1
|
Djoundi AR, Morançais M, Mossion A, Ragueneau E, Rabesaotra V, Farasoa HR, Ramanandraibe VV, Dumay J. Seasonal Variation in the Biochemical Composition and Fatty Acid Profiles of the Red Alga Halymenia durvillei from Ngazidja (Comoros). Molecules 2025; 30:1232. [PMID: 40142008 PMCID: PMC11946709 DOI: 10.3390/molecules30061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The study of Comorian red alga Halymenia durvillei showed a significant biochemical composition with high ash and polysaccharide content and the presence of n-3 and n-6 essential fatty acid molecules. Seasonal monitoring showed a real change in biochemical composition depending on the harvesting period. On an annual average basis, the algae contained 35.59 ± 2.55% dw ashes, 0.7 ± 0.19% dw soluble proteins, 0.27 ± 0.02% dw total lipids, and 35.09 ± 6.14% dw polysaccharides. The pigment composition was 130 µg/g dw R-phycoerythrin, 1.49 µg/g dw chlorophyll a, and 0.09 µg/g dw carotenoids. The most abundant fatty acid identified was palmitic acid (C16:0), which accounted for almost 43.33% of total fatty acids. Oleic acid (C18:1n-9) was the most abundant unsaturated fatty acid, at 11.58%. Linoleic acid (C18:2n-6) was reported to be the most abundant polyunsaturated fatty acid in Halymenia durvillei. The fatty acid profile was also characterized by arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3).
Collapse
Affiliation(s)
- Ahmed Radjabou Djoundi
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Michèle Morançais
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Aurélie Mossion
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Emilie Ragueneau
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Vony Rabesaotra
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| | - Helga Rim Farasoa
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Vestalys Voahangy Ramanandraibe
- Laboratoire de Chimie et Valorisation des Produits Naturelles (LCVPN), Université d’Antananarivo, 101 Antananarivo, Antananarivo P.O. Box 906, Madagascar; (H.R.F.); (V.V.R.)
| | - Justine Dumay
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMer, UR 2160, F-44000 Nantes, France; (A.R.D.); (M.M.); (A.M.); (E.R.); (V.R.)
| |
Collapse
|
2
|
Gozai-Alghamdi SA, Aljbour SM, Amin SA, Agustí S. Photobiota of the Tropical Red Sea: Fatty Acid Profile Analysis and Nutritional Quality Assessments. Molecules 2025; 30:621. [PMID: 39942724 PMCID: PMC11820627 DOI: 10.3390/molecules30030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Photosynthetic organisms are primary sources of marine-derived molecules, particularly ω3 fatty acids (FAs), which influence the quality of marine foods. It is reported that tropical organisms possess lower FA nutritional quality than those from colder oceans. However, the high biodiversity known for tropical areas may help compensate for this deficiency by producing a high diversity of molecules with nutritional benefits for the ecosystem. Here we addressed this aspect by analyzing the FA profiles of 20 photosynthetic organisms from the salty and warm Red Sea, a biodiversity hot spot, including cyanobacteria, eukaryotic microalgae, macroalgae, mangrove leaves, as well as three selected reef's photosymbiotic zooxanthellate corals and jellyfish. Using direct transesterification, gas chromatography-mass spectrometry, FA absolute quantification, and nutritional indexes, we evaluated their lipid nutritional qualities. We observed interspecific and strain-specific variabilities in qualities, which the unique environmental conditions of the Red Sea may help to explain. Generally, eukaryotic microalgae exhibited the highest nutritional quality. The previously unanalyzed diatoms Leyanella sp. and Minutocellus sp. had the highest eicosapentaenoic acid (EPA) contents. The bioprospected Red Sea photobiota exhibited pharmaceutical and nutraceutical potential. By sourcing and quantifying these bioactive compounds, we highlight the untapped rich biodiversity of the Red Sea and showcase opportunities to harness these potentials.
Collapse
Affiliation(s)
- Sarah A. Gozai-Alghamdi
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Biological Sciences, Faculty of Science, University of Jeddah (UJ), Jeddah 21959, Saudi Arabia
| | - Samir M. Aljbour
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University (BAU), Al-Salt 19117, Jordan
| | - Saeed A. Amin
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Susana Agustí
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
| |
Collapse
|
3
|
Behera M, Singh L, Pradhan B, Behera KC. Seaweed-Derived Bioactive Compounds: Potent Modulators in Breast Cancer Therapy. Chem Biodivers 2024:e202401613. [PMID: 39652742 DOI: 10.1002/cbdv.202401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Cancer remains a major global health concern, with breast cancer being particularly challenging. To address this, new therapeutic strategies are being explored, including natural alternatives. Seaweeds, rich in bioactive compounds, have gained attention for their therapeutic potential. Traditionally valued for their nutritional content, seaweed-derived compounds such as polysaccharides, polyphenols, sterols, vitamins, minerals, and carotenoids have shown anticancer properties. These compounds can modulate key cellular processes like apoptosis, angiogenesis, and inflammation-crucial in cancer progression. Their antioxidant, anti-inflammatory, and immunomodulatory effects make them promising candidates for complementary cancer therapies. Key bioactive components like fucoidans, laminarins, phlorotannins, and carotenoids exhibit antiproliferative, proapoptotic, antiangiogenic, and antimetastatic properties. Recent studies focus on the ability of these compounds to induce apoptosis in cancer cells. This review highlights the chemical constituents of various seaweed species with antitumor activity, their mechanisms of action, and the potential for integration into cancer treatments. It also addresses challenges in clinical applications and outlines future research directions for leveraging these marine resources in breast cancer therapy.
Collapse
Affiliation(s)
- Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
4
|
Batır E, Metin Ö, Yıldız M, Özel OT, Fidan D. Sustainable land-based IMTA: Holistic management of finfish, mussel, and macroalgae interactions, emphasizing water quality and nutrient dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123411. [PMID: 39577191 DOI: 10.1016/j.jenvman.2024.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
This research aims to minimize the environmental impact and promote the sustainability of aquaculture by optimizing nutrient dynamics, improving water quality and enhancing species growth performance through a land-based Integrated Multi-Trophic Aquaculture (IMTA) system. The study focused on Black Sea trout (Salmo labrax), Mediterranean mussel (Mytilus galloprovincialis), and sea lettuce (Ulva lactuca), reared in interconnected tanks using Black Sea water over 90 days. The Black Sea trout more than doubled in size to 333.92 ± 6.60 g and significant improvements were observed in the specific growth rate (SGR) at 0.85% and the feed conversion ratio (FCR) at 1.38. The fish's proximate composition included 19.19% protein, 2.31% lipid, 70.35% moisture, and 1.34% ash, with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels at 6.06% and 13.50%, respectively. The macroalgae showed substantial growth, with a SGR of 0.34% and a weight gain of 310 ± 3.50 g. Additionally, it increased protein content by 13.41% and demonstrated significant nutrient removal efficiencies: 41.4% for nitrate, 66.7% for nitrite, and 90.8% for ammonia. EPA and DHA levels increased by 45% and 70%, reaching 4.66% and 2.19%, respectively. In contrast, the mussels experienced a weight loss, with a weight gain of -1.20 ± 0.00 g and an SGR of -0.20%. Initially, wild mussels had a composition of 77.56% moisture, 13.79% protein, 1.54% lipid, and 1.77% ash. The presence of mussels and macroalgae significantly improved water quality, notably reducing ammonia by 92.2%, nitrate by 44.6% and nitrite by 75%, benefiting the overall ecosystem. This study concludes that a land-based IMTA system enhances sustainable aquaculture by improving product quality and bioremediation, with macroalgae playing a crucial role in nutrient absorption and growth within the system.
Collapse
Affiliation(s)
- Esin Batır
- Department of Aquaculture and Fish Diseases, Aquaculture PhD Program Institute of Graduate Studies in Sciences, Istanbul University, Esnaf Hastanesi Building, 4th Floor, 34116, Süleymaniye, İstanbul, Turkey; Central Fisheries Research Institute (SUMAE), Aquaculture Department, Via Vali Adil Yazar 14, 61250, Trabzon, Turkey; Experimental Ecology and Aquaculture Laboratory, Department of Biology, University of Rome Tor Vergata, Via Cracovia 1, 00133, Rome, Italy.
| | - Ömer Metin
- Department of Aquaculture and Fish Diseases, Aquaculture MSc Program Institute of Graduate Studies in Sciences, Istanbul University, Esnaf Hastanesi Building, 4th Floor, 34116, Süleymaniye, İstanbul, Turkey
| | - Mustafa Yıldız
- Istanbul University, Faculty of Aquatic Sciences, Department of Aquaculture and Fish Diseases, Via Onaltı Mart Şehitleri 2, 34134, Istanbul, Turkey
| | - Osman Tolga Özel
- Central Fisheries Research Institute (SUMAE), Aquaculture Department, Via Vali Adil Yazar 14, 61250, Trabzon, Turkey
| | - Dilek Fidan
- Central Fisheries Research Institute (SUMAE), Environmental and Resource Management Department, Via Vali Adil Yazar 14, 61250, Trabzon, Turkey
| |
Collapse
|
5
|
Le AT, Prabhu N, S Almoallim H, Awad Alahmadi T. Assessment of nutraceutical value, physicochemical, and anti-inflammatory profile of Odonthalia floccose and Odonthalia dentata. ENVIRONMENTAL RESEARCH 2024; 259:119487. [PMID: 38917932 DOI: 10.1016/j.envres.2024.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The nutraceutical value, and physicochemical profile as well as anti-inflammatory activity potential of Odonthalia floccose and Odonthalia dentata (red macroalgae) dry biomass were investigated in this study. Proximate composition study results revealed that the dry biomass of O. floccose and O. dentae were found to be as ash: 9.11 & 8.7 g 100 g-1, moisture: 8.24 & 8.1 g 100 g-1, total fat: 6.9 & 7.2 g 100 g-1, protein: 24.52 & 25.6 g 100 g-1, and total carbohydrate/polysaccharides: 53.84 & 48.85 g 100 g-1 of dry weight biomass respectively. Both algae biomass contain considerable quantity of minerals (Fe, Cu, Mg, and Zn). Furthermore, the major saturated fatty acids (6.24 & 5.82 g FAME 100 g-1 of total fat of O. floccose and O. dentate) (ΣFAs) present in the test algae were stearic acid, palmitic acid, and margaric acids. O. floccose and O. dentata also contain remarkable protein composition profile that compiled with considerable quantity of essential and non-essential amino acids. The vitamins such as vitamin A, B1, B2, B3, B6, B9, C, and E of O. floccose and O. dentate biomass were also identified at sufficient quantity level. The swelling capacity (SWC), water holding capacity (WHC), and oil holding capacity (OHC) properties of O. floccose and O. dentate at various temperature conditions (25 and 37 ᵒC) were found to be 8.11 & 7.02 mL g-1 and 8.95 & 7.55 mL g-1, 5.1 & 4.87 and 4.8 & 4.1 mL g-1, as well as 2.11 & 1.81 and 1.96 & 1.89 mL g-1 respectively. Among these two marine red macroalgae samples, the O. dentate showed better anti-inflammatory activity than O. floccose at 150 μg mL-1 dosage. Thus, this O. floccose and O. dentate biomass can be considerable as nutritional supplement and pharmaceutical product development related research.
Collapse
Affiliation(s)
- Anh-Tuan Le
- Faculty of Odonto-Stomatology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Viet Nam.
| | - N Prabhu
- Center for Research and Innovations, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602 105, Tamil Nadu, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh - 11545, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh - 11461, Saudi Arabia.
| |
Collapse
|
6
|
El-Sheekh M, Alwaleed EA, Kassem WMA, Saber H. Optimizing the fucoidan extraction using Box-Behnken Design and its potential bioactivity. Int J Biol Macromol 2024; 277:134490. [PMID: 39111494 DOI: 10.1016/j.ijbiomac.2024.134490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Fucoidan is a sulfated polysaccharide that occurs naturally in the cell wall of brown seaweeds and has substantial biological efficacy. Optimizing the extraction of fucoidan from different brown seaweeds was the primary goal of this research. The optimization of fucoidan extraction was applied on the brown macroalga Turbinaria turbinata using a Box-Behnken Design (BBD) to inspect the impacts of different pH (3, 5, 7), temperature (70, 80, 90 °C) and extraction duration (60, 120, 180 min) on both the yield and sulfate content of fucoidan. The optimized parameters recorded to maximize the fucoidan yield and its sulfate content were a pH of 3.44 and a temperature of 82.26 °C for 60 min. The optimal conditions obtained from BBD were used for fucoidan extraction from T. turbinata, Sargassum cinereum, Padina pavonica, and Dictyota dichotoma. The highest average of fucoidan yield was derived from P. pavonica (40.76 ± 4.04 % DW). FTIR, 1H NMR, and HPLC were used to characterize extracted fucoidan. The extracted fucoidan's Physical characteristics, biochemical composition, antioxidant potential, antitumor effect against breast cancer cells (MCF-7), and antimicrobial and anticoagulant activity were assessed. The extracted fucoidan from D. dichotoma, followed by that extracted from S. cinereum, which had the highest sulphate content, depicted the highest antioxidant, anticancer, and anticoagulant activities. Fucoidan has demonstrated a strong antimicrobial action against some pathogenic microorganisms; Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Candida albicans. The anticoagulant properties of fucoidan from D. dichotoma were stronger than those of fucoidan from S. cinereum, T. turbinata, and P. pavonica due to its higher sulphate content. These findings could be used for various biomedical applications to improve the pharmaceutical industry.
Collapse
Affiliation(s)
- Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Eman A Alwaleed
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Wafaa M A Kassem
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
7
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
8
|
Jha AK, Kishore P, Chinnadurai S, Verma SK, Kumar R, Sreejith S, Sarika K. Heavy metals and trace minerals in commonly available shark species from North East Arabian Sea: A human health risk perspective. ENVIRONMENTAL RESEARCH 2024; 252:118979. [PMID: 38685303 DOI: 10.1016/j.envres.2024.118979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Shark is a seafood commodity that is a good source of minerals and accumulates heavy metals and trace elements through biomagnification, which can pose health risk if taken above the permissible limit. A study was conducted on commonly landed eleven shark species (Scoliodon laticaudus, Rhizopriodon oligolinx, Sphyrna lewini (CR), Carcharhinus macloti, Carcharinus limbatus, Carcharhinus amblyrhynchoides, Carcharhinus sorrah, Carcharinus falciformes(VU), Glaucostegus granulatus, Chiloscyllium arabicum, Loxodon macrorhinus) and analyzed for their heavy metal content, Hazard Index, Total Hazard Quotient, Metal Pollution Index, and also calculated the health risk associated with the consumption. Most of the heavy metals and trace minerals were found to be within the acceptable limit. The Targeted Hazard Quotient (THQ) and the Hazard Index (HI) of all the species except two were less than 1 (HI ≤ 1.0). The Metal Pollution Index (MPI) is showing either no impact or very low contamination. An overall study on hazard identification and health risk characterization in terms of heavy metals shows contamination of some heavy metals in sharks, but there is no potential human health risk associated with consumption.
Collapse
Affiliation(s)
- Ashish Kumar Jha
- Veraval Research Centre of ICAR-CIFT, Matyabhavan, Bhidia, Veraval, Gujarat, 362269, India.
| | - Pankaj Kishore
- Central Institute of Fisheries Technology, ICAR-CIFT, Matsyapuri, Willingdon Island, Cochin, 682029, India
| | | | - Sumit Kumar Verma
- Veraval Research Centre of ICAR-CIFT, Matyabhavan, Bhidia, Veraval, Gujarat, 362269, India
| | - Rajan Kumar
- Veraval Regional Station of ICAR-CMFRI, Matyabhavan, Bhidia, Veraval, Gujarat, 362269, India
| | - S Sreejith
- Veraval Research Centre of ICAR-CIFT, Matyabhavan, Bhidia, Veraval, Gujarat, 362269, India
| | - K Sarika
- Veraval Research Centre of ICAR-CIFT, Matyabhavan, Bhidia, Veraval, Gujarat, 362269, India
| |
Collapse
|
9
|
Kim ST, Conklin SD, Redan BW, Ho KK. Determination of the Nutrient and Toxic Element Content of Wild-Collected and Cultivated Seaweeds from Hawai'i. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:595-605. [PMID: 38528908 PMCID: PMC10961648 DOI: 10.1021/acsfoodscitech.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
For centuries, Hawaiians have gathered seaweed for food, medicine, and ceremonial purposes. Seaweed contains nutrients, but some varieties can accumulate toxic elements. We measured target macrominerals (Na, Mg, P, K, Ca), microminerals (B, V, Mn, Co, Cu, Zn, Mo), and nonessential/toxic elements (As, Sr, Cd, Sn, Hg, Pb, and U) in a sample of wild-collected and cultivated seaweeds from Hawai'i. The samples consisted of brown (Sargassum aquifolium, Sargassum echinocarpum), red (Gracilaria parvispora, Halymenia formosa, Halymenia hawaiiana), and green (Ulva ohnoi) seaweed. Elemental composition was determined by inductively coupled plasma (ICP)-atomic emission spectroscopy and ICP-mass spectrometry (MS). Speciation of As was conducted by using liquid chromatography-ICP-MS. S. echinocarpum per 80 g serving was high in Ca (~37% daily value [DV]), U. ohnoi was high in Mg (~40%DV), H. formosa was high in Fe (~40%DV), and G. parvispora was high in Mn (~128%DV). In this study, the highest amounts of toxic elements were observed in S. aquifolium and S. echinocarpum (27.6 mg inorganic As/kg fdw), G. parvispora (43.3 mg Pb/kg fdw) and H. formosa (46.6 mg Pb/kg fdw). These results indicate that although seaweeds from Hawai'i contain a variety of nutrients, some species can accumulate high amounts of toxic elements.
Collapse
Affiliation(s)
- Samuel T. Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, 96822, United States
| | - Sean D. Conklin
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, United States
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Bedford Park, IL, 60501, United States
| | - Kacie K.H.Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, 96822, United States
| |
Collapse
|
10
|
Peng Y, Yang X, Huang R, Ren B, Chen B, Liu Y, Zhang H. Diversified Chemical Structures and Bioactivities of the Chemical Constituents Found in the Brown Algae Family Sargassaceae. Mar Drugs 2024; 22:59. [PMID: 38393030 PMCID: PMC10890103 DOI: 10.3390/md22020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Sargassaceae, the most abundant family in Fucales, was recently formed through the merging of the two former families Sargassaceae and Cystoseiraceae. It is widely distributed in the world's oceans, notably in tropical coastal regions, with the exception of the coasts of Antarctica and South America. Numerous bioactivities have been discovered through investigations of the chemical diversity of the Sargassaceae family. The secondary metabolites with unique structures found in this family have been classified as terpenoids, phlorotannins, and steroids, among others. These compounds have exhibited potent pharmacological activities. This review describes the new discovered compounds from Sargassaceae species and their associated bioactivities, citing 136 references covering from March 1975 to August 2023.
Collapse
Affiliation(s)
- Yan Peng
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Y.P.); (B.R.); (B.C.)
| | - Xianwen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China;
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Bin Ren
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Y.P.); (B.R.); (B.C.)
| | - Bin Chen
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Y.P.); (B.R.); (B.C.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Hongjie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Oprea OB, Tolstorebrov I, Claussen IC, Sannan S, Apostol L, Moșoiu C, Gaceu L. Potential for Saccharina latissima Flour as a Functional Ingredient in the Baking Sector. Foods 2023; 12:4498. [PMID: 38137301 PMCID: PMC10742833 DOI: 10.3390/foods12244498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The healthy "superfood" sector is currently quickly developing in Europe, and grocery stores are increasingly stocking macroalgae food supplements. Due to its high amount of protein, fiber, and minerals, numerous studies have demonstrated that seaweed has a significant potential for usage as a functional ingredient in the food sector. The aim of the current study was to evaluate the rheological (ICC 173 standard method) and chemical potentials of using Saccharina latissima flour in the bread sector. The calcium level of S. latissima flour was found to be 8236 mg/kg, the magnesium level was 6041 mg/kg, the K concentration was 62,088 mg/kg, the iron content was 35.23 mg/kg, the P content was 2263 mg/kg, and the I content was 12,530 mg/kg, significantly higher values than those of wheat flour. The antioxidant properties of the algae powder used were highlighted by the analysis of the total polyphenol content and its antioxidant activity (DPPH method). Four bread samples, which were compared with the control sample entirely made of wheat flour in order to evaluate their potential, were made, using a replacement degree from 1.5% to 6% of S. latissima. Rheological analyses were completed using the ICC 173 standard method, as well as sensorial analysis, where a panel of assessors' evaluations compared the sensory properties of samples with 1.5-6% of S. latissima flour to a control sample manufactured with flour type 650. It was concluded that sample A1 (1.5% algae flour) has sensorial properties similar to those of the control sample, and, for the other samples, the properties began to degrade with the increase in the amount of algae flour. Textural analyses performed during 96 h of storage show that the firmness and gumminess increase with the addition of algae flour and over time. The conclusions indicated that samples comprising 4.5% and 6% of S. latissima are unsatisfactory from a rheological and sensory perspective, while samples having 1.5% and 3% of S. latissima can be viewed as sources of fiber and minerals.
Collapse
Affiliation(s)
- Oana Bianca Oprea
- Faculty of Food and Tourism, Transilvania University of Brasov, 148 Castelului Street, 500014 Brașov, Romania
| | - Ignat Tolstorebrov
- NTNU, Institutt for Energi- og Prosessteknikk, Postboks 8900 Torgarden, 7491 Trondheim, Norway
- SINTEF Energi AS, Postboks 4761 Torgarden, 7465 Trondheim, Norway
| | | | - Sigurd Sannan
- SINTEF Energi AS, Postboks 4761 Torgarden, 7465 Trondheim, Norway
| | - Livia Apostol
- National Reseach & Development Institute for Food Bioresources—IBA Bucharest, 6 Dinu Vintilă Street, 021102 Bucharest, Romania
| | - Claudia Moșoiu
- National Reseach & Development Institute for Food Bioresources—IBA Bucharest, 6 Dinu Vintilă Street, 021102 Bucharest, Romania
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 148 Castelului Street, 500014 Brașov, Romania
- CSCBAS&CE-MONT Centre/INCE-Romanian Academy, Casa Academiei Române, Calea 13 Septembrie No. 13, 050711 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| |
Collapse
|
12
|
Moiseenko KV, Glazunova OA, Savinova OS, Shabaev AV, Fedorova TV. Changes in Composition of Some Bioactive Molecules upon Inclusion of Lacticaseibacillus paracasei Probiotic Strains into a Standard Yogurt Starter Culture. Foods 2023; 12:4238. [PMID: 38231606 DOI: 10.3390/foods12234238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Incorporation of probiotic Lacticaseibacillus paracasei into a standard yogurt starter culture can drastically improve its health promoting properties. However, besides being an advantage in itself, the incorporation of a new probiotic strain can significantly affect the overall composition of fermented milk. In this article, the effect of incorporation of the L. paracasei probiotic strains (KF1 and MA3) into several standard yogurt starter cultures (consisting of the following strains: Streptococcus thermophilus 16t and either Lactobacillus delbrueckii Lb100 or L. delbrueckii Lb200) was investigated. Such parameters as the degree of proteolysis, antioxidant activity, ACE-inhibitory activity, content of organic acids, profile of FAs and profile of volatile organic compounds were measured, and the influence of the starter culture composition on these parameters was described. It was demonstrated that, at least in the case of the studied strains, yogurt with L. paracasei had an advantage over the standard yogurt in terms of the content of acetoin, acetic acid, butyric acid and conjugated linoleic acid. Moreover, the incorporation of L. paracasei KF1 significantly improved the hypotensive properties of the resulting yogurt. Thus, the presented study provides insight into the bioactive molecules of probiotic yogurt and may be useful for both academia and industry in the development of new dairy-based functional products.
Collapse
Affiliation(s)
- Konstantin V Moiseenko
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Olga A Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Olga S Savinova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Alexander V Shabaev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Tatyana V Fedorova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
13
|
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Hanelt D, Abomohra A. Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. FERMENTATION-BASEL 2023; 9:934. [DOI: 10.3390/fermentation9110934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
With the rising demands for renewable fuels, there is growing interest in utilizing abundant and sustainable non-edible biomass as a feedstock for bioethanol production. Macroalgal biomass contains a high content of carbohydrates in the form of special polysaccharides like alginate, agar, and carrageenan that can be converted to fermentable sugars. In addition, using seagrass as a feedstock for bioethanol production can provide a sustainable and renewable energy source while addressing environmental concerns. It is a resource-rich plant that offers several advantages for bioethanol production, including its high cellulose content, rapid growth rates, and abundance in coastal regions. To reduce sugar content and support efficient microbial fermentation, co-fermentation of macroalgae with seagrass (marine biomass) can provide complementary sugars and nutrients to improve process yields and economics. This review comprehensively covers the current status and future potential of fermenting macroalgal biomass and seagrass, as well as possible combinations for maximizing bioethanol production from non-edible energy crops. An overview is provided on the biochemical composition of macroalgae and seagrass, pretreatment methods, hydrolysis, and fermentation processes. Key technical challenges and strategies to achieve balanced co-substrate fermentation are discussed. The feasibility of consolidated bioprocessing to directly convert mixed feedstocks to ethanol is also evaluated. Based on current research, macroalgae-seagrass co-fermentation shows good potential to improve the bioethanol yields, lower the cost, and enable more optimal utilization of diverse marine biomass resources compared to individual substrates.
Collapse
Affiliation(s)
- Mohamed E. H. Osman
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Atef M. Abo-Shady
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | | | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| |
Collapse
|
14
|
Baghel RS, Choudhary B, Pandey S, Pathak PK, Patel MK, Mishra A. Rehashing Our Insight of Seaweeds as a Potential Source of Foods, Nutraceuticals, and Pharmaceuticals. Foods 2023; 12:3642. [PMID: 37835294 PMCID: PMC10573080 DOI: 10.3390/foods12193642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In a few Southeast Asian nations, seaweeds have been a staple of the cuisine since prehistoric times. Seaweeds are currently becoming more and more popular around the world due to their superior nutritional value and medicinal properties. This is because of rising seaweed production on a global scale and substantial research on their composition and bioactivities over the past 20 years. By reviewing several articles in the literature, this review aimed to provide comprehensive information about the primary and secondary metabolites and various classes of bioactive compounds, such as polysaccharides, polyphenols, proteins, and essential fatty acids, along with their bioactivities, in a single article. This review also highlights the potential of seaweeds in the development of nutraceuticals, with a particular focus on their ability to enhance human health and overall well-being. In addition, we discuss the challenges and potential opportunities associated with the advancement of pharmaceuticals and nutraceuticals derived from seaweeds, as well as their incorporation into different industrial sectors. Furthermore, we find that many bioactive constituents found in seaweeds have demonstrated potential in terms of different therapeutic attributes, including antioxidative, anti-inflammatory, anticancer, and other properties. In conclusion, seaweed-based bioactive compounds have a huge potential to play an important role in the food, nutraceutical, and pharmaceutical sectors. However, future research should pay more attention to developing efficient techniques for the extraction and purification of compounds as well as their toxicity analysis, clinical efficacy, mode of action, and interactions with regular diets.
Collapse
Affiliation(s)
- Ravi S. Baghel
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji 403004, Goa, India;
| | - Babita Choudhary
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sonika Pandey
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7528809, Israel;
| | - Pradeep Kumar Pathak
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
15
|
Dini I. The Potential of Algae in the Nutricosmetic Sector. Molecules 2023; 28:molecules28104032. [PMID: 37241773 DOI: 10.3390/molecules28104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Seaweeds or algae are marine autotrophic organisms. They produce nutrients (e.g., proteins, carbohydrates, etc.) essential for the survival of living organisms as they participate in biochemical processes and non-nutritive molecules (such as dietary fibers and secondary metabolites), which can improve their physiological functions. Seaweed polysaccharides, fatty acids, peptides, terpenoids, pigments, and polyphenols have biological properties that can be used to develop food supplements and nutricosmetic products as they can act as antibacterial, antiviral, antioxidant, and anti-inflammatory compounds. This review examines the (primary and secondary) metabolites produced by algae, the most recent evidence of their effect on human health conditions, with particular attention to what concerns the skin and hair's well-being. It also evaluates the industrial potential of recovering these metabolites from biomass produced by algae used to clean wastewater. The results demonstrate that algae can be considered a natural source of bioactive molecules for well-being formulations. The primary and secondary metabolites' upcycling can be an exciting opportunity to safeguard the planet (promoting a circular economy) and, at the same time, obtain low-cost bioactive molecules for the food, cosmetic, and pharmaceutical industries from low-cost, raw, and renewable materials. Today's lack of methodologies for recovering bioactive molecules in large-scale processes limits practical realization.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
16
|
Pereira RC, Paradas WC, de Carvalho RT, de Lima Moreira D, Kelecom A, Passos RMF, Atella GC, Salgado LT. Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound. PLANTS (BASEL, SWITZERLAND) 2023; 12:1073. [PMID: 36903932 PMCID: PMC10005330 DOI: 10.3390/plants12051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Brown marine macroalga Padina gymnospora (Phaeophyceae, Ochrophyta) produces both secondary metabolites (phlorotannins) and precipitate calcium carbonate (CaCO3-aragonite) on its surface as potential defensive strategies against herbivory. Here, we have evaluated the effect of natural concentrations of organic extracts (dichloromethane-DI; ethyl acetate-EA and methanol-ME, and three isolated fractions) and mineralized tissues of P. gymnospora as chemical and physical resistance, respectively, against the sea urchin Lytechinus variegatus through experimental laboratory feeding bioassays. Fatty acids (FA), glycolipids (GLY), phlorotannins (PH) and hydrocarbons (HC) were also characterized and/or quantified in extracts and fractions from P. gymnospora using nuclear magnetic resonance (NMR) and gas chromatography (GC) coupled to mass spectrometry (CG/MS) or GC coupled to flame ionization detector (FID) and chemical analysis. Our results showed that chemicals from the EA extract of P. gymnospora were significantly important in reducing consumption by L. variegatus, but the CaCO3 did not act as a physical protection against consumption by this sea urchin. An enriched fraction containing 76% of the new hydrocarbon 5Z,8Z,11Z,14Z-heneicosatetraene exhibited a significant defensive property, while other chemicals found in minor amounts, such as GLY, PH, saturated and monounsaturated FAs and CaCO3 did not interfere with the susceptibility of P. gymnospora to L. variegatus consumption. We suggest that the unsaturation of the 5Z,8Z,11Z,14Z-heneicosatetraene from P. gymnospora is probably an important structural characteristic responsible for the defensive property verified against the sea urchin.
Collapse
Affiliation(s)
- Renato Crespo Pereira
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Wladimir Costa Paradas
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | | | | | - Alphonse Kelecom
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | | | - Georgia Correa Atella
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | |
Collapse
|
17
|
Ferreira M, Salgado JM, Fernandes H, Peres H, Belo I. Potential of Red, Green and Brown Seaweeds as Substrates for Solid State Fermentation to Increase Their Nutritional Value and to Produce Enzymes. Foods 2022; 11:foods11233864. [PMID: 36496673 PMCID: PMC9741140 DOI: 10.3390/foods11233864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Seaweeds are valuable feedstocks with the potential to be used as ingredients in aquafeeds. However, their use are still limited, given their recalcitrant polysaccharide structure. To break this structure, a biotechnological approach such as solid-state fermentation (SSF) by filamentous fungi can be used, which simultaneously increases the nutritional value of the biomass. However, SSF has hardly been studied in seaweeds; thus, in this study, five different seaweeds (Gracilaria sp., Porphyra dioica, Codium tomentosum, Ulva rigida, and Alaria esculenta) were used as substrates in SSF with Aspergillus ibericus MUM 03.49 and A. niger CECT 2915. Firstly, the seaweeds were fully characterized, and, then, changes in the crude protein and carbohydrate contents were assessed in the fermented biomass, as well as any carbohydrases production. The SSF of U. rigida with both fungi resulted in the maximum xylanase and β-glucosidase activities. The maximum cellulase activity was achieved using Gracilaria sp. and U. rigida in the SSF with A. niger. The protein content increased in C. tomentosum after SSF with A. ibericus and in U. rigida after SSF with both fungi. Moreover, U. rigida's carbohydrate content decreased by 54% and 62% after SSF with A. ibericus and A. niger, respectively. Seaweed bioprocessing using SSF is a sustainable and cost-effective strategy that simultaneously produces high-value enzymes and nutritionally enhanced seaweeds to be included in aquafeeds.
Collapse
Affiliation(s)
- Marta Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José Manuel Salgado
- Biotecnia Group, Department of Chemical Engineering, Campus Agua, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - Helena Fernandes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
18
|
Krizsan SJ, Hayes M, Gröndahl F, Ramin M, O’Hara P, Kenny O. Characterization and in vitro assessment of seaweed bioactives with potential to reduce methane production. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1062324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study collates compositional analysis of seaweeds data with information generated from in vitro gas production assays in the presence and absence of seaweeds. The aim was to assess and rank 27 native northern European seaweeds as potential feed ingredients for use to reduce methane emissions from ruminants. It provides information for use in future in vivo dietary trials concerning feed manipulation strategies to reduce CH4 emissions efficiently from domestic ruminants based on dietary seaweed supplementation. The seaweeds H. siliquosa and A. nodosum belonging to phylum Phaeophyta displayed the highest concentration of phlorotannins and antioxidant activity among the macroalgae giving anti-methanogenic effect in vitro, while this explanation was not valid for the observed reduction in methane when supplementing with C. filum and L. digitata in this study. D. carnosa and C. tenuicorne belonging to phylum Rhodophyta had the highest protein content among the macroalgae that reduced methane production in vitro. There were no obvious explanation from the compositional analysis conducted in this study to the reduced methane production in vitro when supplementing with U. lactuca belonging to phylum Chlorophyta. The strongest and most complete methane inhibition in vitro was observed when supplementing with Asparagopsis taxiformis that was used as a positive control in this study.
Collapse
|
19
|
Kasanah N, Ulfah M, Imania O, Hanifah AN, Marjan MID. Rhodophyta as Potential Sources of Photoprotectants, Antiphotoaging Compounds, and Hydrogels for Cosmeceutical Application. Molecules 2022; 27:7788. [PMID: 36431889 PMCID: PMC9697178 DOI: 10.3390/molecules27227788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Seaweeds are macroscopic, multicellular, eukaryotic and photosynthetic organisms, and are a source of chemical diversity with powerful biological activities for diversified industrial applications including cosmeceuticals. Red seaweeds (Rhodophyta) are good sources of Mycosporine-like amino acids (MAA) for photoprotectant and antiphotoaging compounds. In addition, Rhodophyta are also good sources for hydrogel compounds that are used widely in the food, pharmaceutical and cosmeceutical industries as gelling agents, moisturizers or for their antiphotoaging effects. Our survey and ongoing studies revealed that the biodiversity of Indonesian Rhodophyta is rich and is a treasure trove for cosmeceutical agents including MAA and hydrogels. This study delivers valuable information for identifying potential red seaweeds in screening and searching for cosmeceutical agents.
Collapse
Affiliation(s)
- Noer Kasanah
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Maria Ulfah
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Okmalisda Imania
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Annisa Nur Hanifah
- Integrated Agrocomplex Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
20
|
Maiorano G, Ramires FA, Durante M, Palamà IE, Blando F, De Rinaldis G, Perbellini E, Patruno V, Gadaleta Caldarola C, Vitucci S, Mita G, Bleve G. The Controlled Semi-Solid Fermentation of Seaweeds as a Strategy for Their Stabilization and New Food Applications. Foods 2022; 11:2811. [PMID: 36140940 PMCID: PMC9497830 DOI: 10.3390/foods11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
For centuries, macroalgae, or seaweeds, have been a significant part of East Asian diets. In Europe, seaweeds are not considered traditional foods, even though they are increasingly popular in Western diets in human food applications. In this study, a biological processing method based on semi-solid fermentation was optimized for the treatment of the seaweed Gracilaria gracilis. For the first time, selected lactic acid bacteria and non-conventional coagulase-negative staphylococci were used as starter preparations for driving a bio-processing and bio-stabilization of raw macroalga material to obtain new seaweed-based food prototypes for human consumption. Definite food safety and process hygiene criteria were identified and successfully applied. The obtained fermented products did not show any presence of pathogenic or spoilage microorganisms, thereby indicating safety and good shelf life. Lactobacillus acidophilus-treated seaweeds revealed higher α-amylase, protease, lipase, endo-cellulase, and endo-xylanase activity than in the untreated sample. This fermented sample showed a balanced n-6/n-3 fatty acid ratio. SBM-11 (Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus) and PROMIX 1 (Staphylococcus xylosus) treated samples showed fatty acid compositions that were considered of good nutritional quality and contained relevant amounts of isoprenoids (vitamin E and A). All the starters improved the nutritional value of the seaweeds by significantly reducing the insoluble indigestible fractions. Preliminary data were obtained on the cytocompatibility of G. gracilis fermented products by in vitro tests. This approach served as a valid strategy for the easy bio-stabilization of this valuable but perishable food resource and could boost its employment for newly designed seaweed-based food products.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Miriana Durante
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Federica Blando
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | | - Valeria Patruno
- Agenzia Regionale per la Tecnologia e l’Innovazione (ARTI)—Regione Puglia, 70124 Bari, Italy
| | | | - Santa Vitucci
- Struttura Speciale Cooperazione Territoriale, Regione Puglia, 70100 Bari, Italy
| | - Giovanni Mita
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca Bleve
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| |
Collapse
|
21
|
El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar Drugs 2022; 20:md20060342. [PMID: 35736145 PMCID: PMC9227187 DOI: 10.3390/md20060342] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Since ancient times, seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Furthermore, research into the biological activity of certain seaweed compounds has progressed significantly, with an emphasis on their composition and application for human and animal nutrition. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical in terms of bioavailability are explored in order to better comprehend their therapeutic development. To further understand the mechanism of action of seaweed chemicals, more research is needed as is an investigation into their potential usage in pharmaceutical companies and other applications, with the ultimate objective of developing sustainable and healthier products. The objective of this review is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and biochemical applications, as well as their impact on human health.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Amal A. Mohamed
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Heba I. Mohamed
- Biological and Geological Science Department, Faculty of Education, Ain Shams University, Cairo 11757, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Aminah A. Barqawi
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
22
|
Monteiro JP, Costa E, Melo T, Domingues P, Fort A, Domingues MR, Sulpice R. Lipidome in-depth characterization highlights the nutritional value and species-specific idiosyncrasies of different Ulva species. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Mandalka A, Cavalcanti MILG, Harb TB, Toyota Fujii M, Eisner P, Schweiggert-Weisz U, Chow F. Nutritional Composition of Beach-Cast Marine Algae from the Brazilian Coast: Added Value for Algal Biomass Considered as Waste. Foods 2022; 11:foods11091201. [PMID: 35563924 PMCID: PMC9099717 DOI: 10.3390/foods11091201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
In some coastal areas, large quantities of beach-cast macroalgae can accumulate and are usually considered waste and disposed of. However, due to their biofunctional and nutritional properties, they have great potential as a new source of raw materials. Increasing population growth has made the search for alternative raw materials with valuable nutritional properties urgent; here, beach-cast macroalgae could provide great potential. Our research goal was to characterize the nutritional profile of 12 beach-cast seaweed species from the Brazilian coast to assess their potential valorization. A considerable number of nutritional compounds was observed, such as ash (6.5–59.3%), total dietary fibers (22.1–65.8%), proteins (5.1–21.5%), and carbohydrates (31.4–81.0%), with an expressive abundance of minerals, free amino acids, and fatty acids. Spatoglossum schroederi and Alsidium seaforthii showed protein contents of 21.5 ± 0.2%, 19.7 ± 0.1%, and high amounts of total dietary fiber of 59.2 ± 0.4%, 61.7 ± 4.9%, respectively. The overall profile suggests that beach-cast seaweeds are suitable for nutritional and other bioeconomical purposes, to which different species with different characteristics contribute. Contamination of these seaweeds with unwanted toxic compounds like micropollutants was not studied. However, this must be considered before they are used for human consumption.
Collapse
Affiliation(s)
- Andrea Mandalka
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany;
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
- Correspondence: (A.M.); (F.C.)
| | | | - Talissa Barroco Harb
- Institute of Bioscience, University of São Paulo, Rua do Matão 321, São Paulo 05508-090, Brazil;
| | - Mutue Toyota Fujii
- Instituto de Botânica, Av. Miguel Estéfano 3687, São Paulo 04301-902, Brazil; (M.I.L.G.C.); (M.T.F.)
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany;
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
- Faculty of Technology and Engineering, Steinbeis-Hochschule, George-Bähr-Str. 8, 01069 Dresden, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
- Institute for Nutritional and Food Sciences, University of Bonn, 53115 Bonn, Germany
| | - Fungyi Chow
- Institute of Bioscience, University of São Paulo, Rua do Matão 321, São Paulo 05508-090, Brazil;
- Correspondence: (A.M.); (F.C.)
| |
Collapse
|
24
|
Lu LW, Chen JH. Seaweeds as Ingredients to Lower Glycemic Potency of Cereal Foods Synergistically-A Perspective. Foods 2022; 11:714. [PMID: 35267347 PMCID: PMC8909722 DOI: 10.3390/foods11050714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Seaweeds are traditional food ingredients mainly in seaside regions. Modern food science and nutrition researchers have identified seaweed as a source of functional nutrients, such as dietary soluble and insoluble fibers, proteins, omega-3 fatty acids, prebiotic polysaccharides, polyphenols, and carotenoids. Owing to the rich nutrients, seaweeds and seaweed extract can be used as functional ingredients by modifying the nutrients composition to reduce the proportion of available carbohydrates, delaying the gastric emptying time and the absorption rate of glucose by increasing the digesta viscosity, and attenuating the digesting rate by blocking the activity of digestive enzymes. This review presents the concept of using seaweed as unconventional ingredients that can function synergistically to reduce the glycemic potency of cereal products.
Collapse
Affiliation(s)
- Louise Weiwei Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
25
|
Pang M, Huang Z, Lv L, Li X, Jin G. Seasonal succession of bacterial communities in cultured Caulerpa lentillifera detected by high-throughput sequencing. Open Life Sci 2022; 17:10-21. [PMID: 35128065 PMCID: PMC8800382 DOI: 10.1515/biol-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
An increasing number of microorganisms are being identified as pathogens for diseases in macroalgae, but the species composition of bacteria related to Caulerpa lentillifera, fresh edible green macroalgae worldwide, remains largely unclear. The bacterial communities associated with C. lentillifera were investigated by high-throughput 16S rDNA sequencing, and the bacterial diversities in washed and control groups were compared in this study. A total of 4,388 operational taxonomic units were obtained from all the samples, and the predominant prokaryotic phyla were Proteobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Actinobacteria, Verrucomicrobia, Chloroflexi, and Acidobacteria in C. lentillifera. The bacterial diversity changed with seasons and showed an increasing trend of diversity with the rising temperature in C. lentillifera. There were slight reductions in the abundance and diversity of bacteria after washing with tap water for 2 h, indicating that only parts of the bacterial groups could be washed out, and hidden dangers in C. lentillifera still exist. Although the reduction in the abundance of some bacteria revealed a positive significance of washing C. lentillifera with tap water on food safety, more effective cleaning methods still need to be explored.
Collapse
Affiliation(s)
- Meixia Pang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhili Huang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Le Lv
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Xiaodong Li
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Gang Jin
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
26
|
Pradhan B, Bhuyan PP, Patra S, Nayak R, Behera PK, Behera C, Behera AK, Ki JS, Jena M. Beneficial effects of seaweeds and seaweed-derived bioactive compounds: Current evidence and future prospective. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
28
|
Seaweed Blends as a Valuable Source of Polyunsaturated and Healthy Fats for Nutritional and Food Applications. Mar Drugs 2021; 19:md19120684. [PMID: 34940683 PMCID: PMC8704105 DOI: 10.3390/md19120684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
Seaweeds are considered healthy and sustainable food. Although their consumption is modest in Western countries, the demand for seaweed in food markets is increasing in Europe. Each seaweed species has unique nutritional and functional features. The preparation of blends, obtained by mixing several seaweeds species, allows the obtaining of maximum benefits and ingredients with single characteristics. In this work, five seaweed blends, commercially available and produced under organic conditions in Europe, were characterized. The proximal composition included contents of ash (20.28–28.68% DW), proteins (17.79–26.61% DW), lipids (0.55–1.50% DW), and total carbohydrates (39.47–47.37% DW). Fatty acid profiles were determined by gas chromatography–mass spectrometry (GC–MS), allowing quantification of healthy fatty acids, namely n-3 and n-6 polyunsaturated fatty acids (PUFA), and calculation of lipid quality indices. Each blend showed a characteristic PUFA content in the lipid pool (35.77–49.43% of total fatty acids) and the content in essential and healthy n-3 PUFA is highlighted. The atherogenicity (0.54–0.72) and thrombogenicity (0.23–0.45) indices evidenced a good nutritional value of lipid fractions. As nutritional and environmentally attractive products, the consumption of the studied seaweed blends can contribute to a healthy lifestyle.
Collapse
|
29
|
Assessment of Antioxidant Capacity and Phytochemical Composition of Brown and Red Seaweeds Sampled off Red Sea Coast. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Seaweeds are becoming a viable source of biologically active composites with a hopeful application as nutraceuticals, functional food components, and medicinal agents. In the present study, the antioxidant capacity and biochemical compositions of four seaweeds; Polycladia indica and Turbinaria ornata (Phaeophyceae) and Laurencia obtusa and Sarconema scinaioides (Rhodophyceae), were estimated. The results indicated that T. ornata showed the maximum value of total phenolic compound (TPC), flavonoid content, β-carotene, carbohydrate and has maximum percentage of DPPH radical scavenging capacity, total antioxidant capacity (TAC), and total reducing capacity (TRC) (72.48%, 15.02%, and 53.24% inhibition, respectively), while the highest contents of ascorbic acid, lipid, calcium, and zinc were observed in L. obtusa. P. indica showed the highest protein contents, dietary fibers, sodium, potassium, magnesium, and total amino acids. Glutamic, aspartic, proline, and methionine were the most frequent amino acids in the four selected seaweeds. Brown seaweeds (T. ornata and P. indica) attained the highest percent of the total polyunsaturated (ω6 and ω3) essential fatty acids. The biochemical content of these seaweed species, as well as their antioxidant properties, make them interesting candidates for nutritional, pharmacological, and therapeutic applications.
Collapse
|
30
|
Assessment of Arabian Gulf Seaweeds from Kuwait as Sources of Nutritionally Important Polyunsaturated Fatty Acids (PUFAs). Foods 2021; 10:foods10102442. [PMID: 34681494 PMCID: PMC8536129 DOI: 10.3390/foods10102442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023] Open
Abstract
The fatty acid (FA) compositions of ten seaweeds representative of Chlorophyta, Rhodophyta, and Ochrophyta from Kuwait in the Arabian Gulf region were determined and are discussed in the context of their potential nutritional perspectives for seaweed valorization. All the seaweeds had higher saturated fatty acid (SFA) and lower monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents than those typical of tropical environments. Palmitic, myristic, stearic, oleic, linoleic, α-linolenic, and stearidonic acids were the major FAs detected. Arachidonic, eicosapentaenoic, and docosahexaenoic acids were detected in minor amounts. Conserved fatty acid patterns revealed phylogenetic relationships among phyla, classes, and orders matching the molecular phylogenies at higher taxonomic ranks. Hierarchical clustering analyses clearly segregated different seaweeds (except Codium papillatum and Iyengaria stellata) into distinct groups based on their FA signatures. All but one species (Chondria sp.) had health-beneficial n6/n3 PUFAs (0.33:1–2.94:1) and atherogenic (0.80–2.52) and thrombogenic indices (0.61–5.17). However, low PUFA/SFA contents in most of the species (except Ulva spp.) may limit their utilization in the formulation of PUFA-rich functional foods. Ulva spp. had substantially high PUFAs with PUFA/SFA > 0.4, n6/n3 (0.33–0.66) and atherogenic (0.80–1.15) and thrombogenic indices (0.49–0.72), providing substantial potential for their utilization in food and feed applications.
Collapse
|
31
|
Baghel RS, Reddy CRK, Singh RP. Seaweed-based cellulose: Applications, and future perspectives. Carbohydr Polym 2021; 267:118241. [PMID: 34119188 DOI: 10.1016/j.carbpol.2021.118241] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Cellulose is a naturally occurring organic polymer extracted mainly from lignocellulosic biomass of terrestrial origin. However, the increasing production of seaweeds for growing global market demands has developed the opportunity to use it as an additional cellulose source. This review aims to prepare comprehensive information to understand seaweed cellulose and its possible applications better. This is the first review that summarizes and discusses the cellulose from all three types (green, red, and brown) of seaweeds in various aspects such as contents, extraction strategies, and cellulose-based products. The seaweed cellulose applications and future perspectives are also discussed. Several seaweed species were found to have significant cellulose content (9-34% dry weight). The review highlights that the properties of seaweed cellulose-based products were comparable to products prepared from plant-based cellulose. Overall, this work demonstrates that cellulose could be economically extracted from phycocolloids industrial waste and selected cellulose-rich seaweed species for various commercial applications.
Collapse
Affiliation(s)
- Ravi S Baghel
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - C R K Reddy
- Indian Centre for Climate and Societal Impact Research, Vivekanand Research and Training Institute, Mandvi-Katch, Gujarat 370465, India
| | - Ravindra Pal Singh
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| |
Collapse
|
32
|
Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, Md Yasin IS, Isha A, Aliyu-Paiko M. Chemical, Nutrient and Physicochemical Properties of Brown Seaweed, Sargassum polycystum C. Agardh (Phaeophyceae) Collected from Port Dickson, Peninsular Malaysia. Molecules 2021; 26:5216. [PMID: 34500650 PMCID: PMC8434233 DOI: 10.3390/molecules26175216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/15/2023] Open
Abstract
Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
Collapse
Affiliation(s)
- Muhammad Farhan Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Nurul Haziqah Alias
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Seentusha Balakrishnan
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Wan Nurazween Izatee Wan Hasnan
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Nur Amirah Izyan Noor Mazli
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Mohd Ihsanuddin Ahmad
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Ina-Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Azizul Isha
- Laboratory of Natural Medicines and Products Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohamed Aliyu-Paiko
- Biochemistry Department, Ibrahim Badamasi Babangida University (IBBU), Lapai 911101, Nigeria;
| |
Collapse
|
33
|
da Costa E, Melo T, Reis M, Domingues P, Calado R, Abreu MH, Domingues MR. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia turuturu. Mar Drugs 2021; 19:md19080414. [PMID: 34436254 PMCID: PMC8401436 DOI: 10.3390/md19080414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Grateloupia turuturu Yamada, 1941, is a red seaweed widely used for food in Japan and Korea which was recorded on the Atlantic Coast of Europe about twenty years ago. This seaweed presents eicosapentaenoic acid (EPA) and other polyunsaturated fatty acids (PUFAs) in its lipid fraction, a feature that sparked the interest on its potential applications. In seaweeds, PUFAs are mostly esterified to polar lipids, emerging as healthy phytochemicals. However, to date, these biomolecules are still unknown for G. turuturu. The present work aimed to identify the polar lipid profile of G. turuturu, using modern lipidomics approaches based on high performance liquid chromatography coupled to high resolution mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS). The health benefits of polar lipids were identified by health lipid indices and the assessment of antioxidant and anti-inflammatory activities. The polar lipids profile identified from G. turuturu included 205 lipid species distributed over glycolipids, phospholipids, betaine lipids and phosphosphingolipids, which featured a high number of lipid species with EPA and PUFAs. The nutritional value of G. turuturu has been shown by its protein content, fatty acyl composition and health lipid indices, thus confirming G. turuturu as an alternative source of protein and lipids. Some of the lipid species assigned were associated to biological activity, as polar lipid extracts showed antioxidant activity evidenced by free radical scavenging potential for the 2,2'-azino-bis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS●+) radical (IC50 ca. 130.4 μg mL-1) and for the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) radical (IC25 ca. 129.1 μg mL-1) and anti-inflammatory activity by inhibition of the COX-2 enzyme (IC50 ca. 33 µg mL-1). Both antioxidant and anti-inflammatory activities were detected using a low concentration of extracts. This integrative approach contributes to increase the knowledge of G. turuturu as a species capable of providing nutrients and bioactive molecules with potential applications in the nutraceutical, pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Elisabete da Costa
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-234-370-696
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mariana Reis
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- ALGAplus—Production and Trading of Seaweed and Derived Products Lda., 3830-196 Ilhavo, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
| | - Ricardo Calado
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Maria Helena Abreu
- ALGAplus—Production and Trading of Seaweed and Derived Products Lda., 3830-196 Ilhavo, Portugal;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.M.); (M.R.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat. Animals (Basel) 2021; 11:ani11061817. [PMID: 34207160 PMCID: PMC8234496 DOI: 10.3390/ani11061817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Milk fat is an important compound in human nutrition. From a nutritional point of view, the production of milk with a higher content of polyunsaturated fatty acids, especially of those from the n3 group, is desirable because consumption of a diet with a lower n6/n3 ratio is considered to be beneficial for humans. The most effective way to achieve this goal is via dietary manipulations in ruminants. In addition to the feedstuffs commonly used in dairy animal nutrition, there are some alternative or unconventional feedstuffs that are often used for other purposes, e.g., for the reduction of methane production in the rumen. However, such feedstuffs can also alter the fatty acid profile of milk, and thus they can have an impact on the health properties of milk fat. Abstract Milk fat is an important nutritional compound in the human diet. From the health point of view, some fatty acids (FAs), particularly long-chain PUFAs such as EPA and DHA, have been at the forefront of interest due to their antibacterial, antiviral, anti-inflammatory, and anti-tumor properties, which play a positive role in the prevention of cardiovascular diseases (CVD), as well as linoleic and γ-linolenic acids, which play an important role in CVD treatment as essential components of phospholipids in the mitochondria of cell membranes. Thus, the modification of the FA profile—especially an increase in the concentration of polyunsaturated FAs and n-3 FAs in bovine milk fat—is desirable. The most effective way to achieve this goal is via dietary manipulations. The effects of various strategies in dairy nutrition have been thoroughly investigated; however, there are some alternative or unconventional feedstuffs that are often used for purposes other than basic feeding or modifying the fatty acid profiles of milk, such as tanniferous plants, herbs and spices, and algae. The use of these foods in dairy diets and their effects on milk fatty acid profile are reviewed in this article. The contents of selected individual FAs (atherogenic, rumenic, linoleic, α-linolenic, eicosapentaenoic, and docosahexaenoic acids) and their combinations; the contents of n3 and n6 FAs; n6/n3 ratios; and atherogenic, health-promoting and S/P indices were used as criteria for assessing the effect of these feeds on the health properties of milk fat.
Collapse
|
35
|
Cvitković D, Dragović-Uzelac V, Dobrinčić A, Čož-Rakovac R, Balbino S. The effect of solvent and extraction method on the recovery of lipid fraction from Adriatic Sea macroalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
36
|
Drira M, Ben Mohamed J, Ben Hlima H, Hentati F, Michaud P, Abdelkafi S, Fendri I. Improvement of Arabidopsis thaliana salt tolerance using a polysaccharidic extract from the brown algae Padina pavonica. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Rodrigues L, Tilvi S, Fernandes MS, Harmalkar SS, Tilve SG, Majik MS. Isolation and Identification of Tyrosinase Inhibitors from Marine Algae Enteromorpha sp. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200721011816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The extract of marine green algae Enteromorpha sp. was evaluated in vitro for inhibitory
activity against mushroom tyrosinase enzyme. The principle active agents i.e. coumarin; 4-hydroxycoumarin
(1) and two sterols; ergosta-5,7,22-trien-3β-ol (2) & ergosterol peroxide (3) were isolated for
the first time, from a crude methanol extract of Enteromorpha sp. showing anti-tyrosinase activity.
Their structures were elucidated by IR, extensive NMR spectroscopy, LC-ESI-MS, Single crystal
X-ray diffraction techniques. Thus, Enteromorpha sp. can be an alternative edible anti-tyrosinase
agent.
Collapse
Affiliation(s)
- Lima Rodrigues
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206,India
| | - Supriya Tilvi
- Bio-organic Chemistry Laboratory, CSIR-National Institute of Oceanography, Donapaula, Goa 403 004,India
| | | | - Sarvesh S. Harmalkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206,India
| | - Santosh G. Tilve
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206,India
| | - Mahesh S. Majik
- Department of Chemistry, Government College of Arts, Science & Commerce, Khandola, Marcela-Goa, 403 107,India
| |
Collapse
|
38
|
Moreira ASP, da Costa E, Melo T, Lopes D, Pais ACS, Santos SAO, Pitarma B, Mendes M, Abreu MH, Collén PN, Domingues P, Domingues MR. Polar Lipids of Commercial Ulva spp. of Different Origins: Profiling and Relevance for Seaweed Valorization. Foods 2021; 10:foods10050914. [PMID: 33919394 PMCID: PMC8143280 DOI: 10.3390/foods10050914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macroalgae of the genus Ulva have long been used as human food. Local environmental conditions, among other factors, can have an impact on their nutrient and phytochemical composition, as well as on the value of the seaweed for food and non-food applications. This study is the first to initiate a comparison between commercial Ulva spp. from different European origins, France (FR, wild-harvested Ulva spp.), and Portugal (PT, farm-raised Ulva rigida), in terms of proximate composition, esterified fatty acids (FA), and polar lipids. The ash content was higher in PT samples, while FR samples had higher levels of proteins, lipids, and carbohydrates and other compounds. The profile of esterified FA, as well as FA-containing polar lipids at the class and species levels were also significantly different. The FR samples showed about three-fold higher amount of n-3 polyunsaturated FA, while PT samples showed two-fold higher content of monounsaturated FA. Quantification of glycolipids and phospholipids revealed, respectively, two-fold and three-fold higher levels in PT samples. Despite the differences found, the polar lipids identified in both batches included some lipid species with recognized bioactivity, valuing Ulva biomass with functional properties, increasing their added value, and promoting new applications, namely in nutraceutical and food markets.
Collapse
Affiliation(s)
- Ana S. P. Moreira
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- Correspondence:
| | - Elisabete da Costa
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Lopes
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adriana C. S. Pais
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
| | - Sónia A. O. Santos
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
| | - Bárbara Pitarma
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
| | - Madalena Mendes
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
- Green Colab—Associação Oceano Verde, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Maria H. Abreu
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
| | - Pi Nyvall Collén
- Amadeite SAS, Pôle Biotechnologique du Haut du Bois, 56580 Bréhan, France;
| | - Pedro Domingues
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
| | - M. Rosário Domingues
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
39
|
Abstract
Seaweed-based cosmetics are being gradually used by consumers as a substitute of synthetic equivalent products. These seaweed-based products normally contain purified compounds or extracts with several compounds. Several seaweeds’ molecules already demonstrated a high potential as a cosmetic active ingredient (such as, mycosporine-like amino acids, fucoidan, pigments, phenolic compounds) or as a key element for the products consistency (agar, alginate, carrageenan). Moreover, seaweeds’ compounds present important qualities for cosmetic application, such as low cytotoxicity and low allergens content. However, seaweeds’ biochemical profile can be variable, and the extraction methods can cause the loss of some of the biomolecules. This review gives a general look at the seaweed cosmetics benefits and its current application in the cosmetic industry. Moreover, it focuses on the ecological and sustainable scope of seaweed exploitation to guarantee a safe source of ingredients for the cosmetic industry and consumers.
Collapse
|
40
|
Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar Drugs 2020; 18:md18120659. [PMID: 33371308 PMCID: PMC7767163 DOI: 10.3390/md18120659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, research on natural products has gained considerable attention, particularly in the cosmetic industry, which is looking for new bio-active and biodegradable molecules. In this study, cosmetic properties of cyanobacteria and red macroalgae were analyzed. The extractions were conducted in different solvents (water, ethanol and two combinations of water:ethanol). The main molecules with antioxidant and photoprotective capacity were mycosporine-like amino acids (MAAs), scytonemin and phenolic compounds. The highest contents of scytonemin (only present in cyanobacteria) were observed in Scytonema sp. (BEA 1603B) and Lyngbya sp. (BEA 1328B). The highest concentrations of MAAs were found in the red macroalgae Porphyra umbilicalis, Gelidium corneum and Osmundea pinnatifida and in the cyanobacterium Lyngbya sp. Scytonema sp. was the unique species that presented an MAA with maximum absorption in the UV-B band, being identified as mycosporine-glutaminol for the first time in this species. The highest content of polyphenols was observed in Scytonema sp. and P. umbilicalis. Water was the best extraction solvent for MAAs and phenols, whereas scytonemin was better extracted in a less polar solvent such as ethanol:dH2O (4:1). Cyanobacterium extracts presented higher antioxidant activity than those of red macroalgae. Positive correlations of antioxidant activity with different molecules, especially polyphenols, biliproteins and MAAs, were observed. Hydroethanolic extracts of some species incorporated in creams showed an increase in the photoprotection capacity in comparison with the base cream. Extracts of these organisms could be used as natural photoprotectors improving the diversity of sunscreens. The combination of different extracts enriched in scytonemin and MAAs could be useful to design broad-band natural UV-screen cosmeceutical products.
Collapse
|
41
|
Massé A, Tribollet A, Meziane T, Bourguet-Kondracki ML, Yéprémian C, Sève C, Thiney N, Longeon A, Couté A, Domart-Coulon I. Functional diversity of microboring Ostreobium algae isolated from corals. Environ Microbiol 2020; 22:4825-4846. [PMID: 32990394 DOI: 10.1111/1462-2920.15256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
The filamentous chlorophyte Ostreobium sp. dominates shallow marine carbonate microboring communities, and is one of the major agents of reef bioerosion. While its large genetic diversity has emerged, its physiology remains little known, with unexplored relationship between genotypes and phenotypes (endolithic versus free-living growth forms). Here, we isolated nine strains affiliated to two lineages of Ostreobium (>8% sequence divergence of the plastid gene rbcL), one of which was assigned to the family Odoaceae, from the fast-growing coral host Pocillopora acuta Lamarck 1816. Free-living isolates maintained their bioerosive potential, colonizing pre-bleached coral carbonate skeletons. We compared phenotypes, highlighting shifts in pigment and fatty acid compositions, carbon to nitrogen ratios and stable isotope compositions (δ13 C and δ15 N). Our data show a pattern of higher chlorophyll b and lower arachidonic acid (20:4ω6) content in endolithic versus free-living Ostreobium. Photosynthetic carbon fixation and nitrate uptake, quantified via 8 h pulse-labeling with 13 C-bicarbonate and 15 N-nitrate, showed lower isotopic enrichment in endolithic compared to free-living filaments. Our results highlight the functional plasticity of Ostreobium phenotypes. The isotope tracer approach opens the way to further study the biogeochemical cycling and trophic ecology of these cryptic algae at coral holobiont and reef scales.
Collapse
Affiliation(s)
- Anaïs Massé
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France.,IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Aline Tribollet
- IRD-Sorbonne Université (UPMC-CNRS-MNHN), Laboratoire IPSL-LOCEAN, 4 Place Jussieu, Tour 46-00, 5éme étage, Paris Cedex, 75005, France
| | - Tarik Meziane
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Claude Yéprémian
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Charlotte Sève
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Najet Thiney
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle (MNHN), SU, UNICAEN, UA, CNRS (UMR7208), IRD; CP53, 61 rue Buffon, Paris, 75005, France
| | - Arlette Longeon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Alain Couté
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| | - Isabelle Domart-Coulon
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle (MNHN), CNRS (UMR7245); CP54 63 Rue Buffon, Paris, 75005, France
| |
Collapse
|
42
|
Chen W, Liu Y, Song L, Sommerfeld M, Hu Q. Automated accelerated solvent extraction method for total lipid analysis of microalgae. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020; 25:4411. [PMID: 32992919 PMCID: PMC7583832 DOI: 10.3390/molecules25194411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Red Seaweed "Rhodophyta" are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40-50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.
Collapse
Affiliation(s)
- Mona M. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt;
| | - Badriyah S. Alotaibi
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | | |
Collapse
|
44
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
45
|
Trentin R, Custódio L, Rodrigues MJ, Moschin E, Sciuto K, da Silva JP, Moro I. Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Chen J, Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int J Mol Sci 2020; 21:ijms21165695. [PMID: 32784511 PMCID: PMC7460856 DOI: 10.3390/ijms21165695] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary fats are generally fatty acids that may play positive or negative roles in the prevention and treatment of diseases. In nature, fatty acids occur in the form of mixtures of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA), so their nutritional and/or medicinal values must be determined. Herein, we do not consider the classic indices, such as ∑SFA, ∑MUFA, ∑PUFA, ∑n-6 PUFA, ∑n-3 PUFA, and n-6 PUFA/n-3 PUFA; instead, we summarize and review the definitions, implications, and applications of indices used in recent years, including the PUFA/SFA, index of atherogenicity (IA), the index of thrombogenicity (IT), the hypocholesterolemic/hypercholesterolemic ratio (HH), the health-promoting index (HPI), the unsaturation index (UI), the sum of eicosapentaenoic acid and docosahexaenoic acid (EPA + DHA), fish lipid quality/flesh lipid quality (FLQ), the linoleic acid/α-linolenic acid (LA/ALA) ratio, and trans fatty acid (TFA). Of these nutritional indices, IA and IT are the most commonly used to assess the composition of fatty acids as they outline significant implications and provide clear evidence. EPA + DHA is commonly used to assess the nutritional quality of marine animal products. All indices have their advantages and disadvantages; hence, a rational choice of which to use is critical.
Collapse
Affiliation(s)
- Jiapeng Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82031823
| |
Collapse
|
47
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
48
|
Dellatorre FG, Avaro MG, Commendatore MG, Arce L, Díaz de Vivar ME. The macroalgal ensemble of Golfo Nuevo (Patagonia, Argentina) as a potential source of valuable fatty acids for nutritional and nutraceutical purposes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Charoensiddhi S, Abraham RE, Su P, Zhang W. Seaweed and seaweed-derived metabolites as prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:97-156. [PMID: 32035602 DOI: 10.1016/bs.afnr.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seaweeds and their bioactive compounds, particularly polysaccharides and phenolics can be regarded as great dietary supplements with gut health benefits and prebiotics. These components are resistant to digestion by enzymes present in the human gastrointestinal tract, also selectively stimulate the growth of beneficial gut bacteria and the production of fermentation products such as short chain fatty acids. Commonly, the health benefits of seaweed components are assessed by including them in an in vitro anaerobic fermentation system containing human fecal inocula that mimics the environment of the human large bowel. Regarding to the complex interactions between dietary components, gastrointestinal physiological processes, and gut microbiota are difficult to model in vitro. Consequently it is important to follow up the promising in vitro results with in vivo animal or human testing. The aim of this chapter is to have a comprehensive review on the application of seaweeds and seaweed-derived metabolites as prebiotics, and understand the trends, gaps and future directions of both scientific and industrial developments. This work contributes to develop and expand new platform of seaweed utilization for higher-value products, particularly to functional food and nutraceutical industries in order to serve the social demand for health awareness and support economic development.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Reinu E Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
50
|
Pais ACS, Pinto CA, Ramos PAB, Pinto RJB, Rosa D, Duarte MF, Abreu MH, Rocha SM, Saraiva JA, Silvestre AJD, Santos SAO. High pressure extraction of bioactive diterpenes from the macroalgae Bifurcaria bifurcata: an efficient and environmentally friendly approach. RSC Adv 2019; 9:39893-39903. [PMID: 35541373 PMCID: PMC9076218 DOI: 10.1039/c9ra06547d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
The brown macroalgae Bifurcaria bifurcata have gained special attention due to their ability to biosynthesize linear diterpenes (rarely found in other species). However, the conventional extraction methods normally used to extract these compounds involve organic solvents and often high temperatures, leading to the degradation of thermo-labile compounds. In this context, the main objective of this work was to study and optimize for the first time the extraction of diterpenes from B. bifurcata through an environmentally friendly methodology, namely, high pressure extraction (HPE) using ethanol : water. This was compared with conventional Soxhlet extraction, using dichloromethane. Box–Behnken design was employed to evaluate the linear, quadratic, and interaction effects of 3 independent variables (pressure (X1), ethanol percentage (X2), and time of extraction (X3)) on response variables (extraction yield and diterpenes content (mg g−1 of extract and mg kg−1 of dry weight)) and the optimal extraction conditions (X1: 600 MPa; X2: 80%; X3: 5 min) were estimated by response surface methodology (RSM). B. bifurcata extract obtained under HPE optimal conditions showed a diterpenes content (612.2 mg g−1 of extract) 12.2 fold higher than that obtained by conventional extraction (50.1 mg g−1 of extract). The HPE extract, obtained under optimal conditions, showed antioxidant and antibacterial (against Staphylococcus aureus) activities considerably higher than the Soxhlet extract, and also presented a promising synergic effect with antibiotics, improving the antibiotic efficacy against S. aureus. In conclusion, these results indicate that HPE is a promising methodology, compared to conventional methodologies to obtain linear diterpene rich extracts from B. bifurcata with great potential to be exploited in pharmaceutical or biomedical applications. Bioactive linear diterpenes were selectively extracted from the macroalga Bifurcaria bifurcata through optimized high-pressure extraction.![]()
Collapse
Affiliation(s)
- Adriana C S Pais
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Carlos A Pinto
- QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Patrícia A B Ramos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal .,QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Ricardo J B Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Daniela Rosa
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja) Beja 7801-908 Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja) Beja 7801-908 Portugal.,Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora Pólo da Mitra 7002-554 Évora Portugal
| | - M Helena Abreu
- ALGAplus-Prod. e Comerc. De Algas e Seus Derivados, Lda. Ílhavo 3830-196 Portugal
| | - Silvia M Rocha
- QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Jorge A Saraiva
- QOPNA/LAQV & REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| | - Sónia A O Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|