1
|
Kalicharan RE, Fernandez J. Triple Threat: How Global Fungal Rice and Wheat Pathogens Utilize Comparable Pathogenicity Mechanisms to Drive Host Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:173-186. [PMID: 39807944 DOI: 10.1094/mpmi-09-24-0106-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops such as rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as Magnaporthe oryzae, the causative agent of rice blast disease; Fusarium graminearum, responsible for Fusarium head blight in wheat; and Zymoseptoria tritici, the source of Septoria tritici blotch. All three pathogens are hemibiotrophic, initially colonizing the host through a biotrophic, symptomless lifestyle, followed by causing cell death through the necrotrophic phase. Additionally, they deploy a diverse range of effectors, including proteinaceous and non-proteinaceous molecules, to manipulate fundamental host cellular processes, evade immune responses, and promote disease progression. This review discusses recent advances in understanding the effector biology of these three pathogens, highlighting both the shared functionalities and unique molecular mechanisms they employ to regulate conserved elements of host pathways, such as directly manipulating gene transcription in host nuclei, disrupting reactive oxygen species signaling, interfering with protein stability, and undermining host structural integrity. By detailing these complex interactions, the review explores potential targets for innovative control measures and emphasizes the need for further research to develop effective strategies against these destructive pathogens in the face of evolving environmental and agricultural challenges. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rachel E Kalicharan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
2
|
Oreiro EG, Samils B, Kildea S, Heick T, Hellin P, Legrève A, Rodemann B, Berg G, Jørgensen LN, Friberg H, Berlin A, Zhan J, Andersson B. DMI fungicide resistance in Zymoseptoria tritici is unlinked to geographical origin and genetic background: a case study in Europe. PEST MANAGEMENT SCIENCE 2025; 81:1103-1112. [PMID: 39503283 PMCID: PMC11716363 DOI: 10.1002/ps.8514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The hemibiotrophic fungus Zymoseptoria tritici causing Septoria tritici blotch (STB), is a devastating foliar pathogen of wheat worldwide. A common group of fungicides used to control STB are the demethylation inhibitors (DMIs). DMI fungicides restrict fungal growth by inhibiting the sterol 14-α-demethylase, a protein encoded by CYP51 gene and essential for maintaining fungal cell permeability. However, the adaptation of Z. tritici populations in response to intensive and prolonged DMI usage has resulted in a gradual shift towards reduced sensitivity to this group of fungicides. In this study, 311 isolates were collected pre-treatment from nine wheat-growing regions in Europe in 2019. These isolates were analysed by high-throughput amplicon-based sequencing of nine housekeeping genes and the CYP51 gene. RESULTS Analyses based on housekeeping genes and the CYP51 gene revealed a lack of population structure in Z. tritici samples irrespective of geographical origin. Minimum spanning network (MSN) analysis showed clustering of multilocus genotypes (MLGs) based on CYP51 haplotypes, indicating an effect of selection due to DMI fungicide use. The majority of the haplotypes identified in this study have been reported previously. The diversity and frequencies of mutations varied across regions. CONCLUSION Using a high-throughput amplicon-sequencing approach, we found several mutations in the CYP51 gene combined in different haplotypes that are likely to cause fungicide resistance. These mutations occurred irrespective of genetic background or geographical origin. Overall, these results contribute to the development of effective and sustainable risk monitoring for DMI fungicide resistance. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Eula Gems Oreiro
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Berit Samils
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Steven Kildea
- TEAGASC, The Agriculture and Food Development AuthorityCarlowIreland
| | - Thies Heick
- Department of AgroecologyAarhus UniversityFlakkebjergDenmark
| | - Pierre Hellin
- Plant and Forest Health UnitWalloon Agricultural Research CenterGemblouxBelgium
| | - Anne Legrève
- Applied Microbiology, Earth and Life InstituteUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Bernd Rodemann
- Department of Mycology and VirologyJulius Kühn‐InstitutBraunschweigGermany
| | | | | | - Hanna Friberg
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Anna Berlin
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Jiasui Zhan
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Björn Andersson
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
3
|
Kroll E, Bayon C, Rudd J, Armer VJ, Magaji-Umashankar A, Ames R, Urban M, Brown NA, Hammond-Kosack K. A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis. PLoS Pathog 2025; 21:e1012769. [PMID: 39787257 PMCID: PMC11717356 DOI: 10.1371/journal.ppat.1012769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici. Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.
Collapse
Affiliation(s)
- Erika Kroll
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- Department of Life Sciences, University of Bath, Bath, Somerset, United Kingdom
| | - Carlos Bayon
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Jason Rudd
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Victoria J. Armer
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Anjana Magaji-Umashankar
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Ryan Ames
- Biosciences and Living Systems Institute, University of Exeter, Devon, Exeter, United Kingdom
| | - Martin Urban
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Neil A. Brown
- Department of Life Sciences, University of Bath, Bath, Somerset, United Kingdom
| | - Kim Hammond-Kosack
- Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
4
|
Kay WT, O'Neill P, Gurr SJ, Fones HN. Long-term survival of asexual Zymoseptoria tritici spores in the environment. BMC Biol 2024; 22:265. [PMID: 39563388 PMCID: PMC11575008 DOI: 10.1186/s12915-024-02060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The fungal phytopathogen Zymoseptoria tritici, causal agent of the economically damaging Septoria tritici blotch of wheat, is different from most foliar fungal pathogens in that its germination occurs slowly and apparently randomly after arrival on the leaf surface and is followed by a potentially prolonged period of epiphytic growth and even reproduction, during which no feeding structures are formed by the fungus. Thus, understanding the cues for germination and the mechanisms that underpin survival in low-nutrient environments could provide key new avenues for disease control. RESULTS In this work, we examine survival, culturability and virulence of spores following transfer from a high nutrient environment to water. We find that a sub-population of Z. tritici spores can survive and remain virulent for at least 7 weeks in water alone, during which time multicellular structures split to single cells. The fungus relies heavily on stored lipids; however, if cell suspensions in water are dried, the cells survive without lipid utilisation. Changes in gene expression in the first hours after suspension in water reflect adaptation to stress, while longer term starvation (7 days) induces changes particularly in primary metabolism and cytochrome P450 (CYP) gene expression. Importantly, we also found that Z. tritici spores are equally or better able to survive in soil as in water, and that rain-splash occurring 49 days after soil inoculation can transfer cells to wheat seedlings growing in inoculated soil and cause Septoria leaf blotch disease. CONCLUSIONS Z. tritici blastospores can survive in water or soil for long periods, potentially spanning the intercrop period for UK winter wheat. They rely on internal lipid stores, with no external nutrition, and although a large proportion of spores do not survive for such an extended period, those that do remain as virulent as spores grown on rich media. Thus, Z. tritici has exceptional survival strategies, which are likely to be important in understanding its population genetics and in developing novel routes for Septoria leaf blotch control.
Collapse
Affiliation(s)
- William T Kay
- Biosciences, University of Exeter, Exeter, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
5
|
Bourgeois TP, Prado S, Suffert F, Salmon S. The collembolan Heteromurus nitidus grazes the wheat fungal pathogen Zymoseptoria tritici on infected tissues: opportunities and limitations for bioregulation. PEST MANAGEMENT SCIENCE 2024; 80:3238-3245. [PMID: 38357856 DOI: 10.1002/ps.8026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is a foliar disease affecting wheat crops against which conventional control methods are not totally effective. During inter-epidemic periods the fungus survives in wheat residues left on the ground. In this study, we tested the potential of the collembolan Heteromurus nitidus - a springtail species present in field soils and known to interact with different fungal species - as a potential bioregulation agent of Z. tritici on wheat residues through a choice and consumption experiment. RESULTS Springtails preferred inoculated fresh residues but did not have a preference between inoculated and uninoculated old residues. Springtails grazed on Z. tritici fruiting bodies and reduced pycnidiospore numbers by ten-fold compared to control inoculated fresh residues. Attraction toward fresh inoculated residues and pycnidiospore reduction support the hypothesis that Z. tritici is a food source for springtails. Heteromurus nitidus showed no preference between inoculated and uninoculated 18-month-old residues, probably because they no longer produced ascospores. CONCLUSION Attraction towards fresh residues and spore reduction support our hypothesis that H. nitidus may contribute to the bioregulation of Z. tritici. Perspectives for field application would be determined by the ability of H. nitidus and Z. tritici to interact at key epidemiological stages. The impact of H. nitidus on the quantity of pathogen primary inoculum over time should be estimated using residues of intermediate age. This would help to identify the optimal period for enhancing the effectiveness of springtails as consumers of Z. tritici. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas P Bourgeois
- Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, CNRS, UMR 7179, Brunoy, France
| | - Soizic Prado
- Muséum National d'Histoire Naturelle, Adaptations du vivant, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
| | | | - Sandrine Salmon
- Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, CNRS, UMR 7179, Brunoy, France
| |
Collapse
|
6
|
Song T, Gupta S, Sorokin Y, Frenkel O, Cytryn E, Friedman J. A Burkholderia cenocepacia-like environmental isolate strongly inhibits the plant fungal pathogen Zymoseptoria tritici. Appl Environ Microbiol 2024; 90:e0222223. [PMID: 38624199 PMCID: PMC11107150 DOI: 10.1128/aem.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.
Collapse
Affiliation(s)
- Tingting Song
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Suyash Gupta
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Yael Sorokin
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Omer Frenkel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Jonathan Friedman
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Alassimone J, Praz C, Lorrain C, De Francesco A, Carrasco-López C, Faino L, Shen Z, Meile L, Sánchez-Vallet A. The Zymoseptoria tritici Avirulence Factor AvrStb6 Accumulates in Hyphae Close to Stomata and Triggers a Wheat Defense Response Hindering Fungal Penetration. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:432-444. [PMID: 38265007 DOI: 10.1094/mpmi-11-23-0181-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Zymoseptoria tritici, the causal agent of Septoria tritici blotch, is one of Europe's most damaging wheat pathogens, causing significant economic losses. Genetic resistance is a common strategy to control the disease, Stb6 being a resistance gene used for more than 100 years in Europe. This study investigates the molecular mechanisms underlying Stb6-mediated resistance. Utilizing confocal microscopy imaging, we determined that Z. tritici epiphytic hyphae mainly accumulate the corresponding avirulence factor AvrStb6 in close proximity to stomata. Consequently, the progression of AvrStb6-expressing avirulent strains is hampered during penetration. The fungal growth inhibition co-occurs with a transcriptional reprogramming in wheat characterized by an induction of immune responses, genes involved in stomatal regulation, and cell wall-related genes. Overall, we shed light on the gene-for-gene resistance mechanisms in the wheat-Z. tritici pathosystem at the cytological and transcriptomic level, and our results highlight that stomatal penetration is a critical process for pathogenicity and resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Coraline Praz
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Cécile Lorrain
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Luigi Faino
- Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Ziqi Shen
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Lukas Meile
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
8
|
Qutb AM, Cambon F, McDonald MC, Saintenac C, Kettles GJ. The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus Zymoseptoria tritici. BMC PLANT BIOLOGY 2024; 24:248. [PMID: 38580955 PMCID: PMC10996218 DOI: 10.1186/s12870-024-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.
Collapse
Affiliation(s)
- Abdelrahman M Qutb
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Florence Cambon
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Megan C McDonald
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Graeme J Kettles
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Kovács-Simon A, Fones HN. Use of chitin:DNA ratio to assess growth form in fungal cells. BMC Biol 2024; 22:10. [PMID: 38233847 PMCID: PMC10795418 DOI: 10.1186/s12915-024-01815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Dimorphism, the ability to switch between a 'yeast-like' and a hyphal growth form, is an important feature of certain fungi, including important plant and human pathogens. The switch to hyphal growth is often associated with virulence, pathogenicity, biofilm formation and stress resistance. Thus, the ability to accurately and efficiently measure fungal growth form is key to research into these fungi, especially for discovery of potential drug targets. To date, fungal growth form has been assessed microscopically, a process that is both labour intensive and costly. RESULTS Here, we unite quantification of the chitin in fungal cell walls and the DNA in nuclei to produce a methodology that allows fungal cell shape to be estimated by calculation of the ratio between cell wall quantity and number of nuclei present in a sample of fungus or infected host tissue. Using the wheat pathogen Zymoseptoria tritici as a test case, with confirmation in the distantly related Fusarium oxysporum, we demonstrate a close, linear relationship between the chitin:DNA ratio and the average polarity index (length/width) of fungal cells. We show the utility of the method for estimating growth form in infected wheat leaves, differentiating between the timing of germination in two different Z. tritici isolates using this ratio. We also show that the method is robust to the occurrence of thick-walled chlamydospores, which show a chitin:DNA ratio that is distinct from either 'yeast-like' blastospores or hyphae. CONCLUSIONS The chitin:DNA ratio provides a simple methodology for determining fungal growth form in bulk tissue samples, reducing the need for labour-intensive microscopic studies requiring specific staining or GFP-tags to visualise the fungus within host tissues. It is applicable to a range of dimorphic fungi under various experimental conditions.
Collapse
|
10
|
Orive ME, Barfield M, Holt RD. Partial Clonality Expands the Opportunity for Spatial Adaptation. Am Nat 2023; 202:681-698. [PMID: 37963114 DOI: 10.1086/726335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractReproductive mode may strongly impact adaptation in spatially varying populations linked by dispersal, especially when sexual and clonal offspring differ in dispersal. We determined how spatial structure affects adaptation in populations with mixed clonal and sexual reproduction. In a source-sink quantitative genetic deterministic model (with stabilizing selection around different optima), greater clonal reproduction or parent-offspring association (a measure of the part of the parent's phenotype other than the additive genetic component inherited by clonal offspring) increased the selective difference (difference between phenotypic optima) allowing sink populations to adapt. Given dispersal differences between clonally and sexually produced juveniles, adaptation increased with an increasing fraction of clonal dispersers. When considering migrational meltdown, partially clonal reproduction reduced cases where dispersal caused habitat loss. Stochastic individual-based simulations support these results, although the effect of differential dispersal was reversed, with decreased clonal dispersal allowing greater adaptation. These results parallel earlier findings that for an instantaneous shift in phenotypic optimum, increasing clonality allowed population persistence for a greater shift; here, selective change is spatial rather than temporal. These results may help explain the success of many partially clonal organisms in invading new habitats, complementing traditional explanations based on avoiding Allee effects.
Collapse
|
11
|
Suarez-Fernandez M, Álvarez-Aragón R, Pastor-Mediavilla A, Maestre-Guillén A, del Olmo I, De Francesco A, Meile L, Sánchez-Vallet A. Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen. mBio 2023; 14:e0138623. [PMID: 37642412 PMCID: PMC10653901 DOI: 10.1128/mbio.01386-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Pathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that the KAT Sas3 is involved in leaf symptom development and pycnidia formation. Importantly, our results indicate that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
| | - Rocio Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Pastor-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alejandro Maestre-Guillén
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ivan del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lukas Meile
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Ababa G. Biology, taxonomy, genetics, and management of Zymoseptoria tritici: the causal agent of wheat leaf blotch. Mycology 2023; 14:292-315. [PMID: 38187886 PMCID: PMC10769150 DOI: 10.1080/21501203.2023.2241492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/22/2023] [Indexed: 01/09/2024] Open
Abstract
Septoria tritici blotch or Septoria leaf blotch has been used for long time, but leaf blotch is a correct disease name. Moreover, Lb resistant gene is the correct name, but, not Stb gene. It has sexual and asexual parts on the mycelia, known as heterothallic fungi. Its pathogenic diversity ranged from 40% to 93% and has produced a wide variety of AvrLb6 haplotypes. M. graminicola has a plasmogamy and karyogamy sexual process. The pathogen can use macropycnidiospores, micropycnidiospores, and pycnidia vegetative growths for infection and overwintering. Synthetic M3, Kavkaz-K4500, Synthetic 6×, and TE9111 wheat genotypes have horizontal resistance. Avirulence (Avr) genes in Z. tritici and their matching wheat (R) genes indicate gene for gene mechanisms of resistance. Twenty-two R genes (vertical resistance) have been identified. In both horizontal and vertical resistance, different Lb genes have been broken down due to new Z.tritici virulent gene and currently Lb19 resistant gene is being recommended. Mixing of resistant and susceptible cultivars is also the most effective management strategy. Moreover, different cultural practices and biological control have been proposed. Lastly, different fungicides are also available. However, in developing countries cultivar mixture, isolates diversity, biological control, and epidemic studies have been greatly missed.
Collapse
Affiliation(s)
- Girma Ababa
- Department of Plant Protection (Plant Pathology), Holetta Agricultural Research Center (HARC), Ethiopian Institute of Agricultural Research (EIAR), Holetta, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Chen H, King R, Smith D, Bayon C, Ashfield T, Torriani S, Kanyuka K, Hammond-Kosack K, Bieri S, Rudd J. Combined pangenomics and transcriptomics reveals core and redundant virulence processes in a rapidly evolving fungal plant pathogen. BMC Biol 2023; 21:24. [PMID: 36747219 PMCID: PMC9903594 DOI: 10.1186/s12915-023-01520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Studying genomic variation in rapidly evolving pathogens potentially enables identification of genes supporting their "core biology", being present, functional and expressed by all strains or "flexible biology", varying between strains. Genes supporting flexible biology may be considered to be "accessory", whilst the "core" gene set is likely to be important for common features of a pathogen species biology, including virulence on all host genotypes. The wheat-pathogenic fungus Zymoseptoria tritici represents one of the most rapidly evolving threats to global food security and was the focus of this study. RESULTS We constructed a pangenome of 18 European field isolates, with 12 also subjected to RNAseq transcription profiling during infection. Combining this data, we predicted a "core" gene set comprising 9807 sequences which were (1) present in all isolates, (2) lacking inactivating polymorphisms and (3) expressed by all isolates. A large accessory genome, consisting of 45% of the total genes, was also defined. We classified genetic and genomic polymorphism at both chromosomal and individual gene scales. Proteins required for essential functions including virulence had lower-than average sequence variability amongst core genes. Both core and accessory genomes encoded many small, secreted candidate effector proteins that likely interact with plant immunity. Viral vector-mediated transient in planta overexpression of 88 candidates failed to identify any which induced leaf necrosis characteristic of disease. However, functional complementation of a non-pathogenic deletion mutant lacking five core genes demonstrated that full virulence was restored by re-introduction of the single gene exhibiting least sequence polymorphism and highest expression. CONCLUSIONS These data support the combined use of pangenomics and transcriptomics for defining genes which represent core, and potentially exploitable, weaknesses in rapidly evolving pathogens.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
- Present address: School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong People’s Republic of China
| | - Robert King
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Dan Smith
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Carlos Bayon
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Tom Ashfield
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
- Crop Health and Protection (CHaP), Rothamsted Research, Harpenden, Herts UK
| | - Stefano Torriani
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Kostya Kanyuka
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
- Present address: National Institute for Agricultural Botany (NIAB), 93 Lawrence Weaver Road, Cambridge, UK
| | - Kim Hammond-Kosack
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Stephane Bieri
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Jason Rudd
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| |
Collapse
|
14
|
Platel R, Lucau-Danila A, Baltenweck R, Maia-Grondard A, Trapet P, Magnin-Robert M, Randoux B, Duret M, Halama P, Hilbert JL, Coutte F, Jacques P, Hugueney P, Reignault P, Siah A. Deciphering immune responses primed by a bacterial lipopeptide in wheat towards Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2023; 13:1074447. [PMID: 36777540 PMCID: PMC9909289 DOI: 10.3389/fpls.2022.1074447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Plant immunity induction with natural biocontrol compounds is a valuable and promising ecofriendly tool that fits with sustainable agriculture and healthy food. Despite the agroeconomic significance of wheat, the mechanisms underlying its induced defense responses remain obscure. We reveal here, using combined transcriptomic, metabolomic and cytologic approach, that the lipopeptide mycosubtilin from the beneficial bacterium Bacillus subtilis, protects wheat against Zymoseptoria tritici through a dual mode of action (direct and indirect) and that the indirect one relies mainly on the priming rather than on the elicitation of plant defense-related mechanisms. Indeed, the molecule primes the expression of 80 genes associated with sixteen functional groups during the early stages of infection, as well as the accumulation of several flavonoids during the period preceding the fungal switch to the necrotrophic phase. Moreover, genes involved in abscisic acid (ABA) biosynthesis and ABA-associated signaling pathways are regulated, suggesting a role of this phytohormone in the indirect activity of mycosubtilin. The priming-based bioactivity of mycosubtilin against a biotic stress could result from an interaction of the molecule with leaf cell plasma membranes that may mimic an abiotic stress stimulus in wheat leaves. This study provides new insights into induced immunity in wheat and opens new perspectives for the use of mycosubtilin as a biocontrol compound against Z. tritici.
Collapse
Affiliation(s)
- Rémi Platel
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Anca Lucau-Danila
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | | | | | - Pauline Trapet
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Morgane Duret
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Patrice Halama
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Jean-Louis Hilbert
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - François Coutte
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Philippe Jacques
- Joint Research Unit 1158 BioEcoAgro, TERRA Teaching and Research Centre, MiPI, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | | | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Ali Siah
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| |
Collapse
|
15
|
Blyth HR, Smith D, King R, Bayon C, Ashfield T, Walpole H, Venter E, Ray RV, Kanyuka K, Rudd JJ. Fungal plant pathogen "mutagenomics" reveals tagged and untagged mutations in Zymoseptoria tritici and identifies SSK2 as key morphogenesis and stress-responsive virulence factor. FRONTIERS IN PLANT SCIENCE 2023; 14:1140824. [PMID: 37206970 PMCID: PMC10190600 DOI: 10.3389/fpls.2023.1140824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023]
Abstract
"Mutagenomics" is the combination of random mutagenesis, phenotypic screening, and whole-genome re-sequencing to uncover all tagged and untagged mutations linked with phenotypic changes in an organism. In this study, we performed a mutagenomics screen on the wheat pathogenic fungus Zymoseptoria tritici for altered morphogenetic switching and stress sensitivity phenotypes using Agrobacterium-mediated "random" T-DNA mutagenesis (ATMT). Biological screening identified four mutants which were strongly reduced in virulence on wheat. Whole genome re-sequencing defined the positions of the T-DNA insertion events and revealed several unlinked mutations potentially affecting gene functions. Remarkably, two independent reduced virulence mutant strains, with similarly altered stress sensitivities and aberrant hyphal growth phenotypes, were found to have a distinct loss of function mutations in the ZtSSK2 MAPKKK gene. One mutant strain had a direct T-DNA insertion affecting the predicted protein's N-terminus, while the other possessed an unlinked frameshift mutation towards the C-terminus. We used genetic complementation to restore both strains' wild-type (WT) function (virulence, morphogenesis, and stress response). We demonstrated that ZtSSK2 has a non-redundant function with ZtSTE11 in virulence through the biochemical activation of the stress-activated HOG1 MAPK pathway. Moreover, we present data suggesting that SSK2 has a unique role in activating this pathway in response to specific stresses. Finally, dual RNAseq-based transcriptome profiling of WT and SSK2 mutant strains revealed many HOG1-dependent transcriptional changes in the fungus during early infection and suggested that the host response does not discriminate between WT and mutant strains during this early phase. Together these data define new genes implicated in the virulence of the pathogen and emphasise the importance of a whole genome sequencing step in mutagenomic discovery pipelines.
Collapse
Affiliation(s)
- Hannah R. Blyth
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, United Kingdom
| | - Dan Smith
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, United Kingdom
| | - Robert King
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, United Kingdom
| | - Carlos Bayon
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, United Kingdom
| | - Tom Ashfield
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden, United Kingdom
| | - Hannah Walpole
- Bioimaging Unit, Rothamsted Research, Harpenden, United Kingdom
| | - Eudri Venter
- Bioimaging Unit, Rothamsted Research, Harpenden, United Kingdom
| | - Rumiana V. Ray
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Kostya Kanyuka
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, United Kingdom
| | - Jason J. Rudd
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, United Kingdom
- *Correspondence: Jason J. Rudd,
| |
Collapse
|
16
|
Fraser CJ, Whitehall SK. Heterochromatin in the fungal plant pathogen, Zymoseptoria tritici: Control of transposable elements, genome plasticity and virulence. Front Genet 2022; 13:1058741. [DOI: 10.3389/fgene.2022.1058741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin is a repressive chromatin state that plays key roles in the functional organisation of eukaryotic genomes. In fungal plant pathogens, effector genes that are required for host colonization tend to be associated with heterochromatic regions of the genome that are enriched with transposable elements. It has been proposed that the heterochromatin environment silences effector genes in the absence of host and dynamic chromatin remodelling facilitates their expression during infection. Here we discuss this model in the context of the key wheat pathogen, Zymoseptoria tritici. We cover progress in understanding the deposition and recognition of heterochromatic histone post translational modifications in Z. tritici and the role that heterochromatin plays in control of genome plasticity and virulence.
Collapse
|
17
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Kilaru S, Fantozzi E, Cannon S, Schuster M, Chaloner TM, Guiu-Aragones C, Gurr SJ, Steinberg G. Zymoseptoria tritici white-collar complex integrates light, temperature and plant cues to initiate dimorphism and pathogenesis. Nat Commun 2022; 13:5625. [PMID: 36163135 PMCID: PMC9512790 DOI: 10.1038/s41467-022-33183-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Transitioning from spores to hyphae is pivotal to host invasion by the plant pathogenic fungus Zymoseptoria tritici. This dimorphic switch can be initiated by high temperature in vitro (~27 °C); however, such a condition may induce cellular heat stress, questioning its relevance to field infections. Here, we study the regulation of the dimorphic switch by temperature and other factors. Climate data from wheat-growing areas indicate that the pathogen sporadically experiences high temperatures such as 27 °C during summer months. However, using a fluorescent dimorphic switch reporter (FDR1) in four wild-type strains, we show that dimorphic switching already initiates at 15-18 °C, and is enhanced by wheat leaf surface compounds. Transcriptomics reveals 1261 genes that are up- or down-regulated in hyphae of all strains. These pan-strain core dimorphism genes (PCDGs) encode known effectors, dimorphism and transcription factors, and light-responsive proteins (velvet factors, opsins, putative blue light receptors). An FDR1-based genetic screen reveals a crucial role for the white-collar complex (WCC) in dimorphism and virulence, mediated by control of PCDG expression. Thus, WCC integrates light with biotic and abiotic cues to orchestrate Z. tritici infection.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Elena Fantozzi
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Stuart Cannon
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Martin Schuster
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Thomas M Chaloner
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | | | - Sarah J Gurr
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK.
- University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
19
|
Mustafa Z, Ölmez F, Akkaya M. Inactivation of a candidate effector gene of Zymoseptoria tritici affects its sporulation. Mol Biol Rep 2022; 49:11563-11571. [PMID: 36097116 DOI: 10.1007/s11033-022-07879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Wheat is one of the most important staple crops produced worldwide. Its susceptibility to plant diseases reduces its production significantly. One of the most important diseases of wheat is septoria tritici blotch, a devastating disease observed in fields with wet and temperate conditions. Z. tritici secretes effector proteins to influence the host's defense mechanisms, as is typical of plant pathogens. In this investigation, we evaluated the pathogenicity of some Zymoseptoria tritici effector candidate genes having a signal peptide for secretion with no known function. METHODS AND RESULTS Three genes named Mycgr3G104383, Mycgr3G104444 and Mycgr3G105826 were knocked out separately through homologous recombination, generating Z. tritici IPO323 mutants lacking the functional copy of the corresponding genes. While KO1 and KO3 mutants did not show any significant differences during phenotypic and virulence investigations, the KO2 mutant generated exclusively macropycnidiospores in artificial media, different from wild-type IPO323 which produce only micropycidiospores. The mycelial growth capability of KO2 was also severely attenuated in all of the investigated growth conditions. These changes were observed independent of growth media and growth temperatures, implying that changes were genetic and inherited through generations. Virulence of knockout mutants in wheat leaves was observed to be similar to the wild-type IPO323. CONCLUSION Understanding the biology of Z. tritici and its interactions with wheat will reveal new strategies to fight septoria tritici blotch, enabling breeding wheat cultivars resistant to a broader spectrum of Z. tritici strains. Furthermore, gene knockout via homologous recombination proved to be a powerful tool for discovering novel gene functions.
Collapse
Affiliation(s)
- Zemran Mustafa
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Sivas University of Science and Technology, Sivas, Turkey.
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agricultural Science and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Mahinur Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
20
|
Song M, Sun B, Li R, Qian Z, Bai Z, Zhuang X. Successions and interactions of phyllospheric microbiome in response to NH 3 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155805. [PMID: 35561907 DOI: 10.1016/j.scitotenv.2022.155805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Phyllosphere and numerous phyllospheric microbiomes present a huge potential for air pollution mitigation. Despite research investigating the microbial compositions in the phyllosphere, the successions and interactions of the phyllospheric microbiome under ammonia gas (NH3) stress remain poorly understood. Herein, we performed 16S rDNA, the internal transcribed spacer (ITS) profiling and a quantitative microbial element cycling (QMEC) method to reveal successions, co-occurrence, and N-cycling functions changes of phyllospheric bacteria and fungi during NH3 exposure. The NH3 input mainly elevated ammonium (NH4+-N) and total nitrogen (TN) levels on the leaf surface. The exposure in the phyllosphere decreased fungal concentration with a homogeneity increase while enhanced bacterial concentration with a noticeable richness drop. Both short-term (2-week) and long-term (6-week) exposure induced significant changes in microbial compositions. Bacterial genera (Nocardioides, Pseudonocardia) and fungal genera (Alternaria, Acremonium) dominated throughout the exposure. Intensive microbial interactions compared to that in the natural phyllosphere were observed via network analysis. Our results showed that N-cycling functional genes were largely stimulated by the exposure and might, in turn contribute to NH3 pollution buffer and alleviation via microbial metabolism. This study extended the knowledge on microbial responses to NH3 exposure in the phyllosphere and enlightened phylloremediation on NH3 through the microbial role.
Collapse
Affiliation(s)
- Manjiao Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Qian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Xiongan Institute of Innovation, Xiongan New Area, 071000, China.
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
de Borba MC, Velho AC, de Freitas MB, Holvoet M, Maia-Grondard A, Baltenweck R, Magnin-Robert M, Randoux B, Hilbert JL, Reignault P, Hugueney P, Siah A, Stadnik MJ. A Laminarin-Based Formulation Protects Wheat Against Zymoseptoria tritici via Direct Antifungal Activity and Elicitation of Host Defense-Related Genes. PLANT DISEASE 2022; 106:1408-1418. [PMID: 34978870 DOI: 10.1094/pdis-08-21-1675-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study aimed to evaluate the potential of the laminarin-based formulation Vacciplant to protect and induce resistance in wheat against Zymoseptoria tritici, a major pathogen on this crop. Under greenhouse conditions, a single foliar spraying of the product 2 days before inoculation with Z. tritici reduced disease severity and pycnidium density by 42 and 45%, respectively. Vacciplant exhibited a direct antifungal activity on Z. tritici conidial germination both in vitro and in planta. Moreover, it reduced in planta substomatal colonization as well as pycnidium formation on treated leaves. Molecular investigations revealed that Vacciplant elicits but did not prime the expression of several wheat genes related to defense pathways, including phenylpropanoids (phenylalanine ammonia-lyase and chalcone synthase), octadecanoids (lipoxygenase and allene oxide synthase), and pathogenesis-related proteins (β-1,3-endoglucanase and chitinase). By contrast, it did not modulate the expression of oxalate oxidase gene involved in the reactive oxygen species metabolism. Ultrahigh-performance liquid chromatography-mass spectrometry analysis indicated limited changes in leaf metabolome after product application in both noninoculated and inoculated conditions, suggesting a low metabolic cost associated with induction of plant resistance. This study provides evidence that the laminarin-based formulation confers protection to wheat against Z. tritici through direct antifungal activity and elicitation of plant defense-associated genes.
Collapse
Affiliation(s)
- Marlon C de Borba
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Aline C Velho
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Mateus B de Freitas
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Maxime Holvoet
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | | | | | - Maryline Magnin-Robert
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Béatrice Randoux
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Jean-Louis Hilbert
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Philippe Reignault
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A1131, 68000 Colmar, France
| | - Ali Siah
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Marciel J Stadnik
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
| |
Collapse
|
22
|
Boixel A, Chelle M, Suffert F. Patterns of thermal adaptation in a globally distributed plant pathogen: Local diversity and plasticity reveal two-tier dynamics. Ecol Evol 2022; 12:e8515. [PMID: 35127031 PMCID: PMC8796916 DOI: 10.1002/ece3.8515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022] Open
Abstract
Plant pathogen populations inhabit patchy environments with contrasting, variable thermal conditions. We investigated the diversity of thermal responses in populations sampled over contrasting spatiotemporal scales, to improve our understanding of their dynamics of adaptation to local conditions. Samples of natural populations of the wheat pathogen Zymoseptoria tritici were collected from sites within the Euro-Mediterranean region subject to a broad range of climatic conditions. We tested for local adaptation, by accounting for the diversity of responses at the individual and population levels on the basis of key thermal performance curve parameters and "thermotype" (groups of individuals with similar thermal responses) composition. The characterization of phenotypic responses and genotypic structure revealed the following: (i) a high degree of individual plasticity and variation in sensitivity to temperature conditions across spatiotemporal scales and populations; and (ii) geographic variation in thermal response among populations, with major alterations due to seasonal patterns over the wheat-growing season. The seasonal shifts in functional composition suggest that populations are locally structured by selection, contributing to adaptation patterns. Further studies combining selection experiments and modeling are required to determine how functional group selection drives population dynamics and adaptive potential in response to thermal heterogeneity.
Collapse
Affiliation(s)
- Anne‐Lise Boixel
- Université Paris‐Saclay, INRAE, UR BIOGERThiverval‐GrignonFrance
| | - Michaël Chelle
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSThiverval‐GrignonFrance
| | - Frédéric Suffert
- Université Paris‐Saclay, INRAE, UR BIOGERThiverval‐GrignonFrance
| |
Collapse
|
23
|
Battache M, Lebrun MH, Sakai K, Soudière O, Cambon F, Langin T, Saintenac C. Blocked at the Stomatal Gate, a Key Step of Wheat Stb16q-Mediated Resistance to Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2022; 13:921074. [PMID: 35832231 PMCID: PMC9271956 DOI: 10.3389/fpls.2022.921074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 05/11/2023]
Abstract
Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is among the most threatening wheat diseases in Europe. Genetic resistance remains one of the main environmentally sustainable strategies to efficiently control STB. However, the molecular and physiological mechanisms underlying resistance are still unknown, limiting the implementation of knowledge-driven management strategies. Among the 22 known major resistance genes (Stb), the recently cloned Stb16q gene encodes a cysteine-rich receptor-like kinase conferring a full broad-spectrum resistance against Z. tritici. Here, we showed that an avirulent Z. tritici inoculated on Stb16q quasi near isogenic lines (NILs) either by infiltration into leaf tissues or by brush inoculation of wounded tissues partially bypasses Stb16q-mediated resistance. To understand this bypass, we monitored the infection of GFP-labeled avirulent and virulent isolates on Stb16q NILs, from germination to pycnidia formation. This quantitative cytological analysis revealed that 95% of the penetration attempts were unsuccessful in the Stb16q incompatible interaction, while almost all succeeded in compatible interactions. Infectious hyphae resulting from the few successful penetration events in the Stb16q incompatible interaction were arrested in the sub-stomatal cavity of the primary-infected stomata. These results indicate that Stb16q-mediated resistance mainly blocks the avirulent isolate during its stomatal penetration into wheat tissue. Analyses of stomatal aperture of the Stb16q NILs during infection revealed that Stb16q triggers a temporary stomatal closure in response to an avirulent isolate. Finally, we showed that infiltrating avirulent isolates into leaves of the Stb6 and Stb9 NILs also partially bypasses resistances, suggesting that arrest during stomatal penetration might be a common major mechanism for Stb-mediated resistances.
Collapse
Affiliation(s)
- Mélissa Battache
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Marc-Henri Lebrun
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Kaori Sakai
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Olivier Soudière
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Florence Cambon
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
- *Correspondence: Cyrille Saintenac,
| |
Collapse
|
24
|
Langlands-Perry C, Cuenin M, Bergez C, Krima SB, Gélisse S, Sourdille P, Valade R, Marcel TC. Resistance of the Wheat Cultivar ‘Renan’ to Septoria Leaf Blotch Explained by a Combination of Strain Specific and Strain Non-Specific QTL Mapped on an Ultra-Dense Genetic Map. Genes (Basel) 2021; 13:genes13010100. [PMID: 35052440 PMCID: PMC8774678 DOI: 10.3390/genes13010100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Quantitative resistance is considered more durable than qualitative resistance as it does not involve major resistance genes that can be easily overcome by pathogen populations, but rather a combination of genes with a lower individual effect. This durability means that quantitative resistance could be an interesting tool for breeding crops that would not systematically require phytosanitary products. Quantitative resistance has yet to reveal all of its intricacies. Here, we delve into the case of the wheat/Septoria tritici blotch (STB) pathosystem. Using a population resulting from a cross between French cultivar Renan, generally resistant to STB, and Chinese Spring, a cultivar susceptible to the disease, we built an ultra-dense genetic map that carries 148,820 single nucleotide polymorphism (SNP) markers. Phenotyping the interaction was done with two different Zymoseptoria tritici strains with contrasted pathogenicities on Renan. A linkage analysis led to the detection of three quantitative trait loci (QTL) related to resistance in Renan. These QTL, on chromosomes 7B, 1D, and 5D, present with an interesting diversity as that on 7B was detected with both fungal strains, while those on 1D and 5D were strain-specific. The resistance on 7B was located in the region of Stb8 and the resistance on 1D colocalized with Stb19. However, the resistance on 5D was new, so further designated Stb20q. Several wall-associated kinases (WAK), nucleotide-binding and leucine-rich repeats (NB-LRR) type, and kinase domain carrying genes were present in the QTL regions, and some of them were expressed during the infection. These results advocate for a role of Stb genes in quantitative resistance and for resistance in the wheat/STB pathosystem being as a whole quantitative and polygenic.
Collapse
Affiliation(s)
- Camilla Langlands-Perry
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
- ARVALIS Institut du Végétal, 91720 Boigneville, France;
| | - Murielle Cuenin
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Christophe Bergez
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Safa Ben Krima
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Sandrine Gélisse
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
| | - Pierre Sourdille
- Université Clermont–Auvergne, INRAE, UMR GDEC, 63000 Clermont-Ferrand, France;
| | - Romain Valade
- ARVALIS Institut du Végétal, 91720 Boigneville, France;
| | - Thierry C. Marcel
- Université Paris Saclay, INRAE, UR BIOGER, 78850 Thiverval-Grignon, France; (C.L.-P.); (M.C.); (C.B.); (S.B.K.); (S.G.)
- Correspondence:
| |
Collapse
|
25
|
Singh NK, Karisto P, Croll D. Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen Zymoseptoria tritici. Microb Genom 2021; 7:000678. [PMID: 34617882 PMCID: PMC8627204 DOI: 10.1099/mgen.0.000678] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens cause significant challenges to global food security. On annual crops, pathogens must re-infect from environmental sources in every growing season. Fungal pathogens have evolved mixed reproductive strategies to cope with the distinct challenges of colonizing growing plants. However, how pathogen diversity evolves during growing seasons remains largely unknown. Here, we performed a deep hierarchical sampling in a single experimental wheat field infected by the major fungal pathogen Zymoseptoria tritici. We analysed whole genome sequences of 177 isolates collected from 12 distinct cultivars replicated in space at three time points of the growing season to maximize capture of genetic diversity. The field population was highly diverse with 37 SNPs per kilobase, a linkage disequilibrium decay within 200-700 bp and a high effective population size. Using experimental infections, we tested a subset of the collected isolates on the dominant cultivar planted in the field. However, we found no significant difference in virulence of isolates collected from the same cultivar compared to isolates collected on other cultivars. About 20 % of the isolate genotypes were grouped into 15 clonal groups. Pairs of clones were disproportionally found at short distances (<5 m), consistent with experimental estimates for per-generation dispersal distances performed in the same field. This confirms predominant leaf-to-leaf transmission during the growing season. Surprisingly, levels of clonality did not increase over time in the field although reproduction is thought to be exclusively asexual during the growing season. Our study shows that the pathogen establishes vast and stable gene pools in single fields. Monitoring short-term evolutionary changes in crop pathogens will inform more durable strategies to contain diseases.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Petteri Karisto
- Plant Health, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
26
|
Fouché G, Michel T, Lalève A, Wang NX, Young DH, Meunier B, Debieu D, Fillinger S, Walker AS. Directed evolution predicts cytochrome b G37V target site modification as probable adaptive mechanism towards the QiI fungicide fenpicoxamid in Zymoseptoria tritici. Environ Microbiol 2021; 24:1117-1132. [PMID: 34490974 DOI: 10.1111/1462-2920.15760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
Acquired resistance is a threat to antifungal efficacy in medicine and agriculture. The diversity of possible resistance mechanisms and highly adaptive traits of pathogens make it difficult to predict evolutionary outcomes of treatments. We used directed evolution as an approach to assess the resistance risk to the new fungicide fenpicoxamid in the wheat pathogenic fungus Zymoseptoria tritici. Fenpicoxamid inhibits complex III of the respiratory chain at the ubiquinone reduction site (Qi site) of the mitochondrially encoded cytochrome b, a different site than the widely used strobilurins which inhibit the same complex at the ubiquinol oxidation site (Qo site). We identified the G37V change within the cytochrome b Qi site as the most likely resistance mechanism to be selected in Z. tritici. This change triggered high fenpicoxamid resistance and halved the enzymatic activity of cytochrome b, despite no significant penalty for in vitro growth. We identified negative cross-resistance between isolates harbouring G37V or G143A, a Qo site change previously selected by strobilurins. Double mutants were less resistant to both QiIs and quinone outside inhibitors compared to single mutants. This work is a proof of concept that experimental evolution can be used to predict adaptation to fungicides and provides new perspectives for the management of QiIs.
Collapse
Affiliation(s)
- Guillaume Fouché
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France.,Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Thomas Michel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Anaïs Lalève
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Nick X Wang
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - David H Young
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Danièle Debieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Sabine Fillinger
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Anne-Sophie Walker
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| |
Collapse
|
27
|
Bohnenkamp D, Behmann J, Paulus S, Steiner U, Mahlein AK. A Hyperspectral Library of Foliar Diseases of Wheat. PHYTOPATHOLOGY 2021; 111:1583-1593. [PMID: 33586995 DOI: 10.1094/phyto-09-19-0335-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work established a hyperspectral library of important foliar diseases of wheat induced by different fungal pathogens, representing a time series from infection to symptom appearance for the purpose of detecting spectral changes. The data were generated under controlled conditions at the leaf scale. The transition from healthy to diseased leaf tissue was assessed, and spectral shifts were identified and used in combination with histological investigations to define developmental stages in pathogenesis for each disease. The spectral signatures of each plant disease that indicate a specific developmental stage during pathogenesis, defined as turning points, were combined into a spectral library. Machine learning analysis methods were applied and compared to test the potential of this library to detect and quantify foliar diseases in hyperspectral images. All evaluated classifiers had high accuracy (≤99%) for the detection and identification of both biotrophic and necrotrophic fungi. The potential of applying spectral analysis methods in combination with a spectral library for the detection and identification of plant diseases is demonstrated. Further evaluation and development of these algorithms should contribute to a robust detection and identification system for plant diseases at different developmental stages and the promotion and development of site-specific management techniques for plant diseases under field conditions.
Collapse
Affiliation(s)
- David Bohnenkamp
- Institute for Crop Science and Resource Conservation, Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
| | - Jan Behmann
- Institute for Crop Science and Resource Conservation, Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
| | - Stefan Paulus
- Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Ulrike Steiner
- Institute for Crop Science and Resource Conservation, Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
| | - Anne-Katrin Mahlein
- Institute for Crop Science and Resource Conservation, Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
- Institute of Sugar Beet Research, 37079 Göttingen, Germany
| |
Collapse
|
28
|
Lin H, Kang W, Han E, Chen Q. Quantitative analysis of colony number in mouldy wheat based on near infrared spectroscopy combined with colorimetric sensor. Food Chem 2021; 354:129545. [PMID: 33756335 DOI: 10.1016/j.foodchem.2021.129545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/25/2023]
Abstract
Current work presented a novel method based on colorimetric sensor (CS) combined with visible/near-infrared spectroscopy (VNIRs) for the detection of volatile markers in wheat infected by Aspergillus glaucus. Wheat samples with different mouldy degree was cultivated for backup under temperature of 25-28 °C in incubator. The total colony number was determined by flat colony counting method. Through employing chemo-responsive dyes including 8-(4-nitrophenyl)-4, 4-difluoro-BODIPY (NO2BDP), 8-(4-bromophenyl)-4,4-difluoro-BODIPY(BrBDP) and 8-phenyl-4,4-difluoro- BODIPY(HBDP) as capture probes of colorimetric sensor for volatile organic compounds (VOCs). The spectral data of CS-VNIRs were scanned and used to build synergic interval partial least squares (Si-PLS) models. The optimized Si-PLS model based on HBDP sensor gave a better detection performance, and the correlation coefficient of the prediction set Rp = 0.9387. The achieved high correlation rates imply that the technique may be deployed as a panacea to identify and quantify the colony number of different mouldy wheat.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - En Han
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Jiangsu 212013, PR China.
| |
Collapse
|
29
|
Reilly A, Karki SJ, Twamley A, Tiley AMM, Kildea S, Feechan A. Isolate-Specific Responses of the Nonhost Grass Brachypodium distachyon to the Fungal Pathogen Zymoseptoria tritici Compared with Wheat. PHYTOPATHOLOGY 2021; 111:356-368. [PMID: 32720875 DOI: 10.1094/phyto-02-20-0041-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Septoria tritici blotch (STB) is an important foliar disease of wheat that is caused by the fungal pathogen Zymoseptoria tritici. The grass Brachypodium distachyon has been used previously as a model system for cereal-pathogen interactions. In this study, we examined the nonhost resistance (NHR) response of B. distachyon to two different Z. tritici isolates in comparison with wheat. These isolates vary in aggressiveness on wheat cultivar Remus, displaying significant differences in disease and pycnidia coverage. Using microscopy, we found that similar isolate-specific responses were observed for hydrogen peroxide accumulation and cell death in both wheat and B. distachyon. Despite this, induction of isolate-specific patterns of defense gene expression by Z. tritici did differ between B. distachyon and wheat. Our results suggest that expression of the phenylalanine ammonia lyase PAL gene may be important for NHR in B. distachyon, while pathogenesis-related PR genes and expression of genes regulating reactive oxygen species may be important to limit disease in wheat. Future studies of the B. distachyon-Z. tritici interaction may allow identification of conserved plant immunity targets that are responsible for the isolate-specific responses observed in both plant species.
Collapse
Affiliation(s)
- Aisling Reilly
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sujit Jung Karki
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anthony Twamley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna M M Tiley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Kildea
- Department of Crop Science, Teagasc Crops Environment and Land Use Programme, Teagasc, Oak Park, County Carlow, Ireland
| | - Angela Feechan
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
de Borba MC, Velho AC, Maia-Grondard A, Baltenweck R, Magnin-Robert M, Randoux B, Holvoet M, Hilbert JL, Flahaut C, Reignault P, Hugueney P, Stadnik MJ, Siah A. The Algal Polysaccharide Ulvan Induces Resistance in Wheat Against Zymoseptoria tritici Without Major Alteration of Leaf Metabolome. FRONTIERS IN PLANT SCIENCE 2021; 12:703712. [PMID: 34552606 PMCID: PMC8450535 DOI: 10.3389/fpls.2021.703712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 05/22/2023]
Abstract
This study aimed to examine the ability of ulvan, a water-soluble polysaccharide from the green seaweed Ulva fasciata, to provide protection and induce resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici. Matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) analysis indicated that ulvan is mainly composed of unsaturated monosaccharides (rhamnose, rhamnose-3-sulfate, and xylose) and numerous uronic acid residues. In the greenhouse, foliar application of ulvan at 10 mg.ml-1 2 days before fungal inoculation reduced disease severity and pycnidium density by 45 and 50%, respectively. Ulvan did not exhibit any direct antifungal activity toward Z. tritici, neither in vitro nor in planta. However, ulvan treatment significantly reduced substomatal colonization and pycnidium formation within the mesophyll of treated leaves. Molecular assays revealed that ulvan spraying elicits, but does not prime, the expression of genes involved in several wheat defense pathways, including pathogenesis-related proteins (β-1,3-endoglucanase and chitinase), reactive oxygen species metabolism (oxalate oxidase), and the octadecanoid pathway (lipoxygenase and allene oxide synthase), while no upregulation was recorded for gene markers of the phenylpropanoid pathway (phenylalanine ammonia-lyase and chalcone synthase). Interestingly, the quantification of 83 metabolites from major chemical families using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in both non-infectious and infectious conditions showed no substantial changes in wheat metabolome upon ulvan treatment, suggesting a low metabolic cost associated with ulvan-induced resistance. Our findings provide evidence that ulvan confers protection and triggers defense mechanisms in wheat against Z. tritici without major modification of the plant physiology.
Collapse
Affiliation(s)
- Marlon C. de Borba
- Laboratory of Plant Pathology, Agricultural Science Center (UFSC-CCA), Federal University of Santa Catarina, Florianópolis, Brazil
- Joint Research Unit N° 1158 BioEcoAgro, ULCO, INRAE, University of Lille, Université Liège, UPJV, University of Artois, Lille, France
| | - Aline C. Velho
- Laboratory of Plant Pathology, Agricultural Science Center (UFSC-CCA), Federal University of Santa Catarina, Florianópolis, Brazil
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d’Opale, Calais, France
| | | | | | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d’Opale, Calais, France
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d’Opale, Calais, France
| | - Maxime Holvoet
- Joint Research Unit N° 1158 BioEcoAgro, ULCO, INRAE, University of Lille, Université Liège, UPJV, University of Artois, Lille, France
| | - Jean-Louis Hilbert
- Joint Research Unit N° 1158 BioEcoAgro, ULCO, INRAE, University of Lille, Université Liège, UPJV, University of Artois, Lille, France
| | - Christophe Flahaut
- Joint Research Unit N° 1158 BioEcoAgro, ULCO, INRAE, University of Lille, Université Liège, UPJV, University of Artois, Lille, France
| | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d’Opale, Calais, France
| | | | - Marciel J. Stadnik
- Laboratory of Plant Pathology, Agricultural Science Center (UFSC-CCA), Federal University of Santa Catarina, Florianópolis, Brazil
- Marciel J. Stadnik,
| | - Ali Siah
- Joint Research Unit N° 1158 BioEcoAgro, ULCO, INRAE, University of Lille, Université Liège, UPJV, University of Artois, Lille, France
- *Correspondence: Ali Siah,
| |
Collapse
|
31
|
Fantozzi E, Kilaru S, Cannon S, Schuster M, Gurr SJ, Steinberg G. Conditional promoters to investigate gene function during wheat infection by Zymoseptoria tritici. Fungal Genet Biol 2021; 146:103487. [PMID: 33309991 PMCID: PMC7812376 DOI: 10.1016/j.fgb.2020.103487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
The fungus Zymoseptoria tritici causes Septoria tritici leaf blotch, which poses a serious threat to temperate-grown wheat. Recently, we described a raft of molecular tools to study the biology of this fungus in vitro. Amongst these are 5 conditional promoters (Pnar1, Pex1A, Picl1, Pgal7, PlaraB), which allow controlled over-expression or repression of target genes in cells grown in liquid culture. However, their use in the host-pathogen interaction in planta was not tested. Here, we investigate the behaviour of these promoters by quantitative live cell imaging of green-fluorescent protein-expressing cells during 6 stages of the plant infection process. We show that Pnar1 and Picl1 are repressed in planta and demonstrate their suitability for studying essential gene expression and function in plant colonisation. The promoters Pgal7 and Pex1A are not fully-repressed in planta, but are induced during pycnidiation. This indicates the presence of inducing galactose or xylose and/or arabinose, released from the plant cell wall by the activity of fungal hydrolases. In contrast, the PlaraB promoter, which normally controls expression of an α-l-arabinofuranosidase B, is strongly induced inside the leaf. This suggests that the fungus is exposed to L-arabinose in the mesophyll apoplast. Taken together, this study establishes 2 repressible promoters (Pnar1 and Picl1) and three inducible promoters (Pgal7, Pex1A, PlaraB) for molecular studies in planta. Moreover, we provide circumstantial evidence for plant cell wall degradation during the biotrophic phase of Z. tritici infection.
Collapse
Affiliation(s)
- Elena Fantozzi
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sreedhar Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Stuart Cannon
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sarah J Gurr
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
32
|
Asynchronous development of Zymoseptoria tritici infection in wheat. Fungal Genet Biol 2020; 146:103504. [PMID: 33326850 PMCID: PMC7812371 DOI: 10.1016/j.fgb.2020.103504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Zymoseptoria tritici passes 6 morphologically defined stages during infection. Surface-located spores and hyphae are found for up to 17/18 days. Entry through stomata occurs from 1 to 13 days post infection. Mesophyll apoplast colonisation continuously increases during infection. Up to 5 stages co-exist in infected leaves at a given time.
The fungus Zymoseptoria tritici causes Septoria tritici blotch of wheat. Pathogenicity begins with spore germination, followed by stomata invasion by hyphae, mesophyll colonization and fruiting body formation. It was previously found that entry into the plant via stomata occurs in a non-synchronized way over several days, while later developmental steps, such as early and late fruiting body formation, were reported to follow each other in time. This suggests synchronization of the pathogen population in planta prior to sporulation. Here, we image a fluorescent Z. tritici IPO323-derived strain during infection. We describe 6 morphologically distinct developmental stages, and determine their abundance in infected leaves, with time post inoculation. This demonstrates that 3-5 stages co-exist in infected tissues at any given time. Thus, later stages of pathogen development also occur asynchronously amongst the population of infecting cells. This merits consideration when interpreting transcriptomics or proteomics data gathered from infected plants.
Collapse
|
33
|
Meile L, Peter J, Puccetti G, Alassimone J, McDonald BA, Sánchez-Vallet A. Chromatin Dynamics Contribute to the Spatiotemporal Expression Pattern of Virulence Genes in a Fungal Plant Pathogen. mBio 2020; 11:e02343-20. [PMID: 33024042 PMCID: PMC7542367 DOI: 10.1128/mbio.02343-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Dynamic changes in transcription profiles are key for the success of pathogens in colonizing their hosts. In many pathogens, genes associated with virulence, such as effector genes, are located in regions of the genome that are rich in transposable elements and heterochromatin. The contribution of chromatin modifications to gene expression in pathogens remains largely unknown. Using a combination of a reporter gene-based approach and chromatin immunoprecipitation, we show that the heterochromatic environment of effector genes in the fungal plant pathogen Zymoseptoria tritici is a key regulator of their specific spatiotemporal expression patterns. Enrichment in trimethylated lysine 27 of histone H3 dictates the repression of effector genes in the absence of the host. Chromatin decondensation during host colonization, featuring a reduction in this repressive modification, indicates a major role for epigenetics in effector gene induction. Our results illustrate that chromatin modifications triggered during host colonization determine the specific expression profile of effector genes at the cellular level and, hence, provide new insights into the regulation of virulence in fungal plant pathogens.IMPORTANCE Fungal plant pathogens possess a large repertoire of genes encoding putative effectors, which are crucial for infection. Many of these genes are expressed at low levels in the absence of the host but are strongly induced at specific stages of the infection. The mechanisms underlying this transcriptional reprogramming remain largely unknown. We investigated the role of the genomic environment and associated chromatin modifications of effector genes in controlling their expression pattern in the fungal wheat pathogen Zymoseptoria tritici Depending on their genomic location, effector genes are epigenetically repressed in the absence of the host and during the initial stages of infection. Derepression of effector genes occurs mainly during and after penetration of plant leaves and is associated with changes in histone modifications. Our work demonstrates the role of chromatin in shaping the expression of virulence components and, thereby, the interaction between fungal pathogens and their plant hosts.
Collapse
Affiliation(s)
- Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jules Peter
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Guido Puccetti
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
34
|
Hill EH, Solomon PS. Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biol Biotechnol 2020; 7:13. [PMID: 32968488 PMCID: PMC7501697 DOI: 10.1186/s40694-020-00103-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The fungal pathogen Zymoseptoria tritici is a significant constraint to wheat production in temperate cropping regions around the world. Despite its agronomic impacts, the mechanisms allowing the pathogen to asymptomatically invade and grow in the apoplast of wheat leaves before causing extensive host cell death remain elusive. Given recent evidence of extracellular vesicles (EVs)-secreted, membrane-bound nanoparticles containing molecular cargo-being implicated in extracellular communication between plants and fungal pathogen, we have initiated an in vitro investigation of EVs from this apoplastic fungal wheat pathogen. We aimed to isolate EVs from Z. tritici broth cultures and examine their protein composition in relation to the soluble protein in the culture filtrate and to existing fungal EV proteomes. RESULTS Zymoseptoria tritici EVs were isolated from broth culture filtrates using differential ultracentrifugation (DUC) and examined with transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Z. tritici EVs were observed as a heterogeneous population of particles, with most between 50 and 250 nm. These particles were found in abundance in the culture filtrates of viable Z. tritici cultures, but not heat-killed cultures incubated for an equivalent time and of comparable biomass. Bottom-up proteomic analysis using LC-MS/MS, followed by stringent filtering revealed 240 Z. tritici EV proteins. These proteins were distinct from soluble proteins identified in Z. tritici culture filtrates, but were similar to proteins identified in EVs from other fungi, based on sequence similarity analyses. Notably, a putative marker protein recently identified in Candida albicans EVs was also consistently detected in Z. tritici EVs. CONCLUSION We have shown EVs can be isolated from the devastating fungal wheat pathogen Z. tritici and are similar to protein composition to previously characterised fungal EVs. EVs from human pathogenic fungi are implicated in virulence, but the role of EVs in the interaction of phytopathogenic fungi and their hosts is unknown. These in vitro analyses provide a basis for expanding investigations of Z. tritici EVs in planta, to examine their involvement in the infection process of this apoplastic wheat pathogen and more broadly, advance understanding of noncanonical secretion in filamentous plant pathogens.
Collapse
Affiliation(s)
- Erin H. Hill
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
35
|
Jallet AJ, Le Rouzic A, Genissel A. Evolution and Plasticity of the Transcriptome Under Temperature Fluctuations in the Fungal Plant Pathogen Zymoseptoria tritici. Front Microbiol 2020; 11:573829. [PMID: 33042084 PMCID: PMC7517895 DOI: 10.3389/fmicb.2020.573829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
Most species live in a variable environment in nature. Yet understanding the evolutionary processes underlying molecular adaptation to fluctuations remains a challenge. In this study we investigate the transcriptome of the fungal wheat pathogen Zymoseptoria tritici after experimental evolution under stable or fluctuating temperature, by comparing ancestral and evolved populations simultaneously. We found that temperature regimes could have a large and pervasive effect on the transcriptome evolution, with as much as 38% of the genes being differentially expressed between selection regimes. Although evolved lineages showed different changes of gene expression based on ancestral genotypes, we identified a set of genes responding specifically to fluctuation. We found that transcriptome evolution in fluctuating conditions was repeatable between parallel lineages initiated from the same genotype for about 60% of the differentially expressed genes. Further, we detected several hotspots of significantly differentially expressed genes in the genome, in regions known to be enriched in repetitive elements, including accessory chromosomes. Our findings also evidenced gene expression evolution toward a gain of robustness (loss of phenotypic plasticity) associated with the fluctuating regime, suggesting robustness is adaptive in changing environment. This work provides valuable insight into the role of transcriptional rewiring for rapid adaptation to abiotic changes in filamentous plant pathogens.
Collapse
Affiliation(s)
- Arthur J. Jallet
- UMR BIOGER, Université Paris Saclay – INRAE – AgroParisTech, Thiverval-Grignon, France
| | - Arnaud Le Rouzic
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay – CNRS – IRD, Gif-sur-Yvette, France
| | - Anne Genissel
- UMR BIOGER, Université Paris Saclay – INRAE – AgroParisTech, Thiverval-Grignon, France
| |
Collapse
|
36
|
Schuster M, Steinberg G. The fungicide dodine primarily inhibits mitochondrial respiration in Ustilago maydis, but also affects plasma membrane integrity and endocytosis, which is not found in Zymoseptoria tritici. Fungal Genet Biol 2020; 142:103414. [PMID: 32474016 PMCID: PMC7526662 DOI: 10.1016/j.fgb.2020.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/03/2022]
Abstract
Early reports in the fungus Ustilago maydis suggest that the amphipathic fungicide dodine disrupts the fungal plasma membrane (PM), thereby killing this corn smut pathogen. However, a recent study in the wheat pathogen Zymoseptoria tritici does not support such mode of action (MoA). Instead, dodine inhibits mitochondrial ATP-synthesis, both in Z. tritici and U. maydis. This casts doubt on an fungicidal activity of dodine at the PM. Here, we use a cell biological approach and investigate further the effect of dodine on the plasma membrane in both fungi. We show that dodine indeed breaks the integrity of the PM in U. maydis, indicated by a concentration-dependent cell depolarization. In addition, the fungicide reduces PM fluidity and arrests endocytosis by inhibiting the internalization of endocytic vesicles at the PM. This is likely due to impaired recruitment of the actin-crosslinker fimbrin to endocytic actin patches. However, quantitative data reveal that the effect on mitochondria represents the primary MoA in U. maydis. None of these plasma membrane-associated effects were found in dodine-treated Z. tritici cells. Thus, the physiological effect of an anti-fungal chemistry can differ between pathogens. This merits consideration when characterizing a given fungicide.
Collapse
Affiliation(s)
- Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
37
|
Riaz A, KockAppelgren P, Hehir JG, Kang J, Meade F, Cockram J, Milbourne D, Spink J, Mullins E, Byrne S. Genetic Analysis Using a Multi-Parent Wheat Population Identifies Novel Sources of Septoria Tritici Blotch Resistance. Genes (Basel) 2020; 11:E887. [PMID: 32759792 PMCID: PMC7465482 DOI: 10.3390/genes11080887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Zymoseptoria tritici is the causative fungal pathogen of septoria tritici blotch (STB) disease of wheat (Triticum aestivum L.) that continuously threatens wheat crops in Ireland and throughout Europe. Under favorable conditions, STB can cause up to 50% yield losses if left untreated. STB is commonly controlled with fungicides; however, a combination of Z. tritici populations developing fungicide resistance and increased restrictions on fungicide use in the EU has led to farmers relying on fewer active substances. Consequently, this serves to drive the emergence of Z. tritici resistance against the remaining chemistries. In response, the use of resistant wheat varieties provides a more sustainable disease management strategy. However, the number of varieties offering an adequate level of resistance against STB is limited. Therefore, new sources of resistance or improved stacking of existing resistance loci are needed to develop varieties with superior agronomic performance. Here, we identified quantitative trait loci (QTL) for STB resistance in the eight-founder "NIAB Elite MAGIC" winter wheat population. The population was screened for STB response in the field under natural infection for three seasons from 2016 to 2018. Twenty-five QTL associated with STB resistance were identified in total. QTL either co-located with previously reported QTL or represent new loci underpinning STB resistance. The genomic regions identified and the linked genetic markers serve as useful resources for STB resistance breeding, supporting rapid selection of favorable alleles for the breeding of new wheat cultivars with improved STB resistance.
Collapse
Affiliation(s)
- Adnan Riaz
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| | - Petra KockAppelgren
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| | - James Gerard Hehir
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| | - Jie Kang
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
- AgResearch, Invermay Agricultural Centre, Private Bag, Mosgiel 50034, New Zealand
- Department of Mathematics and Statistics, University of Otago, Dunedin 9016, New Zealand
| | - Fergus Meade
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| | - James Cockram
- The John Bingham Laboratory, NIAB, Cambridge CB3 0LE, UK;
| | - Dan Milbourne
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| | - John Spink
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| | - Ewen Mullins
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| | - Stephen Byrne
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (A.R.); (P.K.); (J.G.H.); (J.K.); (F.M.); (D.M.); (J.S.); (E.M.)
| |
Collapse
|
38
|
|
39
|
Rahman A, Doohan F, Mullins E. Quantification of In Planta Zymoseptoria tritici Progression Through Different Infection Phases and Related Association with Components of Aggressiveness. PHYTOPATHOLOGY 2020; 110:1208-1215. [PMID: 32133920 DOI: 10.1094/phyto-09-19-0339-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In planta growth of Zymoseptoria tritici, causal agent of Septoria tritici blotch of wheat, during the infection process has remained an understudied topic due to the long symptomless latent period before the emergence of fruiting bodies. In this study, we attempted to understand the relationship between in planta growth of Z. tritici relative to the primary components of aggressiveness, i.e., latent period and pycnidia coverage in regard to contrasting host resistance. We tested isolates collected from Ireland against the susceptible cultivar Gallant and cultivar Stigg, which has strong partial resistance. A clear isolate-host interaction effect (F = 3.018; P = 0.005, and F = 6.008; P < 0.001) for latent period and pycnidia coverage, respectively, was identified. Furthermore, during the early infection phase of latency from 5 to 11 days postinoculation (dpi), in planta growth rate of fungal biomass was significantly (F = 30.06; P < 0.001) more affected by host resistance than isolate specificity (F = 1.27; P = 0.27), indicating the importance of host resistance in the early infection phase. In planta Z. tritici growth rates in cultivar Gallant spiked between 11 and 16 dpi followed by a continuous fall onward, whereas in cultivar Stigg it was slowly progressive in nature. From correlation and regression analysis, we found that the in planta growth rate preceding the average latent period of cultivar Gallant has more influence on latency duration and pycnidia production. Likewise, correlation between component of aggressiveness and in planta growth rate of pathogen supports our understanding of aggressiveness to be driven by the pathogen's multiplication capacity within host tissue.
Collapse
Affiliation(s)
- Atikur Rahman
- Crop Science Department, Teagasc, Oakpark, Carlow, R93 XE12, Ireland
- School of Biological and Environmental Sciences, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Dublin, D04 V1W8, Ireland
| | - Fiona Doohan
- School of Biological and Environmental Sciences, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Dublin, D04 V1W8, Ireland
| | - Ewen Mullins
- Crop Science Department, Teagasc, Oakpark, Carlow, R93 XE12, Ireland
| |
Collapse
|
40
|
Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol 2020; 18:12. [PMID: 32046716 PMCID: PMC7014611 DOI: 10.1186/s12915-020-0744-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The gene content of a species largely governs its ecological interactions and adaptive potential. A species is therefore defined by both core genes shared between all individuals and accessory genes segregating presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures. RESULTS Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable element expansions likely underlie recent genome expansions within the species. CONCLUSIONS Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented toolbox to study how pangenome structure impacts crop-pathogen interactions.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
41
|
Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol 2020; 18:12. [PMID: 32046716 DOI: 10.1101/803098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The gene content of a species largely governs its ecological interactions and adaptive potential. A species is therefore defined by both core genes shared between all individuals and accessory genes segregating presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures. RESULTS Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable element expansions likely underlie recent genome expansions within the species. CONCLUSIONS Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented toolbox to study how pangenome structure impacts crop-pathogen interactions.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
42
|
Précigout PA, Claessen D, Makowski D, Robert C. Does the Latent Period of Leaf Fungal Pathogens Reflect Their Trophic Type? A Meta-Analysis of Biotrophs, Hemibiotrophs, and Necrotrophs. PHYTOPATHOLOGY 2020; 110:345-361. [PMID: 31577162 DOI: 10.1094/phyto-04-19-0144-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We performed a meta-analysis to search for a relation between the trophic type and latent period of fungal pathogens. The pathogen incubation period and the level of resistance of the hosts were also investigated. This ecological knowledge would help us to more efficiently regulate crop epidemics for different types of pathogens. We gathered latent period data from 103 studies dealing with 51 fungal pathogens of the three major trophic types (25 biotrophs, 15 hemibiotrophs, and 11 necrotrophs), representing 2,542 mean latent periods. We show that these three trophic types display significantly different latent periods. Necrotrophs exhibited the shortest latent periods (<100 degree-days [DD]), biotrophs had intermediate ones (between 100 and 200 DD), and hemibiotrophs had the longest latent periods (>200 DD). We argue that this relation between trophic type and latent period points to two opposing host exploitation strategies: necrotrophs mount a rapid destructive attack on the host tissue, whereas biotrophs and hemibiotrophs avoid or delay the damaging phase. We query the definition of hemibiotrophic pathogens and discuss whether the length of the latent period is determined by the physiological limits inherent to each trophic type or by the adaptation of pathogens of different trophic types to the contrasting conditions experienced in their interaction with the host.
Collapse
Affiliation(s)
- Pierre-Antoine Précigout
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS-ENS-INSERM UMR8197, Ecole Normale Supérieure, 75005 Paris, France
- UMR EcoSys, Institut National de la Recherche Agronomique (INRA), AgroParisTech, 78850 Thiverval-Grignon, France
| | - David Claessen
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS-ENS-INSERM UMR8197, Ecole Normale Supérieure, 75005 Paris, France
| | - David Makowski
- UMR Agronomie, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Corinne Robert
- UMR EcoSys, Institut National de la Recherche Agronomique (INRA), AgroParisTech, 78850 Thiverval-Grignon, France
| |
Collapse
|
43
|
Chaudhari Y, Cairns TC, Sidhu Y, Attah V, Thomas G, Csukai M, Talbot NJ, Studholme DJ, Haynes K. The Zymoseptoria tritici ORFeome: A Functional Genomics Community Resource. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1564-1570. [PMID: 31272284 DOI: 10.1094/mpmi-05-19-0123-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Libraries of protein-encoding sequences can be generated by identification of open reading frames (ORFs) from a genome of choice that are then assembled into collections of plasmids termed ORFeome libraries. These represent powerful resources to facilitate functional genomic characterization of genes and their encoded products. Here, we report the generation of an ORFeome for Zymoseptoria tritici, which causes the most serious disease of wheat in temperate regions of the world. We screened the genome of strain IP0323 for high confidence gene models, identifying 4,075 candidates from 10,933 predicted genes. These were amplified from genomic DNA, were cloned into the Gateway entry vector pDONR207, and were sequenced, providing a total of 3,022 quality-controlled plasmids. The ORFeome includes genes predicted to encode effectors (n = 410) and secondary metabolite biosynthetic proteins (n = 171) in addition to genes residing at dispensable chromosomes (n = 122) or those that are preferentially expressed during plant infection (n = 527). The ORFeome plasmid library is compatible with our previously developed suite of Gateway destination vectors, which have various combinations of promoters, selection markers, and epitope tags. The Z. tritici ORFeome constitutes a powerful resource for functional genomics and offers unparalleled opportunities to understand the biology of Z. tritici.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | | | | | | | - Graham Thomas
- Biosciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Michael Csukai
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, U.K
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR47UH, U.K
| | | | - Ken Haynes
- Biosciences, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
44
|
Schuster M, Guiu-Aragones C, Steinberg G. Class V chitin synthase and β(1,3)-glucan synthase co-travel in the same vesicle in Zymoseptoria tritici. Fungal Genet Biol 2019; 135:103286. [PMID: 31672687 PMCID: PMC7967022 DOI: 10.1016/j.fgb.2019.103286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/03/2022]
Abstract
Native chitin (Chs5) and glucan synthase (Gsc1) visualised in the pathogen Zymoseptoria tritici. Chs5 and Gsc1 are transported along microtubules. Chs5 and Gsc1 do localise to the apical plasma membrane, but not the Spitzenkörper. Light and electron microscopy how co-travel of Chs5 and Gsc1 in the same secretory vesicle. Enzyme delivery in Z. tritici is different from Neurospora crassa, but similar to Ustilago maydis.
The fungal cell wall consists of proteins and polysaccharides, formed by the co-ordinated activity of enzymes, such as chitin or glucan synthases. These enzymes are delivered via secretory vesicles to the hyphal tip. In the ascomycete Neurospora crassa, chitin synthases and β(1,3)-glucan synthase are transported in different vesicles, whereas they co-travel along microtubules in the basidiomycete Ustilago maydis. This suggests fundamental differences in wall synthesis between taxa. Here, we visualize the class V chitin synthase ZtChs5 and the β(1,3)-glucan synthase ZtGcs1 in the ascomycete Zymoseptoria tritici. Live cell imaging demonstrate that both enzymes co-locate to the apical plasma membrane, but are not concentrated in the Spitzenkörper. Delivery involves co-transport along microtubules of the chitin and glucan synthase. Live cell imaging and electron microscopy suggest that both cell wall synthases locate in the same vesicle. Thus, microtubule-dependent co-delivery of cell wall synthases in the same vesicle is found in asco- and basidiomycetes.
Collapse
Affiliation(s)
- Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | | | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
45
|
Agrobacterium tumefaciens-mediated transformation and expression of GFP in Ascochyta lentis to characterize ascochyta blight disease progression in lentil. PLoS One 2019; 14:e0223419. [PMID: 31647840 PMCID: PMC6812748 DOI: 10.1371/journal.pone.0223419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022] Open
Abstract
The plant immune system is made up of a complex response network that involves several lines of defense to fight invading pathogens. Fungal plant pathogens on the other hand, have evolved a range of ways to infect their host. The interaction between Ascochyta lentis and two lentil genotypes was explored to investigate the progression of ascochyta blight (AB) in lentils. In this study, we developed an Agrobacterium tumefaciens-mediated transformation system for A. lentis by constructing a new binary vector, pATMT-GpdGFP, for the constitutive expression of green fluorescent protein (EGFP). Green fluorescence was used as a highly efficient vital marker to study the developmental changes in A. lentis during AB disease progression on the susceptible and resistant lentil accessions, ILL6002 and ILL7537, respectively. The initial infection stages were similar in both the resistant and susceptible accessions where A. lentis uses infection structures such as germ tubes and appressoria to gain entry into the host while the host uses defense mechanisms to prevent pathogen entry. Penetration was observed at the junctions between neighbouring epidermal cells and occasionally, through the stomata. The pathogen attempted to penetrate and colonize ILL7537, but further fungal advancement appeared to be halted, and A. lentis did not enter the mesophyll. Successful entry and colonization of ILL6002 coincided with structural changes in A. lentis and the onset of necrotic lesions 5–7 days post inoculation. Once inside the leaf, A. lentis continued to grow, colonizing all parts of the leaf followed by plant cell collapse. Pycnidia-bearing spores appeared 14 days post inoculation, which marks the completion of the infection cycle. The use of fluorescent proteins in plant pathogenic fungi together with confocal laser scanning microscopy, provide a valuable tool to study the intracellular dynamics, colonization strategy and infection mechanisms during plant-pathogen interaction.
Collapse
|
46
|
Francisco CS, Ma X, Zwyssig MM, McDonald BA, Palma-Guerrero J. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Sci Rep 2019; 9:9642. [PMID: 31270361 PMCID: PMC6610121 DOI: 10.1038/s41598-019-45994-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/20/2019] [Indexed: 01/15/2023] Open
Abstract
During their life cycles, pathogens have to adapt to many biotic and abiotic environmental stresses to maximize their overall fitness. Morphological transitions are one of the least understood of the many strategies employed by fungal plant pathogens to adapt to constantly changing environments, even though different morphotypes may play important biological roles. Here, we first show that blastospores (the "yeast-like" form of the pathogen typically known only under laboratory conditions) can form from germinated pycnidiospores (asexual spores) on the surface of wheat leaves, suggesting that this morphotype can play an important role in the natural history of Z. tritici. Next, we characterized the morphological responses of this fungus to a series of environmental stresses to understand the effects of changing environments on fungal morphology and adaptation. All tested stresses induced morphological changes, but different responses were found among four strains. We discovered that Z. tritici forms chlamydospores and demonstrated that these structures are better able to survive extreme cold, heat and drought than other cell types. Finally, a transcriptomic analysis showed that morphogenesis and the expression of virulence factors are co-regulated in this pathogen. Our findings illustrate how changing environmental conditions can affect cellular morphology and lead to the formation of new morphotypes, with each morphotype having a potential impact on both pathogen survival and disease epidemiology.
Collapse
Affiliation(s)
| | - Xin Ma
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Maria Manuela Zwyssig
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
47
|
Boixel AL, Delestre G, Legeay J, Chelle M, Suffert F. Phenotyping Thermal Responses of Yeasts and Yeast-like Microorganisms at the Individual and Population Levels: Proof-of-Concept, Development and Application of an Experimental Framework to a Plant Pathogen. MICROBIAL ECOLOGY 2019; 78:42-56. [PMID: 30280234 DOI: 10.1007/s00248-018-1253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Deciphering the responses of microbial populations to spatiotemporal changes in their thermal environment is instrumental in improving our understanding of their eco-evolutionary dynamics. Recent studies have shown that current phenotyping protocols do not adequately address all dimensions of phenotype expression. Therefore, these methods can give biased assessments of sensitivity to temperature, leading to misunderstandings concerning the ecological processes underlying thermal plasticity. We describe here a new robust and versatile experimental framework for the accurate investigation of thermal performance and phenotypic diversity in yeasts and yeast-like microorganisms, at the individual and population levels. In addition to proof-of-concept, the application of this framework to the fungal wheat pathogen Zymoseptoria tritici resulted in detailed characterisations for this yeast-like microorganism of (i) the patterns of temperature-dependent changes in performance for four fitness traits; (ii) the consistency in thermal sensitivity rankings of strains between in planta and in vitro growth assessments; (iii) significant interindividual variation in thermal responses, with four principal thermotypes detected in a sample of 66 strains; and (iv) the ecological consequences of this diversity for population-level processes through pairwise competition experiments highlighting temperature-dependent outcomes. These findings extend our knowledge and ability to quantify and categorise the phenotypic heterogeneity of thermal responses. As such, they lay the foundations for further studies elucidating local adaptation patterns and the effects of temperature variations on eco-evolutionary and epidemiological processes.
Collapse
Affiliation(s)
- Anne-Lise Boixel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| | - Ghislain Delestre
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Jean Legeay
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Michaël Chelle
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Frédéric Suffert
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| |
Collapse
|
48
|
Chaloner TM, Fones HN, Varma V, Bebber DP, Gurr SJ. A new mechanistic model of weather-dependent Septoria tritici blotch disease risk. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180266. [PMID: 31056050 PMCID: PMC6553599 DOI: 10.1098/rstb.2018.0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 12/31/2022] Open
Abstract
We present a new mechanistic model for predicting Septoria tritici blotch (STB) disease, parameterized with experimentally derived data for temperature- and wetness-dependent germination, growth and death of the causal agent, Zymoseptoria tritici. The output of this model (A) was compared with observed disease data for UK wheat over the period 2002-2016. In addition, we compared the output of a second model (B), in which experimentally derived parameters were replaced by a modified version of a published Z. tritici thermal performance equation, with the same observed disease data. Neither model predicted observed annual disease, but model A was able to differentiate UK regions with differing average disease risks over the entire period. The greatest limitations of both models are: broad spatial resolution of the climate data, and lack of host parameters. Model B is further limited by its lack of explicitly defined pathogen death, leading to a cumulative overestimation of disease over the course of the growing season. Comparison of models A and B demonstrates the importance of accounting for the temperature-dependency of pathogen processes important in the initiation and progression of disease. However, effective modelling of STB will probably require similar experimentally derived parameters for host and environmental factors, completing the disease triangle. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
| | | | | | | | - Sarah J. Gurr
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
49
|
Walter J, Edwards J, Cai J, McDonald G, Miklavcic SJ, Kuchel H. High-Throughput Field Imaging and Basic Image Analysis in a Wheat Breeding Programme. FRONTIERS IN PLANT SCIENCE 2019; 10:449. [PMID: 31105715 PMCID: PMC6492763 DOI: 10.3389/fpls.2019.00449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/25/2019] [Indexed: 05/18/2023]
Abstract
Visual assessment of colour-based traits plays a key role within field-crop breeding programmes, though the process is subjective and time-consuming. Digital image analysis has previously been investigated as an objective alternative to visual assessment for a limited number of traits, showing suitability and slight improvement to throughput over visual assessment. However, easily adoptable, field-based high-throughput methods are still lacking. The aim of the current study was to produce a high-throughput digital imaging and analysis pipeline for the assessment of colour-based traits within a wheat breeding programme. This was achieved through the steps of (i) a proof-of-concept study demonstrating basic image analysis methods in a greenhouse, (ii) application of these methods to field trials using hand-held imaging, and (iii) developing a field-based high-throughput imaging infrastructure for data collection. The proof of concept study showed a strong correlation (r = 0.95) between visual and digital assessments of wheat physiological yellowing (PY) in a greenhouse environment, with both scores having similar heritability (H2 = 0.85 and 0.76, respectively). Digital assessment of hand-held field images showed strong correlations to visual scores for PY (r = 0.61 and 0.78), senescence (r = 0.74 and 0.75) and Septoria tritici blotch (STB; r = 0.76), with greater heritability of digital scores, excluding STB. Development of the high-throughput imaging infrastructure allowed for images of field plots to be collected at a rate of 7,400 plots per hour. Images of an advanced breeding trial collected with this system were analysed for canopy cover at two time-points, with digital scores correlating strongly to visual scores (r = 0.88 and 0.86) and having similar or greater heritability. This study details how high-throughput digital phenotyping can be applied to colour-based traits within field trials of a wheat breeding programme. It discusses the logistics of implementing such systems with minimal disruption to the programme, provides a detailed methodology for the basic image analysis methods utilized, and has potential for application to other field-crop breeding or research programmes.
Collapse
Affiliation(s)
- James Walter
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd., Roseworthy, SA, Australia
| | - James Edwards
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd., Roseworthy, SA, Australia
| | - Jinhai Cai
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Glenn McDonald
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
| | - Stanley J. Miklavcic
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Haydn Kuchel
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd., Roseworthy, SA, Australia
| |
Collapse
|
50
|
Walter J, Edwards J, Cai J, McDonald G, Miklavcic SJ, Kuchel H. High-Throughput Field Imaging and Basic Image Analysis in a Wheat Breeding Programme. FRONTIERS IN PLANT SCIENCE 2019; 10:449. [PMID: 31105715 DOI: 10.3389/fpls.2019.00449/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
Visual assessment of colour-based traits plays a key role within field-crop breeding programmes, though the process is subjective and time-consuming. Digital image analysis has previously been investigated as an objective alternative to visual assessment for a limited number of traits, showing suitability and slight improvement to throughput over visual assessment. However, easily adoptable, field-based high-throughput methods are still lacking. The aim of the current study was to produce a high-throughput digital imaging and analysis pipeline for the assessment of colour-based traits within a wheat breeding programme. This was achieved through the steps of (i) a proof-of-concept study demonstrating basic image analysis methods in a greenhouse, (ii) application of these methods to field trials using hand-held imaging, and (iii) developing a field-based high-throughput imaging infrastructure for data collection. The proof of concept study showed a strong correlation (r = 0.95) between visual and digital assessments of wheat physiological yellowing (PY) in a greenhouse environment, with both scores having similar heritability (H2 = 0.85 and 0.76, respectively). Digital assessment of hand-held field images showed strong correlations to visual scores for PY (r = 0.61 and 0.78), senescence (r = 0.74 and 0.75) and Septoria tritici blotch (STB; r = 0.76), with greater heritability of digital scores, excluding STB. Development of the high-throughput imaging infrastructure allowed for images of field plots to be collected at a rate of 7,400 plots per hour. Images of an advanced breeding trial collected with this system were analysed for canopy cover at two time-points, with digital scores correlating strongly to visual scores (r = 0.88 and 0.86) and having similar or greater heritability. This study details how high-throughput digital phenotyping can be applied to colour-based traits within field trials of a wheat breeding programme. It discusses the logistics of implementing such systems with minimal disruption to the programme, provides a detailed methodology for the basic image analysis methods utilized, and has potential for application to other field-crop breeding or research programmes.
Collapse
Affiliation(s)
- James Walter
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd., Roseworthy, SA, Australia
| | - James Edwards
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd., Roseworthy, SA, Australia
| | - Jinhai Cai
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Glenn McDonald
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Haydn Kuchel
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia
- Australian Grain Technologies Pty Ltd., Roseworthy, SA, Australia
| |
Collapse
|