1
|
Ma X, Su H, Liu Y, Chen F, Xue R. Superior solubility of anhydrous quercetin and polymer physical mixtures compared to amorphous solid dispersions. RSC Adv 2025; 15:9348-9358. [PMID: 40151530 PMCID: PMC11947903 DOI: 10.1039/d4ra08796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Quercetin (QUE) is a functional flavonoid molecule with low water solubility. The study of its amorphous solid dispersions (ASDs) is still insufficient. This work reveals that the solubility of the physical mixtures of anhydrous QUE and polymers (PVP or soluplus) is better than that of the ASDs of QUE and the corresponding polymers. Gel-like phase separation occurring during the QUE ASDs dissolution process (weak in ASDs with PVP and strong in ASDs with soluplus) reduces the driving force for QUE release, which makes research on the QUE ASDs insufficient, and can be avoided in the QUE physical mixtures with polymers. Combination of metastable polymorph and polymer is a feasible strategy for improving the solubility of poorly water-soluble molecules whose ASDs encounter the gel-like phase separation.
Collapse
Affiliation(s)
- Xu Ma
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350117 Fujian China
- School of Resources and Chemical Engineering, Sanming University Sanming 365004 Fujian China
| | - Hong Su
- School of Resources and Chemical Engineering, Sanming University Sanming 365004 Fujian China
| | - Yongming Liu
- School of Education and Music, Sanming University Sanming 365004 Fujian China
| | - Fenghua Chen
- School of Resources and Chemical Engineering, Sanming University Sanming 365004 Fujian China
| | - Rongrong Xue
- School of Resources and Chemical Engineering, Sanming University Sanming 365004 Fujian China
| |
Collapse
|
2
|
Jiang W, He R, Zhang F, Wang L, Wei Y. Water-soluble sulfur quantum dots as a potential sensitive fluorescent probe for quercetin detection and cell imaging. Food Chem 2025; 464:141618. [PMID: 39426270 DOI: 10.1016/j.foodchem.2024.141618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
A simple fluorescent quenching probe based on polyethylene glycol-400 capped sulfur quantum dots (PEG-SQDs) was fabricated to determine quercetin (QT) quantitatively. As anticipated, the PEG-SQDs exhibited favourable luminescent properties, stability and low cytotoxicity. QT effectively quenched the fluorescence of the PEG-SQDs through static quenching and the inner filter effect. Moreover, the PEG-SQDs showed rapid QT detection within a linear range of 0.100-45.0 μM, with a limit of detection of 0.014 μM (3σ/k). This fluorescent probe successfully detected QT in human serum, quercetin supplement capsules and red wine, achieving a standard recovery of 92.6 %-105 %.
Collapse
Affiliation(s)
- Weijia Jiang
- Institute of Environmental Science, Shanxi University, Taiyuan 030031, China; Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Ran He
- Institute of Environmental Science, Shanxi University, Taiyuan 030031, China
| | - Feng Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030031, China
| | - Li Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030031, China
| | - Yanli Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030031, China.
| |
Collapse
|
3
|
Sudhakar MP, Nived SA, Dharani G. Fabrication and Characterization of Agar- and Seaweed-Derived Biomembrane Films for Biomedical and Other Applications. Biopolymers 2025; 116:e23643. [PMID: 39655893 DOI: 10.1002/bip.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
This study focused on seaweed-based biomembrane development. The physical, mechanical, thermal, and biological properties of the fabricated films with different combinations of materials, such as agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, were characterized. The surface morphology of the films was analyzed using SEM. The maximum tensile strength (53.11 N/mm2), elongation at break (3.42%), and Young's modulus (15.52) of the biomembrane were recorded for the agar + chitosan combination. FT-Raman analysis confirmed the functional groups shift between the biopolymer and plasticizer used in this study. TG-DSC analysis of the biomembranes revealed a Tg in the range of 92.80°C-115°C. The maximum antioxidant activity was reported for quercetin (58.62%), and the maximum antimicrobial activity was observed for the chitosan and quercetin compounds against E. coli. A minimum hemolysis of 0.95% was achieved for the combination of agar + quercetin (AQ), agar + PEG (APE), Gracilaria corticata extract + PVA + quercetin (GCPQ) and agar + chitosan (AC) biomembranes. The minimum cytotoxicity of the biomembrane was 62.51% and 63.87% for Gracilaria corticata extract + PVA + quercetin (GCPQ), and agar + PVA, respectively. The proposed biomembrane films were found to be suitable for biomedical and packaging applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| | - Sureshkumar Ambika Nived
- School of Chemical & Biotechnology, The Shanmugha Arts Science, Technology & Research Academy (SASTRA, Deemed to be University), Thanjavur, India
| | - Gopal Dharani
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| |
Collapse
|
4
|
Rajamanikandan R, Sasikumar K, Ju H. Ti 3C 2 MXene quantum dots as an efficient fluorescent probe for bioflavonoid quercetin quantification in food samples. Anal Chim Acta 2024; 1322:343069. [PMID: 39182987 DOI: 10.1016/j.aca.2024.343069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Quercetin (QC) is known as a typical antioxidant as a bioflavonoid, and its quick, sensitive, and specific detection is crucial for assessing food products. In this study, for the purpose of luminescence-based sensing of QC, bright bluish-green emissive quantum dots of N-doped MXene-based titanium carbide (Ti3C2) were fabricated. Recently, MXene quantum dots (MX-QDs), the rapidly emerging zero-dimensional nanomaterials made from two-dimensional transition metal carbides, have attracted much interest due to their unique physical and chemical features. These include the extremely large surface-to-volume ratio, biocompatibility, luminescence tunability, and hybridization capability while retaining properties of their two-dimensional counterpart including good conductivity and charge transferability. RESULTS The fabricated Ti3C2 MX-QDs had a quantum yield of 8.13 % at the emission wavelength of λem = 465 nm and displayed excellent photostability with great colloidal stability. It was found that introducing QC to near Ti3C2 MX-QDs reduced their fluorescence signals due to quenching effects. These quenching effects that occurred in a very broad linear range of QC (25-600 nM) enabled QC to be sensed quantitatively with the limit of detection of QC (1.35 nM), being the lowest ever reported to date. The quenching phenomena that caused such excellent sensitivity could be accounted for by combined effects of static quenching/radiation-free complex formation and inner filter effects (IFE) of Ti3C2 MX-QDs with QC. SIGNIFICANCE In addition, the quenching-based detection demonstrated excellent specificity against structurally relevant interferants. Therefore, the presented sensing strategies with Ti3C2 MX-QDs-based fluorescence quenching can be one of the strongest candidates as a reliable and cost-effective solution to highly sensitive quantification of QC in food samples.
Collapse
Affiliation(s)
| | - Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
5
|
Zygouri P, Tsiodoulos G, Angelidou M, Papanikolaou E, Athinodorou AM, Simos YV, Spyrou K, Subrati M, Kouloumpis A, Kaloudi AS, Asimakopoulos G, Tsamis K, Peschos D, Vezyraki P, Ragos V, Gournis DP. Graphene oxide and oxidized carbon nanodiscs as biomedical scaffolds for the targeted delivery of quercetin to cancer cells. NANOSCALE ADVANCES 2024; 6:2860-2874. [PMID: 38817436 PMCID: PMC11134231 DOI: 10.1039/d3na00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/20/2024] [Indexed: 06/01/2024]
Abstract
Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties. Within both graphitic allotropes, oxidation results in heightened hydrophilicity and the incorporation of oxygen functionalities. These factors are of great significance for drug delivery purposes. The successful oxidation and interaction of quercetin with both graphene (GO) and CNDs (oxCNDs) have been confirmed through a range of characterization techniques, including FTIR, Raman, and XPS spectroscopy, as well as XRD and AFM. In vitro anticancer tests were conducted on both normal (NIH/3T3) and glioblastoma (U87) cells. The results revealed that the bonding of quercetin with GO and oxCNDs enhances its cytotoxic effect on cancer cells. GO-Quercetin and oxCNDs-Quercetin induced G0/G1 cell cycle arrest in U87 cells, whereas oxCNDs caused G2/M arrest, indicating a distinct mode of action. In long-term survival studies, cancer cells exhibited significantly lower viability than normal cells at all corresponding doses of GO-Quercetin and oxCNDs-Quercetin. This work leads us to conclude that the conjugation of quercetin to GO and oxCNDs shows promising potential for targeted anticancer activity. However, further research at the molecular level is necessary to substantiate our preliminary findings.
Collapse
Affiliation(s)
- Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
| | - Grigorios Tsiodoulos
- Department of Maxillofacial, Faculty of Medicine, School of Health Sciences, University of Ioannina 45110 Ioannina Greece
| | - Marina Angelidou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Eirini Papanikolaou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Antrea-Maria Athinodorou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Yannis V Simos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
| | - Mohammed Subrati
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Angela S Kaloudi
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Georgios Asimakopoulos
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Konstantinos Tsamis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Dimitrios Peschos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Patra Vezyraki
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Faculty of Medicine, School of Health Sciences, University of Ioannina 45110 Ioannina Greece
| | - Dimitrios P Gournis
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- School of Chemical and Environmental Engineering, Technical University of Crete (TUC) GR-73100 Chania Crete Greece
| |
Collapse
|
6
|
Feng S, Tang F, Wu F, Zhang J. One-pot synthesis of nano Zr-based metal-organic frameworks for fluorescence determination of quercetin and Hg 2. Food Chem 2024; 432:137173. [PMID: 37633149 DOI: 10.1016/j.foodchem.2023.137173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
In this study, a nanoscale Zr-based metal-organic framework (nano-Zr-MOF) was prepared by one-pot method using meso-tetra(4-carboxyphenyl)porphyrin as organic ligand and Zr4+ as metal unit. The nanoscale structure endows it with excellent dispersion in water. The nano-Zr-MOF exhibited intense red fluorescence, which could be significantly quenched by the addition of quercetin, probably due to its electron-rich framework. The high selectivity for quercetin detection was verified with analogues and common ions as interfering agents. Moreover, the nano-Zr-MOF could be used as a highly selective and sensitive sensor for the detection of Hg2+. The detection limits for quercetin and Hg2+ were 0.026 μM and 0.039 μM, respectively. This fluorometric method was successfully applied to detect quercetin in red wine and food samples with satisfactory recoveries ranging from 83.7-112.3% and 81.8-115.9%, respectively. The recovery in detection of Hg2+ in lake water were ranging from 97.1-109.2%.
Collapse
Affiliation(s)
- Shitao Feng
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Furong Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
7
|
Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, Zoupanou N, Moschovou K, Kiriakidi S, Mavromoustakos T. Quercetin: A Potential Polydynamic Drug. Molecules 2023; 28:8141. [PMID: 38138630 PMCID: PMC10745404 DOI: 10.3390/molecules28248141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Margarita Georgia Kakava
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Efthymios Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Errikos Petsas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Nikolaos Stavridis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Christoforos Freris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Nikoletta Zoupanou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Kalliopi Moschovou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Sofia Kiriakidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Departamento de Quimica Orgánica, Facultade de Quimica, Universidade de Vigo, 36310 Vigo, Spain
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| |
Collapse
|
8
|
Park M, Somborn A, Schlehuber D, Keuter V, Deerberg G. Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review. HORTICULTURE RESEARCH 2023; 10:uhad074. [PMID: 37249949 PMCID: PMC10208899 DOI: 10.1093/hr/uhad074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
As a crop quality sensor, Raman spectroscopy has been consistently proposed as one of the most promising and non-destructive methods for qualitative and quantitative analysis of plant substances, because it can measure molecular structures in a short time without requiring pretreatment along with simple usage. The sensitivity of the Raman spectrum to target chemicals depends largely on the wavelength, intensity of the laser power, and exposure time. Especially for plant samples, it is very likely that the peak of the target material is covered by strong fluorescence effects. Therefore, methods using lasers with low energy causing less fluorescence, such as 785 nm or near-infrared, are vigorously discussed. Furthermore, advanced techniques for obtaining more sensitive and clear spectra, like surface-enhanced Raman spectroscopy, time-gated Raman spectroscopy or combination with thin-layer chromatography, are being investigated. Numerous interpretations of plant quality can be represented not only by the measurement conditions but also by the spectral analysis methods. Up to date, there have been attempted to optimize and generalize analysis methods. This review summarizes the state of the art of micro-Raman spectroscopy in crop quality assessment focusing on secondary metabolites, from in vitro to in vivo and even in situ, and suggests future research to achieve universal application.
Collapse
Affiliation(s)
| | - Annette Somborn
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| | - Dennis Schlehuber
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| | - Volkmar Keuter
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| | - Görge Deerberg
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| |
Collapse
|
9
|
Insights into the remarkable attenuation of hen egg white lysozyme amyloid fibril formation mediated by biogenic gold nanoparticles stabilized by quercetin-functionalized tara gum. Int J Biol Macromol 2023; 232:123044. [PMID: 36586653 DOI: 10.1016/j.ijbiomac.2022.12.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Aberrant protein misfolding and/or aggregation and fibrillation has been linked to the pathogenesis of several debilitating chronic diseases including Alzheimer's and Parkinson's disease. Inhibiting protein amyloidogenesis has been proposed as a viable strategy to prevent or ameliorate associated disorders. Herein, we investigated the anti-amyloidogenic properties of biogenic gold nanoparticles (QTG-GNP) prepared via a simple green chemistry route and stabilized by quercetin-functionalized tara gum (QTG). The synthesized QTG-GNP was extensively characterized for its physicochemical attributes via UV-visible spectroscopy, TEM, FESEM, EDX, DLS/Zeta potential, FTIR, RAMAN, XRD, XPS, and TGA analyses, as well as for its biological properties. The results revealed that small-sized (5.01 ± 1.17 nm), well-dispersed, highly stable and round-shaped biogenic gold nanoparticles were successfully synthesized at room temperature with QTG as the sole reductant /stabilizer. Importantly, QTG-GNP demonstrated potent anti-aggregation and fibrillation inhibitory effects against amyloidogenic hen egg white lysozyme (HEWL). Also, QTG-GNP was able to dissociate pre-formed HEWL amyloid fibrils. Furthermore, the constructed nanoparticles exhibited potent anti-radical activities against DPPH and ABTS+ and were cytocompatible with mouse L929 fibroblast cells. On the basis of these findings, it was established that QTG-GNP holds strong prospects for further development as an agent for countering protein aggregation and associated disease conditions.
Collapse
|
10
|
Uyeki SC, Pacheco CM, Simeral ML, Hafner JH. The Raman Active Vibrations of Flavone and Quercetin: The Impact of Conformers and Hydrogen Bonding on Fingerprint Modes. J Phys Chem A 2023; 127:1387-1394. [PMID: 36735995 DOI: 10.1021/acs.jpca.2c06718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The detection and analysis of flavonoids by Raman spectroscopy are of interest in many fields, including medicinal chemistry, food science, and astrobiology. Spectral interpretation would benefit from better identification of the fingerprint vibrational peaks of different flavonoids and how they are affected by intermolecular interactions. The Raman spectra of two flavonoids, flavone and quercetin, were investigated through comparisons between spectra recorded from pure powders and spectra calculated with time dependent density functional theory (TDDFT). For both flavone and quercetin, 17 peaks were assigned to specific molecular vibrations. Both flavonoids were found to have a split peak between 1250-1350 cm-1 that is not predicted by TDDFT calculations on isolated molecules. In each case, it is shown that the addition of hydrogen bonded molecules arranged based on crystal structures reproduces the split peaks. These peaks were due to a stretching vibration of the bond between benzopyrone and phenyl rings and represent a characteristic spectral feature of flavonoids. Spectra of pollen grains from Quercus virginiana were also recorded and exhibit several peaks that correspond to the quercetin spectrum.
Collapse
Affiliation(s)
- S Campbell Uyeki
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Charles M Pacheco
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mathieu L Simeral
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jason H Hafner
- Department of Physics & Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Insight into Triglyceride-reducing Potential of Quercetin in Blood Plasma Environment. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Reynoud N, Geneix N, Petit J, D’Orlando A, Fanuel M, Marion D, Rothan C, Lahaye M, Bakan B. The cutin polymer matrix undergoes a fine architectural tuning from early tomato fruit development to ripening. PLANT PHYSIOLOGY 2022; 190:1821-1840. [PMID: 36018278 PMCID: PMC9614491 DOI: 10.1093/plphys/kiac392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
The cuticle is a complex polymer matrix that protects all aerial organs of plants, fulfills multiple roles in plant-environment interactions, and is critical for plant development. These functions are associated with the structural features of cuticles, and the architectural modeling of cuticles during plant development is crucial for understanding their physical properties and biological functions. In this work, the in-depth architecture of the cutin polymer matrix during fruit development was investigated. Using cherry tomato fruit (Solanum lycopersicum) as a model from the beginning of the cell expansion phase to the red ripe stage, we designed an experimental scheme combining sample pretreatment, Raman mapping, multivariate data analyses, and biochemical analyses. These approaches revealed clear chemical areas with different contributions of cutin, polysaccharides, and phenolics within the cutin polymer matrix. Besides, we demonstrated that these areas are finely tuned during fruit development, including compositional and macromolecular rearrangements. The specific spatiotemporal accumulation of phenolic compounds (p-coumaric acid and flavonoids) suggests that they fulfill distinct functions during fruit development. In addition, we highlighted an unexpected dynamic remodeling of the cutin-embedded polysaccharides pectin, cellulose, and hemicellulose. Such structural tuning enables consistent adaption of the cutin-polysaccharide continuum and the functional performance of the fruit cuticle at the different developmental stages. This study provides insights into the plant cuticle architecture and in particular into the organization of the epidermal cell wall-cuticle.
Collapse
Affiliation(s)
- Nicolas Reynoud
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Nathalie Geneix
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Johann Petit
- INRAE, Univ. Bordeaux, UMR BFP, F-33140, Villenave d’Ornon, France
| | - Angelina D’Orlando
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
- INRAE PROBE research infrastructure, BIBS Facility, F- 44300, Nantes, France
| | - Mathieu Fanuel
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
- INRAE PROBE research infrastructure, BIBS Facility, F- 44300, Nantes, France
| | - Didier Marion
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | | | - Marc Lahaye
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Bénédicte Bakan
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| |
Collapse
|
13
|
Montes C, Villamayor N, Villaseñor MJ, Rios A. Distinctive sensing nanotool for free and nanoencapsulated quercetin discrimination based on S,N co-doped graphene dots. Anal Chim Acta 2022; 1230:340406. [DOI: 10.1016/j.aca.2022.340406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
|
14
|
Hong DW, Chen LB, Lin XJ, Attin T, Yu H. Dual function of quercetin as an MMP inhibitor and crosslinker in preventing dentin erosion and abrasion: An in situ/in vivo study. Dent Mater 2022; 38:e297-e307. [PMID: 36192276 DOI: 10.1016/j.dental.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the in situ/in vivo effect of quercetin on dentin erosion and abrasion. METHODS Human dentin blocks (2 × 2 × 2 mm) were embedded and assigned to 6 groups: 75 μg/mL, 150 μg/mL and 300 μg/mL quercetin (Q75, Q150, Q300); 120 μg/mL chlorhexidine (CHX, positive control); and deionized water and ethanol (the negative controls). The specimens were treated with the respective solutions for 2 min and then subjected to in situ/in vivo erosive/abrasive challenge for 7 d as follows: in vivo erosion 4 times a day and then in vivo toothbrush abrasion after the first and last erosive challenges of each day. Dentin loss was assessed by profilometry. An additional dentin specimen was used to evaluate the penetration depth of quercetin into dentin by tracking the spatial distribution of its characteristic Raman peak. Moreover, dentin blocks (7 × 1.7 × 0.7 mm) were used to detect the impact of quercetin on dentin-derived matrix metalloproteinase (MMP) inhibition by in situ zymography, and the inhibition percentage (%) was calculated. Additionally, the potential collagen crosslinking interactions with quercetin were detected by Raman spectroscopy, and the crosslinking degree was determined with a ninhydrin assay. Fully demineralized dentin beams (0.5 × 0.5 × 10 mm) were used to evaluate the impact of quercetin on the mechanical properties of dentin collagen fibre by the ultimate micro-tensile strength test (μUTS). The data were analysed by one-way analysis of variance and Tukey's test (α = 0.05). RESULTS Compared to the negative controls, all treatment solutions significantly reduced dentin loss. The dentin loss of Q150 and Q300 was significantly less than that of CHX (all P < 0.05). The amount of quercetin decreased with increasing dentin depth, and the maximum penetration depth was approximately 25-30 µm. In situ zymography showed that quercetin significantly inhibited the activities of dentin-derived MMPs. The inhibitory percentages of Q75 and Q150 were significantly lower than that of CHX (all P < 0.05), but no significant difference was found between Q300 and CHX (P = 0.58). The collagen crosslinking interactions with quercetin primarily involved hydrogen bonding and the degree of crosslinking increased in a concentration-dependent manner. Statistically significant increases in μUTS values were observed for demineralized dentin beams after quercetin treatment compared with those of the control treatments (all P < 0.05). SIGNIFICANCE This study provides the first direct evidence that quercetin could penetrate approximately 25-30 µm into dentin and further prevent dentin erosion and abrasion by inhibiting dentin-derived MMP activity as well as crosslinking collagen of the demineralized organic matrix.
Collapse
Affiliation(s)
- Deng-Wei Hong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Li-Bing Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Thomas Attin
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University Zurich, Switzerland
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
15
|
Mazurek S, Włodarczyk M, Pielorz S, Okińczyc P, Kuś PM, Długosz G, Vidal-Yañez D, Szostak R. Quantification of Salicylates and Flavonoids in Poplar Bark and Leaves Based on IR, NIR, and Raman Spectra. Molecules 2022; 27:3954. [PMID: 35745076 PMCID: PMC9229158 DOI: 10.3390/molecules27123954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Poplar bark and leaves can be an attractive source of salicylates and other biologically active compounds used in medicine. However, the biochemical variability of poplar material requires a standardization prior to processing. The official analytical protocols used in the pharmaceutical industry rely on the extraction of active compounds, which makes their determination long and costly. An analysis of plant materials in their native state can be performed using vibrational spectroscopy. This paper presents for the first time a comparison of diffuse reflectance in the near- and mid-infrared regions, attenuated total reflection, and Raman spectroscopy used for the simultaneous determination of salicylates and flavonoids in poplar bark and leaves. Based on 185 spectra of various poplar species and hybrid powdered samples, partial least squares regression models, characterized by the relative standard errors of prediction in the 4.5-9.9% range for both calibration and validation sets, were developed. These models allow for fast and precise quantification of the studied active compounds in poplar bark and leaves without any chemical sample treatment.
Collapse
Affiliation(s)
- Sylwester Mazurek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland; (S.P.); (R.S.)
| | - Maciej Włodarczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Sonia Pielorz
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland; (S.P.); (R.S.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Piotr M. Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Gabriela Długosz
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
| | - Diana Vidal-Yañez
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 211a Borowska, 50-556 Wrocław, Poland; (P.O.); (P.M.K.); (G.D.); (D.V.-Y.)
- Faculty of Pharmacy, University of Barcelona, Joan XXIII, 27-31, 08014 Barcelona, Spain
| | - Roman Szostak
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland; (S.P.); (R.S.)
| |
Collapse
|
16
|
Çetin N, Sağlam C. Rapid detection of total phenolics, antioxidant activity and ascorbic acid of dried apples by chemometric algorithms. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Lara YJ, McCann A, Malherbe C, François C, Demoulin CF, Sforna MC, Eppe G, De Pauw E, Wilmotte A, Jacques P, Javaux EJ. Characterization of the Halochromic Gloeocapsin Pigment, a Cyanobacterial Biosignature for Paleobiology and Astrobiology. ASTROBIOLOGY 2022; 22:735-754. [PMID: 35333546 DOI: 10.1089/ast.2021.0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV)-screening compounds represent a substantial asset for the survival of cyanobacteria in extreme environments exposed to high doses of UV radiations on modern and early Earth. Among these molecules, the halochromic pigment gloeocapsin remains poorly characterized and studied. In this study, we identified a gloeocapsin-producing cultivable cyanobacteria: the strain Phormidesmis nigrescens ULC007. We succeeded to extract, to partially purify, and to compare the dark blue pigment from both the ULC007 culture and an environmental Gloeocapsa alpina dominated sample. FT-IR and Raman spectra of G. alpina and P. nigrescens ULC007 pigment extracts strongly suggested a common backbone structure. The high-pressure liquid chromatography-UV-MS/MS analysis of the ULC007 pigment extract allowed to narrow down the molecular formula of gloeocapsin to potentially five candidates within three classes of halochromic molecules: anthraquinone derivatives, coumarin derivatives, and flavonoids. With the discovery of gloeocapsin in P. nigrescens, the production of this pigment is now established for three lineages of cyanobacteria (including G. alpina, P. nigrescens, and Solentia paulocellulare) that belong to three distinct orders (Chroococcales, Pleurocapsales, Synechoccocales), inhabiting very diverse environments. This suggests that gloeocapsin production was a trait of their common ancestor or was acquired by lateral gene transfer. This work represents an important step toward the elucidation of the structure of this enigmatic pigment and its biosynthesis, and it potentially provides a new biosignature for ancient cyanobacteria. It also gives a glimpse on the evolution of UV protection strategies, which are relevant for early phototrophic life on Earth and possibly beyond.
Collapse
Affiliation(s)
- Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Andréa McCann
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Cédric Malherbe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Gauthier Eppe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-CIP, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Philippe Jacques
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro UMRt 1158, University of Liège, Gembloux, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Phytocosmetic Emulsion Containing Extract of Morus nigra L. (Moraceae): Development, Stability Study, Antioxidant and Antibacterial Activities. COSMETICS 2022. [DOI: 10.3390/cosmetics9020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Morus nigra L. is a species popularly known in the Northeast of Brazil as “amora miúra”. This species is a source of flavonoids with antioxidant activity. Antioxidants play an important role in the preservation of cosmetic formulations, and they neutralize free radicals. The objective of this study was to develop a topical emulsion containing leaf extract of Morus nigra L., as well as to evaluate the stability, antioxidant and antibacterial activities of the formulations. A crude hydroalcoholic (70%) extract of M. nigra leaves (MnCE) was submitted to high-performance liquid chromatography with diode-array detection (HPLC–DAD) analysis and incorporated into an anionic base emulsion. Antioxidant activity was evaluated according to the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, and the stability of the formulation was assessed for 90 days, submitting the emulsion to storage at 4, 20, and 37 °C. Microdilution techniques evaluated the antibacterial activity and a challenge test assessed the microbiological stability. Analysis by HPLC–DAD identified the flavonoids rutin and isoquercetin in the M. nigra extract. The emulsion and plant extract presented antioxidant activity, and the stability of the emulsion was preserved in terms of pH value and viscosity—which did not show significant changes, except for the spreadability, which was affected by the temperature. The antioxidant activity did not change significantly, except for the sample under 4 °C, which showed a considerable decrease in activity. The crude hydroalcoholic extract and formulation showed antimicrobial activity and the emulsion was considered stable in terms of organoleptic, physicochemical, and microbiological properties.
Collapse
|
19
|
Katori M, Watanabe M, Tanaka H, Yakushiji S, Ueda T, Kamada K, Soh N. Development of enzyme/titanate nanosheet complex coated with molecularly imprinted polydopamine for colorimetric quercetin assay. ANAL SCI 2022; 38:777-785. [PMID: 35286655 DOI: 10.1007/s44211-022-00094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
Abstract
A novel hybrid material, which is an enzyme/inorganic nanosheet complex coated by molecularly imprinted polymer (MIP), was developed, and applied to colorimetric quercetin assay. First, an enzyme/inorganic nanosheet complex was prepared from horseradish peroxidase (HRP) enzyme and titanate nanosheet (TiOx), using electrostatic interactions between them in acetate buffer. In the next place, dopamine self-polymerization was performed in the presence of HRP/TiOx complex with quercetin as a template, to prepare MIP membrane onto the HRP/TiOx complex. After washing process, a new hybrid material, MIP-coated HRP/TiOx complex (MIP-HT) was obtained. MIP-HT adsorbed quercetin efficiently, compared with NIP-HT that is an HRP/TiOx complex coated with non-imprinted polydopamine. MIP-HT showed enzymatic activity for an oxidation reaction of guaiacol, which is a chromogenic substrate of HRP, whereas the enzymatic activity of NIP-HT was significantly suppressed. The amount of brown product, formed by the color reaction, reduced owing to the presence of quercetin in sample solution, and a good liner relationship was observed between the concentration of quercetin and the increment of absorbance at 470 nm. The investigation using several biomolecules indicates that MIP-HT has the ability to detect quercetin and its analogues with selectivity. Therefore, MIP-HT shows great promise as a new and attractive material for use in colorimetric assay of quercetin or quercetin analogues.
Collapse
Affiliation(s)
- Miharu Katori
- Faculty of Agriculture, Saga University, 1 Honjyo-machi, Saga-shi, Saga, 840-8502, Japan
| | - Mizuki Watanabe
- Faculty of Agriculture, Saga University, 1 Honjyo-machi, Saga-shi, Saga, 840-8502, Japan
| | - Hideaki Tanaka
- Faculty of Agriculture, Saga University, 1 Honjyo-machi, Saga-shi, Saga, 840-8502, Japan
| | - Seika Yakushiji
- Faculty of Agriculture, Saga University, 1 Honjyo-machi, Saga-shi, Saga, 840-8502, Japan
| | - Toshihisa Ueda
- Faculty of Agriculture, Saga University, 1 Honjyo-machi, Saga-shi, Saga, 840-8502, Japan
| | - Kai Kamada
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki, 852-8521, Japan
| | - Nobuaki Soh
- Faculty of Agriculture, Saga University, 1 Honjyo-machi, Saga-shi, Saga, 840-8502, Japan.
| |
Collapse
|
20
|
Fomina PS, Proskurnin MA, Mizaikoff B, Volkov DS. Infrared Spectroscopy in Aqueous Solutions: Capabilities and Challenges. Crit Rev Anal Chem 2022; 53:1748-1765. [PMID: 35212600 DOI: 10.1080/10408347.2022.2041390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fourier-transform infrared (FTIR) spectroscopy provides rapid, reliable, quantitative, and qualitative analysis of samples in different aggregation states, i.e., gases, thin films, solids, liquids, etc. However, when analyzing aqueous solutions, particular issues associated with the rather pronounced IR absorption characteristics of water appear to interfere with the solute determination. In this review, Fourier-transform infrared spectroscopic techniques and their analytical capabilities for analyzing aqueous solutions are reviewed, and highlight examples are discussed.
Collapse
Affiliation(s)
- Polina S Fomina
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
- Hahn-Schickard, Institute for Microanalysis Systems, Ulm, Germany
| | - Dmitry S Volkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Kapoor MP, Moriwaki M, Ozeki M, Timm D. Structural elucidation of novel isoquercitrin-γ-cyclodextrin (IQC-γCD) molecular inclusion complexes of potential health benefits. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Binu NM, Prema D, Prakash J, Balagangadharan K, Balashanmugam P, Selvamurugan N, Venkatasubbu GD. Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Dohare A, Sudhakar S, Brodbeck B, Mukherjee A, Brecht M, Kandelbauer A, Schäffer E, Mayer HA. Anisotropic and Amphiphilic Mesoporous Core-Shell Silica Microparticles Provide Chemically Selective Environments for Simultaneous Delivery of Curcumin and Quercetin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13460-13470. [PMID: 34730962 DOI: 10.1021/acs.langmuir.1c02210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous silica materials are often used for drug delivery. However, systems for simultaneous delivery of multiple drugs are scarce. Here we show that anisotropic and amphiphilic dumbbell core-shell silica microparticles with chemically selective environments can entrap and release two drugs simultaneously. The dumbbells consist of a large dense lobe and a smaller hollow hemisphere. Electron microscopy images show that the shells of both parts have mesoporous channels. In a simple etching process, the properly adjusted stirring speed and the application of ammonium fluoride as etching agent determine the shape and the surface anisotropy of the particles. The surface of the dense lobe and the small hemisphere differ in their zeta potentials consistent with differences in dye and drug entrapment. Confocal Raman microscopy and spectroscopy show that the two polyphenols curcumin (Cur) and quercetin (QT) accumulate in different compartments of the particles. The overall drug entrapment efficiency of Cur plus QT is high for the amphiphilic particles but differs widely between Cur and QT compared to controls of core-shell silica microspheres and uniformly charged dumbbell microparticles. Furthermore, Cur and QT loaded microparticles show different cancer cell inhibitory activities. The highest activity is detected for the dual drug loaded amphiphilic microparticles in comparison to the controls. In the long term, amphiphilic particles may open up new strategies for drug delivery.
Collapse
Affiliation(s)
- Akanksha Dohare
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Swathi Sudhakar
- ZMBP, Cellular Nanoscience, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Björn Brodbeck
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
| | - Ashutosh Mukherjee
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Kandelbauer
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
| | - Erik Schäffer
- ZMBP, Cellular Nanoscience, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hermann A Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Potassium Complexes of Quercetin-5'-Sulfonic Acid and Neutral O-Donor Ligands: Synthesis, Crystal Structure, Thermal Analysis, Spectroscopic Characterization and Physicochemical Properties. MATERIALS 2021; 14:ma14226798. [PMID: 34832203 PMCID: PMC8625810 DOI: 10.3390/ma14226798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
The coordination ability of QSA- ligand towards potassium cations was investigated. Potassium complex of quercetin-5'-sulfonate of the general formula [KQSA(H2O)2]n was obtained. The [KQSA(H2O)2] (1) was a starting compound for solvothermal syntheses of acetone (2) and dimethylsulfoxide (3) complexes. For the crystalline complexes 1-3, crystals morphology was analyzed, IR and Raman spectra were registered, as well as thermal analysis for 1 was performed. Moreover, for 1 and 3, molecular structures were established. The potassium cations are coordinated by eight oxygen atoms (KO8) of a different chemical nature; coordinating groups are sulfonic, hydroxyl, and carbonyl of the QSA- anion, and neutral molecules-water (1) or DMSO (3). The detailed thermal studies of 1 confirmed that water molecules were strongly bonded in the complex structure. Moreover, it was stated that decomposition processes depended on the atmosphere used above 260 °C. The TG-FTIR-MS technique allowed the identification of gaseous products evolving during oxidative decomposition and pyrolysis of the analyzed compound: water vapor, carbon dioxide, sulfur dioxide, carbonyl sulfide, and carbon monoxide. The solubility studies showed that 1 is less soluble in ethanol than quercetin dihydrate in ethanol, acetone, and DMSO. The exception was aqueous solution, in which the complex exhibited significantly enhanced solubility compared to quercetin. Moreover, the great solubility of 1 in DMSO explained the ease of ligand exchange (water for DMSO) in [KQSA(H2O)2].
Collapse
|
25
|
Raychaudhuri R, Pandey A, Das S, Nannuri SH, Joseph A, George SD, Vincent AP, Mutalik S. Nanoparticle impregnated self-supporting protein gel for enhanced reduction in oxidative stress: A molecular dynamics insight for lactoferrin-polyphenol interaction. Int J Biol Macromol 2021; 189:100-113. [PMID: 34411613 DOI: 10.1016/j.ijbiomac.2021.08.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
In the present work, lactoferrin (Lf) based nanoparticle incorporated self-supporting gel encapsulating a flavonoid, quercetin (Q), was developed. The complex formation between Lf and Q was assessed using molecular docking and dynamics simulation that lactoferrin and quercetin showed strong interaction and binding supporting hydrophobic interaction. The microscopic, spectroscopic, and x-ray techniques were used to characterize the gel extensively. In vitro drug release was studied to understand the release pattern of quercetin from the protein gel. The viscosity of the gel and its rheological characteristics were determined using a Brookfield viscometer. Ex vivo skin permeation studies using vertical diffusion cells were carried out to understand its skin permeation properties. The gel showed strong anti-oxidant activity using the DPPH scavenging assay. The enhanced effect of the Lf-Q complex on antioxidant enzyme activity (superoxide dismutase, catalase, and malondialdehyde), was supported by molecular dynamics, surface hydrophobicity, and in vitro studies. To investigate the effect of the gel on angiogenesis, the chorioallantoic membrane assay was performed and its compatibility with erythrocytes was also assessed. Suitability for topical administration was assessed using skin irritation studies performed on Sprague Dawley rats. The overall results suggest that the developed NiPG is suitable for cutaneous localization of quercetin with enhanced antioxidant activity.
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Anita P Vincent
- Department of Research and Development, Glanbia Nutritionals, Twin Falls, ID, USA
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
26
|
Manzoor MF, Hussain A, Sameen A, Sahar A, Khan S, Siddique R, Aadil RM, Xu B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. ULTRASONICS SONOCHEMISTRY 2021; 78:105686. [PMID: 34358980 PMCID: PMC8350193 DOI: 10.1016/j.ultsonch.2021.105686] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
Quercetin (QUR) have got the attention of scientific society frequently due to their wide range of potential applications. QUR has been the focal point for research in various fields, especially in food development. But, the QUR is highly unstable and can be interrupted by using conventional assessment methods. Therefore, researchers are focusing on novel extraction and non-invasive tools for the non-destructive assessment of QUR. The current review elaborates the different novel extraction (ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, and enzyme-assisted extraction) and non-destructive assessment techniques (fluorescence spectroscopy, terahertz spectroscopy, near-infrared spectroscopy, hyperspectral imaging, Raman spectroscopy, and surface-enhanced Raman spectroscopy) for the extraction and identification of QUR in agricultural products. The novel extraction approaches facilitate shorter extraction time, involve less organic solvent, and are environmentally friendly. While the non-destructive techniques are non-interruptive, label-free, reliable, accurate, and environmental friendly. The non-invasive spectroscopic and imaging methods are suitable for the sensitive detection of bioactive compounds than conventional techniques. QUR has potential therapeutic properties such as anti-obesity, anti-diabetes, antiallergic, antineoplastic agent, neuroprotector, antimicrobial, and antioxidant activities. Besides, due to the low bioavailability of QUR innovative drug delivery strategies (QUR loaded gel, QUR polymeric micelle, QUR nanoparticles, glucan-QUR conjugate, and QUR loaded mucoadhesive nanoemulsions) have been proposed to improve its bioavailability and providing novel therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad 38000, Pakistan
| | - Abid Hussain
- Department of Agriculture and Food Technology, Karakoram International University Gilgit, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
27
|
Fluorescence determination of quercetin in food samples using polyhedron-shaped MOF@MOF(NUZ-8) based on NH 2-UiO-66 and ZIF-8. Mikrochim Acta 2021; 188:29. [PMID: 33409815 DOI: 10.1007/s00604-020-04664-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
A new metal-organic framework compound (MOF@MOF, NUZ-8) comprised of NH2-UiO-66 and ZIF-8 under the polyvinylpyrrolidone (PVP) as the structure modifier was synthesized through an internal extended growth method (IEGM). The resulting NUZ-8 emerged the unreported unique polyhedron shape and showed considerable specific surface area (1466.1862 m2/g), excellent adsorption capacity, and fluorescence. NUZ-8 was used as a probe for the rapid optical detection of natural antioxidant quercetin (QCT). Its outstanding selectivity and sensitivity to QCT are derived from the fact that NH2-UiO-66 acted as an optical tentacle to perceive QCT in virtue of its luminescence advantages, and ZIF-8 realized the selective enrichment of the QCT through its electron-rich framework structure. The experiments were carried out at an excitation wavelength of 335 nm and an emission wavelength range of 370-530 nm. Under conditions of the investigation, this probe realized the rapid detection of QCT and considerable adsorption capacity with wide linearity (0.3-80 μM), a low detection limit (0.14 μM), and acceptable recoveries (84.0-97.0%) in red wine samples, properties which were superior to many other detection platforms. The synthesis and the use of the above polyhedral composite provide guidance for the application of the IEGM in enhancing chemical sensing and instant determination of drugs.Graphical abstract Flow chart of this paper.
Collapse
|
28
|
Gao M, He M, Xing R, Wang X, Wang Z. Borate-modified carbon dots as a probe for quercetin in plants. Analyst 2021; 146:590-596. [DOI: 10.1039/d0an01898h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Schematic presentation of the PBA-CDs enhancing the fluorescence of quercetin in contrast to N-CDs.
Collapse
Affiliation(s)
- Mei Gao
- School of Chemistry Sciences
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Man He
- School of Chemistry Sciences
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Rang Xing
- School of Chemistry Sciences
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Xuefei Wang
- School of Chemistry Sciences
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering
- College of Science
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing
| |
Collapse
|
29
|
On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films. Antioxidants (Basel) 2020; 10:antiox10010014. [PMID: 33375591 PMCID: PMC7823819 DOI: 10.3390/antiox10010014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.
Collapse
|
30
|
Xiang X, Xia W, Yin J, Yuan X. Isobaric Vapor–Liquid Phase Equilibrium Measurements of the Dichloromethane–Titanium Tetrachloride System at 101,325 Pa. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-01013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Sadeghi S, Hosseinpour-Zaryabi M. A sensitive fluorescent probe based on dithizone-capped ZnS quantum dots for quercetin determination in biological samples. LUMINESCENCE 2020; 35:1391-1401. [PMID: 32592271 DOI: 10.1002/bio.3903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022]
Abstract
A simple turn on/off fluorescence approach based on dithizone-capped ZnS quantum dots (ZnS@DZ QDs) with the help of lead ions as a fluorescent probe for the quantitative determination of quercetin is reported. The interaction of lead ions with dithizone led to the formation of a rigid structure on the surface of ZnS@DZ QDs and turned on the fluorescence intensity of the QDs. After addition of quercetin to this probe and interaction with lead ions, the fluorescence emission turned off. Concerning the quenching fluorescence intensity of ZnS@DZ QDs/Pb2+ QDs probe induced by the target, under the optimum conditions, the probe enabled detection of quercetin in the concentration range from 0.54 μM to 21.7 μM with a correlation coefficient of 0.993 and detection limit of 0.25 μM. The present probe was applied successfully to the determine quercetin as a nutritional biomarker in human serum and 24-h urine samples.
Collapse
Affiliation(s)
- Susan Sadeghi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | | |
Collapse
|
32
|
Cai Z, Zhu R, Zhang C, Hao E, Zhao J, Wu T. One-pot green synthesis of l-proline-stabilized copper nanoclusters for quercetin sensing. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01199-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Huang M, Liang C, Tan C, Huang S, Ying R, Wang Y, Wang Z, Zhang Y. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct 2020; 10:6447-6458. [PMID: 31524893 DOI: 10.1039/c9fo01338e] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin and resveratrol are natural compounds whose strong antioxidant activities are highly beneficial in the human diet. Unfortunately, their physicochemical properties result in poor stability in their chemical and antioxidant activities, which limits their utilization in food and pharmaceutical applications. In this study, liposomal nanoencapsulation was developed as a strategy to overcome these limitations and improve the antioxidant effects of these compounds. The physicochemical characteristics of co-encapsulated liposomes were evaluated and compared to formulations containing each compound individually. Liposomes co-encapsulating curcumin and resveratrol presented a lower particle size, lower polydispersity index and greater encapsulation efficiency. The formulation of liposomes co-loading curcumin and resveratrol at 5 : 1, exhibited the lowest particle size (77.50 nm), lowest polydispersity index (0.193), highest encapsulation efficiency (reaching 80.42 ± 2.12%), and strongest 2,2-diphenyl-1-picrylhydrazyl scavenging, lipid peroxidation inhibition capacity and reducing power. Additionally, liposomes loading both curcumin and resveratrol displayed a higher ability during preparation, storage, heating and surfactant shock than those loaded with individual polyphenol. Infrared spectroscopic and fluorescence techniques demonstrated that the curcumin mainly located in the hydrophobic acyl-chain region of liposomes, while the resveratrol orientated to the polar head groups. These orientations could have synergistic effects on the stabilization of liposomes. Our findings should guide the rational design of a co-delivery liposomal system regarding the location and orientation of bioactive compounds inside the lipid bilayer.
Collapse
Affiliation(s)
- Meigui Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cai Z, Li H, Wu J, Zhu L, Ma X, Zhang C. Ascorbic acid stabilised copper nanoclusters as fluorescent sensors for detection of quercetin. RSC Adv 2020; 10:8989-8993. [PMID: 35496543 PMCID: PMC9050032 DOI: 10.1039/d0ra01265c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 11/21/2022] Open
Abstract
In this report, green-emitting fluorescence copper nanoclusters (Cu NCs) were synthesized using ascorbic acid as reducing agent and protecting agent. The ascorbic acid capped Cu NCs (AA-Cu NCs) were characterized using fluorescence spectroscopy, UV-vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The analysis data demonstrated that the AA-Cu NCs were highly dispersed with an average diameter of 2 nm. The as-prepared Cu NCs possessed good water solubility, excellent photostability and displayed excitation-dependent fluorescence characteristics. More importantly, the fluorescence intensity of AA-Cu NCs was linearly quenched in the presence of quercetin from 0.7 to 50 μM and the detection limit (LOD) was 0.19 μM. Finally, the fluorescence sensor was successfully employed to detect quercetin in bovine serum samples. A fluorescent sensor based on ascorbic acid-functionalized copper nanoclusters (AA-Cu NCs) were prepared for the sensitive detection of quercetin.![]()
Collapse
Affiliation(s)
- Zhifeng Cai
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Haoyang Li
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Jinglong Wu
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Li Zhu
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Xinru Ma
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Caifeng Zhang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
- Humic Acid Engineering and Technology Research Center of Shanxi Province
| |
Collapse
|
35
|
Gao B, Sun Y, Miao Y, Xu L, Wang Z. Fluorometric detection of pH and quercetin based on nitrogen and phosphorus co-doped highly luminescent graphene-analogous flakes. Analyst 2019; 145:115-121. [PMID: 31746826 DOI: 10.1039/c9an02077b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly luminescent nitrogen and phosphorus co-doped graphene-analogous flakes (NPCGFs) were synthesized by a one-pot simple hydrothermal reaction using β-cyclodextrin (β-CD), vinylphosphoric acid (VPA), and o-phenylenediamine (oPD) as the precursors. VPA, as an important organic P-containing monomer, was selected as the phosphorus source to generate additional conjugated and effective binding sites on the surface of the NPCGFs. This synthetic strategy not only allows enhancement of structural rigidity, but also effectively eliminates surface traps of the NPCGFs, resulting in an improved fluorescence quantum yield (FL QY) of the NPCGFs. Additionally, oPD simultaneously acts as a nitrogen source and enables amino functionalisation of the NPCGF surface in the synthesis process. The NPCGFs (QY, 32.49%) are irregularly shaped with a typical diameter of approximately 54 nm and display strong fluorescence, with excitation/emission maxima of 360/445 nm. It was found that the NPCGFs can serve as a multifunctional FL probe for pH measurement and quercetin (Qc) detection. A linear relationship exists between the decrease in FL intensity and the concentration of Qc in the range from 0.35 to 30 μg mL-1 as well as the pH variation between 4.0 and 7.0. The probe was further applied to the determination of Qc in living cells.
Collapse
Affiliation(s)
- Buhong Gao
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | |
Collapse
|
36
|
Gao YF, Jin X, Kong FY, Wang ZX, Wang W. One-pot green and simple synthesis of actinian nickel-doped carbon nanoflowers for ultrasensitive sensing of quercetin. Analyst 2019; 144:7283-7289. [PMID: 31697283 DOI: 10.1039/c9an01907c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this contribution, a one-pot method possessing the advantages of easy preparation, rapidness, efficiency and environmental friendliness has been developed for the first time for the facile synthesis of highly fluorescent actinian nickel-doped carbon nanoflowers (Ni-CNFWs) by using nickel(ii)acetylacetonate as a metal-carbon source. Various characterization studies indicate that metal nickel atoms have been successfully doped into carbon nanoflower frameworks with a weight percentage of 1.46 wt%. The Ni-CNFWs showed a "shell-core" actinian structure with ∼400 nm diameter and highly efficient fluorescence quenching ability in the presence of quercetin (Qut) due to the formed Meisenheimer complexes via the conjugation effect of p, π-electrons between Ni-CNFWs and Qut, which allowed the analysis of Qut in a very facile method. Under the optimal conditions, the decreased fluorescence of Ni-CNFWs showed a good linear relationship with the concentration of Qut ranging from 0.5 to 300.0 μM, and the limit of detection was 0.137 μM (3σ/k). Finally, the content of Qut in bovine serum was successfully detected with the novel on-off sensor, and the recoveries were 97.3-101.9%, which indicate that the constructed on-off sensor has a high selectivity and accuracy.
Collapse
Affiliation(s)
- Yuan-Fei Gao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | | | | | | | | |
Collapse
|
37
|
Shah ST, Yehye WA, Chowdhury ZZ, Simarani K. Magnetically directed antioxidant and antimicrobial agent: synthesis and surface functionalization of magnetite with quercetin. PeerJ 2019; 7:e7651. [PMID: 31768301 PMCID: PMC6874855 DOI: 10.7717/peerj.7651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/09/2019] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress can be reduced substantially using nanoantioxidant materials by tuning its surface morphological features up to a greater extent. The physiochemical, biological and optical properties of the nanoantioxidants can be altered by controlling their size and shape. In view of that, an appropriate synthesis technique should be adopted with optimization of the process variables. Properties of magnetite nanoparticles (IONP) can be tailored to upgrade the performance of biomedicine. Present research deals with the functionalization IONP using a hydrophobic agent of quercetin (Q). The application of quercetin will control its size using both the functionalization method including in-situ and post-synthesis technique. In in-situ techniques, the functionalized magnetite nanoparticles (IONP@Q) have average particles size 6 nm which are smaller than the magnetite (IONP) without functionalization. After post functionalization technique, the average particle size of magnetite IONP@Q2 determined was 11 nm. The nanoparticles also showed high saturation magnetization of about 51-59 emu/g. Before starting the experimental lab work, Prediction Activity Spectra of Substances (PASS) software was used to have a preliminary idea about the biological activities of Q. The antioxidant activity was carried out using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The antibacterial studies were carried out using well diffusion method. The results obtained were well supported by the simulated results. Furthermore, the values of the half maximal inhibitory concentration (IC50) of the DPPH antioxidant assay were decreased using the functionalized one and it exhibited a 2-3 fold decreasing tendency than the unfunctionalized IONP. This exhibited that the functionalization process can easily enhance the free radical scavenging properties of IONPs up to three times. MIC values confirms that functionalized IONP have excellent antibacterial properties against the strains used (Staphylococcus aureus, Bacillus subtilis and Escherichia coli) and fungal strains (Aspergillus niger, Candida albicans, Trichoderma sp. and Saccharomyces cerevisiae). The findings of this research showed that the synthesized nanocomposite has combinatorial properties (magnetic, antioxidant and antimicrobial) which can be considered as a promising candidate for biomedical applications. It can be successfully used for the development of biomedicines which can be subsequently applied as antioxidant, anti-inflammatory, antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Syed Tawab Shah
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Wageeh A. Yehye
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Altunay N, Bingöl D, Elik A, Gürkan R. Vortex assisted-ionic liquid dispersive liquid-liquid microextraction and spectrophotometric determination of quercetin in tea, honey, fruit juice and wine samples after optimization based on response surface methodology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117166. [PMID: 31163328 DOI: 10.1016/j.saa.2019.117166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The aim of our study is to develop a new vortex assisted-ionic liquid dispersive liquid-liquid microextraction (VA-IL-DLLM) method for preconcentration and determination of the quercetin in tea, honey, fruit juice and wine samples by spectrophotometry. The method is based on pH sensitive ion-pair formation between quercetin and rhodamine B at pH 6.5 by donor-acceptor mechanism, and then dispersion of the complex in the fine-drops of ionic liquid (IL). In this context, the effects of pH, concentrations of ion-pairing reagent, the IL, vortex time and dispersive solvent type on the preconcentration process of quercetin were investigated using a 2-level-5-factor central composite half fraction design (CCD) as experimental design for response surface methodology (RSM). Quantitative model was developed to determine the quercetin in food samples, and it is verified by analysis of variance (ANOVA) at a 95% confidence level (P < 0.05). Response surface plots and contour plots obtained by the model are used to determine the interactions of experimental variables. After the optimization, calibration graph was obtained between 35 and 750 μg L-1 with the detection limit of 10.2 μg L-1. The recovery and relative standard deviations (RSD%) were in range of 94-104%, and in range of 2.5-4.2%, respectively. The accuracy and precision of the method were tested by the experimental studies such as recoveries, intermediate precision, trueness and expanded uncertainty. A comparison of the current results to those reported for other studies is also presented.
Collapse
Affiliation(s)
- Nail Altunay
- Cumhuriyet University, Faculty of Sciences, Department of Chemistry, TR-58140, Sivas, Turkey.
| | - Deniz Bingöl
- Kocaeli University, Faculty of Science and Arts, Department of Chemistry, TR-41380, Kocaeli, Turkey
| | - Adil Elik
- Cumhuriyet University, Faculty of Sciences, Department of Chemistry, TR-58140, Sivas, Turkey
| | - Ramazan Gürkan
- Cumhuriyet University, Faculty of Sciences, Department of Chemistry, TR-58140, Sivas, Turkey
| |
Collapse
|
39
|
Hahm E, Kang EJ, Pham XH, Jeong D, Jeong DH, Jung S, Jun BH. Mono-6-Deoxy-6-Aminopropylamino- β-Cyclodextrin on Ag-Embedded SiO 2 Nanoparticle as a Selectively Capturing Ligand to Flavonoids. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1349. [PMID: 31547075 PMCID: PMC6835478 DOI: 10.3390/nano9101349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
It has been increasingly important to develop a highly sensitive and selective technique that is easy to handle in detecting levels of beneficial or hazardous analytes in trace quantity. In this study, mono-6-deoxy-6-aminopropylamino-β-cyclodextrin (pr-β-CD)-functionalized silver-assembled silica nanoparticles (SiO2@Ag@pr-β-CD) for flavonoid detection were successfully prepared. The presence of pr-β-CD on the surface of SiO2@Ag enhanced the selectivity in capturing quercetin and myricetin among other similar materials (naringenin and apigenin). In addition, SiO2@Ag@pr-β-CD was able to detect quercetin corresponding to a limit of detection (LOD) as low as 0.55 ppm. The relationship between the Raman intensity of SiO2@Ag@pr-β-CD and the logarithm of the Que concentration obeyed linearity in the range 3.4-33.8 ppm (R2 = 0.997). The results indicate that SiO2@Ag@pr-β-CD is a promising material for immediately analyzing samples that demand high sensitivity and selectivity of detection.
Collapse
Affiliation(s)
- Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Eun Ji Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Daham Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dae Hong Jeong
- Department of Chemistry Education and Center for Educational Research, Seoul National University, Seoul 08826, Korea.
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
40
|
Saritha D, Koirala A, Venu M, Reddy GD, Reddy AVB, Sitaram B, Madhavi G, Aruna K. A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Simultaneous determination of oleic and elaidic acids in their mixed solution by Raman spectroscopy. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Lim JH, Bae D, Fong A. Titanium Dioxide in Food Products: Quantitative Analysis Using ICP-MS and Raman Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13533-13540. [PMID: 30513207 DOI: 10.1021/acs.jafc.8b06571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Titanium dioxide (TiO2) is commonly used as a color additive in food products. In this study, a total of 11 food products, such as a coffee cream, yogurt snack, hard candy, and chewy candy, that are widely consumed by adults or children were investigated. For characterization of particle size, size distribution, crystallinity, and concentration of TiO2, particles were first extracted using an acid digestion method from food, and various analytical techniques were applied. All products investigated in this study contained nanosized TiO2 particles (21.3-53.7%) in the anatase phase. The particle size of TiO2 was in the range of 26.9-463.2 nm. The concentration of TiO2 in the products ranged from 0.015% (150 ppm) to 0.462% (4620 ppm). These values obtained using inductively coupled plasma-mass spectrometry (ICP-MS) were considered as the reference and were compared with Raman results to evaluate the feasibility of using the Raman method to quantitate TiO2 in food products. The Raman method developed in this study proved to effectively analyze anatase TiO2 in food products at levels of several hundred parts per million or greater. Limitations of using the Raman method as a quick screening tool for determination of TiO2 are also discussed.
Collapse
Affiliation(s)
- Jin-Hee Lim
- Office of Regulatory Affairs, Arkansas Laboratory , U.S. Food and Drug Administration , 3900 NCTR Road , Jefferson , Arkansas 72079 , United States
| | - Dongryeoul Bae
- Office of Regulatory Affairs, Arkansas Laboratory , U.S. Food and Drug Administration , 3900 NCTR Road , Jefferson , Arkansas 72079 , United States
| | - Andrew Fong
- Office of Regulatory Affairs, Arkansas Laboratory , U.S. Food and Drug Administration , 3900 NCTR Road , Jefferson , Arkansas 72079 , United States
| |
Collapse
|
43
|
Ma X, Sun X, Wang H, Wang Y, Chen D, Li Q. Raman Spectroscopy for Pharmaceutical Quantitative Analysis by Low-Rank Estimation. Front Chem 2018; 6:400. [PMID: 30250839 PMCID: PMC6139353 DOI: 10.3389/fchem.2018.00400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/20/2018] [Indexed: 11/24/2022] Open
Abstract
Raman spectroscopy has been widely used for quantitative analysis in biomedical and pharmaceutical applications. However, the signal-to-noise ratio (SNR) of Raman spectra is always poor due to weak Raman scattering. The noise in Raman spectral dataset will limit the accuracy of quantitative analysis. Because of high correlations in the spectral signatures, Raman spectra have the low-rank property, which can be used as a constraint to improve Raman spectral SNR. In this paper, a simple and feasible Raman spectroscopic analysis method by Low-Rank Estimation (LRE) is proposed. The Frank-Wolfe (FW) algorithm is applied in the LRE method to seek the optimal solution. The proposed method is used for the quantitative analysis of pharmaceutical mixtures. The accuracy and robustness of Partial Least Squares (PLS) and Support Vector Machine (SVM) chemometric models can be improved by the LRE method.
Collapse
Affiliation(s)
- Xiangyun Ma
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Xueqing Sun
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Huijie Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Yang Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
| | - Qifeng Li
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
44
|
Mazurek S, Fecka I, Węglińska M, Szostak R. Quantification of active ingredients in Potentilla tormentilla by Raman and infrared spectroscopy. Talanta 2018; 189:308-314. [PMID: 30086923 DOI: 10.1016/j.talanta.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/15/2023]
Abstract
The most important active compounds present in Potentilla tormentilla rhizomes were quantitatively determined on the basis of Raman, attenuated total reflection (ATR) and diffuse reflectance mid- and near- infrared spectra (DRIFTS) collected for the untreated plant material. Partial least-squares (PLS) models were constructed utilizing vibrational spectra and the results of reference high-performance liquid chromatography analyses. Applying Raman spectroscopy, total polyphenols, tannins, ellagitannins, procyanidins, agrimoniin, 3-O-galloylquininc acid and catechin were simultaneously quantified in tormentil rhizomes, with the relative standard errors of prediction in the 2.0-4.9% range for both calibration and validation sets. These error ranges were found to be slightly higher for infrared techniques and amounted to 2.7-6.5%.
Collapse
Affiliation(s)
- Sylwester Mazurek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Izabela Fecka
- Department of Pharmacognosy, Wrocław Medical University, 211 Borowska, 50-556 Wrocław, Poland.
| | - Magdalena Węglińska
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Roman Szostak
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
45
|
Gao B, Sun Y, Miao Y, Min H, Xu L, Huang C. Facile Preparation of Highly Luminescent Nitrogen-Doped Carbonaceous Nanospheres and Potential Application in Intracellular Imaging of Quercetin. Aust J Chem 2018. [DOI: 10.1071/ch18370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly luminescent nitrogen-doped carbonaceous nanospheres (LNCNs) were synthesized by a one-pot hydrothermal reaction of β-cyclodextrin (β-CD) and branched polyethylenimine (BPEI). Both the N-doping and amino-functionalisation of LNCNs were achieved simultaneously. The prepared LNCNs display excellent properties such as high physical and chemical stability, excitation wavelength-independent emission, and high photoluminescence quantum yields. Importantly, the LNCNs exhibit a quenching of photoluminescence in the presence of quercetin (Qc) based on the simple static quenching mechanism, making it possible to quantify concentrations from 0.5 to 80 μg mL−1 with a detection limit of 0.21 μg mL−1. Furthermore, the LNCNs probe was further used for imaging Qc in living cells.
Collapse
|
46
|
Çakar S, Özacar M. The effect of iron complexes of quercetin on dye-sensitized solar cell efficiency. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Multivariate statistical design optimization for ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction of quercetin in food samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1187-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Zheng X, Hu Y, Anggreani E, Lu X. Determination of total phenolic content and antioxidant capacity of blueberries using Fourier transformed infrared (FT-IR) spectroscopy and Raman spectroscopy. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9573-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Numata Y, Otsuka M, Yamagishi K, Tanaka H. Quantitative Determination of Glycine, Alanine, Aspartic Acid, Glutamic Acid, Phenylalanine, and Tryptophan by Raman Spectroscopy. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1193189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yasushi Numata
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Japan
| | - Maria Otsuka
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Japan
| | - Kenji Yamagishi
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Japan
| | - Hiroyuki Tanaka
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Japan
| |
Collapse
|
50
|
Huang M, Su E, Zheng F, Tan C. Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and luteolin. Food Funct 2017; 8:3198-3208. [DOI: 10.1039/c7fo00508c] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The instability of dietary flavonoids is currently a challenge for their incorporation in functional foods.
Collapse
Affiliation(s)
- Meigui Huang
- Department of Food Science and Technology
- College of Light Industry Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- PR China
| | - Erzheng Su
- Department of Food Science and Technology
- College of Light Industry Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- PR China
| | - Fuping Zheng
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- PR China
| | - Chen Tan
- Department of Food Science
- College of Agriculture & Life Science
- Cornell University
- USA
| |
Collapse
|