1
|
Aly SH, Mahmoud AMA, Abdel Mageed SS, Khaleel EF, Badi RM, Elkaeed EB, Rasheed RA, El Hassab MA, Eldehna WM. Exploring the phytochemicals, antioxidant properties, and hepatoprotective potential of Moricandia sinaica leaves against paracetamol-induced toxicity: Biological evaluations and in Silico insights. PLoS One 2024; 19:e0307901. [PMID: 39383154 PMCID: PMC11463746 DOI: 10.1371/journal.pone.0307901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/13/2024] [Indexed: 10/11/2024] Open
Abstract
Thirteen components were identified in the methanol extract of Moricandia sinaica leaves (MSLE) through analysis utilizing HPLC-ESI-MS/MS., including flavonoids, anthocyanins, phenolic acids, and fatty acids. The methanol extract of M. sinaica leaves contained total phenolics and flavonoids (59.37 ± 2.19 mg GAE/g and 38.94 ± 2.72 mg QE/g), respectively. Furthermore, it revealed in vitro antioxidant properties as determined by the DPPH and FRAP assays, with respective IC50 values of 10.22 ± 0.64 and 20.89 ± 1.25 μg/mL. The extract exhibited a notable hepatoprotective effect in rats who experienced paracetamol-induced hepatotoxicity. When a dose of 250 mg/kg was given, there was a 52% reduction in alanine transaminase and a 30% reduction in aspartate transaminase compared to the group with the disease. Furthermore, it demonstrated a 3.4-fold, 2.2-fold, and 2.6-fold increase in superoxide dismutase, non-protein sulfhydryl, and glutathione peroxidase, respectively. In addition, it demonstrated a 68% decrease in lipid peroxide levels compared to the group with paracetamol-induced condition. The verification was conducted using a histological study, which identified improved liver histology with a small number of distended hepatocytes. Moreover, in silico studies focused on the enzymes NADPH oxidase, butyrylcholinesterase, and tyrosinase as the targets for the major compounds. In conclusion, MSLE showed promising hepatoprotective and antioxidant activities due to its richness in antioxidant metabolites.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Abdulla M. A. Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Department of Histology & Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
Ren X, Chen H, Wang H, Wang Y, Huang C, Pan H. Advances in the pharmacological effects and mechanisms of Nelumbo nucifera gaertn. Extract nuciferine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118262. [PMID: 38670406 DOI: 10.1016/j.jep.2024.118262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE The leaves of Nelumbo nucifera Gaertn. Are recorded in the earliest written documentation of traditional Chinese medicinal as "Ben Cao Gang Mu", a medicinal herb for blood clotting, dysentery and dizziness. Nuciferine, one of N. nucifera Gaertn. leaf extracts, has been shown to possess several pharmacological properties, including but not limited to ameliorating hyperlipidemia, stimulating insulin secretion, inducing vasodilation, reducing blood pressure, and demonstrating anti-arrhythmic properties. AIM OF THE STUDY In light of the latest research findings on nuciferine, this article provides a comprehensive overview of its chemical properties, pharmacological activities, and the underlying regulatory mechanisms. It aims to serve as a dependable reference for further investigations into the pharmacological effects and mechanisms of nuciferine. MATERIALS AND METHODS Use Google Scholar, Scifinder, PubMed, Springer, Elsevier, Wiley, Web of Science and other online database search to collect the literature on extraction, separation, structural analysis and pharmacological activity of nuciferine published before November 2023. The key words are "extraction", "isolation", "purification" and "pharmacological action" and "nuciferine". RESULTS Nuciferine has been widely used in the treatment of ameliorating hyperlipidemia and lose weight, Nuciferine is a monomeric aporphine alkaloid extracted from the leaves of the plant Nymphaea caerulea and Nelumbo nucifera Gaertn. Nuciferine has pharmacological activities such as relaxing smooth muscles, improving hyperlipidemia, stimulating insulin secretion, vasodilation, inducing hypotension, antiarrhythmic effects, and antimicrobial and anti-HIV activities. These pharmacological properties lay a foundation for the treatment of tumors, inflammation, hyperglycemia, lipid-lowering and weight-loss, oxidative stress and other diseases with nuciferine. CONCLUSION Nuciferine has been clinically used to treat hyperlipidemia and aid in weight loss due to its effects on lipid levels, insulin secretion, vasodilation, blood pressure reduction, anti-tumor properties, and immune enhancement. However, other potential benefits of nuciferine have not yet been fully explored in clinical practice. Future research should delve deeper into its molecular structure, toxicity, side effects, and clinical pharmacology to uncover its full range of effects and pave the way for its safe and expanded clinical use.
Collapse
Affiliation(s)
- Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Hua Chen
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Haibo Wang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yue Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Chuanjun Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
3
|
Khair-ul-Bariyah S, Sarfraz M, Arshad M, Waseem A, Khan HU, Khan S, Sharif A, Farooqi ZH, Ahmed E. Synthesis of 2-aminothiazole sulfonamides as potent biological agents: Synthesis, structural investigations and docking studies. Heliyon 2024; 10:e34980. [PMID: 39157352 PMCID: PMC11327602 DOI: 10.1016/j.heliyon.2024.e34980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
A simplified synthetic approach involving sulfonylation followed by amino group alkylation produced new 2-aminothiazole derivatives. UV/Vis, infrared, and NMR spectroscopies confirmed their structures. Compounds 36, 22, 34, and 35 showed strong inhibition against Jack bean and Bacillus Pasteurii urease, with IC50 values from 14.06 to 20.21 μM/mL. Compounds 20, 26, 21, 29, 30, 31, and 32 exhibited potent inhibitory effects against α-glucosidase and α-amylase, with IC50 values between 20.34 and 37.20 μM/mL. Compounds 33, 26, and 27 demonstrated potent DPPH scavenging, with IC50 values around 34.4-39.2 μM/mL. FMO analysis showed compounds 21, 22, 24, and 25 having parallel aromatic ring systems due to π cloud interactions, while compounds 32 and 38 had distinct electronic density distributions. Compound 22 had HOMO and LUMO energy gaps of 5.805 eV, with bromo and fluoro substitutions in compounds 21 and 24 slightly increasing the gaps to 6.089 eV and 6.078 eV, respectively. Nitro groups in compounds 25 and 32 reduced the gaps to 0.384 eV and 1.187 eV. All compounds demonstrated high gastrointestinal absorption, non-permeability to the blood-brain barrier, and optimal skin permeation (Log Kp between -5.83 and -6.54 cm/s). Compounds 22, 24, and 38 had promising QED scores of 0.719, 0.707, and 0.860, respectively, with synthetic accessibility scores from 2.057 to 2.517. ADMET predictions indicated minimal toxicity, cardiovascular safety, and significant inhibitory potential for CYP enzymes. Strong in silico binding affinities (binding energies -5.75 to -7.63 kcal/mol) and metabolic stability suggest these derivatives are promising candidates for further drug development.
Collapse
Affiliation(s)
| | - Muhammad Sarfraz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Arshad
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hidayat Ullah Khan
- Department of Chemistry, University of Science and Technology, Bannu, 28100, Pakistan
| | - Shahnaz Khan
- Department of Chemistry, University of Science and Technology, Bannu, 28100, Pakistan
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | | | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, 54590, Pakistan
| |
Collapse
|
4
|
Wen YP, Fu HJ, Chen Q, Lan C, Qin DL, Wu JM, Wu AG, Zhou XG. Exploring the therapeutic potential of Nelumbo nucifera leaf extract against amyloid-beta-induced toxicity in the Caenorhabditis elegans model of Alzheimer's disease. Front Pharmacol 2024; 15:1408031. [PMID: 38983916 PMCID: PMC11232431 DOI: 10.3389/fphar.2024.1408031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) represents a critical global health challenge with limited therapeutic options, prompting the exploration of alternative strategies. A key pathology in AD involves amyloid beta (Aβ) aggregation, and targeting both Aβ aggregation and oxidative stress is crucial for effective intervention. Natural compounds from medicinal and food sources have emerged as potential preventive and therapeutic agents, with Nelumbo nucifera leaf extract (NLE) showing promising properties. Methods: In this study, we utilized transgenic Caenorhabditis elegans (C. elegans) models to investigate the potential of NLE in countering AD and to elucidate the underlying mechanisms. Various assays were employed to assess paralysis rates, food-searching capabilities, Aβ aggregate accumulation, oxidative stress, lifespan under stress conditions, and the expression of stress-resistance-related proteins. Additionally, autophagy induction was evaluated by measuring P62 levels and the formation of LGG-1+ structures, with RNAi-mediated inhibition of autophagy-related genes to confirm the mechanisms involved. Results: The results demonstrated that NLE significantly reduced paralysis rates in CL4176 and CL2006 worms while enhancing food-searching capabilities in CL2355 worms. NLE also attenuated Aβ aggregate accumulation and mitigated Aβ-induced oxidative stress in C. elegans. Furthermore, NLE extended the lifespan of worms under oxidative and thermal stress conditions, while concurrently increasing the expression of stress-resistance-related proteins, including SOD-3, GST-4, HSP-4, and HSP-6. Moreover, NLE induced autophagy in C. elegans, as evidenced by reduced P62 levels in BC12921 worms and the formation of LGG-1+ structures in DA2123 worms. The RNAi-mediated inhibition of autophagy-related genes, such as bec-1 and vps-34, negated the protective effects of NLE against Aβ-induced paralysis and aggregate accumulation. Discussion: These findings suggest that NLE ameliorates Aβ-induced toxicity by activating autophagy in C. elegans. The study underscores the potential of NLE as a promising candidate for further investigation in AD management, offering multifaceted approaches to mitigate AD-related pathology and stress-related challenges.
Collapse
Affiliation(s)
- Yong-Ping Wen
- College of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Hai-Jun Fu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qin Chen
- Nanchong Food and Drug Inspection Institute, Nanchong, China
| | - Cai Lan
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
5
|
Hwang ES, Lee S. Quality characteristics, antioxidant activity, and acrylamide content of lotus root chips prepared using different processing methods. Food Sci Biotechnol 2024; 33:1371-1379. [PMID: 39323653 PMCID: PMC11420426 DOI: 10.1007/s10068-023-01448-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 09/27/2024] Open
Abstract
Lotus root chips were prepared using five different methods (freeze-drying, microwaving, air-frying, oil-frying, and oven-baking), and their quality characteristics, bioactive substance content, and antioxidant activity were determined. The amount of acrylamide generated during manufacturing was determined. The proximate content of the chips varied depending on the manufacturing method. Based on color determination, lightness was highest in freeze-dried chips and lowest in oven-baked chips. Oil-fried chips had the highest redness, yellowness, and browning index. The total polyphenol, flavonoid content, and antioxidant activities were the highest in freeze-dried chips and the lowest in oven-baked chips. Air-fried chips had the highest (746.92 µg/g) acrylamide content, while freeze-dried chips had the lowest (1.82 µg/g). Compared to other methods, freeze-drying retained the maximum bioactive compound content and antioxidant activity, leading to the lowest acrylamide formation. These findings highlight a suitable method and provide basic data for future lotus root chip manufacturing.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- School of Wellness Industry Convergence, Major in Food & Nutrition, Hankyong National University, 327 Chungang-Ro, Anseong-Si, Gyeonggi-Do 17579 Republic of Korea
| | - SiA Lee
- School of Wellness Industry Convergence, Major in Food & Nutrition, Hankyong National University, 327 Chungang-Ro, Anseong-Si, Gyeonggi-Do 17579 Republic of Korea
| |
Collapse
|
6
|
Sahu B, Sahu M, Sahu M, Yadav M, Sahu R, Sahu C. An Updated Review on Nelumbo Nucifera Gaertn: Chemical Composition, Nutritional Value and Pharmacological Activities. Chem Biodivers 2024; 21:e202301493. [PMID: 38327030 DOI: 10.1002/cbdv.202301493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nelumbo nucifera Gaertn is a recognised herbal plant in ancient medical sciences. Each portion of the plant leaf, flower, seed and rhizome is utilised for nutritional and medicinal purposes. The chemical compositions like phenol, alkaloids, glycoside, terpenoids and steroids have been isolated. The plant contains various nutritional values like lipids, proteins, amino acids, minerals, carbohydrates, and fatty acids. Traditional medicine confirms that the phytochemicals of plants give significant benefits to the treatment of various diseases such as leukoderma, smallpox, dysentery, haematemesis, coughing, haemorrhage, metrorrhagia, haematuria, fever, hyperlipidaemia, cholera, hepatopathy and hyperdipsia. To verify the traditional claims, researchers have conducted scientific biological in vivo and in vitro screenings, which have exhibited that the plant keeps various notable pharmacological activities such as anticancer, hepatoprotective, antioxidant, antiviral, hypolipidemic, anti-obesity, antipyretic, hypoglycaemic, antifungal, anti-inflammatory and antibacterial activities. This review, summaries the nutritional composition, chemical constituents and biological activities substantiated by the researchers done in vivo and in vitro.
Collapse
Affiliation(s)
- Bhaskar Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mahendra Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Mukesh Sahu
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Megha Yadav
- Columbia College of Pharmacy, Raipur, Chhattisgarh, 492001, India
| | - Rakesh Sahu
- Sanjivani Institute of Pharmacy, Bilaspur, Chhattisgarh, 497101, India
| | - Chandana Sahu
- Columbia College of Nursing, Raipur, Chhattisgarh, 492001, India
| |
Collapse
|
7
|
Mohamed AS, Elmi A, Spina R, Kordofani MAY, Laurain-Mattar D, Nour H, Abchir O, Chtita S. In vitro and in silico analysis for elucidation of antioxidant potential of Djiboutian Avicennia Marina (Forsk.) Vierh. phytochemicals. J Biomol Struct Dyn 2024; 42:3410-3425. [PMID: 37194334 DOI: 10.1080/07391102.2023.2213338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
The present work aims to study the phytochemical composition, the antioxidant capacity of the crude extracts, and the fraction of extract giving the best antioxidant activity of Avicennia marina. The leaves contain high TFC compared to other parts of the plant, whereas fruits have the highest amount of TPC. Fat-soluble pigments are strongly present in the leaves of Avicennia marina i.e. β-carotene, lycopene, chlorophyll a, and chlorophyll b. The crude methanolic flower extracts showed strong DPPH and ABTS radical scavenging activity with IC50 values of 0.30 and 0.33 mg/mL respectively compared to the leaf and stem methanolic extracts for the DPPH and ABTS models with a value IC50 greater than 1 mg/mL. The crude fruit extract shows good activity with the ABTS model, unlike the DPPH model whose IC50 values are 0.95 and 0.38 mg/mL, respectively. Fractionation improved the antioxidant effect of crude flower extract. The ethyl acetate fraction exhibits the best antioxidant activity for both DPPH and ABTS methods with IC50 values of 0.125 and 0.16 mg/mL. The HR-LCMS/MS led to the identification of 13 compounds: 6 flavonoids and 7 iridoid glycoside compounds in the different parts of the plant. A bioinformatics study was performed to evaluate the antioxidant activity of the three major Iridoid glycosides towards the target protein Catalase compound II through free binding energy. Out of these three iridoid glycosides, compound C10 does not represent any toxicity, unlike C8 and C9 which showed an irritancy effect. Furthermore, molecular dynamics shows good stability of the C10-2CAG complex. HighlightsExtraction and fractionation of different part (leaf, stem, flower and fruit) of Avicennia marina.Botanical description and phytochemical analysis of crude extract methanolic. Investigation by HR-LCMS characterization of polyphenols and iridoid glycosides.Evaluation the antioxidant activity of crudes extracts methanolics by two methods in vitro DPPH and ABTS.Antioxidant activity of the fraction of the crude flower extracts presenting the best biological response.Evaluate the contribution of three major compounds 2'-Cinnamoylmussaenosidic acid, 10-O-[E-Cinnamoyl]-geniposidic acid and 10-O-[(E)-p-Coumaroyl]-geniposidic acid in the ethyl acetate fraction on the antioxidant activity through docking and dynamic molecular.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahmed Said Mohamed
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti, Djibouti
| | - Abdirahman Elmi
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti, Djibouti
| | | | - Maha A Y Kordofani
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | | | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
8
|
Radwan AM, Fatoh SA, Massoud A, Tousson E. Effectiveness of curcumin nanoparticles in rat liver fibrosis caused by thioacetamide. ENVIRONMENTAL TOXICOLOGY 2024; 39:388-397. [PMID: 37782692 DOI: 10.1002/tox.23984] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Although curcumin possesses anti-inflammatory, antioxidant, and cytoprotective qualities, its low absorption limits its medicinal uses. Before examining how curcumin influenced rats' liver fibrosis when thioacetamide (TAA) was produced, the current study employed nanoparticles (NPs) to improve curcumin bioavailability. Sixty mature rats were separated into six groups (Group 1, control; Group 2, curcumin; Group 3, curcumin nanoparticles; Group 4, TAA; Group 5, TAA + curcumin; Group 6, TAA + curcumin NPs). TAA administration caused considerable increases in serum liver enzymes associated with a remarkable depletion in the levels of albumin and total protein relative to the control. In addition, a significant elevation in malonaldehyde (MDA) level with a significant depletion in the antioxidant enzymes activity was detected. Also, TAA had a significant effect on the inflammation markers represented by the elevation in tumor necrosis factor (TNFα) and DNA damage. Administration of curcumin or curcumin NPs in TAA-intoxicated rats significantly (p < .001, p < .0001) alleviates liver injury by correcting antioxidant status, inflammatory markers, and oxidative stress. The results of comparing TAA-intoxicated rats treated with curcumin NPs to TAA-intoxicated rats treated with bulk curcumin revealed that the ameliorative effect of nanocurcumin was stronger. These observations concluded that nanoparticle formulation can increase curcumin bioavailability and solubility, enhancing its antioxidant and anti-inflammatory efficiency, resulting in greater potential against thioacetamide-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shahenda A Fatoh
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ahmed Massoud
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Lu H, Fang Z, Yang B, Li Y, Duan L, Liu W, Yu J. High-performance liquid chromatography analysis of alkaloids in various parts of lotus extracts with ion mobility spectrometry and mass spectrometry dual detection. J Sep Sci 2024; 47:e2300597. [PMID: 38095454 DOI: 10.1002/jssc.202300597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
Using high-performance liquid chromatography coupled with electrospray ionization-ion mobility spectrometry and mass spectrometry, we proposed a dual-detection method for the identification and profiling of alkaloids in various lotus parts including leaf, plumule, stem, seed epicarp, and receptacle. The eluent from high-performance liquid chromatography was split and conducted to electrospray ionization-ion mobility spectrometry and time-of-flight mass spectrometry separately to facilitate the compound identification. In total, 23 kinds of alkaloids were identified based on m/z, drift time, and retention time, including alkaloid isomers such as lirinidine, N-nornuciferine, and O-nornuciferine with identical m/z that are difficult to differentiate using mass spectrometry alone. Using this method, we investigated the changing dynamics of alkaloid accumulation in lotus leaves and lotus stems at different harvesting periods. The total alkaloid content showed an increasing trend with the growth and development of leave and stem. Overall, the developed dual detection method has the advantages of high peak capacity and high sensitivity compared with the conventional detection method and facilitates the identification of detected compounds.
Collapse
Affiliation(s)
- Hongbin Lu
- Center of Technology, China Tobacco Hunan Industrial Co., Ltd, Changsha, P. R. China
| | - Ziqi Fang
- College of Chemical Engineering, Xiangtan University, Xiangtan, P. R. China
| | - Binwang Yang
- College of Chemical Engineering, Xiangtan University, Xiangtan, P. R. China
| | - Yuwei Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, P. R. China
| | - Lian Duan
- College of Chemical Engineering, Xiangtan University, Xiangtan, P. R. China
| | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, P. R. China
| | - Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan, P. R. China
| |
Collapse
|
10
|
Tabi Omgba Y, Tsague MV, Temdie Guemmogne RJ, Tembe AE, Ngono Mballa R, Fokunang NC, Ngadjui Tchaleu B, Dimo T, Ndongo Embola J, Ze Minkande J. Hepatoprotective and in vivo antioxidant effects of granulometric classes and decoction of Ficus dicranostyla Mildbread leaves powders against carbon tetrachloride-induced hepatotoxicity in Wistar rats. Food Sci Nutr 2023; 11:6403-6412. [PMID: 37823108 PMCID: PMC10563720 DOI: 10.1002/fsn3.3582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023] Open
Abstract
Ficus dicranostyla is a plant from the Moraceae family commonly used in African countries for its nutritional value and its believed medicinal properties. Its antioxidant in vitro capacity and its richness in phenolic compounds have been previously demonstrated. This work aimed at evaluating the hepatoprotective and in vivo antioxidant activities of different granulometric fractions of the F. dicranostyla leaves against carbon tetrachloride-induced hepatotoxicity in rats. Powdery fractions (<125, 250-125, and ≥250 μm), and the unsieved powder, obtained from the F. dicranostyla leaves were water-dissolved and given orally to rats at the same dose (250 mg/kg body weight) before administering carbon tetrachloride intraperitoneally (1 mL/Kg bw). The lipid status parameters (total cholesterol, triglycerides, HDL-cholesterol, and LDL-cholesterol), hepatic toxicity through aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) in blood plasma, and antioxidant status by measuring the malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in liver homogenate were performed. The activities of all parameters registered a significant (p < .05) alteration in CCl4-treated rats, which were significantly recovered toward an almost normal level in coadministered with Ficus dicranostyla leaf powder samples in a particle size-dependent manner. Results suggest that the smaller particle size of the powder fraction, as well as the decoction powder of Ficus dicranostyla, may be used as hepatoprotective and antioxidant agents.
Collapse
Affiliation(s)
- Yves Tabi Omgba
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundeCameroon
| | - Marthe Valentine Tsague
- Department of Biomedical Sciences, Faculty of SciencesUniversity of NgaoundereNgaoundereCameroon
| | | | - Achick Estella Tembe
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundeCameroon
| | - Rose Ngono Mballa
- Department of Pharmacology and Traditional Medicine, Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundeCameroon
| | - Ntungwen Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundeCameroon
| | | | - Théophile Dimo
- Department of Physiology, Faculty of SciencesUniversity of Yaounde IYaoundeCameroon
| | - Judith Ndongo Embola
- Department of Physiological Sciences/Biochemistry, Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundeCameroon
| | - Jacqueline Ze Minkande
- Department of Surgery and Specialties, Faculty of Medicine and Biomedical SciencesUniversity of Yaoundé IYaoundeCameroon
| |
Collapse
|
11
|
Iñiguez-Moreno M, González-González RB, Flores-Contreras EA, Araújo RG, Chen WN, Alfaro-Ponce M, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. Nano and Technological Frontiers as a Sustainable Platform for Postharvest Preservation of Berry Fruits. Foods 2023; 12:3159. [PMID: 37685092 PMCID: PMC10486450 DOI: 10.3390/foods12173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda A. Flores-Contreras
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Rafael G. Araújo
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Wei Ning Chen
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Mariel Alfaro-Ponce
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Tlalpan, Mexico City 14380, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
12
|
Kakar MU, Karim H, Shabir G, Iqbal I, Akram M, Ahmad S, Shafi M, Gul P, Riaz S, Rehman R, Salari H. A review on extraction, composition, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Sci Nutr 2023; 11:3655-3674. [PMID: 37457175 PMCID: PMC10345683 DOI: 10.1002/fsn3.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 07/18/2023] Open
Abstract
Nelumbo nucifera (lotus plant) is an important member of the Nelumbonaceae family. This review summarizes the studies conducted on it since the past 15 years to provide an understanding on future areas of focus. Different parts of this plant, that is, leaves, roots, and seeds, have been used as food and for the treatment of various diseases. Polysaccharides have been extracted from different parts using different methods. The manuscript reviews the methods of extraction of polysaccharides used for leaves, roots, and seeds, along with their yield. Some methods can provide better yield while some provide better biological activity with low yield. The composition and structure of extracted polysaccharides have been determined in some studies. Although monosaccharide composition has been determined in various studies, too little information about the structure of polysaccharides from N. nucifera is available in the current literature. Different useful biological activities have been explored using in vivo and in vitro methods, which include antioxidant, antidiabetic, antitumor, anti-osteoporotic, immunomodulatory, and prebiotic activities. Antitumor activity from polysaccharides of lotus leaves is yet to be explored, besides lotus root has been underexplored as compared to other parts (leaves and seeds) according to our literature survey. Studies dedicated to the successful use of combination of extraction methods can be conducted in future. The plant provides a therapeutic as well as nutraceutical potential; however, antimicrobial activity and synergistic relationships of polysaccharides from different parts of the plant need further exploration.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Hammad Karim
- Sheikh Zayed Medical CollegeRahim Yar KhanPunjabPakistan
| | | | - Imran Iqbal
- Department of Information and Computational SciencesSchool of Mathematical Sciences and LMAMPeking UniversityBeijingChina
| | - Muhammad Akram
- Department of Life Sciences, School of ScienceUniversity of Management and Technology (UMT)LahorePakistan
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Muhammad Shafi
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Pari Gul
- Institute of BiochemistryUniversity of BalochistanQuettaPakistan
| | - Sania Riaz
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Rizwan‐ur‐ Rehman
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Hamid Salari
- Department of Horticulture, Faculty of AgricultureKabul UniversityKabulAfghanistan
| |
Collapse
|
13
|
Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem 2023; 412:135581. [PMID: 36731239 DOI: 10.1016/j.foodchem.2023.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Nelumbo nucifera Gaertn, commonly known as lotus, is a genus comprising perennial and rhizomatous aquatic plants, found throughout Asia and Australia. This review aimed to cover the biosynthesis of flavonoids, alkaloids, and lipids in plants and their types in different parts of lotus. This review also examined the physiological functions of bioactive compounds in lotus and the extracts from different organs of the lotus plant. The structures and identities of flavonoids, alkaloids, and lipids in different parts of lotus as well as their biosynthesis were illustrated and updated. In the traditional medicine systems and previous scientific studies, bioactive compounds and the extracts of lotus have been applied for treating inflammation, cancer, liver disease, Alzheimer's disease, etc. We suggest future studies to be focused on standardization of the extract of lotus, and their pharmacological mechanisms as drugs or functional foods. This review is important for the lotus-based food processing and application.
Collapse
|
14
|
Feng J, Wang J, Bu T, Ge Z, Yang K, Sun P, Wu L, Cai M. Structural, in vitro digestion, and fermentation characteristics of lotus leaf flavonoids. Food Chem 2023; 406:135007. [PMID: 36473390 DOI: 10.1016/j.foodchem.2022.135007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/27/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Bioaccessibility and bioactivity of flavonoids in lotus leaves are related to their characteristics in gastrointestinal digestion and colonic fermentation. The aim of this study is to investigate the stability of lotus leaf flavonoids (LLF) in simulated gastrointestinal digestion, and its modulation on gut microbiota in vitro fermentation. Results showed that LLF mainly consisted of quercetin-3-O-galactoside, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, and kaempferol-3-O-glucoside. These flavonoids kept stability with only a small fraction degraded in simulated gastric and intestinal fluids. In vitro fermentation, LLF stimulated the growth of Actinobacteria and Firmicutes, inhibited the growth of Proteobacteria, and induced the production of fermentation gases and short-chain fatty acids. Interestingly, supplementation of soluble starch significantly improved the utilization of LLF by the intestinal flora. These results revealed that LLF shaped a unique biological web with Lactobacillus and Bifidobacterium spp. as the core of the biological network, which would be more beneficial to gut health.
Collapse
Affiliation(s)
- Jicai Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Liehong Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| |
Collapse
|
15
|
Zhao S, Zhang Y, Tan M, Jiao J, Zhang C, Wu P, Feng K, Li L. Identification of YABBY Transcription Factors and Their Function in ABA and Salinity Response in Nelumbo nucifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:380. [PMID: 36679092 PMCID: PMC9866709 DOI: 10.3390/plants12020380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The plant-specific transcription factor family YABBY plays important roles in plant responses to biotic and abiotic stresses. Although the function of YABBY has been identified in many species, systematic analysis in lotus (Nelumbo nucifera) is still relatively lacking. The present study aimed to characterize all of the YABBY genes in lotus and obtain better insights into NnYABBYs in response to salt stress by depending on ABA signaling. Here, we identified nine YABBY genes by searching the whole lotus genome based on the conserved YABBY domain. Further analysis showed that these members were distributed on six different chromosomes and named from YABBY1 to YABBY9, which were divided into five subgroups, including YAB1, YAB2, YAB5, INO, and CRC. The analysis of cis-elements in promotors revealed that NnYABBYs could be involved in plant hormone signaling and plant responses to abiotic stresses. Quantitative real-time PCR (qRT-PCR) showed that NnYABBYs could be up-regulated or down-regulated by ABA, fluridone, and salt treatment. Subcellular localization indicated that NnYABBY4, NnYABBY5, and NnYABBY6 were mainly localized in the cell membrane and cytoplasm. In addition, the intrinsic trans-activity of NnYABBY was tested by a Y2H assay, which revealed that NnYABBY4, NnYABBY5, and NnYABBY6 are deprived of such a property. This study provided a theoretical basis and reference for the functional research of YABBY for the molecular breeding of lotus.
Collapse
Affiliation(s)
- Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengying Tan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiao Jiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Chuyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Effect of H 2O 2 @CuONPs in the UV Light-Induced Removal of Organic Pollutant Congo Red Dye: Investigation into Mechanism with Additional Biomedical Study. Molecules 2023; 28:molecules28010410. [PMID: 36615605 PMCID: PMC9823539 DOI: 10.3390/molecules28010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Hazardous dyes in industrial wastewater are an internationally recognized issue for community health. Nanoparticles synthesized through green protocols are a fascinating research field with numerous applications. The current study mainly aimed to investigate the degradation of Congo red (CR) dye under UV light in the presence of H2O2 and the photocatalytic activity of copper oxide nanoparticles (CuONPs). For CuONP formation, Citrus maxima extract contains a high number of phytochemical constituents. The size of CuONPs ranges between 25 and 90 nm. The photocatalytic activity of CuONPs with the addition of H2O2 was observed and analyzed under UV light to eliminate CR dye. The UV light caused the decomposition of H2O2, which produced ·OH radicals. The results revealed a significant increment in dye degradation during the presence of H2O2. The effect of concentration on the degradation of the CR dye was also studied. The degradation pathway of organic pollutants was reputable from the hydroxy radical medicated degradation of CR. Advanced Oxidation Treatment depends on the in situ production of reactive ·OH species and is presented as the most effective procedure for decontamination. The biological activity of CuONPs was evaluated against Escherichia coli Bacillus subtillis, Staphylococcus aureus, Shigella flexenari, Acinetobacter Klebsiella pneumonia, Salmonella typhi and Micrococcus luteus. The newly synthesised nanomaterials showed strong inhibition activity against Escherichia coli (45%), Bacillus subtilis (42%) and Acinetobacter species (25%). The activity of CuONPs was also investigated against different fungus species such as: Aspergillus flavus, A. niger, Candida glabrata, T. longifusus, M. Canis, C. glabrata and showed a good inhibition zone against Candida glabrata 75%, Aspergillus flavus 68%, T. longifusus 60%. The materials showed good activity against C. glaberata, A. flavus and T. longifusus. Furthermore, CuONPs were tested for antioxidant properties using 2, 2 diphenyl-1-picrylhydrazyl) (DPPH).
Collapse
|
17
|
Ma Z, Ma Y, Liu Y, Zhou B, Zhao Y, Wu P, Zhang D, Li D. Effects of Maturity and Processing on the Volatile Components, Phytochemical Profiles and Antioxidant Activity of Lotus ( Nelumbo nucifera) Leaf. Foods 2023; 12:foods12010198. [PMID: 36613414 PMCID: PMC9818530 DOI: 10.3390/foods12010198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, fresh lotus leaves at two maturity stages were processed to tea products by different methods (white-tea process, green-tea process and black-tea process). The volatile compounds, phytochemical profiles and antioxidant activities of lotus-leaf tea were investigated. A total of 81 volatile components were identified with HS-GC-IMS. The mature lotus-leaf tea showed more volatile compounds than the tender lotus-leaf tea. The lotus leaf treated with the white-tea process had more aroma components than other processing methods. In addition, six types of phenolic compounds, including luteolin, catechin, quercetin, orientin, hyperoside and rutin were identified in the lotus-leaf tea. The mature leaves treated with the green-tea process had the highest levels of TPC (49.97 mg gallic acid/g tea) and TFC (73.43 mg rutin/g tea). The aqueous extract of lotus-leaf tea showed positive scavenging capacities of DPPH and ABTS radicals, and ferric ion reducing power, whereas tender lotus leaf treated with the green-tea process exhibited the strongest antioxidant activity. What is more, the antioxidant activities had a significant positive correlation with the levels of TPC and TFC in lotus-leaf tea. Our results provide a theoretical basis for the manufacture of lotus-leaf-tea products with desirable flavor and health benefits.
Collapse
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yu Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yin Liu
- Wuhan Huanghelou Essence and Flavor Co., Ltd., Wuhan 430040, China
| | - Bei Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalin Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dexin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Deyuan Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Correspondence: ; Tel.: +86-18071533185
| |
Collapse
|
18
|
Wang Z, Xue C, Wang X, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Quercetin 3-O-glucuronide-rich lotus leaf extract promotes a Brown-fat-phenotype in C 3H 10T 1/2 mesenchymal stem cells. Food Res Int 2023; 163:112198. [PMID: 36596137 DOI: 10.1016/j.foodres.2022.112198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Lotus (Nelumbo nucifera Gaertn.) is an aquatic perennial crop planted worldwide and its leaf (also called "He-Ye") has therapeutic effects on obesity. However, whether the underlying mechanism leads to increased energy expenditure by activation of brown adipocytes has not been clarified. Here, murine C3H10T1/2 mesenchymal stem cells (MSCs) were employed to investigate the effects of ethanol extracts from lotus leaf (LLE) on brown adipocytes formation and the underlying molecular mechanisms. The results showed LLE was rich in polyphenols (383.7 mg/g) and flavonoids (178.3 mg/g), with quercetin 3-O-glucuronide (Q3G) the most abundant (128.2 μg/mg). In LLE-treated C3H10T1/2 MSCs, the expressions of lipolytic factors (e.g., ATGL, HSL, and ABHD5) and brown regulators (e.g., Sirt1, PGC-1α, Cidea, and UCP1) were significantly upregulated compared to that in the untreated MSCs. Furthermore, LLE promoted mitochondrial biogenesis and fatty acid β-oxidation, as evidenced by increases in the expression of Tfam, Cox7A, CoxIV, Cox2, Pparα, and Adrb3. Likewise, enhanced browning and mitochondrial biogenesis were also observed in Q3G-stimulated cells. Importantly, LLE and Q3G induced phosphorylation of AMPK accompanied by a remarkable increase in the brown fat marker UCP1, while pretreatment with Compound C (an AMPK inhibitor) reversed these changes. Moreover, stimulating LLE or Q3G-treated cells with CL316243 (a beta3-AR agonist) increased p-AMPKα/AMPKα ratio and UCP1 protein expression, indicating β3-AR/AMPK signaling may involve in this process. Collectively, these observations suggested that LLE, especially the component Q3G, stimulates thermogenesis by activating brown adipocytes, which may involve the β3-AR/AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium. Pharmaceuticals (Basel) 2022; 15:ph15101221. [PMID: 36297333 PMCID: PMC9607455 DOI: 10.3390/ph15101221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The current studies were focused on the phytochemical profiling of two local wild Artemisia species, Artemisia scoparia and Artemisia absinthium leaves’ essential oils, extracted via the hydro distillation method along with evaluation of their antioxidant as well as antimicrobial effects. The constituents of EOs were identified using a combined gas chromatography-mass spectrometric (GC-MS) technique. A total of 25 compounds in A. scoparia essential oil (EOAS) were identified, and 14 compounds with percentage abundance of >1% were tabulated, the major being tocopherol derivatives (47.55%). A total of nine compounds in Artemisia absinthium essential oil (EOAA) were enlisted (% age > 1%), the majority being oleic acid derivatives (41.45%). Strong antioxidant effects were pronounced by the EOAS in DPPH (IC50 = 285 ± 0.82 µg/mL) and in ABTS (IC50 = 295 ± 0.32 µg/mL) free radical scavenging assays. Both the EOs remained potent in inhibiting the growth of bacterial species; Escherichia coli (55−70%) and Shigella flexneri (60−75%) however remained moderately effective against Bacillus subtilis as well as Staphylococcus aureus. Both EOAS and EOAA strongly inhibited the growth of the tested fungal species, especially Aspergillus species (up to 70%). The oils showed anti-cholinesterase potential by inhibiting both Acetylcholinesterase (AChE; IC50 = 30 ± 0.04 µg/mL (EOAS), 32 ± 0.05 µg/mL (EOAA) and Butyrylcholinesterase (BChE; IC50 = 34 ± 0.07 µg/mL (EOAS), 36 ± 0.03 µg/mL (EOAA). In conclusion, the essential oils of A. scoparia and A. absinthium are promising antioxidant, antimicrobial and anticholinergic agents with a different phytochemical composition herein reported for the first time.
Collapse
|
20
|
Vu NK, Ha MT, Ha YJ, Kim CS, Gal M, Ngo QMT, Kim JA, Woo MH, Lee JH, Min BS. Structures and antiosteoclastogenic activity of compounds isolated from edible lotus (Nelumbo nucifera Gaertn.) leaves and stems. Fitoterapia 2022; 162:105294. [PMID: 36058474 DOI: 10.1016/j.fitote.2022.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
Abstract
One new 1,4-bis-phenyl-1,4-butanedione glycoside (14), one new eudesmane-type sesquiterpenoid (16), and 16 known compounds were isolated from the leaves and stems of Nelumbo nucifera Gaertn. The structures of the isolated compounds were elucidated by interpretation of their 1D and 2D NMR spectroscopic and HRESIMS data. Time-dependent density functional theory calculations and Electronic Circular Dichroism (ECD) spectroscopy was used to determine absolute configurations of the new eudesmane-type sesquiterpenoid (16). All the isolated compounds were examined for their antiosteoclastogenic activity. Preliminarily results of the TRAP staining on RAW 264.7 cells indicated that compounds 1 and 11 possess potential inhibitory effects on RANKL-induced osteoclast formation. Further bioassay investigation was carried out to reveal that compounds 1 and 11 suppressed RANKL-induced osteoclast formation in a concentration-dependent manner with the inhibition up to 55% and 78% at the concentration of 10 μM, respectively. In addition, the structure-activity relationship analysis showed that the 1,3-dioxole substitute and the double bond at C-6a/C-7 in the aporphine skeleton may be responsible for the antiosteoclastogenic activity. The findings provided valuable insights for the discovery and structural modification of aporphine alkaloids as the antiosteoclastogenic lead compounds.
Collapse
Affiliation(s)
- Ngoc Khanh Vu
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Young Jun Ha
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minju Gal
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Quynh-Mai Thi Ngo
- College of Pharmacy, Hai Phong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem, Hai Phong 180000, Viet Nam
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24341, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| |
Collapse
|
21
|
Kiki GAÀ, Pop RM, Sabin O, Bocsan IC, Chedea VS, Socaci SA, Pârvu AE, Finsia E, Francis T, Mathieu Z, Buzoianu AD. Polyphenols from Dichrostachys cinerea Fruits Anti-Inflammatory, Analgesic, and Antioxidant Capacity in Freund’s Adjuvant-Induced Arthritic Rat Model. Molecules 2022; 27:molecules27175445. [PMID: 36080212 PMCID: PMC9457916 DOI: 10.3390/molecules27175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dichrostachys cinerea (L.) Wigth & Arn. (DC) is widely used in traditional medicine against several inflammatory diseases, especially rheumatoid arthritis, because of its antioxidant and anti-inflammatory effects. This study aimed to characterize the polyphenol-rich DC fruit extracts and investigate the analgesic, anti-inflammatory, and antioxidant effects in a rat inflammation model induced by complete Freund’s adjuvant (CFA). Water and ethanolic extracts were characterized using liquid chromatography coupled with mass spectrometry (LC-MS), Fourier-transform infrared (FTIR) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). The polyphenol-rich extracts were administered in three different concentrations for 30 days. Pain threshold, thermal hyperalgesia, edema, and serum biomarkers specific to inflammatory processes or oxidative stress were evaluated. Both extracts were rich in polyphenolic compounds, mainly flavan-3-ols, proanthocyanidins, and flavone glycosides, which had important in vitro antioxidant capacity. DC fruit extracts administration had the maximum antinociceptive and anti-inflammatory effects after one day since the CFA injection and showed promising results for long-term use as well. The measurement of pro-inflammatory cytokines, cortisol, and oxidative stress parameters showed that DC extracts significantly reduced these parameters, being dose and extract-type dependent. These results showed potential anti-inflammatory, analgesic, and antioxidative properties and revealed the necessity of using a standardized polyphenolic DC extract to avoid result variability.
Collapse
Affiliation(s)
- Gisèle Atsang à Kiki
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Octavia Sabin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Egre Finsia
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Takvou Francis
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Zramah Mathieu
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Qin L, Du F, Yang N, Zhang C, Wang Z, Zheng X, Tang J, Yang L, Dong C. Transcriptome Analyses Revealed the Key Metabolic Genes and Transcription Factors Involved in Terpenoid Biosynthesis in Sacred Lotus. Molecules 2022; 27:4599. [PMID: 35889471 PMCID: PMC9320166 DOI: 10.3390/molecules27144599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
As the largest group of structurally diverse metabolites, terpenoids are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. However, few terpenoid compounds have been identified in plant parts of sacred lotus (Nelumbo nucifera Gaertn.). To elucidate the molecular genetic basis of the terpene biosynthetic pathway, terpenes from different parts of the plant, including seeds (S), young leaves (YL), mature leaves (ML), white flowers (WF), yellow flowers (YF), and red flowers (RF), were identified by LC-MS/MS and the relative contents of the same terpenes in different parts were compared. The results indicate that all plant parts primarily consist of triterpenes, with only minor quantities of sesquiterpenes and diterpenes, and there were differences in the terpene content detected in different plant parts. To illustrate the biosynthesis of various terpenoids, RNA sequencing was performed to profile the transcriptomes of various plant parts, which generated a total of 126.95 GB clean data and assembled into 29,630 unigenes. Among these unigenes, 105 candidate unigenes are involved in the mevalonate (MVA) pathway, methyl-erythritol phosphate (MEP) pathway, terpenoid backbone biosynthesis pathway, and terpenoid synthases pathway. Moreover, the co-expression network between terpene synthase (TPS) and WRKY transcription factors provides new information for the terpene biosynthesis pathway.
Collapse
Affiliation(s)
- Lili Qin
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Fei Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Ningning Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Chen Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Zhiwen Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Xingwen Zheng
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Jiawei Tang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Liangbo Yang
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| |
Collapse
|
23
|
Simultaneous vacuum-ultrasonic assisted extraction of bioactive compounds from lotus leaf. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
25
|
Liu Y, Chen Q, Zhang S, Zhang H, Xu W. Evaluation of green and efficient deep eutectic solvents as media for extracting alkaloids from lotus leaf. Biomed Chromatogr 2021; 36:e5293. [PMID: 34873711 DOI: 10.1002/bmc.5293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023]
Abstract
Deep eutectic solvents (DESs) were applied as eco-friendly solvents in this study for the extraction of alkaloids from lotus leaf, including O-nornuciferine, N-nornuciferine, nuciferine and roemerine. A series of hydrophilic and hydrophobic DESs with different hydrogen bond donors and a acceptors were synthesized and screened for a suitable DESs for extraction of alkaloids from lotus leaf. The study results showed that the hydrophilic DES with choline chloride and propanediol had the highest extraction yield. The main factors affecting the extraction efficiency-choline chloride-propanediol ratio, water content in deep eutectic solvents, solid-liquid ratio and extraction time-were investigated via a single-factor experiment. The optimized extraction conditions were 30% of water in choline chloride-propanediol (1:4) for heated extraction for 30 min and solid-liquid ratio 1:100 g/ml. Under optimum conditions, the extraction yields of O-nornuciferine, N-nornuciferine, nuciferine and roemerine were 0.069, 0.152, 0.334 and 0.041 g/100 g respectively, which were higher than those of methanol in acidified aqueous solution. This study suggests considerable potential for DESs as promising materials for the green and efficient extraction solvents for bioactive alkaloids from natural sources.
Collapse
Affiliation(s)
- Yongjing Liu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Qiang Chen
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Suxia Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Hua Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
26
|
Arshad M, Ahmed K, Bashir M, Kosar N, Kanwal M, Ahmed M, Khan HU, Khan S, Rauf A, Waseem A, Mahmood T. Synthesis, structural properties and potent bioactivities supported by molecular docking and DFT studies of new hydrazones derived from 5-chloroisatin and 2-thiophenecarboxaldehyde. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Niaz SI, Khan D, Naz R, Safdar K, Abidin SZU, Khan IU, Gul R, Khan WU, Khan MAU, Lan L. Antimicrobial and antioxidant chlorinated azaphilones from mangrove Diaporthe perseae sp. isolated from the stem of Chinese mangrove Pongamia pinnata. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1077-1084. [PMID: 33140651 DOI: 10.1080/10286020.2020.1835872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Many plants remain unexplored for their endophytic fungi that may possess potentially important phytochemicals. Consequently, we have focused to discover new natural products from endophytic fungus Diaporthe perseae sp. isolated from the stem of the Chinese mangrove Pongamia pinnata (L.) Pierre plant that led to the isolation of one new chlorinated isochromophilone G (1) along with six known azaphilones (2-7). The structures of the isolated compounds were elucidated by UV, NMR and Mass spectroscopic analysis. All the isolated compounds were screened for their antimicrobial and anti-oxidant activities.
Collapse
Affiliation(s)
- Shah Iram Niaz
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 20950, Pakistan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 20950, Pakistan
| | - Rubina Naz
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 20950, Pakistan
| | - Kamran Safdar
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 20950, Pakistan
| | - Sheikh Zain Ul Abidin
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan 20950, Pakistan
| | - Inam Ullah Khan
- Faculty of Veternary Sciences, Institute of Microbiology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Rukhsan Gul
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Wasim Ullah Khan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | | | - Liu Lan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Zhou H, Hou T, Gao Z, Guo X, Wang C, Wang J, Liu Y, Liang X. Discovery of eight alkaloids with D1 and D2 antagonist activity in leaves of Nelumbo nucifera Gaertn. Using FLIPR assays. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114335. [PMID: 34139281 DOI: 10.1016/j.jep.2021.114335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dopamine receptors are long-standing primary targets in the treatment of mental diseases and there is growing evidence that suggests relationships between obesity and the dopamine system, especially dopamine D1 and D2 receptors. Leaves of Nelumbo nucifera Gaertn. (lotus leaves) have been medically used for helping long-term maintenance of weight loss. Whether and how components of lotus leaves function through the dopamine receptors remains unclear. AIM OF THE STUDY This work aimed to discover dopamine receptor-active alkaloids isolated from the lotus leaves, to evaluate their potencies and to analyze their structure activity relationship. MATERIALS AND METHODS Dried lotus leaves were prepared and total extract was divided into alkaloids and flavones. Eight alkaloids were separated and characterized by a combination of high-performance liquid chromatography, quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance, and assayed by a fluorometric imaging plate reader platform. Human embryonic kidney 239 cell lines expressing dopamine D1, D2 and serotonin 2A (5-HT2A) receptors, respectively, were cultured and used in the assay. RESULTS Alkaloids in the lotus leaves were the bioactive phytochemicals and inhibited dopamine from accessing the D1 and D2 receptors. All eight compounds functioned as D1-receptor antagonists and except N-nornuciferine, seven alkaloids functioned as D2-receptor antagonists. (S)-coclaurine and (R)-coclaurine are optical isomers and antagonized both D1 and D2 with equivalent potencies, suggesting that the optical rotation of the methylene linker in the monobenzyl isoquinoline backbone did not influence their activity. Among the eight alkaloids, O-nornuciferine was the potent antagonist to both receptors (the lowest IC50 values, D1: 2.09 ± 0.65 μM and D2: 1.14 ± 0.10 μM) while N-nornuciferine was found to be the least potent as it moderately antagonized D1 and was inactive on D2. O-nornuciferine was also a 5-HT2A antagonist (IC50~20 μM) while N-nornuciferine had no activity. These hinted the importance of a methyl group attached to the nitrogen atom in the aporphine backbone. Armepavine showed a nearly 10-fold selectivity to D2. CONCLUSIONS In this work, eight alkaloids were isolated from the leaves of Nelumbo nucifera Gaertn. and assayed on the D1 and D2 receptors. They were D1/D2 antagonists with IC50 values in the mid- to low-micromolar range and O-nornuciferine was the most potent alkaloid among the eight. This family of alkaloids was biochemically evaluated on the dopamine receptors by the same platform for the first time.
Collapse
Affiliation(s)
- Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Zhenhua Gao
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xiujie Guo
- DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
29
|
Li W, Wu DT, Li F, Gan RY, Hu YC, Zou L. Structural and Biological Properties of Water Soluble Polysaccharides from Lotus Leaves: Effects of Drying Techniques. Molecules 2021; 26:4395. [PMID: 34361549 PMCID: PMC8347772 DOI: 10.3390/molecules26154395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 01/09/2023] Open
Abstract
In the present study, the influence of five drying techniques on the structural and biological properties of polysaccharides from lotus leaves (LLPs) was investigated. Results revealed that the yields, contents of basic chemical components, molecular weights, and molar ratios of compositional monosaccharides of LLPs varied by different drying technologies. Low molecular weight distributions were observed in polysaccharides obtained from lotus leaves by hot air drying (LLP-H), microwave drying (LLP-M), and radio frequency drying (LLP-RF), respectively. The high contents of bound polyphenolics were measured in LLP-H and LLP-M, as well as polysaccharides obtained from lotus leaves by vacuum drying (LLP-V). Furthermore, both Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of LLPs were similar, indicating that drying technologies did not change their basic chemical structures. Besides, all LLPs exhibited obvious biological properties, including in vitro antioxidant capacities, antiglycation activities, and inhibitory effects on α-glucosidase. Indeed, LLP-H exhibited higher 2,2-azidobisphenol (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability (IC50 values, LLP-H, 0.176 ± 0.004 mg/mL; vitamin C, 0.043 ± 0.002 mg/mL) and 2,2-diphenyl-1-(2,4,6-trinitrate phenyl) hydrazine radical scavenging ability (IC50 values, LLP-H, 0.241 ± 0.007 mg/mL; butylated hydroxytoluene, 0.366 ± 0.010 mg/mL) than others, and LLP-M exerted stronger antiglycation (IC50 values, LLP-M, 1.023 ± 0.053 mg/mL; aminoguanidine, 1.744 ± 0.080 mg/mL) and inhibitory effects on α-glucosidase (IC50 values, LLP-M, 1.90 ± 0.02 μg/mL; acarbose, 724.98 ± 16.93 μg/mL) than others. These findings indicate that both hot air drying and microwave drying can be potential drying techniques for the pre-processing of lotus leaves for industrial applications.
Collapse
Affiliation(s)
- Wei Li
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Ding-Tao Wu
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Fen Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ren-You Gan
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yi-Chen Hu
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
| | - Liang Zou
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.L.); (R.-Y.G.); (Y.-C.H.)
| |
Collapse
|
30
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
31
|
Wang Z, Cheng Y, Zeng M, Wang Z, Qin F, Wang Y, Chen J, He Z. Lotus (Nelumbo nucifera Gaertn.) leaf: A narrative review of its Phytoconstituents, health benefits and food industry applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Elmi A, Mohamed Abdoul-Latif F, Spina R, Dupire F, Philippot S, Marie-France C, Jacobs H, Laurain-Mattar D. Aloe djiboutiensis: Antioxidant Activity, Molecular Networking-Based Approach and In Vivo Toxicity of This Endemic Species in Djibouti. Molecules 2021; 26:3046. [PMID: 34065292 PMCID: PMC8161010 DOI: 10.3390/molecules26103046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
For the first time, the study of the antioxidant activity, the characterization of the phytoconstituants, and the evaluation of in vitro and in vivo toxicity of A. djiboutiensis leave and latex are performed. The antioxidant activity of both latex (ADL) and the methanolic extract of leaves (ADM) is determined using 1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging radical methods and ferric reducing/antioxidant power (FRAP) assay. The phytochemical study of latex is done using Liquid Chromatography-Mass Spectrometry (LC-MS/MS) and a molecular networking-based approach. The evaluation of in vivo toxicity is performed on mice by oral gavage with a suspension of ADL. Our results show that weak antioxidant activity of ADL and ADM in opposition to their high polyphenol, 83.01 mg and 46.4 mg expressed in gallic acid equivalent (GAE)/g of dry weight (DW), respectively, and flavonoid contents 13.12 mg and 4.25 mg expressed in quercetin equivalent (QE)/g dry weight (DW), respectively. Using the Global Natural Products Social Molecular Networking (GNPS) website, nine (9) anthraquinones derivatives, ten (10) chromones derivatives, two (2) flavonols/ chromones isomers are annotated in the molecular network. The treated mice do not display abnormalities in their general physical appearance and biochemistry parameters, compared to the controls. Only glucose and calcium levels are slightly higher in male treated mice compared to the vehicles.
Collapse
Affiliation(s)
- Abdirahman Elmi
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
- Centre d’Etudes et de Recherche de Djibouti, Medicinal Research Institute, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City, Djibouti;
| | - Fatouma Mohamed Abdoul-Latif
- Centre d’Etudes et de Recherche de Djibouti, Medicinal Research Institute, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City, Djibouti;
| | - Rosella Spina
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
| | - François Dupire
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
| | - Champy Marie-France
- PHENOMIN-ICS, Institut Clinique de la Souris, Université de Strasbourg, 67404 Illkirch, France; (C.M.-F.); (H.J.)
| | - Hugues Jacobs
- PHENOMIN-ICS, Institut Clinique de la Souris, Université de Strasbourg, 67404 Illkirch, France; (C.M.-F.); (H.J.)
| | | |
Collapse
|
33
|
Aldbass A, Amina M, Al Musayeib NM, Bhat RS, Al-Rashed S, Marraiki N, Fahmy R, El-Ansary A. Cytotoxic and anti-excitotoxic effects of selected plant and algal extracts using COMET and cell viability assays. Sci Rep 2021; 11:8512. [PMID: 33875747 PMCID: PMC8055880 DOI: 10.1038/s41598-021-88089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 12/28/2022] Open
Abstract
Excess glutamate in the central nervous system may be a major cause of neurodegenerative diseases with gradual loss and dysfunction of neurons. Primary or secondary metabolites from medicinal plants and algae show potential for treatment of glutamate-induced excitotoxicity. Three plant extracts were evaluated for impact on glutamate excitotoxicity-induced in primary cultures of retinal ganglion cells (RGC). These cells were treated separately in seven groups: control; Plicosepalus. curviflorus treated; Saussurea lappa treated; Cladophora glomerate treated. Cells were treated independently with 5, 10, 50, or 100 µg/ml of extracts of plant or alga material, respectively, for 2 h. Glutamate-treated cells (48 h with 5, 10, 50, or 100 µM glutamate); and P. curviflorus/glutamate; S. lappa/glutamate; C. glomerata/glutamate [pretreatment with extract for 2 h (50 and 100 µg/ml) before glutamate treatment with 100 µM for 48 h]. Comet and MTT assays were used to assess cell damage and cell viability. The number of viable cells fell significantly after glutamate exposure. Exposure to plant extracts caused no notable effect of viability. All tested plants extracts showed a protective effect against glutamate excitotoxicity-induced RGC death. Use of these extracts for neurological conditions related to excitotoxicity and oxidative stress might prove beneficial.
Collapse
Affiliation(s)
- Abeer Aldbass
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sara Al-Rashed
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Najat Marraiki
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rania Fahmy
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
- CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
34
|
Kim HY, Hong MH, Kim KW, Yoon JJ, Lee JE, Kang DG, Lee HS. Improvement of Hypertriglyceridemia by Roasted Nelumbinis folium in High Fat/High Cholesterol Diet Rat Model. Nutrients 2020; 12:nu12123859. [PMID: 33348773 PMCID: PMC7766402 DOI: 10.3390/nu12123859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Hypertriglyceridemia is a condition characterized by high triglyceride levels and is a major risk factor for the development of cardiovascular diseases. The present study was designed to investigate the inhibitory effect of roasted Nelumbinis folium (RN), which is a medicinal substance produced by heating lotus leaves, on lipid metabolism in high fat/cholesterol (HFC) diet-induced hypertriglyceridemia. Except for those in the control group, Sprague–Dawley rats were fed an HFC diet for four weeks to induce hypertriglyceridemia. During the next nine weeks, the control, regular diet; HFC, HFC diet, FLU, fluvastatin (3 mg/kg/day); RNL, RN (100 mg/kg/day); RNH, RN (200 mg/kg/day) were orally administered together with the diet, and the experiments were conducted for a total of 13 weeks. The weight of the epididymal adipose tissue, liver, and heart of rats in the HFC diet group significantly increased compared to those in the control group but improved in the RN-treated group. It was also confirmed that vascular function, which is damaged by an HFC diet, was improved after RN treatment. The levels of insulin, glucose, triglycerides, total cholesterol, and low-density lipoprotein increased in the HFC diet group compared to those in the control group, while the administration of RN attenuated these parameters. In addition, the administration of RN significantly reduced the gene expression of both LXR and SREBP-1, which indicated the inhibitory effect of the biosynthesis of triglycerides caused by RN. The results indicated that RN administration resulted in an improvement in the overall lipid metabolism and a decrease in the concentration of triglycerides in the HFC diet-induced rat model of hypertriglyceridemia. Therefore, our findings suggest that the RN can be a candidate material to provide a new direction for treating hypertriglyceridemia.
Collapse
Affiliation(s)
- Hye Yoom Kim
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Mi Hyeon Hong
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Kwan Woo Kim
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
| | - Jung Joo Yoon
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Jung Eun Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
| | - Dae Gill Kang
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: (D.G.K.); (H.S.L.); Tel.: +82-63-6447 (D.G.K. & H.S.L.); Fax: +82-63-850-7260 (D.G.K. & H.S.L.)
| | - Ho Sub Lee
- Hanbang Cardio-Renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea; (H.Y.K.); (M.H.H.); (K.W.K.); (J.J.Y.)
- Department of Physiology, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
- Correspondence: (D.G.K.); (H.S.L.); Tel.: +82-63-6447 (D.G.K. & H.S.L.); Fax: +82-63-850-7260 (D.G.K. & H.S.L.)
| |
Collapse
|
35
|
Cheng L, Zhang W, Jin Q, Zhu Y, Chen R, Tian Q, Yan N, Guo L. The effects of dietary supplementation with lotus leaf extract on the immune response and intestinal microbiota composition of broiler chickens. Poult Sci 2020; 100:100925. [PMID: 33518323 PMCID: PMC7936220 DOI: 10.1016/j.psj.2020.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
This study aimed to assess the effect of lotus leaf extract (LLE) on the immune response and intestinal microbiota composition of broiler chickens. One-day-old birds were assigned to 7 treatments. Two maize-based control diets were each given with or without 50 mg/kg chlortetracycline (antibiotics and blank control groups, respectively). Five experimental diets were each given with 1.0, 2.5, 5.0, 7.5, or 10.0 g/kg LLE. Average daily weight gain (ADG) was assessed, and the immune organ index was calculated. Serum cytokine and immunoglobulin levels were determined, and intestinal microbiota composition was analyzed via high-throughput sequencing of the 16S rRNA gene. Results showed that in the LLE5 group, ADG was higher than that of the antibiotics and blank control groups (P < 0.05) from d 7 to 21, the thymus index at d14, spleen index at d 21, and bursa index at d 14 and 21 were increased markedly (P < 0.05). In the LLE5 and LLE7.5 groups, serum total IgG and sIgA concentrations were higher than those of the antibiotics and blank control groups (P < 0.05) at d 7 and higher than those of the antibiotics group (P < 0.05) at d 14. No significant effect was observed for interferon-gamma concentrations between the antibiotics and LLE5 or LLE7.5 groups; compared with the antibiotics group, IL2 concentrations were increased in the LLE5 group at d 7 and in the LLE7.5 group at d 21 (P < 0.05). 16s rRNA sequencing analysis revealed that there were 1,704, 232, and 4,814 operational taxonomic unit in the blank control group, antibiotics group, and LLE groups, respectively. The intestinal microbiota consisted mainly of Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes (>95%) at the phylum level; at the family level, the abundance of Clostridiaceae and Bacteroidales S24-7 was increased, whereas that of Peptostreptococcaceae was reduced in LLE5 group (P < 0.05). These findings suggest that LLE may be a good source of prebiotics, helping to modulate the immune response and boost the levels of beneficial bacteria.
Collapse
Affiliation(s)
- Lei Cheng
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Wei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Qing Jin
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yiling Zhu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Rong Chen
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Qi Tian
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Niandong Yan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan 430064, China
| | - Liwei Guo
- School of Animal Science, Yangtze University, Jingzhou 434020, China.
| |
Collapse
|
36
|
Wang Z, Zhao P, Zhang Y, Shi S, Chen X. The hepatoprotective effect and mechanism of lotus leaf on liver injury induced by Genkwa Flos. J Pharm Pharmacol 2020; 72:1909-1920. [PMID: 32979237 DOI: 10.1111/jphp.13355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES As a traditional Chinese medicine, lotus leaf was reported to have significant hepatoprotective effect. To explore the hepatoprotective mechanism of lotus leaf, a rapid and reliable UPLC-MS/MS method was conducted to simultaneously determine six specific endogenous substances including 5-oxoproline, phenylalanine, tryptophan, C18 -phytosphingosine, lysophosphatidylcholine (16 : 0) and lysophosphatidylcholine (18 : 1). METHODS With the help of HPLC-FT-ICR-MS, the chemical constituents of louts leaf extract were elucidated. By observing histopathological changes and determining hepatotoxicity-related biochemical indicators, rat model of liver injury was developed and the hepatoprotective effect of lotus leaf was verified. With the developed UPLC-MS/MS method, six endogenous metabolites related to hepatotoxicity were monitored to investigate the hepatoprotective mechanism of lotus leaf. KEY FINDINGS In the qualitative analysis, a total of twenty compounds including ten flavonoids, nine alkaloids and one proanthocyanidin were identified. Based on the results of determining six endogenous metabolites related to hepatotoxicity, it was predicted that the hepatoprotective mechanism of lotus leaf might be related to glutathione metabolism, phenylalanine metabolism, tryptophan metabolism, sphingolipid metabolism and phospholipid metabolism. CONCLUSIONS This study could be a meaningful investigation to provide mechanistic insights into the hepatoprotective effect of lotus leaf and further lay a theoretical basis for the clinical application of lotus leaf.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Panpan Zhao
- Department of Endocrinology and Metabolism, Hebei Provincial Chest Hospital, Shijiazhuang, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shan Shi
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
37
|
Wu Y, Yang J, Liu X, Zhang Y, Lei A, Yi R, Tan F, Zhao X. Preventive effect of small-leaved Kuding tea ( Ligustrum robustum) on high-diet-induced obesity in C57BL/6J mice. Food Sci Nutr 2020; 8:4512-4522. [PMID: 32884731 PMCID: PMC7455952 DOI: 10.1002/fsn3.1758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Small-leaved Kuding tea (SLKDT; Ligustrum robustum) is a traditional Chinese tea. We systematically investigated the effect of SLKDT extract on obesity. SLKDT-controlled weight gain in mice fed a high-fat diet. Tissue specimen results showed that the SLKDT extract alleviated liver damage and fat accumulation. Meanwhile, SLKDT extract improved dyslipidemia by decreasing total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels and increasing high-density lipoprotein cholesterol levels. Furthermore, SLKDT extract reduced alanine aminotransferase, alkaline phosphatase, and aspartate transaminase levels in the serum and liver tissues; decreased inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor-α, interferon-γ, and IL-6; and increased the anti-inflammatory cytokines, IL-4 and IL-10. The quantitative PCR results showed that SLKDT extract upregulated the mRNA expressions of peroxisome proliferator-activated receptor (PPAR)-α, lipoprotein lipase, carnitine palmitoyltransferase 1, and cholesterol 7 alpha hydroxylase and downregulated PPAR-γ and CCAAT/enhancer-binding protein-alpha mRNA expressions in the obese mouse livers to reduce adipocyte differentiation and fat accumulation, promote fat oxidation, and improve dyslipidemia, thereby inhibiting the immune response and alleviating liver injury. SLKDT shows a potential for preventing obesity and regulating obesity-related syndrome, so it is possible to be further developed as a novel treatment for fighting obesity.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Jun Yang
- Department of GastroenterologyPeople's Hospital of Chongqing Banan DistrictChongqingChina
| | - Xiaojing Liu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Ying Zhang
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Ailing Lei
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- College of Biological and Chemical EngineeringChongqing University of EducationChongqingChina
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
38
|
Kilany OE, El-Beltagy MA, El-Sherbeeny NA. Tribulus terrestris ameliorates carbon tetrachloride-induced hepatotoxicity in male rats through suppression of oxidative stress and inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24967-24981. [PMID: 32342415 DOI: 10.1007/s11356-020-08826-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Hepatoprotection is a goal for the harmful effect of several hepatotoxic agents. The present study has been executed to assess the useful impacts of Tribulus terrestris (TT) and silymarin (SLM) against carbon tetrachloride (CCL4)-induced hepatotoxicity. Forty-two male rats were partitioned into six groups: group I: received 0.3% CMC-Na in distilled water, group II: TT (500 mg/kg BW, orally), group III: SLM (200 mg/kg, orally) for 14 consecutive days (on days 11 and 12 intraperitoneal corn oil), group IV: CCL4, group V: TT (500 mg/kg BW) plus CCL4, and group VI: SLM (200 mg/kg orally) plus CCL4. The CCL4 was administered (2.0 ml/kg BW) intraperitoneal on days 11 and 12. Sera were collected for assessment of hepatic injury markers and pro-inflammatory cytokines. Additionally, liver tissue oxidative stress, lipid peroxidation, histopathological examination, and immunohistochemical analysis (Bax and bcl-2) were done. CCL4 injection induced significant reductions in hepatic antioxidants while increased hepatic lipid peroxidation as well as serum hepatic injury biomarkers and pro-inflammatory cytokines. The histopathological examination showed necrotic and degenerative changes in the hepatic tissue, while immunohistochemical analysis revealed marked hepatic expression of activated Bax, and bcl-2, following CCL4 injection. TT pretreatment significantly improved all examined parameters and restored the hepatic architecture. The current study illustrated that TT effectively alleviates hepatic oxidative damage, apoptosis, and inflammation, induced by acute CCL4 intoxication. In this manner, TT has promising cytoprotective powers against hepatotoxicity induced by CCL4.
Collapse
Affiliation(s)
- Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagla A El-Sherbeeny
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
39
|
Isolation and identification of Anti-Oxidant Fraction from Active Extract of Rhizophora mucronata Poir. Leaves. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Elmi A, Spina R, Risler A, Philippot S, Mérito A, Duval RE, Abdoul-latif FM, Laurain-Mattar D. Evaluation of Antioxidant and Antibacterial Activities, Cytotoxicity of Acacia seyal Del Bark Extracts and Isolated Compounds. Molecules 2020; 25:E2392. [PMID: 32455580 PMCID: PMC7288156 DOI: 10.3390/molecules25102392] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
Water extract of Acacia seyal bark is used traditionally by the population in Djibouti for its anti-infectious activity. The evaluation of in vitro antibacterial, antioxidant activities and cytotoxicity as well as chemical characterization of Acacia seyal bark water and methanolic extracts were presented. The water extract has a toxicity against the MRC-5 cells at 256 μg/mL while the methanolic extract has a weak toxicity at the same concentration. The methanolic extract has a strong antioxidant activity with half maximal inhibitory concentration (IC50) of 150 ± 2.2 μg/mL using 1-diphenyl-2-picrylhydrazyl (DPPH) and IC50 of 27 ± 1.3 μg/mL using 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical methods. For ferric reducing/antioxidant power (FRAP) assay, the result is 45.74 ± 5.96 μg Vitamin C Equivalent (VCE)/g of dry weight (DW). The precipitation of tannins from methanol crude extract decreases the MIC from 64 µg/mL to 32 µg/mL against Staphylococcus aureus and Corynebacterium urealyticum. However, the antioxidant activity is higher before tannins precipitation than after (IC50 = 150 µg/mL for methanolic crude extract and 250 µg/mL after tannins precipitation determined by DPPH method). By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, the results showed that the condensed tannins consist of two types of catechin and gallocatechin-based oligomers. The fractionation led to the identification of three pure compounds: two flavanols catechin and epicatechin; one triterpene as lupeol; and a mixture of three steroids and one fatty acid: campesterol, stigmasterol, clionasterol, and oleamide.
Collapse
Affiliation(s)
- Abdirahman Elmi
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.E.); (R.S.); (A.R.); (S.P.); (R.E.D.)
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti; (A.M.); (F.M.A.-l.)
| | - Rosella Spina
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.E.); (R.S.); (A.R.); (S.P.); (R.E.D.)
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.E.); (R.S.); (A.R.); (S.P.); (R.E.D.)
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.E.); (R.S.); (A.R.); (S.P.); (R.E.D.)
| | - Ali Mérito
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti; (A.M.); (F.M.A.-l.)
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.E.); (R.S.); (A.R.); (S.P.); (R.E.D.)
- ABC Platform, Faculté de Pharmacie, F-54505 Vandoeuvre-lès-Nancy, France
| | - Fatouma Mohamed Abdoul-latif
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti; (A.M.); (F.M.A.-l.)
| | - Dominique Laurain-Mattar
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (A.E.); (R.S.); (A.R.); (S.P.); (R.E.D.)
| |
Collapse
|
41
|
Mar JM, Silva LS, Rabelo MDS, Muniz MP, Nunomura SM, Correa RF, Kinupp VF, Campelo PH, Bezerra JDA, Sanches EA. Encapsulation of Amazonian Blueberry juices: Evaluation of bioactive compounds and stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Ben Hsouna A, Dhibi S, Dhifi W, Ben Saad R, Brini F, Hfaidh N, Almeida JRGDS, Mnif W. Lobularia maritima leave extract, a nutraceutical agent with antioxidant activity, protects against CCl4-induced liver injury in mice. Drug Chem Toxicol 2020; 45:604-616. [DOI: 10.1080/01480545.2020.1742730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anis Ben Hsouna
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Sabah Dhibi
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia
| | - Wissal Dhifi
- Laboratory of Physiopathology, Alimentation and Biomolecules, PAB, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Rania Ben Saad
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Faical Brini
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Najla Hfaidh
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia
| | | | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha, Saudi Arabia
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, BVBGR, LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
43
|
Chen Y, Chen Q, Wang X, Sun F, Fan Y, Liu X, Li H, Deng Z. Hemostatic action of lotus leaf charcoal is probably due to transformation of flavonol aglycons from flavonol glycosides in traditional Chinses medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112364. [PMID: 31678413 DOI: 10.1016/j.jep.2019.112364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/09/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nelumbo nucifera Gaertn (lotus) leaves were empirically carbonized to enhance the hemostatic effect in traditional Chinese medicines. The mechanism of this application remains unclear. AIM OF THE STUDY The present study aims at exploring the transformation of phytochemical compounds in lotus leaves after heating and figuring out the phytochemical mechanism of the application of charcoal hemostatic styptics. METHODS AND RESULTS Raw lotus leaves were heated at 150 °C and 220 °C, respectively, and the transformation of the phytochemicals was studied. Flavonol glycosides in raw lotus leaves were found to be degraded to their corresponding aglycons in 150 °C lotus leaf charcoals (LLC) and the subsequent degradation products of aglycons in 220 °C LLC. 150 °C LLC exhibited the most desirable hemostatic effect in mice on reducing both bleeding time (BT) and clotting time (CT) by more than 30% as compared to the untreated group (P < 0.05). The extracts of 150 °C LLC were further separated by using different solvents. Ethyl acetate fraction which contained much flavonol aglycons displayed the most desirable hemostatic effect. On the contrary, petroleum ether fraction contains poor flavonoid and much alkaloid thus prolonged BT and CT. N-butanol extracts which contained only flavonol glycoside failed to shorten CT. In rats, quercetin (aglycon) standard promoted blood coagulation by shortening APTT (activated partial thromboplastin time) and increasing fibrinogen (P < 0.05). Hyperoside (glycoside) increased fibrinogen and platelet count (P < 0.05). Nuciferine was shown to prolong APTT and TT (thrombin time) and decrease fibrinogen (P > 0.05). CONCLUSION Degradation of flavonoids and alkaloids in lotus leaves was suggested to enhance the hemostatic effect of LLC. Flavonol aglycons were found to be more effective on blood clotting compared with their corresponding glycosides. Nuciferine, a typical alkaloid in lotus leaves which was degraded in LLC showed anticoagulation effect in rats. The content of flavonoid aglycon can be regarded as a criterion to qualify LLC.
Collapse
Affiliation(s)
- Yuhuan Chen
- State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Qiwen Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory Science, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fan Sun
- Department of Clinical Laboratory Science, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China.
| |
Collapse
|
44
|
Liu T, Tan F, Long X, Pan Y, Mu J, Zhou X, Yi R, Zhao X. Improvement Effect of Lotus Leaf Flavonoids on Carbon Tetrachloride-Induced Liver Injury in Mice. Biomedicines 2020; 8:E41. [PMID: 32102401 PMCID: PMC7169453 DOI: 10.3390/biomedicines8020041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, the effect of lotus leaf flavonoids (LLF) on carbon tetrachloride (CCl4)-induced liver injury in mice was studied. CCl4 was injected intraperitoneally to induce liver injury in Kunming mice. Mice were treated with LLF by gavage, and the mRNA expression levels in serum and liver were detected. Compared with the model group, LLF significantly reduced the liver index and serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), and total cholesterol (TC) levels in mice with CCl4-induced liver injury. Pathological observation showed that LLF effectively reduced morphological incompleteness and hepatocyte necrosis in CCl4-treated liver tissue. The result of quantitative polymerase chain reaction (qPCR) indicated that LLF significantly up-regulated the mRNA expression levels of copper/zinc superoxide dismutase (Cu/Zn-SOD), manganese superoxide dismutase (Mn-SOD), and catalase (CAT) and down- regulated the expression levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), and interleukin-1β (IL-1β) (p < 0.05). Thus, LLF is an active ingredient that ameliorates liver injury, and it has good application prospect.
Collapse
Affiliation(s)
- Tongji Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; (T.L.); (X.L.); (Y.P.); (J.M.); (X.Z.)
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela 838, Philippines;
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; (T.L.); (X.L.); (Y.P.); (J.M.); (X.Z.)
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; (T.L.); (X.L.); (Y.P.); (J.M.); (X.Z.)
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; (T.L.); (X.L.); (Y.P.); (J.M.); (X.Z.)
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; (T.L.); (X.L.); (Y.P.); (J.M.); (X.Z.)
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Runkun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; (T.L.); (X.L.); (Y.P.); (J.M.); (X.Z.)
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; (T.L.); (X.L.); (Y.P.); (J.M.); (X.Z.)
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
45
|
Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int J Biol Macromol 2020; 153:169-179. [PMID: 32105695 DOI: 10.1016/j.ijbiomac.2020.02.252] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
Lotus leaf polysaccharides were extracted by enzyme-assisted extraction using α-amylase (LLEP-A), cellulose (LLEP-C), pectinase (LLEP-P) or protease (LLEP-PR). Their physicochemical properties and immunostimulatory activities were compared with those of hot-water extracted polysaccharides (LLWP). HPAEC-PDA and HPSEC-RI profiles indicated that variations in their molecular weight patterns and chemical compositions. Moreover, their effects on proliferation, phagocytic activity, and cytokine production in macrophages could be ordered as LLEP-P > LLEP-C > LLEP-A > LLWP > LLEP-PR, suggesting that LLEP-P by pectinase-assisted extraction was the most potent enhancer of macrophage activation. LLEP-P was further purified by gel filtration, and the main fraction (LLEP-P-І) was obtained to elucidate the structural and functional properties. LLEP-P-І (14.63 × 103 g/mol) mainly consisted of rhamnose, arabinose, galactose, and galacturonic acid at molar percentages of 15.5:15.8:20.1:32.8. FT-IR spectra indicated the predominant acidic and esterified form, suggesting the pectic-like structure. Above all, LLEP-P-І exerted greater stimulation effects on NO and cytokines production and the phagocytic activity in macrophages. Transcriptome analysis also demonstrated that LLEP-P and LLEP-P-І could upregulate macrophage immune response genes, including cytokines, chemokines, and interferon via TLR and JAK-STAT signaling. Thus, these results suggest that pectinase application is most suitable to obtain immunostimulatory polysaccharides from lotus leaves.
Collapse
|
46
|
Li S, Liu X, Liu Q, Chen Z. Colorimetric Differentiation of Flavonoids Based on Effective Reactivation of Acetylcholinesterase Induced by Different Affnities between Flavonoids and Metal Ions. Anal Chem 2020; 92:3361-3365. [PMID: 31983197 DOI: 10.1021/acs.analchem.9b05378] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flavonoids are closely related to human health, and the distinguishiment of flavonoids is an important but difficult issue. We herein unveil a novel colorimetric sensor array for the rapid identification of 7 flavonoids (e.g., gallocatechin (GC), morin hydrate (MH), puerarin (Pu), epigallocatechin gallate (EGCG), catechin (C), rac Naringenin (rN), and Flavone (Fla)) for the first time. The colorimetric performances of gold nanoparticles (AuNPs) are characteristically correlated with thiocholine, which is issued from the enzymatic hydrolysis of acetylcholine (AcCh). Therefore, as a proof-of-concept design, three sensors (Cu2+/acetylcholinesterase (AcChE)/AcCh/AuNPs, Zn2+/AcChE/AcCh/AuNPs, and Mn2+/AcChE/AcCh/AuNPs) were constructed to form our sensor array. The distinct affinities between flavonoids and metal ions would cause varying degrees of effective reactivation of AcChE, leading to unique colorimetric response patterns upon being challenged with the seven flavonoids for their pattern recognition, enabling an excellent identification of the seven flavonoids at a concentration of 20 nM and different concentrations of individual flavonoids, as well as mixtures of them.
Collapse
Affiliation(s)
- Siqun Li
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| | - Xueyan Liu
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering , Shandong University of Science and Technology , Qingdao , 266510 , China
| | - Zhengbo Chen
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| |
Collapse
|
47
|
Rakib A, Ahmed S, Islam MA, Haye A, Uddin SMN, Uddin MMN, Hossain MK, Paul A, Emran TB. Antipyretic and hepatoprotective potential of Tinospora crispa and investigation of possible lead compounds through in silico approaches. Food Sci Nutr 2020; 8:547-556. [PMID: 31993178 PMCID: PMC6977484 DOI: 10.1002/fsn3.1339] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
This research describes an investigation of the antipyretic and hepatoprotective properties of both a crude organic extract and various subfractions of the ethnomedicinal plant Tinospora crispa, using appropriate animal models. In an attempt to identify potential lead hepatoprotective compounds, in silico experiments were utilized. Antipyretic activity was assessed via the Brewer's yeast-induced pyrexia method, while hepatoprotective effects were evaluated in a carbon tetrachloride (CCl4)-induced animal model. A computer-aided prediction of activity spectra for substances (PASS) model was applied to a selection of documented phytoconstituents, with the aim of identifying those compounds with most promising hepatoprotective effects. Results were analyzed using Molinspiration software. Our results showed that both the methanol extract (METC) and various subfractions (pet ether, PEFTC; n-hexane, NHFTC; and chloroform, CFTC) significantly (p < .05) reduced pyrexia in a dose-dependent manner. In CCl4-induced hepatotoxicity studies, METC ameliorated elevated hepatic markers including serum alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), and total bilirubin. Malondialdehyde (MDA) levels were significantly reduced, while superoxide dismutase (SOD) levels were significantly increased. Among a selection of metabolites of T. crispa, genkwanin was found to be the most potent hepatoprotective constituent using PASS predictive models. These results demonstrate that both the methanolic extract of T. crispa and those fractions containing genkwanin may offer promise in reducing pyrexia and as a source of potential hepatoprotective agents.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Shahriar Ahmed
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Md. Ashiqul Islam
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Abdul Haye
- Department of Forensic MedicineUniversity of Science and Technology ChittagongChittagongBangladesh
| | - S. M. Naim Uddin
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | | | - Mohammed Kamrul Hossain
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Arkajyoti Paul
- Drug DiscoveryGUSTO A Research GroupChittagongBangladesh
- Department of MicrobiologyJagannath UniversityDhakaBangladesh
| | - Talha Bin Emran
- Drug DiscoveryGUSTO A Research GroupChittagongBangladesh
- Department of PharmacyBGC Trust University BangladeshChittagongBangladesh
| |
Collapse
|
48
|
Oueslati M, Bouajila J, Guetat A, Al-Gamdi F, Hichri F. Cytotoxic, α-glucosidase, and antioxidant activities of flavonoid glycosides isolated from flowers of Lotus lanuginosus Vent. (Fabaceae). Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_232_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
49
|
Abdel Raoof GF, Said AA, Mohamed KY, Gomaa HA. Phytoconstituents and bioactivities of the Bark of Pleiogynium timorense (DC.) Leenh (Anacardiaceae). JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.15171/jhp.2020.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: The purpose of this study was to evaluate the phytoconstituents and various bioactivities of Pleiogynium timorense bark as a step towards the production of a new drug from natural origin to overcome the complications of the synthetic drugs. Methods: The phenolic compounds were isolated and identified by chromatographic and spectroscopic methods as ultraviolet (UV) and nuclear magnetic resonance (NMR) spectra. The isolated compounds, as well as 70% methanol extract of P. timorense bark were tested for cytotoxicity against human colon carcinoma (HCT 116), human hepatocellular liver carcinoma (HepG2), normal melanocytes (HFB-4) and human breast carcinoma (MCF-7) cell lines. In addition, the methanol extract was evaluated for renal protective, hepatoprotective, antioxidant and antihyperglycaemic activities. Results: Seven phenolic compounds were isolated from the bark of the plant for the first time which were identified as; pyrogallol, catechin, gallic acid, kaempferol, quercetin, rutin and quercetrin. Moreover, the methanol extract of the bark showed a promising cytotoxic effect against HepG2 cell line more than that of the isolated compounds comparing with doxorubicin (a positive control), where catechin and gallic acid showed moderate effects. In addition, the methanol extract showed potent antioxidant, hepatorenal protective and antihyperglycaemic effects. Conclusion: Pleiogynium timorense extract possesses a potent cytotoxic effect against HepG2 cell line and significant antioxidant, hepatorenal protective and antihyperglycaemic effects.
Collapse
Affiliation(s)
| | | | - Khaled Younes Mohamed
- Internal Medicine Department, Medical Division, National Research Centre, Giza, Egypt
| | - Hesham A. Gomaa
- Biochemistry Department, Faculty of pharmacy, Nahda university, Beni-Suef, Egypt
- Pharmacology Department, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| |
Collapse
|
50
|
Ma Z, Huang Y, Huang W, Feng X, Yang F, Li D. Separation, Identification, and Antioxidant Activity of Polyphenols from Lotus Seed Epicarp. Molecules 2019; 24:E4007. [PMID: 31694314 PMCID: PMC6864829 DOI: 10.3390/molecules24214007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Lotus seed epicarp, the main by-product of lotus seed processing, is abundant in polyphenols. In this study, polyphenols in lotus seed epicarp were separated by Sephadex LH-20 gel filtration chromatography to yield Fraction-I (F-I), Fraction-II (F-II), and Fraction-III (F-III). The polyphenol compounds in the three fractions were identified by UPLC-MI-TOF-MS. Six kinds of polyphenol compounds including cyanidin-3-O-glucoside, procyanidin trimer, and phlorizin were identified in F-I, and prodelphinidin dimer B, procyanidin dimer, and quercetin hexoside isomer were found in F-II. However, there was only procyanidin dimer identified in F-III. The in vitro antioxidant activities of the three fractions were also investigated. We found F-I, F-II, and F-III had strong potential antioxidant activities in the order of F-III > F-II > F-I. Our results suggested that polyphenols from lotus seed epicarp might be suitable for use as a potential food additive.
Collapse
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| | - Yi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; (Y.H.); (W.H.)
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; (Y.H.); (W.H.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, California State University, San Jose, CA 95192, USA;
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| | - Deyuan Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| |
Collapse
|