciences and Technology in the Arts, Academy of Fine Arts Vienna, Vienna, Austria
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
17
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
18
|
An advanced genetic toolkit for exploring the biology of the rock-inhabiting black fungus Knufia petricola. Sci Rep 2020; 10:22021. [PMID: 33328531 PMCID: PMC7745021 DOI: 10.1038/s41598-020-79120-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023] Open
Abstract
Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi.
Collapse
|
19
|
Frąc M, Lipiec J, Usowicz B, Oszust K, Brzezińska M. Structural and functional microbial diversity of sandy soil under cropland and grassland. PeerJ 2020; 8:e9501. [PMID: 32953254 PMCID: PMC7474522 DOI: 10.7717/peerj.9501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Land use change significantly alters soil organic carbon content and the microbial community. Therefore, in the present study, the effect of changing cropland to grassland on structural and functional soil microbial diversity was evaluated. The specific aims were (i) to identify the most prominent members of the fungal communities and their relevant ecological guild groups; (ii) to assess changes in the diversity of ammonia-oxidizing archaea; (iii) to determine the relationships between microbial diversity and selected physical and chemical properties. Methods We investigated microbial diversity and activity indicators, bulk density and the water-holding capacity of sandy soil under both cropland and 25-year-old grassland (formerly cropland) in Trzebieszów, in the Podlasie Region, Poland. Microbial diversity was assessed by: the relative abundance of ammonia-oxidizing archaea, fungal community composition and functional diversity. Microbial activity was assessed by soil enzyme (dehydrogenase, β-glucosidase) and respiration tests. Results It was shown that compared to cropland, grassland has a higher soil organic carbon content, microbial biomass, basal respiration, rate of enzyme activity, richness and diversity of the microbial community, water holding capacity and the structure of the fungal and ammonia-oxidizing archaea communities was also altered. The implications of these results for soil quality and soil health are also discussed. The results suggest that grassland can have a significant phytosanitary capacity with regard to ecosystem services, due to the prominent presence of beneficial and antagonistic microbes. Moreover, the results also suggest that grassland use may improve the status of soil organic carbon and nitrogen dynamics, thereby increasing the relative abundance of fungi and ammonia-oxidizing archaea.
Collapse
Affiliation(s)
- Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Jerzy Lipiec
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Bogusław Usowicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Karolina Oszust
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | | |
Collapse
|
20
|
Abstract
AbstractChaetothyriales is an ascomycetous order within Eurotiomycetes. The order is particularly known through the black yeasts and filamentous relatives that cause opportunistic infections in humans. All species in the order are consistently melanized. Ecology and habitats of species are highly diverse, and often rather extreme in terms of exposition and toxicity. Families are defined on the basis of evolutionary history, which is reconstructed by time of divergence and concepts of comparative biology using stochastical character mapping and a multi-rate Brownian motion model to reconstruct ecological ancestral character states. Ancestry is hypothesized to be with a rock-inhabiting life style. Ecological disparity increased significantly in late Jurassic, probably due to expansion of cytochromes followed by colonization of vacant ecospaces. Dramatic diversification took place subsequently, but at a low level of innovation resulting in strong niche conservatism for extant taxa. Families are ecologically different in degrees of specialization. One of the clades has adapted ant domatia, which are rich in hydrocarbons. In derived families, similar processes have enabled survival in domesticated environments rich in creosote and toxic hydrocarbons, and this ability might also explain the pronounced infectious ability of vertebrate hosts observed in these families. Conventional systems of morphological classification poorly correspond with recent phylogenetic data. Species are hypothesized to have low competitive ability against neighboring microbes, which interferes with their laboratory isolation on routine media. The dataset is unbalanced in that a large part of the extant biodiversity has not been analyzed by molecular methods, novel taxonomic entities being introduced at a regular pace. Our study comprises all available species sequenced to date for LSU and ITS, and a nomenclatural overview is provided. A limited number of species could not be assigned to any extant family.
Collapse
|
21
|
Tesei D, Quartinello F, Guebitz GM, Ribitsch D, Nöbauer K, Razzazi-Fazeli E, Sterflinger K. Shotgun proteomics reveals putative polyesterases in the secretome of the rock-inhabiting fungus Knufia chersonesos. Sci Rep 2020; 10:9770. [PMID: 32555357 PMCID: PMC7299934 DOI: 10.1038/s41598-020-66256-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Knufia chersonesos is an ascomycotal representative of black fungi, a morphological group of polyextremotolerant melanotic fungi, whose ability to resort to recalcitrant carbon sources makes it an interesting candidate for degradation purposes. A secretome screening towards polyesterases was carried out for the fungus and its non-melanized mutant, grown in presence of the synthetic copolyester Polybutylene adipate terephthalate (PBAT) as additional or sole carbon source, and resulted in the identification of 37 esterolytic and lipolytic enzymes across the established cultivation conditions. Quantitative proteomics allowed to unveil 9 proteins being constitutively expressed at all conditions and 7 which were instead detected as up-regulated by PBAT exposure. Protein functional analysis and structure prediction indicated similarity of these enzymes to microbial polyesterases of known biotechnological use such as MHETase from Ideonella sakaiensis and CalA from Candida albicans. For both strains, PBAT hydrolysis was recorded at all cultivation conditions and primarily the corresponding monomers were released, which suggests degradation to the polymer's smallest building block. The work presented here aims to demonstrate how investigations of the secretome can provide new insights into the eco-physiology of polymer degrading fungi and ultimately aid the identification of novel enzymes with potential application in polymer processing, recycling and degradation.
Collapse
Affiliation(s)
- Donatella Tesei
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Felice Quartinello
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - Georg M Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
- Austrian Centre of Industrial Biotechnology, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - Doris Ribitsch
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
- Austrian Centre of Industrial Biotechnology, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Katja Sterflinger
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
22
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 PMCID: PMC7438019 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
23
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
24
|
Ametrano CG, Grewe F, Crous PW, Goodwin SB, Liang C, Selbmann L, Lumbsch HT, Leavitt SD, Muggia L. Genome-scale data resolve ancestral rock-inhabiting lifestyle in Dothideomycetes (Ascomycota). IMA Fungus 2019; 10:19. [PMID: 32647623 PMCID: PMC7325674 DOI: 10.1186/s43008-019-0018-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Dothideomycetes is the most diverse fungal class in Ascomycota and includes species with a wide range of lifestyles. Previous multilocus studies have investigated the taxonomic and evolutionary relationships of these taxa but often failed to resolve early diverging nodes and frequently generated inconsistent placements of some clades. Here, we use a phylogenomic approach to resolve relationships in Dothideomycetes, focusing on two genera of melanized, extremotolerant rock-inhabiting fungi, Lichenothelia and Saxomyces, that have been suggested to be early diverging lineages. We assembled phylogenomic datasets from newly sequenced (4) and previously available genomes (238) of 242 taxa. We explored the influence of tree inference methods, supermatrix vs. coalescent-based species tree, and the impact of varying amounts of genomic data. Overall, our phylogenetic reconstructions provide consistent and well-supported topologies for Dothideomycetes, recovering Lichenothelia and Saxomyces among the earliest diverging lineages in the class. In addition, many of the major lineages within Dothideomycetes are recovered as monophyletic, and the phylogenomic approach implemented strongly supports their relationships. Ancestral character state reconstruction suggest that the rock-inhabiting lifestyle is ancestral within the class.
Collapse
Affiliation(s)
- Claudio G Ametrano
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Felix Grewe
- Grainger Bioinformatics Center and Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605 USA
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85176, 3508 AD Utrecht, The Netherlands
| | - Stephen B Goodwin
- USDA-ARS, Crop Production and Pest Control Research Unit and Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 USA
| | - Chen Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell' Università, 01100 Viterbo, Italy.,Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | - H Thorsten Lumbsch
- Grainger Bioinformatics Center and Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605 USA
| | - Steven D Leavitt
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT 84602 USA
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
25
|
Mitchison-Field LMY, Vargas-Muñiz JM, Stormo BM, Vogt EJD, Van Dierdonck S, Pelletier JF, Ehrlich C, Lew DJ, Field CM, Gladfelter AS. Unconventional Cell Division Cycles from Marine-Derived Yeasts. Curr Biol 2019; 29:3439-3456.e5. [PMID: 31607535 PMCID: PMC7076734 DOI: 10.1016/j.cub.2019.08.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Fungi have been found in every marine habitat that has been explored; however, the diversity and functions of fungi in the ocean are poorly understood. In this study, fungi were cultured from the marine environment in the vicinity of Woods Hole, MA, USA, including from plankton, sponge, and coral. Our sampling resulted in 35 unique species across 20 genera. We observed many isolates by time-lapse, differential interference contrast (DIC) microscopy and analyzed modes of growth and division. Several black yeasts displayed highly unconventional cell division cycles compared to those of traditional model yeast systems. Black yeasts have been found in habitats inhospitable to other life and are known for halotolerance, virulence, and stress resistance. We find that this group of yeasts also shows remarkable plasticity in terms of cell size control, modes of cell division, and cell polarity. Unexpected behaviors include division through a combination of fission and budding, production of multiple simultaneous buds, and cell division by sequential orthogonal septations. These marine-derived yeasts reveal alternative mechanisms for cell division cycles that seem likely to expand the repertoire of rules established from classic model system yeasts.
Collapse
Affiliation(s)
- Lorna M Y Mitchison-Field
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA
| | - José M Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin M Stormo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Van Dierdonck
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - James F Pelletier
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ehrlich
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Christine M Field
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA.
| |
Collapse
|
26
|
Villa F, Cappitelli F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019; 7:microorganisms7100380. [PMID: 31547498 PMCID: PMC6843906 DOI: 10.3390/microorganisms7100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
The ecological relationship between minerals and microorganisms arguably represents one of the most important associations in dry terrestrial environments, since it strongly influences major biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally, we advocate the need for the convergence between the experimental and theoretical approaches that might be used to characterize and simulate the development of SABs on mineral substrates and SABs’ broader impacts on the dry terrestrial environment.
Collapse
Affiliation(s)
- Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
27
|
Zalar P, Zupančič J, Gostinčar C, Zajc J, de Hoog GS, De Leo F, Azua-Bustos A, Gunde-Cimerman N. The extremely halotolerant black yeast Hortaea werneckii - a model for intraspecific hybridization in clonal fungi. IMA Fungus 2019; 10:10. [PMID: 32647617 PMCID: PMC7325687 DOI: 10.1186/s43008-019-0007-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
The polymorphic black yeast Hortaea werneckii (Capnodiales, Ascomycota) is extremely halotolerant (growth from 0 to 30% [w/v] NaCl) and has been extensively studied as a model for halotolerance in Eukaryotes for over two decades. Its most frequent sources are hypersaline environments and adjacent sea-water habitats in temperate, subtropical and tropical climates. Although typically saprobic, H. werneckii can also act as a commensal coloniser on human skin, causing tinea nigra on hands and soles. Here, we report that addition of NaCl to culture media expands the growth range of H. werneckii to 37 °C, which explains its colonisation of human skin, with its increased salinity. The morphological and physiological plasticity/ versatility of H. werneckii indicate that a species complex might be involved. This was investigated in this polyphasic taxonomic analysis based on the global diversity of H. werneckii strains collected from hypersaline environments, and from humans and animals. Analysis of D1/D2domains of 28S and internal transcribed spacer rDNA revealed 10 and 17 genotypes, respectively, that were not always compliant. The genotypes have global distributions. Human and environmental strains with the same genotypes are intermingled. Due to the limited number of phylogenetically informative characters in the ribosomal DNA dataset, the partial genes encoding for β-tubulin (BTB) and mini-chromosome maintenance protein (MCM7) were also sequenced. The use of these genes was hampered by ambiguous sequences obtained by Sanger sequencing, as a consequence of the diploid and highly heterozygous genome of many H. werneckii strains. Analysis of the BTB and MCM7 genes showed that in some cases two copies of the gene from the same genome are positioned in distant phylogenetic clusters of the intraspecific gene tree. Analysis of whole-genome sequences of selected H. werneckii strains generally confirmed the phylogenetic distances estimated on the basis of ribosomal genes, but also showed substantial reticulation within the phylogenetic history of the strains. This is in line with the hypothesis that the diploid genomes of H. werneckii were formed by hybridizations, which have sometimes occurred between relatively divergent strains.
Collapse
Affiliation(s)
- Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Jerneja Zupančič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, 266555 China
| | - Janja Zajc
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, Utrecht, 3508 AD The Netherlands
- Centre of Expertise in Mycology of RadboudUMC, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Filomena De Leo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres, 31 98166 Messina, Italy
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Flieger K, Knabe N, Toepel J. Development of an Improved Carotenoid Extraction Method to Characterize the Carotenoid Composition under Oxidative Stress and Cold Temperature in the Rock Inhabiting Fungus Knufia petricola A95. J Fungi (Basel) 2018; 4:E124. [PMID: 30424015 PMCID: PMC6308947 DOI: 10.3390/jof4040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Black yeasts are a highly specified group of fungi, which are characterized by a high resistance against stress factors. There are several factors enabling the cells to survive harsh environmental conditions. One aspect is the pigmentation, the melanin black yeasts often display a highly diverse carotenoid spectrum. Determination and characterization of carotenoids depend on an efficient extraction and separation, especially for black yeast, which is characterized by thick cell walls. Therefore, specific protocols are needed to ensure reliable analyses regarding stress responses in these fungi. Here we present both. First, we present a method to extract and analyze carotenoids and secondly we present the unusual carotenoid composition of the black yeast Knufia petricola A95. Mechanical treatment combined with an acetonitrile extraction gave us very good extraction rates with a high reproducibility. The presented extraction and elution protocol separates the main carotenoids (7) in K. petricola A95 and can be extended for the detection of additional carotenoids in other species. K. petricola A95 displays an unusual carotenoid composition, with mainly didehydrolycopene, torulene, and lycopene. The pigment composition varied in dependency to oxidative stress but remained relatively constant if the cells were cultivated under low temperature. Future experiments have to be carried out to determine if didehydrolycopene functions as a protective agent itself or if it serves as a precursor for antioxidative pigments like torulene and torularhodin, which could be produced after induction under stress conditions. Black yeasts are a promising source for carotenoid production and other substances. To unravel the potential of these fungi, new methods and studies are needed. The established protocol allows the determination of carotenoid composition in black yeasts.
Collapse
Affiliation(s)
- Kerstin Flieger
- Department of Plant Physiology, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany.
| | - Nicole Knabe
- Department of Materials & Environment, Bundesanstalt für Material-forschung und-prüfung, BAM, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Jörg Toepel
- Department of Solar Materials, Applied Biocatalytics, Helmholtz Centre for Environmental Research, Permoser Strasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
29
|
Chaturvedi V, DeFiglio H, Chaturvedi S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Res 2018; 7:665. [PMID: 30026932 PMCID: PMC6039956 DOI: 10.12688/f1000research.15067.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 09/29/2023] Open
Abstract
Background:Pseudogymnoascusdestructans, a psychrophile, causes bat white-nose syndrome (WNS). Pseudogymnoascus pannorum, a closely related fungus, causes human and canine diseases rarely. Both pathogens were reported from the same mines and caves in the United States, but only P. destructans caused WNS. Earlier genome comparisons revealed that P. pannorum contained more deduced proteins with ascribed enzymatic functions than P. destructans. Methods: We performed metabolic profiling with Biolog PM microarray plates to confirm in silico gene predictions. Results:P. pannorum utilized 78 of 190 carbon sources (41%), and 41 of 91 nitrogen sources (43%) tested. P. destructans used 23 carbon compounds (12%) and 23 nitrogen compounds (24%). P. destructans exhibited more robust growth on the phosphorous sources and nutrient supplements (83% and 15%, respectively) compared to P. pannorum (27% and 1%, respectively.). P. pannorum exhibited higher tolerance to osmolytes, pH extremes, and a variety of chemical compounds than P. destructans. Conclusions: An abundance of carbohydrate degradation pathways combined with robust stress tolerance provided clues for the soil distribution of P. pannorum. The limited metabolic profile of P. destructans validated in silico predictions of far fewer proteins and enzymes. P. destructans ability to catabolize diverse phosphorous and nutrient supplements might be critical in the colonization and invasion of bat tissues. The present study of 1,047 different metabolic activities provides a framework for future gene-function investigations of the unique biology of the psychrophilic fungi.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| | - Holland DeFiglio
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| |
Collapse
|
30
|
Chaturvedi V, DeFiglio H, Chaturvedi S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely-related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000Res 2018; 7:665. [PMID: 30026932 PMCID: PMC6039956 DOI: 10.12688/f1000research.15067.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background:Pseudogymnoascusdestructans, a psychrophile, causes bat white-nose syndrome (WNS). Pseudogymnoascus pannorum, a closely related fungus, causes human and canine diseases rarely. Both pathogens were reported from the same mines and caves in the United States, but only P. destructans caused WNS. Earlier genome comparisons revealed that P. pannorum contained more deduced proteins with ascribed enzymatic functions than P. destructans. Methods: We performed metabolic profiling with Biolog PM microarray plates to confirm in silico gene predictions. Results:P. pannorum utilized 78 of 190 carbon sources (41%), and 41 of 91 nitrogen compounds (43%) tested. P. destructans used 23 carbon compounds (12%) and 23 nitrogen compounds (24%). P. destructans exhibited more robust growth on the phosphorous compounds and nutrient supplements (83% and 15%, respectively) compared to P. pannorum (27% and 1%, respectively.). P. pannorum exhibited higher tolerance to osmolytes, pH extremes, and a variety of chemical compounds than P. destructans. Conclusions: An abundance of carbohydrate degradation pathways combined with robust stress tolerance provided clues for the soil distribution of P. pannorum. The limited metabolic profile of P. destructans was compatible with in silico predictions of far fewer proteins and enzymes. P. destructans ability to catabolize diverse phosphorous and nutrient supplements might be critical in the colonization and invasion of bat tissues. The present study of 1,047 different metabolic activities provides a framework for future gene-function investigations of the unique biology of the psychrophilic fungi.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| | - Holland DeFiglio
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, New York State Department of Health, Albany, NY, 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12208, USA
| |
Collapse
|
31
|
de Beer DM, Botes M, Cloete TE. The microbial community of a biofilm contact reactor for the treatment of winery wastewater. J Appl Microbiol 2018; 124:598-610. [PMID: 29193551 DOI: 10.1111/jam.13654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/01/2022]
Abstract
AIMS To utilize a three-tiered approach to provide insight into the microbial community structure, the spatial distribution and the metabolic capabilities of organisms of a biofilm in the two towers of a high-rate biological contact reactor treating winery wastewater. METHODS AND RESULTS Next-generation sequencing indicated that bacteria primarily responsible for the removal of carbohydrates, sugars and alcohol were more abundant in tower 1 than tower 2 while nitrifying and denitrifying bacteria were more abundant in tower 2. Yeast populations differed in each tower. Fluorescent in situ hybridization coupled with confocal microscopy showed distribution of organisms confirming an oxygen gradient across the biofilm depth. The Biolog system (ECO plates) specified the different carbon-metabolizing profiles of the two biofilms. CONCLUSIONS The three-tiered approach confirmed that the addition of a second subunit to the bioreactor, expanded the treatment capacity by augmenting the microbial and metabolic diversity of the system, improving the treatment scope of the system. SIGNIFICANCE AND IMPACT OF THE STUDY A three-tiered biofilm analysis provided data required to optimize the design of a bioreactor to provide favourable conditions for the development of a microbial consortium, which has optimal waste removal properties for the treatment requirements at hand.
Collapse
Affiliation(s)
- D M de Beer
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - M Botes
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - T E Cloete
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
32
|
Knabe N, Gorbushina AA. Territories of Rock-Inhabiting Fungi: Survival on and Alteration of Solid Air-Exposed Surfaces. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Breitenbach R, Silbernagl D, Toepel J, Sturm H, Broughton WJ, Sassaki GL, Gorbushina AA. Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola. Extremophiles 2017; 22:165-175. [PMID: 29275441 PMCID: PMC5847175 DOI: 10.1007/s00792-017-0984-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/08/2017] [Indexed: 01/24/2023]
Abstract
Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10−6 m2 s−1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below.
Collapse
Affiliation(s)
- Romy Breitenbach
- Department 4 (Materials and Environment), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Dorothee Silbernagl
- Division 6.6 (Nanotribology and Nano-Structuring), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Jörg Toepel
- Department of Solar Materials, Applied Biocatalytics, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Heinz Sturm
- Division 6.6 (Nanotribology and Nano-Structuring), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Institute of Machine Tools and Factory Management, TU Berlin, Pascalstr. 8-9, 10587, Berlin, Germany
| | - William J Broughton
- Department 4 (Materials and Environment), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, CP 19046, Brazil
| | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, CP 19046, Brazil
| | - Anna A Gorbushina
- Department 4 (Materials and Environment), Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
- Department of Earth Sciences, Freie Universität Berlin, Malteserstraße 74-100, 12249, Berlin, Germany.
| |
Collapse
|
34
|
Draft Genome Sequences of the Black Rock Fungus Knufia petricola and Its Spontaneous Nonmelanized Mutant. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01242-17. [PMID: 29097475 PMCID: PMC5668551 DOI: 10.1128/genomea.01242-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fungal genus Knufia mostly comprises extremotolerant species from environmental sources, especially rock surfaces. The draft genome sequence of the rock fungus Knufia petricola presented here is the first whole-genome sequence of the only species among black fungi known to have a nonmelanized spontaneous mutant.
Collapse
|
35
|
Pokharel R, Gerrits R, Schuessler JA, Floor GH, Gorbushina AA, von Blanckenburg F. Mg Isotope Fractionation during Uptake by a Rock-Inhabiting, Model Microcolonial Fungus Knufia petricola at Acidic and Neutral pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9691-9699. [PMID: 28758385 DOI: 10.1021/acs.est.7b01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The model rock-inhabiting microcolonial fungus Knufia petricola fractionates stable Mg isotopes in a time- and pH-dependent manner. During growth, the increase of 26Mg/24Mg in the fungal cells relative to the growth media amounted to 0.65 ± 0.14‰ at pH 6 and 1.11 ± 0.35‰ at pH 3. We suggest a constant equilibrium fractionation factor during incorporation of Mg into ribosomes and ATP as a cause of enrichment of 26Mg in the cells. We suggest too that the proton gradient across the cell wall and cytoplasmic membrane controls Mg2+ transport into the fungal cell. As the strength of this gradient is a function of extracellular solution pH, the pH-dependence on Mg isotope fractionation is thus due to differences in fungal cell mass fluxes. Through a mass balance model we show that Mg uptake into the fungal cell is not associated with a unique Mg isotope fractionation factor. This Mg isotope fractionation dependence on pH might also be observed in any organism with cells that follow similar Mg uptake and metabolic pathways and serves to reveal Mg cycling in ecosystems.
Collapse
Affiliation(s)
- Rasesh Pokharel
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geological Sciences, Freie Universität Berlin , 12249 Berlin, Germany
| | - Ruben Gerrits
- Department 4, Materials & Environment, BAM Federal Institute for Materials Research & Testing , 12205 Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| | - Jan A Schuessler
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
| | - Geerke H Floor
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
| | - Anna A Gorbushina
- Institute of Geological Sciences, Freie Universität Berlin , 12249 Berlin, Germany
- Department 4, Materials & Environment, BAM Federal Institute for Materials Research & Testing , 12205 Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin , 14195 Berlin, Germany
| | - Friedhelm von Blanckenburg
- Section 3.3, Earth Surface Geochemistry, GFZ German Research Centre for Geosciences , Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geological Sciences, Freie Universität Berlin , 12249 Berlin, Germany
| |
Collapse
|
36
|
Gnavi G, Garzoli L, Poli A, Prigione V, Burgaud G, Varese GC. The culturable mycobiota of Flabellia petiolata: First survey of marine fungi associated to a Mediterranean green alga. PLoS One 2017; 12:e0175941. [PMID: 28426712 PMCID: PMC5398637 DOI: 10.1371/journal.pone.0175941] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/03/2017] [Indexed: 12/02/2022] Open
Abstract
Algae-inhabiting marine fungi represent a taxonomically and ecologically interesting group of microorganisms still largely neglected, especially in temperate regions. The aim of this study was to isolate and to identify the culturable mycobiota associated with Flabellia petiolata, a green alga frequently retrieved in the Mediterranean basin. Twenty algal thalli were collected from two different sampling sites in the Mediterranean Sea (Elba Island, Italy). A polyphasic approach showed the presence of a relevant alga-associated mycobiota with 64 taxa identified. The fungal isolates belonged mainly to Ascomycota (61 taxa), while only three Basidiomycota were detected. The phylogenetic position of sterile mycelia and cryptic taxa, inferred on the basis of LSU partial region, highlighted the presence of putative new phylogenetic lineages within Dothideomycetes and Sordariomycetes. This work represents the first quali-quantitative analysis of the culturable mycobiota associated to a green alga in the Mediterranean Sea.
Collapse
Affiliation(s)
- Giorgio Gnavi
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Laura Garzoli
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Anna Poli
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gaëtan Burgaud
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Giovanna Cristina Varese
- Mycotheca Universitatis Taurinensis (MUT), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
37
|
A standardized approach for co-culturing dothidealean rock-inhabiting fungi and lichen photobionts in vitro. Symbiosis 2017. [DOI: 10.1007/s13199-017-0479-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
- Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
39
|
Sanchini A, Dematheis F, Semmler T, Lewin A. Metabolic phenotype of clinical and environmental Mycobacterium avium subsp. hominissuis isolates. PeerJ 2017; 5:e2833. [PMID: 28070460 PMCID: PMC5214758 DOI: 10.7717/peerj.2833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium avium subsp. hominissuis (MAH) is an emerging opportunistic human pathogen. It can cause pulmonary infections, lymphadenitis and disseminated infections in immuno-compromised patients. In addition, MAH is widespread in the environment, since it has been isolated from water, soil or dust. In recent years, knowledge on MAH at the molecular level has increased substantially. In contrast, knowledge of the MAH metabolic phenotypes remains limited. Methods In this study, for the first time we analyzed the metabolic substrate utilization of ten MAH isolates, five from a clinical source and five from an environmental source. We used BIOLOG Phenotype MicroarrayTM technology for the analysis. This technology permits the rapid and global analysis of metabolic phenotypes. Results The ten MAH isolates tested showed different metabolic patterns pointing to high intra-species diversity. Our MAH isolates preferred to use fatty acids such as Tween, caproic, butyric and propionic acid as a carbon source, and L-cysteine as a nitrogen source. Environmental MAH isolates resulted in being more metabolically active than clinical isolates, since the former metabolized more strongly butyric acid (p = 0.0209) and propionic acid (p = 0.00307). Discussion Our study provides new insight into the metabolism of MAH. Understanding how bacteria utilize substrates during infection might help the developing of strategies to fight such infections.
Collapse
Affiliation(s)
- Andrea Sanchini
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute , Berlin , Germany
| | - Flavia Dematheis
- Institute of Microbiology and Epizootics, Free University Berlin , Berlin , Germany
| | - Torsten Semmler
- NG 1 Microbial Genomics, Robert Koch Institute , Berlin , Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute , Berlin , Germany
| |
Collapse
|
40
|
Pinzari F, Ceci A, Abu-Samra N, Canfora L, Maggi O, Persiani A. Phenotype MicroArray™ system in the study of fungal functional diversity and catabolic versatility. Res Microbiol 2016; 167:710-722. [PMID: 27283363 DOI: 10.1016/j.resmic.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022]
Abstract
Fungi cover a range of important ecological functions associated with nutrient and carbon cycling in leaf litter and soil. As a result, research on existing relationships between fungal functional diversity, decomposition rates and competition is of key interest. Indeed, availability of nutrients in soil is largely the consequence of organic matter degradation dynamics. The Biolog® Phenotype MicroArrays™ (PM) system allows for the testing of fungi against many different carbon sources at any one time. The use and potential of the PM system as a tool for studying niche overlap and catabolic versatility of saprotrophic fungi is discussed here, and examples of its application are provided.
Collapse
Affiliation(s)
- Flavia Pinzari
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy; Natural History Museum, Life Sciences Department, Cromwell Road, London SW7 5BD, UK.
| | - Andrea Ceci
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| | - Nadir Abu-Samra
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy.
| | - Loredana Canfora
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy.
| | - Oriana Maggi
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| | - Annamaria Persiani
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| |
Collapse
|
41
|
Villa F, Stewart PS, Klapper I, Jacob JM, Cappitelli F. Subaerial Biofilms on Outdoor Stone Monuments: Changing the Perspective Toward an Ecological Framework. Bioscience 2016. [DOI: 10.1093/biosci/biw006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Villa F, Pitts B, Lauchnor E, Cappitelli F, Stewart PS. Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface. Front Microbiol 2015; 6:1251. [PMID: 26635736 PMCID: PMC4646968 DOI: 10.3389/fmicb.2015.01251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.
Collapse
Affiliation(s)
- Federica Villa
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA ; Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Betsey Pitts
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA
| | - Ellen Lauchnor
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano Milano, Italy
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman MT, USA
| |
Collapse
|
43
|
Chen L, Xu J, Feng Y, Wang J, Yu Y, Brookes PC. Responses of soil microeukaryotic communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing. Front Microbiol 2015; 6:1149. [PMID: 26539178 PMCID: PMC4611156 DOI: 10.3389/fmicb.2015.01149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
In soil microbiology, there is a “paradox” of soil organic carbon (SOC) mineralization, which is that even though chloroform fumigation destroys majority of the soil microbial biomass, SOC mineralization continues at the same rate as in the non-fumigated soil during the incubation period. Soil microeukaryotes as important SOC decomposers, however, their community-level responses to chloroform fumigation are not well understood. Using the 18S rRNA gene amplicon sequencing, we analyzed the composition, diversity, and C-metabolic functions of a grassland soil and an arable soil microeukaryotic community in response to fumigation followed by a 30-day incubation. The grassland and arable soil microeukaryotic communities were dominated by the fungal Ascomycota (80.5–93.1% of the fungal sequences), followed by the protistan Cercozoa and Apicomplexa. In the arable soil fungal community, the predominance of the class Sordariomycetes was replaced by the class Eurotiomycetes after fumigation at days 7 and 30 of the incubation. Fumigation changed the microeukaryotic α-diversity in the grassland soil at days 0 and 7, and β-diversity in the arable soil at days 7 and 30. Network analysis indicated that after fumigation fungi were important groups closely related to other taxa. Most phylotypes (especially Sordariomycetes, Dothideomycetes, Coccidia, and uncultured Chytridiomycota) were inhibited, and only a few were positively stimulated by fumigation. Despite the inhibited Sordariomycetes, the fumigated communities mainly consisted of Eurotiomycetes and Sordariomycetes (21.9 and 36.5% relative frequency, respectively), which are able to produce hydrolytic enzymes associated with SOC mineralization. Our study suggests that fumigation not only decreases biomass size, but modulates the composition and diversity of the soil microeukaryotic communities, which are capable of driving SOC mineralization by release of hydrolytic enzymes during short-term fumigation-incubation.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University Hangzhou, China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| | - Juntao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
| | - Yongjie Yu
- College of Applied Meteorology, Nanjing University of Information Science and Technology Nanjing, China
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University Hangzhou, China
| |
Collapse
|
44
|
Kondratyuk TO, Kondratyuk SY, Morgaienko OO, Khimich MV, Beregova TV, Ostapchenko LI. Pseudonadsoniella brunnea (Meripilaceae, Agaricomycotina), a new brown yeast-like fungus producing melanin from the Antarctic; with notes on nomenclature and type confusion of Nadsoniella nigra. ACTA ACUST UNITED AC 2015. [DOI: 10.1556/034.57.2015.3-4.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T. O. Kondratyuk
- Institute of Biology, Scientific Educational Centre Taras Shevchenko National University of Kiev, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| | - S. Y. Kondratyuk
- M. H. Kholodny Institute of Botany, Tereshchenkivska str. 2, 01004 Kyiv, Ukraine
| | - O. O. Morgaienko
- Institute of Biology, Scientific Educational Centre Taras Shevchenko National University of Kiev, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| | - M. V. Khimich
- Institute of Biology, Scientific Educational Centre Taras Shevchenko National University of Kiev, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| | - T. V. Beregova
- Institute of Biology, Scientific Educational Centre Taras Shevchenko National University of Kiev, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| | - L. I. Ostapchenko
- Institute of Biology, Scientific Educational Centre Taras Shevchenko National University of Kiev, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine
| |
Collapse
|
45
|
Wäli PP, Huhtinen S, Pino-Bodas R, Stenroos S. Three common bryophilous fungi with meristematic anamorphs and phylogenetic alliance to Teratosphaeriaceae, Capnodiales. Fungal Biol 2014; 118:956-69. [DOI: 10.1016/j.funbio.2014.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/16/2023]
|
46
|
Noack-Schönmann S, Bus T, Banasiak R, Knabe N, Broughton WJ, Den Dulk-Ras H, Hooykaas PJJ, Gorbushina AA. Genetic transformation of Knufia petricola A95 - a model organism for biofilm-material interactions. AMB Express 2014; 4:80. [PMID: 25401079 PMCID: PMC4230810 DOI: 10.1186/s13568-014-0080-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 11/26/2022] Open
Abstract
We established a protoplast-based system to transfer DNA to Knufia petricola strain A95, a melanised rock-inhabiting microcolonial fungus that is also a component of a model sub-aerial biofilm (SAB) system. To test whether the desiccation resistant, highly melanised cell walls would hinder protoplast formation, we treated a melanin-minus mutant of A95 as well as the type-strain with a variety of cell-degrading enzymes. Of the different enzymes tested, lysing enzymes from Trichoderma harzianum were most effective in producing protoplasts. This mixture was equally effective on the melanin-minus mutant and the type-strain. Protoplasts produced using lysing enzymes were mixed with polyethyleneglycol (PEG) and plasmid pCB1004 which contains the hygromycin B (HmB) phosphotransferase (hph) gene under the control of the Aspergillus nidulans trpC. Integration and expression of hph into the A95 genome conferred hygromycin resistance upon the transformants. Two weeks after plating out on selective agar containing HmB, the protoplasts developed cell-walls and formed colonies. Transformation frequencies were in the range 36 to 87 transformants per 10 μg of vector DNA and 106 protoplasts. Stability of transformation was confirmed by sub-culturing the putative transformants on selective agar containing HmB as well as by PCR-detection of the hph gene in the colonies. The hph gene was stably integrated as shown by five subsequent passages with and without selection pressure.
Collapse
|
47
|
Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L. Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. FUNGAL DIVERS 2014. [DOI: 10.1007/s13225-013-0277-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|