1
|
Arafa AA, Hakeim OA, Nada AA, Zahran MK, Shaffie NM, Ibrahim AY. Evaluation of smart bi-functional dressing based on polysaccharide hydrogels and Brassica oleracea extract for wound healing and continuous monitoring. Int J Biol Macromol 2025; 286:138339. [PMID: 39638175 DOI: 10.1016/j.ijbiomac.2024.138339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Skin wounds can drive global impacts, socially and economically, in parallel with their elevated incidence rate. Therefore, utilizing the dual-activity of Brassica Oleracea (Red Cabbage) extract, of being pH-sensitive and biologically active in designing novel, therapeutic, and pH-sensitive wound dressings with an easily stripped-off feature, is critical. Wound dressings were designed using two separate hydrogels based on chitosan (CS) and hydroxyethylcellulose (HEC), each loaded with RCE. The pH sensitivity of prepared bandages exhibited a noticeable visual change in color during wound treatment. Wound closure has reached 99.69 % for CS/RCE dressings. Results showed that RCE had raised the hydroxyproline and collagen content in the healed skin. Histopathological investigation proves that skin returned to its regular thickness within 10 days of treatment. RCE showed marked improvement in the healing quality by acting as an antioxidant, anti-inflammatory, and antimicrobial agent. Therefore, dual-function dressings are potential candidates to sense and cure skin wounds.
Collapse
Affiliation(s)
- Asmaa Ahmed Arafa
- Department of Dyeing, Printing, and Auxiliaries, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Osama A Hakeim
- Department of Dyeing, Printing, and Auxiliaries, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed Ali Nada
- Pre-treatment and Finishing of Cellulosic Textiles Dept., Textile Research Division, National Research Centre (Scopus Affiliation ID 60014618), Dokki, Giza 12622, Egypt
| | - Magdy Kandil Zahran
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Nermeen M Shaffie
- Pathology Department, Medical Rresearches Institute, National Research Centre, 12622, Egypt
| | - Abeer Yousry Ibrahim
- Pharmaceutical and drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Vega-Galvez A, Pasten A, Uribe E, Mejias N, Araya M, Vidal RL, Valenzuela-Barra G, Delporte C. Comprehensive Assessment of Anti-Inflammatory, Antiproliferative and Neuroprotective Properties of Cauliflower after Dehydration by Different Drying Methods. Foods 2024; 13:3162. [PMID: 39410197 PMCID: PMC11482558 DOI: 10.3390/foods13193162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Cauliflower (Brassica oleraceae L. var. Botrytis Linnaeus) has various health benefits due to its rich bioactive compound content. However, this fresh vegetable faces challenges related to its perishability and short shelf life. This study explores the effect of five drying methods, namely vacuum drying (VD), convective drying (CD), infrared drying (IRD), low-temperature vacuum drying (LTVD) and vacuum freeze-drying (VFD), on the bioactive compounds and health-promoting properties of cauliflower. Analyses of amino acids, hydroxycinnamic acid and its derivatives, glucosinolates, and isothiocyanates, as well as evaluations of their anti-inflammatory, antiproliferative, and neuroprotective properties, were conducted based on these five drying methods. The results revealed that samples treated with VFD and IRD had a higher content of amino acids involved in GSL anabolism. Moreover, VFD samples retained hydroxycinnamic acid derivatives and glucosinolates to a greater extent than other methods. Nonetheless, the CD and VD samples exhibited higher antiproliferative and neuroprotective effects, which were correlated with their high sulforaphane content. Overall, considering the retention of most bioactive compounds from cauliflower and the topical inflammation amelioration induced in mice, VFD emerges as a more satisfactory option.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
| | - Alexis Pasten
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
| | - Elsa Uribe
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Nicol Mejias
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (A.P.); (E.U.); (N.M.)
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile;
| | - René L. Vidal
- Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Universidad de Chile, Santiago 8380000, Chile;
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago 8380000, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (G.V.-B.); (C.D.)
| | - Carla Delporte
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (G.V.-B.); (C.D.)
| |
Collapse
|
3
|
Ibrahim RM, El-Shiekh RA, Mohamed OG, Al-Karmalawy AA, Tripathi A, Abdel-Baki PM. LC/MS-Based Metabolomics Reveals Chemical Variations of Two Broccoli Varieties in Relation to Their Anticholinesterase Activity: In vitro and In silico Studies. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:359-366. [PMID: 38607508 PMCID: PMC11178554 DOI: 10.1007/s11130-024-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Broccoli is commonly consumed as food and as medicine. However, comprehensive metabolic profiling of two broccoli varieties, Romanesco broccoli (RB) and purple broccoli (PB), in relation to their anticholinergic activity has not been fully disclosed. A total of 110 compounds were tentatively identified using UPLC-Q-TOF-MS metabolomics. Distinctively different metabolomic profiles of the two varieties were revealed by principal component analysis (PCA). Furthermore, by volcano diagram analysis, it was found that PB had a significantly higher content of phenolic acids, flavonoids, and glucosinolates, indicating the different beneficial health potentials of PB that demonstrated higher antioxidant and anticholinergic activities. Moreover, Pearson's correlation analysis revealed 18 metabolites, mainly phenolic and sulfur compounds, as the main bioactive. The binding affinity of these biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes was further validated using molecular docking studies. Results emphasize the broccoli significance as a functional food and nutraceutical source and highlight its beneficial effects against Alzheimer's disease.
Collapse
Affiliation(s)
- Rana M Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, 34518, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Passent M Abdel-Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Kim SH, Ochar K, Hwang A, Lee YJ, Kang HJ. Variability of Glucosinolates in Pak Choy ( Brassica rapa subsp. chinensis) Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 13:9. [PMID: 38202314 PMCID: PMC10780573 DOI: 10.3390/plants13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Glucosinolates are sulfur-containing phytochemicals generally abundant in cruciferous vegetables such as pak choy. Glucosinolates participate in a range of biological activities essential for promoting a healthy human body. In this study, we aimed to elucidate glucosinolate variability present in pak choy germplasm that are under conservation at the Rural Development Administration Genebank, Jeonju, Republic of Korea. The Acquity Ultra-Performance Liquid Chromatography (UHPLC) analytical system was used in profiling the glucosinolate content in leaf samples of various accessions. We identified a total of 17 glucosinolates in the germplasm. Based on principal compoment analysis performed, three separate groups of the accessions were obtained. Group 1 contained the cultivar cheongsacholong which recorded high content of glucobrassicin (an indole), glucoerucin (aliphatic), gluconasturtiin (aromatic) and glucoberteroin (aliphatic). Group 2 consisted of six accessions, BRA77/72, Lu ling gaogengbai, 9041, Wuyueman, RP-75 and DH-10, predominatly high in aliphatic compounds including glucoiberin, glucocheirolin, and sinigrin. Group 3 comprised the majority of the accessions which were characterized by high content of glucoraphanin, epiprogoitrin, progoitrin, and glucotropaeolin. These results revealed the presence of variability among the pak choy germplasm based on their glucosinolate content, providing an excellent opprtunity for future breeding for improved glucosinolate content in the crop.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| | - Aejin Hwang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Yoon-Jung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Hae Ju Kang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| |
Collapse
|
5
|
Tobar-Delgado E, Mejía-España D, Osorio-Mora O, Serna-Cock L. Rutin: Family Farming Products' Extraction Sources, Industrial Applications and Current Trends in Biological Activity Protection. Molecules 2023; 28:5864. [PMID: 37570834 PMCID: PMC10421072 DOI: 10.3390/molecules28155864] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro and in vivo studies have demonstrated the bioactivity of rutin, a dietary flavonol naturally found in several plant species. Despite widespread knowledge of its numerous health benefits, such as anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects, industrial use of rutin is still limited due to its low solubility in aqueous media, the characteristic bitter and astringent taste of phenolic compounds and its susceptibility to degradation during processing. To expand its applications and preserve its biological activity, novel encapsulation systems have been developed. This review presents updated research on the extraction sources and methodologies of rutin from fruit and vegetable products commonly found in a regular diet and grown using family farming approaches. Additionally, this review covers quantitative analysis techniques, encapsulation methods utilizing nanoparticles, colloidal and heterodisperse systems, as well as industrial applications of rutin.
Collapse
Affiliation(s)
- Elizabeth Tobar-Delgado
- Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera. 32 Chapinero, Palmira 763533, Colombia
| | - Diego Mejía-España
- Grupo de Investigación GAIDA, Departamento de Procesos Industriales, Facultad de Ingeniería Agroindustrial, Pasto 522020, Colombia
| | - Oswaldo Osorio-Mora
- Grupo de Investigación GAIDA, Departamento de Procesos Industriales, Facultad de Ingeniería Agroindustrial, Pasto 522020, Colombia
| | - Liliana Serna-Cock
- Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera. 32 Chapinero, Palmira 763533, Colombia
| |
Collapse
|
6
|
Liang T, Zhou J, Jing P, He Z, Jiao S, Zhao W, Tong Q, Jia G. Anti-senescence effects of Rhodiola crenulate extracts on LO 2 cells and bioactive compounds. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116179. [PMID: 36690308 DOI: 10.1016/j.jep.2023.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola crenulata (Rc) is a traditional herb, used in Tibetan medicine, has shown promise efficacy in physical performance improvement, work capacity enhancement, fatigue elimination, and altitude sickness prevention. Also, Rc exhibited therapeutic effects on aging-related diseases. However, relevant researches on Rc and their bioactive components are quite few and needs further investigation. AIM OF THE STUDY The objective of this study was to understand the relationship between phytochemical profiles and their activities of Rc extracts. MATERIALS AND METHODS Rc extracts prepared by solvents with various hydrophilicity (i.e. aqueous ethanol (70%, v/v), water, and ethyl acetate), and their chemical compositions and specific compounds were analyzed by chemical analysis method and ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS). The regulate effects of Rc extracts on senescence and antioxidant activity were evaluated using the models of LO2 cells and Caenorhabditis elegans. RESULTS The 70% ethanol extracts exhibited better regulating effects on senescence via the assays of senescence -associated β-galactosidase (SAβG) staining and lifespan, which was consistent with the higher antioxidant activities observed based on the results of antioxidant assays. A total of 14 phytochemicals have been identified in 70% ethanol extracts, whereas the other two extracts contained much fewer compounds in varieties. Phytochemical profile of water extract was similar to the first half (polar compounds, running time: 0-6 min) of 70% ethanol extract profile, while those of ethyl acetate extract was consistent with its second half (more nonpolar compounds, running time: 6-12 min). CONCLUSIONS The 14 phytochemicals in Rc might exhibit additive or synergistic effects on senescence regulating and antioxidant activities, providing theoretical basis for daily administration of Rc.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiexin Zhou
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhengjun He
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 624400, China.
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wenji Zhao
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 624400, China.
| | - Qi Tong
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 624400, China.
| | - Guofu Jia
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 624400, China.
| |
Collapse
|
7
|
Vaishnavi A. Sarangdhar, Ramanlal N. Kachave. Overview of UHPLC-MS: an Effective and Sensitive Hyphenated Technique. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Patel MK, Pandey S, Kumar M, Haque MI, Pal S, Yadav NS. Plants Metabolome Study: Emerging Tools and Techniques. PLANTS (BASEL, SWITZERLAND) 2021; 10:2409. [PMID: 34834772 PMCID: PMC8621461 DOI: 10.3390/plants10112409] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Metabolomics is now considered a wide-ranging, sensitive and practical approach to acquire useful information on the composition of a metabolite pool present in any organism, including plants. Investigating metabolomic regulation in plants is essential to understand their adaptation, acclimation and defense responses to environmental stresses through the production of numerous metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus, it has great potential to be used in genome editing programs to develop superior next-generation crops. This review describes the recent analytical tools and techniques available to study plants metabolome, along with their significance of sample preparation using targeted and non-targeted methods. Advanced analytical tools, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) matrix-assisted laser desorption/ionization (MALDI), ion mobility spectrometry (IMS) and nuclear magnetic resonance (NMR) have speed up precise metabolic profiling in plants. Further, we provide a complete overview of bioinformatics tools and plant metabolome database that can be utilized to advance our knowledge to plant biology.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sonika Pandey
- Independent Researcher, Civil Line, Fathepur 212601, India;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Md Intesaful Haque
- Fruit Tree Science Department, Newe Ya’ar Research Center, Agriculture Research Organization, Volcani Center, Ramat Yishay 3009500, Israel;
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
9
|
Metabolite Profiling and Transcriptome Analysis Provide Insight into Seed Coat Color in Brassica juncea. Int J Mol Sci 2021; 22:ijms22137215. [PMID: 34281271 PMCID: PMC8268557 DOI: 10.3390/ijms22137215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
The allotetraploid species Brassica juncea (mustard) is grown worldwide as oilseed and vegetable crops; the yellow seed-color trait is particularly important for oilseed crops. Here, to examine the factors affecting seed coat color, we performed a metabolic and transcriptomic analysis of yellow- and dark-seeded B. juncea seeds. In this study, we identified 236 compounds, including 31 phenolic acids, 47 flavonoids, 17 glucosinolates, 38 lipids, 69 other hydroxycinnamic acid compounds, and 34 novel unknown compounds. Of these, 36 compounds (especially epicatechin and its derivatives) accumulated significantly different levels during the development of yellow- and dark-seeded B. juncea. In addition, the transcript levels of BjuDFR, BjuANS,BjuBAN, BjuTT8, and BjuTT19 were closely associated with changes to epicatechin and its derivatives during seed development, implicating this pathway in the seed coat color determinant in B. juncea. Furthermore, we found numerous variations of sequences in the TT8A genes that may be associated with the stability of seed coat color in B. rapa, B. napus, and B. juncea, which might have undergone functional differentiation during polyploidization in the Brassica species. The results provide valuable information for understanding the accumulation of metabolites in the seed coat color of B. juncea and lay a foundation for exploring the underlying mechanism.
Collapse
|
10
|
Almushayti AY, Brandt K, Carroll MA, Scotter MJ. Current analytical methods for determination of glucosinolates in vegetables and human tissues. J Chromatogr A 2021; 1643:462060. [PMID: 33770631 DOI: 10.1016/j.chroma.2021.462060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Numerous epidemiological studies have indicated the potential effects of glucosinolates and their metabolites against cancer as well as other non-communicable diseases, such as cardiovascular disease and neurodegenerative disorders. However, information on the presence and quantity of glucosinolates in commonly consumed vegetables and in human fluids is sparse, largely because well-standardised methods for glucosinolate determination are not available, resulting in published data being inconsistent and conflicting. Thus, studies published since 2002 on the most recent developments of glucosinolate extraction and identification have been collected and reviewed with emphasis on determination of the intact glucosinolates by LC-MS and LC-MS/MS. This overview highlights the glucosinolate extraction methods used, the stability of glucosinolates during extraction, the availability of stable isotope labelled internal standards and the use of NMR for purity analysis, as well as the current analytical techniques that have been applied for glucosinolate analysis, e.g. liquid chromatography with mass spectrometric detection (LC-MS). It aims to interpret the findings with a focus on the development of a validated method, which will help to determine the glucosinolate content of vegetative plants and human tissues, and the identification and determination of selected glucosinolate metabolites.
Collapse
Affiliation(s)
- Albatul Y Almushayti
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; College of Agriculture and Veterinary Medicine, Department of Food Science and Human Nutrition, Qassim University, Qassim, KSA.
| | - Kirsten Brandt
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Michael A Carroll
- School of Natural & Environmental Sciences-Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
11
|
The Effect of Different Extraction Protocols on Brassica oleracea var. acephala Antioxidant Activity, Bioactive Compounds, and Sugar Profile. PLANTS 2020; 9:plants9121792. [PMID: 33348742 PMCID: PMC7766149 DOI: 10.3390/plants9121792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
The extraction of glucosinolates in boiling aqueous methanol from freeze dried leaf tissues is the most common method for myrosinase inactivation but can be hazardous because of methanol toxicity. Although freeze drying is the best dehydration method in terms of nutritional quality preservation, the main drawbacks are a limited sample quantity that can be processed simultaneously, a long processing time, and high energy consumption. Therefore, the aim of this study is to evaluate the effects of applying high temperature for myrosinase inactivation via hot air drying prior to the extraction step, as well as the effects of cold aqueous methanol extraction on total antioxidant activity, total glucosinolates, total phenolic content, and sugar profile in 36 landraces of kale. The results from our study indicate that cold aqueous methanol can be used instead of boiling aqueous methanol with no adverse effects on total glucosinolate content. Our results also show that hot air drying, compared to freeze drying, followed by cold extraction has an adverse effect on antioxidant activity measured by DPPH radical scavenging, total glucosinolate content, as well as on the content of all investigated sugars.
Collapse
|
12
|
Rhee JH, Choi S, Lee JE, Hur OS, Ro NY, Hwang AJ, Ko HC, Chung YJ, Noh JJ, Assefa AD. Glucosinolate Content in Brassica Genetic Resources and Their Distribution Pattern within and between Inner, Middle, and Outer Leaves. PLANTS 2020; 9:plants9111421. [PMID: 33114129 PMCID: PMC7690824 DOI: 10.3390/plants9111421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Glucosinolates (GSLs) are sulfur-containing secondary metabolites naturally occurring in Brassica species. The purpose of this study was to identify the GSLs, determine their content, and study their accumulation patterns within and between leaves of kimchi cabbage (Brassica rapa L.) cultivars. GSLs were analyzed using UPLC-MS/MS in negative electron-spray ionization (ESI−) and multiple reaction monitoring (MRM) mode. The total GSL content determined in this study ranged from 621.15 to 42434.21 μmolkg−1 DW. Aliphatic GSLs predominated, representing from 4.44% to 96.20% of the total GSL content among the entire samples. Glucobrassicanapin (GBN) contributed the greatest proportion while other GSLs such as glucoerucin (ERU) and glucotropaeolin (TRO) were found in relatively low concentrations. Principal component analysis (PCA) yielded three principal components (PCs) with eigenvalues ≥ 1, altogether representing 74.83% of the total variation across the entire dataset. Three kimchi cabbage (S/No. 20, 4, and 2), one leaf mustard (S/No. 26), and one turnip (S/No. 8) genetic resources were well distinguished from other samples. The GSL content varied significantly among the different positions (outer, middle, and inner) of the leaves and sections (top, middle, bottom, green/red, and white) within the leaves. In most of the samples, higher GSL content was observed in the proximal half and white sections and the middle layers of the leaves. GSLs are regarded as allelochemicals; hence, the data related to the patterns of GSLs within the leaf and between leaves at a different position could be useful to understand the defense mechanism of Brassica plants. The observed variability could be useful for breeders to develop Brassica cultivars with high GSL content or specific profiles of GSLs.
Collapse
Affiliation(s)
- Ju-Hee Rhee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.-H.R.); (S.C.); (J.-E.L.); (O.-S.H.); (N.-Y.R.); (A.-J.H.)
| | - Susanna Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.-H.R.); (S.C.); (J.-E.L.); (O.-S.H.); (N.-Y.R.); (A.-J.H.)
| | - Jae-Eun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.-H.R.); (S.C.); (J.-E.L.); (O.-S.H.); (N.-Y.R.); (A.-J.H.)
| | - On-Sook Hur
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.-H.R.); (S.C.); (J.-E.L.); (O.-S.H.); (N.-Y.R.); (A.-J.H.)
| | - Na-Young Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.-H.R.); (S.C.); (J.-E.L.); (O.-S.H.); (N.-Y.R.); (A.-J.H.)
| | - Ae-Jin Hwang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.-H.R.); (S.C.); (J.-E.L.); (O.-S.H.); (N.-Y.R.); (A.-J.H.)
| | - Ho-Cheol Ko
- Client Service Division, Planning and Coordination Bureau, RDA, Jeonju 54875, Korea;
| | - Yun-Jo Chung
- National Creative Research Laboratory for Ca signaling Network, Jeonbuk National University Medical School, Jeonju, 54896, Korea;
| | - Jae-Jong Noh
- Jeonbuk Agricultural Research and Extension Services, Iksan 54591, Korea;
| | - Awraris Derbie Assefa
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.-H.R.); (S.C.); (J.-E.L.); (O.-S.H.); (N.-Y.R.); (A.-J.H.)
- Correspondence: ; Tel.: +82-63-238-4902
| |
Collapse
|
13
|
Picchi V, Lo Scalzo R, Tava A, Doria F, Argento S, Toscano S, Treccarichi S, Branca F. Phytochemical Characterization and In Vitro Antioxidant Properties of Four Brassica Wild Species from Italy. Molecules 2020; 25:molecules25153495. [PMID: 32752002 PMCID: PMC7435896 DOI: 10.3390/molecules25153495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
In the present study, we evaluated for the first time the variability of antioxidant traits of four Brassica wild species: B. incana, B. macrocarpa, B. villosa, and B. rupestris. The content of the main water-soluble antioxidants (phenolics, ascorbic acid, and total biothiols) and the in vitro antioxidant potential (1,1-diphenyl-2-picrylhydrazil (DPPH) and superoxide anion scavenging capacity) were investigated. A total of 28 polyphenolic compounds were identified by LC/MS and quantitated by HPLC/DAD analysis. Kaempferol and quercetin derivatives were the most abundant phenolics compared to hydroxycinnamoyl gentiobiosides. In the ten populations, phenolics ranged from 163.9 to 533.9 mg/100 g dry weight (d.w.), ascorbic acid from 7.6 to 375.8 mg/100 g d.w., and total biothiols from 0.59 to 5.13 mg/100 g d.w. The different classes of phytochemicals were separated using solid-phase extraction at increasing methanol concentrations, and the antioxidant power of fractionated extracts was evaluated. The superoxide anion scavenging activity was significantly correlated to phenolics, particularly to flavonol derivatives, while DPPH was mainly related to ascorbic acid content. The present findings improve the knowledge of the phytochemical composition of Italian Brassica wild species by showing the great diversity of phytochemicals among populations and highlighting their importance as a valuable genetic resource for developing new cultivars with improved bioactive content.
Collapse
Affiliation(s)
- Valentina Picchi
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-02-239557210
| | - Roberto Lo Scalzo
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133 Milan, Italy;
| | - Aldo Tava
- CREA Research Centre for Animal Production and Aquaculture, viale Piacenza 29, 26900 Lodi, Italy;
| | - Filippo Doria
- Department of Chemistry, University of Pavia, viale Taramelli 10, 27100 Pavia, Italy;
| | - Sergio Argento
- CNR Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (ISAFoM), via Empedocle 58, 95128 Catania, Italy;
| | - Stefania Toscano
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, via Valdisavoia 5, 95123 Catania, Italy; (S.T.); (S.T.); (F.B.)
| | - Simone Treccarichi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, via Valdisavoia 5, 95123 Catania, Italy; (S.T.); (S.T.); (F.B.)
| | - Ferdinando Branca
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, via Valdisavoia 5, 95123 Catania, Italy; (S.T.); (S.T.); (F.B.)
| |
Collapse
|
14
|
Qu C, Yin N, Chen S, Wang S, Chen X, Zhao H, Shen S, Fu F, Zhou B, Xu X, Liu L, Lu K, Li J. Comparative Analysis of the Metabolic Profiles of Yellow- versus Black-Seeded Rapeseed Using UPLC-HESI-MS/MS and Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3033-3049. [PMID: 32052629 DOI: 10.1021/acs.jafc.9b07173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The high levels of secondary metabolites in rapeseed play important roles in determining the oil quality and feeding value. Here, we characterized the metabolic profiles in seeds of various yellow- and black-seeded rapeseed accessions. Two hundred and forty-eight features were characterized, including 31 phenolic acids, 54 flavonoids, 24 glucosinolates, 65 lipid compounds, and 74 other polar compounds. The most abundant phenolic acids and various flavonoids (epicatechin, isorhamnetin, kaempferol, quercetin, and their derivatives) were widely detected and showed significant differences in distribution between the yellow- and black-seeded rapeseed. Furthermore, the related genes (e.g., BnTT3, BnTT18, BnTT10, BnTT12, and BnBAN) involved in the proanthocyanidin pathway had lower expression levels in yellow-seeded rapeseed, strongly suggesting that the seed coat color could be mainly determined by the levels of epicatechin and their derivatives. These results improve our understanding of the primary constituents of rapeseed and lay the foundation for breeding novel varieties with a high nutritional value.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xingyu Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N02X, Canada
| | - Baojin Zhou
- Deepxomics-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
15
|
Vanlalneihi B, Saha P, Kalia P, Jaiswal S, Kundu A, Saha ND, Sirowa SS, Singh N. Chemometric approach based characterization and selection of mid-early cauliflower for bioactive compounds and antioxidant activity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:293-300. [PMID: 31975732 PMCID: PMC6952495 DOI: 10.1007/s13197-019-04060-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
The present study was aimed to analyse bioactive compounds (total phenolics, ascorbic acid and sinigrin) and antioxidant activity in 14 mid-early cauliflower genotypes. Significant differences (pb 0.05) were observed among the genotypes for all bioactive compounds and antioxidant activity. Total phenolics content of curd were ranged from 20.36 to 48.93 mg gallic acid equivalent (GAE) 100 g-1 fresh weight (FW) which showed 2.5 times variation. The ascorbic acid content was maximum in DC522 (88.53 mg 100 g-1 FW) followed by Pusa Sharad (65.64 mg 100 g-1 FW) while minimum in DC310 (39.62 65.64 mg 100 g-1 FW). Wide variation was observed for cupric reducing antioxidant capacity and ferric reducing antioxidant power ranging from 9.04 to 20.83 mg GAE 100 g-1 FW and 13.11 to 26.31 mg GAE 100 g-1 FW, respectively. Sinigrin was found to be highest in DC306 (39.50 µmol 100 g-1 FW) for leaf and in DC326 (36.93 µmol 100 g-1 FW) for curd sample. The cauliflower genotypes were classified based on chemometric approaches namely principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). The first two principal components (PC1 and PC2) explained 50.62% and 23.28% of total variance, respectively. The AHC as revealed by heat map classified cauliflower genotypes into four main groups based on measured traits. The information is useful for developing varieties and/or hybrids rich in bioactive compounds and antioxidant activity.
Collapse
Affiliation(s)
- B. Vanlalneihi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- ICAR-Indian Institute of Horticultural Research, Bengaluru, 560 089 India
| | - Partha Saha
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - P. Kalia
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - N. D. Saha
- CESCRA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Shrawan Singh Sirowa
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Naveen Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
16
|
Raab A, Feldmann J. Biological sulphur-containing compounds – Analytical challenges. Anal Chim Acta 2019; 1079:20-29. [DOI: 10.1016/j.aca.2019.05.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/19/2023]
|
17
|
Yin NW, Wang SX, Jia LD, Zhu MC, Yang J, Zhou BJ, Yin JM, Lu K, Wang R, Li JN, Qu CM. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC-HESI-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11053-11065. [PMID: 31525973 DOI: 10.1021/acs.jafc.9b05046] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oilseed rape (Brassica napus L.) is the second highest yielding oil crop worldwide. In addition to being used as an edible oil and a feed for livestock, rapeseed has high ornamental value. In this study, we identified and characterized the main floral major constituents, including phenolic acids and flavonoids components, in rapeseed accessions with different-colored petals. A total of 144 constituents were identified using ultrahigh-performance liquid chromatography-HESI-mass spectrometry (UPLC-HESI-MS/MS), 57 of which were confirmed and quantified using known standards and mainly contained phenolic acids, flavonoids, and glucosinolates compounds. Most of the epicatechin, quercetin, and isorhamnetin derivates were found in red and pink petals of B. napus, while kaempferol derivates were in yellow and pale white petals. Moreover, petal-specific compounds, including a putative hydroxycinnamic acid derivative, sinapoyl malate, 1-O-sinapoyl-β-d-glucose, feruloyl glucose, naringenin-7-O-glucoside, cyanidin-3-glucoside, cyanidin-3,5-di-O-glucoside, petunidin-3-O-β-glucopyranoside, isorhamnetin-3-O-glucoside, kaempferol-3-O-glucoside-7-O-glucoside, quercetin-3,4'-O-di-β-glucopyranoside, quercetin-3-O-glucoside, and delphinidin-3-O-glucoside, might contribute to a variety of petal colors in B. napus. In addition, bound phenolics were tentatively identified and contained three abundant compounds (p-coumaric acid, ferulic acid, and 8-O-4'-diferulic acid). These results provide insight into the molecular mechanisms underlying petal color and suggest strategies for breeding rapeseed with a specific petal color in the future.
Collapse
|
18
|
Shi M, Hlaing MM, Ying D, Ye J, Sanguansri L, Augustin MA. New food ingredients from broccoli by‐products: physical, chemical and technological properties. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meng Shi
- Tea Research Institute of Zhejiang University Hangzhou 310058 China
| | | | - DanYang Ying
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| | - JianHui Ye
- Tea Research Institute of Zhejiang University Hangzhou 310058 China
| | - Luz Sanguansri
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| | - Mary Ann Augustin
- CSIRO Agriculture and Food 671 Sneydes Road Werribee VIC 3030 Australia
| |
Collapse
|
19
|
Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep 2018; 8:634. [PMID: 29330468 PMCID: PMC5766575 DOI: 10.1038/s41598-017-18734-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022] Open
Abstract
Lodging is a factor that negatively affects yield, seed quality, and harvest ability in winter rapeseed (Brassica napus L.). In this study, we quantified the lodging-induced yield losses, changes in fatty acid composition, and oil quality in rapeseed under different nitrogen application rates and planting densities. Field experiments were conducted in 2014–2017 for studying the effect of manually-induced lodging angles (0°, 30°, 60°, and 90°), 10, 20 and 30 d post-flowering at different densities and nitrogen application rates. The fertilization/planting density combination N270D45 produced the maximum observed yield and seed quality. Timing and angle of lodging had significant effects on yield. Lodging at 90° induced at 10 d post-flowering caused the maximum reduction in yield, biomass, and silique photosynthesis. Seed yield losses were higher at high N application rates, the maximum being at N360D45. Lodging decreased seed oil content and altered its fatty acid composition by increasing stearic and palmitic acid content, while decreasing linoleic and linolenic acid content, and deteriorating oil quality by increasing erucic acid and glucosinolate content. Therefore, lodging-induced yield loss and reduction in oil content might be reduced by selecting optimum N level and planting density.
Collapse
|
20
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Zenezini Chiozzi R, Laganà A. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry. Talanta 2017; 179:792-802. [PMID: 29310309 DOI: 10.1016/j.talanta.2017.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/29/2022]
Abstract
The untargeted profiling is a promising approach for the characterization of secondary metabolites in biological matrices. Thanks to the recent rapid development of high-resolution mass spectrometry (HRMS) instrumentations, the number of applications by untargeted approaches for biological samples profiling has widely increased in the recent years. Despite the high potentialities of HRMS, however, a major issue in natural products analysis often arises in the upstream process of compounds separation. A separation technique is necessary to avoid phenomena such as signal suppression, and it is especially needed in the presence of isomeric metabolites, which are otherwise indistinguishable. Glucosinolates (GLSs), a group of secondary metabolites widely distributed among plants, resulted to be associated to the prevention of some serious diseases, such as cancer. This led to the development of several methods for the analysis of GLSs in vegetables tissues. The issue of GLSs chromatographic separation has been widely studied in the past because of the difficulty in the analysis of this highly polar and variable class of compounds. Several alternatives to reversed phase (RP) chromatography, sometimes not compatible with the coupling of liquid chromatography with mass spectrometry, have been tested for the analysis of intact GLSs. However, the availability of new stationary phases, in the last years, could allow the re-evaluation of RP chromatography for the analysis of intact GLSs. In this work, a thorough evaluation of four RP chromatographic columns for the analysis of GLSs in cauliflower (Brassica oleracea L. var. botrytis) extracts by an ultra-high performance liquid chromatographic system coupled via electrospray source to a hybrid quadrupole-Orbitrap mass spectrometer is presented. The columns tested were the following: one column Luna Omega polar C18, one column Kinetex Biphenyl, one column Kinetex core-shell XB-C18, two columns Kinetex core-shell XB-C18. After a previous optimization of the extraction method, cauliflower extracts were analyzed testing four different mobile phases onto the four columns for a total of sixteen different chromatographic conditions. The chromatographic systems were evaluated based on the number of detected and tentatively identified GLSs. Luna Polar stationary phase resulted to be the most suitable for the analysis of GLSs compared to Kinetex XB and Kinetex Biphenyl columns stationary phase. However, two in series Kinetex XB columns increased the number of tentatively identified GLSs compared to one Kinetex XB, showing the importance of column length in the analysis of complex mixtures. The data obtained with the best chromatographic system were deeply analyzed by MS/MS investigation for the final identification. Fiflty-one GLSs were tentatively identified, 24 of which have never been identified in cauliflower. Finally the linearity of the analytes response over the analyzed range of concentration was checked, suggesting that the developed method is suitable for both qualitative and quantitative analysis of GLSs in phytochemical mixtures.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgia La Barbera
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carmela Maria Montone
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Susy Piovesana
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | - Aldo Laganà
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
21
|
Thomas M, Badr A, Desjardins Y, Gosselin A, Angers P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem 2017; 245:1204-1211. [PMID: 29287343 DOI: 10.1016/j.foodchem.2017.11.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
The agrifood industry produces tons of waste and substandard products that are discarded at great expense. Valorization of industrial residues curbs issues related to food security and environmental problems. Broccoli (Brassica oleracea var. italica) is associated with varied beneficial health effects, but its production yields greater than 25% rejects. We aimed to characterize and quantify industrial broccoli by-products for their glucosinolate and polyphenol contents as a first step towards industrial bio-refining. Broccoli segments and rejected lots of 10 seed cultivars were analyzed using UPLC MS/MS. Variability in the contents of bioactive molecules was observed within and between the cultivars. Broccoli by-products were rich in glucosinolates (0.2-2% dry weight sample), predominantly glucoraphanin (32-64% of the total glucosinolates), whereas the polyphenolic content was less than 0.02% dry weight sample. Valorization of industrial residues facilitates the production of high value functional food ingredients along with socio-economic sustainability.
Collapse
Affiliation(s)
- Minty Thomas
- Department of Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada.
| | - Ashraf Badr
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Horticulture Department, Faculty of Agriculture, Zagazig University, Egypt.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Department of Phytology, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada.
| | - Andre Gosselin
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Department of Phytology, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada.
| | - Paul Angers
- Department of Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
22
|
Shi H, Zhao Y, Sun J, Yu L(L, Chen P. Chemical profiling of glucosinolates in cruciferous vegetables-based dietary supplements using ultra-high performance liquid chromatography coupled to tandem high resolution mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Maldini M, Foddai M, Natella F, Petretto GL, Rourke JP, Chessa M, Pintore G. Identification and quantification of glucosinolates in different tissues of Raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Gu J, Chao H, Wang H, Li Y, Li D, Xiang J, Gan J, Lu G, Zhang X, Long Y, Li M. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 7:1989. [PMID: 28111582 PMCID: PMC5216053 DOI: 10.3389/fpls.2016.01989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 05/25/2023]
Abstract
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Dianrong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Xuekun Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
25
|
Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F. Glucosinolates in Food. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
26
|
Ares AM, Nozal MJ, Bernal J. Development and validation of a liquid chromatography-tandem mass spectrometry method to determine intact glucosinolates in bee pollen. J Chromatogr B Analyt Technol Biomed Life Sci 2015. [DOI: 10.1016/j.jchromb.2015.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Ares AM, Nozal MJ, Bernal JL, Bernal J. Analysis of Intact Glucosinolates in Beeswax by Liquid Chromatography Tandem Mass Spectrometry. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Girgin N, El SN. Effects of cooking on in vitro sinigrin bioaccessibility, total phenols, antioxidant and antimutagenic activity of cauliflower (Brassica oleraceae L. var. Botrytis). J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2014.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Gu H, Wang J, Zhao Z, Sheng X, Yu H, Huang W. Characterization of the Appearance, Health-Promoting Compounds, and Antioxidant Capacity of the Florets of the Loose-Curd Cauliflower. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2014. [DOI: 10.1080/10942912.2013.831445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Sinigrin and sinalbin quantification in mustard seed using high performance liquid chromatography–time-of-flight mass spectrometry. J Food Compost Anal 2014. [DOI: 10.1016/j.jfca.2014.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Determination of Small Phenolic Compounds in Tequila by Liquid Chromatography with Ion Trap Mass Spectrometry Detection. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9967-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Mushtaq MY, Choi YH, Verpoorte R, Wilson EG. Extraction for metabolomics: access to the metabolome. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:291-306. [PMID: 24523261 DOI: 10.1002/pca.2505] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The value of information obtained from a metabolomic study depends on how much of the metabolome is present in analysed samples. Thus, only a comprehensive and reproducible extraction method will provide reliable data because the metabolites that will be measured are those that were extracted and all conclusions will be built around this information. OBJECTIVE To discuss the efficiency and reliability of available sample pre-treatment methods and their application in different fields of metabolomics. METHODS The review has three sections: the first deals with pre-extraction techniques, the second discusses the choice of extraction solvents and their main features and the third includes a brief description of the most used extraction techniques: microwave-assisted extraction, solid-phase extraction, supercritical fluid extraction, Soxhlet and a new method developed in our laboratory--the comprehensive extraction method. RESULTS Examination of over 200 studies showed that sample collection, homogenisation, grinding and storage could affect the yield and reproducibility of results. They also revealed that apart from the solvent used for extraction, the extraction techniques have a decisive role on the metabolites available for analysis. CONCLUSION It is essential to evaluate efficacy and reproducibility of sample pre-treatment as a first step to ensure the reliability of a metabolomic study. Among the reviewed methods, the comprehensive extraction method appears to provide a promising approach for extracting diverse types of metabolites.
Collapse
Affiliation(s)
- Mian Yahya Mushtaq
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands
| | | | | | | |
Collapse
|
33
|
Nićiforović N, Abramovič H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr Rev Food Sci Food Saf 2013; 13:34-51. [DOI: 10.1111/1541-4337.12041] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/22/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Neda Nićiforović
- Dept. of Food Science and Technology; Biotechnical Faculty, Univ. of Ljubljana; 1000 Ljubljana Slovenia
| | - Helena Abramovič
- Dept. of Food Science and Technology; Biotechnical Faculty, Univ. of Ljubljana; 1000 Ljubljana Slovenia
| |
Collapse
|
34
|
Alarcón-Flores MI, Romero-González R, Vidal JLM, Frenich AG. Multiclass determination of phytochemicals in vegetables and fruits by ultra high performance liquid chromatography coupled to tandem mass spectrometry. Food Chem 2013; 141:1120-9. [DOI: 10.1016/j.foodchem.2013.03.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
|
35
|
Lo Scalzo R, Picchi V, Migliori CA, Campanelli G, Leteo F, Ferrari V, Di Cesare LF. Variations in the phytochemical contents and antioxidant capacity of organically and conventionally grown Italian cauliflower (Brassica oleracea L. subsp. botrytis): results from a three-year field study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10335-10344. [PMID: 24134670 DOI: 10.1021/jf4026844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A three-year field study (2009-2011) was performed to evaluate phytochemicals and antioxidant capacities of two genotypes (HF1 Emeraude and the local variety, Velox) of green cauliflower grown under organic and conventional management. The conventional system increased yield, but had little effect on the dry matter, whereas the organic system increased the soluble solids. Phytochemicals and antioxidant capacity showed significant year-to-year variability. During the third year, the scarce rainfall determined a significant increase of total glucosinolates and a general decrease of antioxidants in all samples. Interestingly, in the same year organic plants were less affected by the unfavorable climatic conditions, as they increased ascorbic acid, polyphenols, and carotenoids with respect to conventional ones. The overall results for the three years showed that the two genotypes responded differently. Compared to the conventional system, Velox showed 24, 21, 13, 48, and 44% higher content of ascorbic acid, polyphenols, carotenoids, volatiles, and antioxidant capacity, respectively. In contrast, no significant increase in the phytochemicals or the antioxidant potential was found in organic Emeraude, with the exception of total volatiles (+41%). These findings suggest that organic cultivation may be highly effective for particular cauliflower genotypes.
Collapse
Affiliation(s)
- Roberto Lo Scalzo
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Research Unit of Food Technology , via G. Venezian 26, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J Chromatogr A 2013; 1292:66-82. [DOI: 10.1016/j.chroma.2013.01.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/17/2012] [Accepted: 01/04/2013] [Indexed: 12/22/2022]
|
37
|
Assessing the Environmental Benefits of Compost Use-on-Land through an LCA Perspective. SUSTAINABLE AGRICULTURE REVIEWS 2013. [DOI: 10.1007/978-94-007-5961-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Arias-Carmona M, Romero-Rodríguez M, Muñoz-Ferreiro N, Vázquez-Odériz M. Sensory Analysis of Protected Geographical Indication Products: An Example with Turnip Greens and Tops. J SENS STUD 2012. [DOI: 10.1111/joss.12013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M.D. Arias-Carmona
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science; University of Santiago de Compostela, Faculty of Sciences, Campus of Lugo; 27002 Lugo Spain
| | - M.A. Romero-Rodríguez
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science; University of Santiago de Compostela, Faculty of Sciences, Campus of Lugo; 27002 Lugo Spain
| | - N. Muñoz-Ferreiro
- Department of Statistics and Operative Investigation; University of Santiago de Compostela, Faculty of Sciences, Campus of Lugo; Lugo Spain
| | - M.L. Vázquez-Odériz
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science; University of Santiago de Compostela, Faculty of Sciences, Campus of Lugo; 27002 Lugo Spain
| |
Collapse
|
39
|
Maldini M, Baima S, Morelli G, Scaccini C, Natella F. A liquid chromatography-mass spectrometry approach to study "glucosinoloma" in broccoli sprouts. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1198-206. [PMID: 22972788 DOI: 10.1002/jms.3028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Glucosinolates are an important class of secondary plant metabolites, possessing health-promoting properties. Young broccoli plants are a very good source of glucosinolates with concentrations several times greater than in mature plants. The aim of our study was to develop a liquid chromatography-mass spectrometry and liquid chromatography/tandem mass spectrometry qualitative and quantitative method for the measure of glucosinolates in broccoli sprouts. The described method provides high sensitivity and specificity, allowing a rapid and simultaneous determination of 14 glucosinolates. The proposed method has been validated for eight glucosinolates: glucobrassicin, glucoraphanin, glucoiberin, glucoerucin, progoitrin, gluconapin, sinigrin and glucocheirolin. The linear range was 1-150 µg ml(-1), the intra-day and inter-day precision values are within 6% and 8% at the lower limit of quantification, while the overall recovery of the eight glucosinolates was 99 ± 9%. This validated method was used successfully for analysis of glucosinolates content of broccoli sprouts grown in different conditions.
Collapse
Affiliation(s)
- Mariateresa Maldini
- National Research Institute for Food and Nutrition-INRAN, Via Ardeatina 546, 00178, Roma, Italy.
| | | | | | | | | |
Collapse
|
40
|
Glauser G, Schweizer F, Turlings TCJ, Reymond P. Rapid profiling of intact glucosinolates in Arabidopsis leaves by UHPLC-QTOFMS using a charged surface hybrid column. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:520-8. [PMID: 22323091 DOI: 10.1002/pca.2350] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 05/22/2023]
Abstract
INTRODUCTION The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.
Collapse
Affiliation(s)
- Gaetan Glauser
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland.
| | | | | | | |
Collapse
|
41
|
Ribas-Agustí A, Gratacós-Cubarsí M, Sárraga C, García-Regueiro JA, Castellari M. Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. PHYTOCHEMICAL ANALYSIS : PCA 2011; 22:555-63. [PMID: 21433163 DOI: 10.1002/pca.1318] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/21/2010] [Accepted: 09/29/2010] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Lettuce is a widely consumed vegetable and a good source of phenolic compounds. Several factors (genetic, agronomical and environmental) can influence the lettuce composition; their effects are not completely defined and more studies are needed on this topic. OBJECTIVE To develop an improved ultra-high-performance liquid chromatography (UHPLC) method to quantify the main target intact phenolic compounds in lettuce. METHODOLOGY UHPLC identification of the compounds was supported by PAD spectra and MS(n) analyses. Quantification was carried out by PAD, by creating matrix-matched calibration curves at the specific wavelength for each compound. RESULTS Sample pretreatment was simplified, with neither purification nor hydrolysis steps. Chromatographic conditions were chosen to minimise matrix interferences and to give a suitable separation of the major phenolic compounds within 27 min. The method allowed the quantification of 11 intact phenolic compounds in Romaine lettuces, including phenolic acids (caffeoyl and p-coumaroyl esters) and flavonoids (quercetin glycosides). Four p-coumaroyl esters were tentatively identified and quantified for the first time in lettuce. CONCLUSION The main intact phenolic compounds, including four novel p-coumaroyl esters, were simultaneously quantified in lettuce with optimal performances and a reduced total time of analysis. These findings make headway in the understanding of the lettuce phytochemicals with potential nutritional relevance.
Collapse
Affiliation(s)
- Albert Ribas-Agustí
- Institute for Food and Agriculture Research-IRTA, Food Technology, Finca Camps i Armet s/n, Monells, 17121 Girona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
42
|
Wang SM, Yu DJ, Song KB. Physicochemical Characteristics of Kohlrabi Slices Dehydrated by the Addition of Maltodextrin. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.2.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules 2010; 16:251-80. [PMID: 21193847 PMCID: PMC6259264 DOI: 10.3390/molecules16010251] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/06/2010] [Accepted: 12/28/2010] [Indexed: 12/18/2022] Open
Abstract
Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.
Collapse
Affiliation(s)
- María Elena Cartea
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | | | | | | |
Collapse
|