1
|
Bussler W, DeZego K, Chandler H, Reid RW, Komarnytsky S. Nutrient-Nutrient Interactions Among Broccoli Glucosinolates and Their Implications for Breeding Cruciferous Crops to Enhance Human Health. Nutrients 2025; 17:344. [PMID: 39861474 PMCID: PMC11768351 DOI: 10.3390/nu17020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits. BACKGROUND/OBJECTIVES Broccoli (Brassica oleracea L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits. However, the individual contributions and interactions of broccoli glucosinolates, as they hydrolyze into bioactive isothiocyanates, remain poorly understood. METHODS This study investigated mixtures of four major aliphatic glucosinolates-glucoraphanin, gluconapin, progoitrin, and sinigrin-in individual and combinational models to assess their effects on human colorectal cell proliferation. RESULTS Combination index analysis revealed moderate to strong antagonistic interactions among these glucosinolates, with the most significant antagonism observed during enzymatic hydrolysis by myrosinase. Mixture analysis identified an optimal glucosinolate ratio including glucoraphanin (81-84%), gluconapin (9-19%), and others (0-7%) to maximize their antiproliferative effects (adjusted R2 > 0.80). This optimal profile was achievable within the target broccoli mapping population. Testing the near-optimal VB067 isogenic broccoli line showed a 44% increase in antiproliferative activity compared to the initial breeding parent or an average sister line. CONCLUSIONS This study highlights the potential of leveraging nutrient-nutrient interactions to guide molecular breeding and produce functional varieties of cruciferous vegetables with optimized health benefits.
Collapse
Affiliation(s)
- Weston Bussler
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Katelyn DeZego
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Biology, Catawba College, 2300 W Innes St., Salisbury, NC 28144, USA
| | - Holli Chandler
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Biology, Catawba College, 2300 W Innes St., Salisbury, NC 28144, USA
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 150 N Research Campus Dr, Kannapolis, NC 28081, USA;
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Biology, Catawba College, 2300 W Innes St., Salisbury, NC 28144, USA
| |
Collapse
|
2
|
Luo Y, Zhao S, Wang H, Bai H, Hu Q, Zhao L, Ma T, Fan Z, Wang Y. Effect of sodium selenite on the synthesis of glucosinolates and antioxidant capacity in Chinese cabbage ( Brassica rapa L.ssp. pekinensis). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1643-1657. [PMID: 39506997 PMCID: PMC11534961 DOI: 10.1007/s12298-024-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is a globally cultivated and consumed leafy vegetable due to its abundant plant secondary metabolites and antioxidant compounds, including flavonoids, ascorbic acids, glucosinolates, and vitamins, which have been reported to confer health-promoting effects. Glucosinolates components in leaves of Chinese cabbage plantlets under different concentrations of sodium selenite (0, 30, and 50 μmol/L) were analyzed. Seven glucosinolates were identified and quantified using UHPLC-QTOF-MS. Finally, treatments with 30 and 50 μmol/L Na2SeO3 solution significantly increased the levels of total selenium content as well as total phenols, flavonoids, anthocyanins, and DPPH free radical scavenging ability in Chinese cabbage seedlings. Our results revealed that 30 μmol/L Na2SeO3 effectively enhanced aliphatic glucosinolate levels and total glucosinolate content while causing a significant reduction in indole glucosinolates. Furthermore, downregulation was observed for BrCYP79F1, BrBCAT4, and BrMAM1 genes associated with aliphatic glucosinolate synthesis. Conversely, BrMYB28 and BrCYP83A1 genes exhibited significant upregulation. Thus, the positive influence of Na2SeO3 on glucosinolate biosynthesis in Chinese cabbage can be attributed to the upregulation of key genes related to this process.
Collapse
Affiliation(s)
- Yafang Luo
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Shuang Zhao
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006 China
| | - Huixia Bai
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Qi Hu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Linlin Zhao
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Tianyi Ma
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Zhenyu Fan
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| | - Yushu Wang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006 China
| |
Collapse
|
3
|
Cai C, de Vos RC, Qian H, Bucher J, Bonnema G. Metabolomic and Transcriptomic Profiles in Diverse Brassica oleracea Crops Provide Insights into the Genetic Regulation of Glucosinolate Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16032-16044. [PMID: 38975781 PMCID: PMC11261609 DOI: 10.1021/acs.jafc.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites commonly found in the cruciferous vegetables of the Brassicaceae family, offering health benefits to humans and defense against pathogens and pests to plants. In this study, we investigated 23 GSL compounds' relative abundance in four tissues of five different Brassica oleracea morphotypes. Using the five corresponding high-quality B. oleracea genome assemblies, we identified 183 GSL-related genes and analyzed their expression with mRNA-Seq data. GSL abundance and composition varied strongly, among both tissues and morphotypes, accompanied by different gene expression patterns. Interestingly, broccoli exhibited a nonfunctional AOP2 gene due to a conserved 2OG-FeII_Oxy domain loss, explaining the unique accumulation of two health-promoting GSLs. Additionally, transposable element (TE) insertions were found to affect the gene structure of MAM3 genes. Our findings deepen the understanding of GSL variation and genetic regulation in B. oleracea morphotypes, providing valuable insights for breeding with tailored GSL profiles in these crops.
Collapse
Affiliation(s)
- Chengcheng Cai
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
- State
Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology
and Genetic Improvement of Horticultural Crops of the Ministry of
Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural
Genomics, Institute of Vegetables and Flowers,
Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ric C.H. de Vos
- Bioscience, Wageningen
University and Research, Wageningen 6708 PB, The Netherlands
| | - Hao Qian
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Johan Bucher
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Guusje Bonnema
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
4
|
Wang J, Shen Y, Sheng X, Yu H, Song M, Wang Q, Gu H. Unravelling Glucoraphanin and Glucoerucin Metabolism across Broccoli Sprout Development: Insights from Metabolite and Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:750. [PMID: 38592746 PMCID: PMC10976094 DOI: 10.3390/plants13060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.
Collapse
Affiliation(s)
- Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China;
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| |
Collapse
|
5
|
Kim SH, Subramanian P, Hahn BS. Glucosinolate Diversity Analysis in Choy Sum ( Brassica rapa subsp. chinensis var. parachinensis) Germplasms for Functional Food Breeding. Foods 2023; 12:2400. [PMID: 37372611 DOI: 10.3390/foods12122400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future breeding efforts to produce nutritionally rich Choy sum plants. In total, 23 accessions of Choy sums that possessed ample background passport information were selected. On analyzing the glucosinolate content for 17 different glucosinolates, we observed aliphatic GSLs to be the most common (89.45%) and aromatic GSLs to be the least common (6.94%) of the total glucosinolates detected. Among the highly represented aliphatic GSLs, gluconapin and glucobrassicanapin were found to contribute the most (>20%), and sinalbin, glucoraphanin, glucoraphasatin, and glucoiberin were detected the least (less than 0.05%). We identified one of the accessions, IT228140, to synthesize high quantities of glucobrassicanapin and progoitrin, which have been reported to contain several therapeutic applications. These conserved germplasms are potential bioresources for breeders, and the availability of information, including therapeutically important glucosinolate content, can help produce plant varieties that can naturally impact public health.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea
| | - Parthiban Subramanian
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea
- Department of Physiology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea
| |
Collapse
|
6
|
Shen Y, Wang J, Shaw RK, Sheng X, Yu H, Branca F, Gu H. Comparative Transcriptome and Targeted Metabolome Profiling Unravel the Key Role of Phenylpropanoid and Glucosinolate Pathways in Defense against Alternaria brassicicola in Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6499-6510. [PMID: 37061924 DOI: 10.1021/acs.jafc.2c08486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alternaria brassicicola (Ab) can cause a major yield and quality-limiting disease of Brassica oleracea called black spot, and the genetic resources conferring complete resistance against Ab have not been identified to date. Here, comparative transcriptome and targeted metabolome analysis were performed utilizing a newly identified resistant (R) line and a broccoli susceptible (S) line at 6, 24, and 72 h post-inoculation (hpi). Kyoto encyclopedia of genes and genomes pathway enrichment and the weighted gene co-expression network analyses showed that the phenylpropanoid pathway regulates the resistance to Ab in broccoli. One metabolite, cinnamic acid, was significantly upregulated in the Ab_inoculated R line compared with the mock treatment but no significant difference in the S line, indicating that the cinnamic acid may cause the resistance difference between R and S lines. Our results also revealed that three indolic glucosinolates of I3G, 4MI3G, and 1MI3G were significantly increased in the Ab_inoculated R line compared with the mock treatment, and some related genes were differentially expressed between the R and S lines. These results provided new insights into the mechanism of Ab defense in B. oleracea and have laid a theoretical foundation for effectively utilizing resistant germplasm resources in broccoli breeding.
Collapse
Affiliation(s)
- Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ranjan K Shaw
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment, University of Catania, Catania 95123, Italy
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
7
|
Kim SH, Lee GA, Subramanian P, Hahn BS. Quantification and Diversity Analyses of Major Glucosinolates in Conserved Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Germplasms. Foods 2023; 12:foods12061243. [PMID: 36981169 PMCID: PMC10048303 DOI: 10.3390/foods12061243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The genebank at the National Agrobiodiversity Center (RDA-Genebank, Jeonju, Republic of Korea), conserves approximately 8000 germplasms of Brassica spp., of which Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major crops actively used as food in Northeast Asia, including Korea, as the main ingredient for kimchi. Glucosinolates are a major class of compounds in Chinese cabbage that are responsible for their distinctive flavor, and RDA-Genebank is constantly building a related database (DB) to select suitable germplasms required by consumers and provide resources for breeding programs. In this study, ten glucosinolates were analyzed in sixty Chinese cabbage germplasms. Six aliphatic glucosinolates were the major components, accounting for 85.00% to 91.98% of total glucosinolates in each germplasm. Among them, gluconapin (333.26 to 23,501.58 μmol∙kg−1 DW) was highly represented, followed by glucobrassicanapin (545.60 to 10,344.70 μmol∙kg−1 DW) and progoitrin (155.28 to 8536.51 μmol∙kg−1 DW). In addition, we selected germplasms with a high content of each studied glucosinolate. To analyze the diversity and distribution of glucosinolates among the studied germplasms, Pearson’s correlation was performed, and the related results were interpreted through their biosynthetic pathways. The k-means clustering indicated four optimal clusters, which were confirmed through principal component analysis. Orthogonal projection to latent structure discriminant analysis (OPLS-DA) was also performed on the status (landrace and cultivar) and origin (Korea, China, Taiwan, and Japan) passport data of the germplasms, followed by the calculation of variable importance in the projection (VIP) values. These results are part of a continuous series of studies to analyze the glucosinolates of Brassica germplasms that are being conserved at RDA-Genebank. We aim to provide related results through a public platform accessible to everyone and thereby improve the distribution of Brassica germplasms.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | - Parthiban Subramanian
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
- Correspondence:
| |
Collapse
|
8
|
Casajús V, Howe K, Fish T, Civello P, Thannhauser T, Li L, Gómez Lobato M, Martínez G. Evidence of glucosinolates translocation from inflorescences to stems during postharvest storage of broccoli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:322-329. [PMID: 36669347 DOI: 10.1016/j.plaphy.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Broccoli is a vegetable appreciated by consumers for its nutritional properties, particularly for its high glucosinolate (GLS) content. However, broccoli shows a high rate of senescence during postharvest and the GLS content in inflorescences decreases sharply. Usually, postharvest studies on broccoli focus on inflorescences, ignoring the other tissues harvested such as the stems and main stalk. In this work, GLS metabolism in whole heads of broccoli (including inflorescences, small stems and stalk) was analysed during postharvest senescence. The content of GLS content, expression of GLS metabolic genes, and expression of GLS transport-associated genes were measured in the three parts of harvested broccoli. A marked decrease in the content of all GLSs was detected in inflorescences, but an increase in the stems and stalk. Also, decreased expressions of GLS biosynthesis and degradation genes were detected in all tissues analysed. On the other hand, an increase in the expression of one of the genes involved in GLS transport was observed. These results suggest that GLSs would be transported from inflorescences to stems during postharvest senescence. From a commercial point of view, broccoli stems are usually discarded and not used as food. However, the accumulation of GLSs in the stems is an important factor to consider when contemplating potential commercial use of this part of the plant.
Collapse
Affiliation(s)
- Victoria Casajús
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina
| | - Kevin Howe
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Pedro Civello
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina; Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - María Gómez Lobato
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina
| | - Gustavo Martínez
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina; Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
9
|
Kim JA, Moon H, Kim HS, Choi D, Kim NS, Jang J, Lee SW, Baskoro Dwi Nugroho A, Kim DH. Transcriptome and QTL mapping analyses of major QTL genes controlling glucosinolate contents in vegetable- and oilseed-type Brassica rapa plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1067508. [PMID: 36743533 PMCID: PMC9891538 DOI: 10.3389/fpls.2022.1067508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites providing defense against pathogens and herbivores in plants, and anti-carcinogenic activity against human cancer cells. Profiles of GSLs vary greatly among members of genus Brassica. In this study, we found that a reference line of Chinese cabbage (B. rapa ssp. pekinensis), 'Chiifu' contains significantly lower amounts of total GSLs than the oilseed-type B. rapa (B. rapa ssp. trilocularis) line 'LP08'. This study aimed to identify the key regulators of the high accumulation of GSLs in Brassica rapa plants using transcriptomic and linkage mapping approaches. Comparative transcriptome analysis showed that, in total, 8,276 and 9,878 genes were differentially expressed between 'Chiifu' and 'LP08' under light and dark conditions, respectively. Among 162 B. rapa GSL pathway genes, 79 were related to GSL metabolism under light conditions. We also performed QTL analysis using a single nucleotide polymorphism-based linkage map constructed using 151 F5 individuals derived from a cross between the 'Chiifu' and 'LP08' inbred lines. Two major QTL peaks were successfully identified on chromosome 3 using high-performance liquid chromatography to obtain GSL profiles from 97 F5 recombinant inbred lines. The MYB-domain transcription factor gene BrMYB28.1 (Bra012961) was found in the highest QTL peak region. The second highest peak was located near the 2-oxoacid-dependent dioxygenase gene BrGSL-OH.1 (Bra022920). This study identified major genes responsible for differing profiles of GSLs between 'Chiifu' and 'LP08'. Thus, our study provides molecular insights into differences in GSL profiles between vegetative- and oilseed-type B. rapa plants.
Collapse
Affiliation(s)
- Jin A. Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyang Suk Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Nan-Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Juna Jang
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | | | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
10
|
Hossain MN, De Leo V, Tamborra R, Laselva O, Ingrosso C, Daniello V, Catucci L, Losito I, Sollitto F, Loizzi D, Conese M, Di Gioia S. Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L. (Broccoli). Sci Rep 2022; 12:14362. [PMID: 35999223 PMCID: PMC9399156 DOI: 10.1038/s41598-022-17899-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
In this in vitro study, we test our hypothesis that Broccoli-derived vesicles (BDVs), combining the anti-oxidant properties of their components and the advantages of their structure, can influence the metabolic activity of different cancer cell lines. BDVs were isolated from homogenized fresh broccoli (Brassica oleracea L.) using a sucrose gradient ultracentrifugation method and were characterized in terms of physical properties, such as particle size, morphology, and surface charge by transmission electron microscopy (TEM) and laser doppler electrophoresis (LDE). Glucosinolates content was assessed by RPLC–ESI–MS analysis. Three different human cancer cell lines (colorectal adenocarcinoma Caco-2, lung adenocarcinoma NCI-H441 and neuroblastoma SHSY5Y) were evaluated for metabolic activity by the MTT assay, uptake by fluorescence and confocal microscopy, and anti-oxidant activity by a fluorimetric assay detecting intracellular reactive oxygen species (ROS). Three bands were obtained with average size measured by TEM based size distribution analysis of 52 nm (Band 1), 70 nm (Band 2), and 82 nm (Band 3). Glucobrassicin, glucoraphanin and neoglucobrassicin were found mostly concentrated in Band 1. BDVs affected the metabolic activity of different cancer cell lines in a dose dependent manner compared with untreated cells. Overall, Band 2 and 3 were more toxic than Band 1 irrespective of the cell lines. BDVs were taken up by cells in a dose- and time-dependent manner. Pre-incubation of cells with BDVs resulted in a significant decrease in ROS production in Caco-2 and NCI-H441 stimulated with hydrogen peroxide and SHSY5Y treated with 6-hydroxydopamine, with all three Bands. Our findings open to the possibility to find a novel “green” approach for cancer treatment, focused on using vesicles from broccoli, although a more in-depth characterization of bioactive molecules is warranted.
Collapse
Affiliation(s)
- Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Rosanna Tamborra
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Chiara Ingrosso
- National Research Council of Italy-Institute for Physical and Chemical Processes (CNR-IPCF S.S. Bari), c/o Department of Chemistry, University of Bari "A. Moro", Bari, Italy
| | - Valeria Daniello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari, Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari, Bari, Italy
| | - Francesco Sollitto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Domenico Loizzi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Variation in the Main Health-Promoting Compounds and Antioxidant Activity of Different Edible Parts of Purple Flowering Stalks (Brassica campestris var. purpuraria) and Green Flowering Stalks (Brassica campestris var. campestris). PLANTS 2022; 11:plants11131664. [PMID: 35807615 PMCID: PMC9269110 DOI: 10.3390/plants11131664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Purple flowering stalks and green flowering stalks of Brassica campestris are widely cultivated in the middle and upper reaches of the Yangtze River. Here, concentrations of the main health-promoting compounds and antioxidant capacity levels were characterized in different parts (leaves, peel, flesh, and inflorescences) of purple and green flowering stalks. There were significant differences in the concentrations of health-promoting compounds between the two variants; the concentrations of pigments, especially anthocyanidins, and gluconapin, were significantly higher in purple flowering stalks than in green flowering stalks, and the progoitrin content was significantly higher in green flowering stalks than in purple flowering stalks. The leaves were judged to be the most nutritional edible part because they had the highest concentrations of pigments, ascorbic acid, proanthocyanidins, flavonoids, and total phenolics. Antioxidant capacity was also highest in the leaves, and it was positively correlated with the concentration of health-promoting compounds. Purple flowering stalks and green flowering stalks were found to be rich in health-promoting compounds, especially glucosinolates. Overall, our findings indicate that consumption of the leaves and peel would provide the most health benefits. Some suggestions are provided regarding the processing and utilization of these edible components.
Collapse
|
12
|
Lin H, Sun J, Hu Z, Cheng C, Lin S, Zou H, Yan X. Variation in Glucosinolate Accumulation among Different Sprout and Seedling Stages of Broccoli (Brassica oleracea var. italica). PLANTS 2022; 11:plants11121563. [PMID: 35736714 PMCID: PMC9227298 DOI: 10.3390/plants11121563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Glucosinolates (GLs) are plant secondary metabolites that may act against different types of cancers. Broccoli (Brassica oleracea var. italica) is rich in GLs which makes it an excellent source of these nutraceuticals. The composition and concentration of GLs vary among broccoli cultivars and throughout the developmental stages of the plant. To obtain the GL profiles of broccoli, GL compositions and contents in four early developmental stages (seeds, 3-day sprouts, 11-day and 17-day seedlings) were determined for nine cultivars of broccoli in this study. A total of 12 GLs including 9 aliphatic GLs and 3 indole GLs were identified from the nine broccoli cultivars using LC-QTOF-MS. UPLC results showed that aliphatic GLs concentrations decreased with broccoli sprouts and seedling growth for most cultivars. Interestingly, indole GLs amounts increased after germination and reached the highest level in 3-day sprouts or 11-day seedlings, and they fell back to a low level in 17-day seedlings. The GL profiles of nine cultivars documented in this study will provide useful information for high quality germplasm selection for cultivation or genetic engineering, and further understanding of the GL metabolic pathways.
Collapse
|
13
|
Kamal F, Shen S, Hu R, Zhang Q, Yin N, Ma Y, Jiang Y, Xu X, Li J, Lu K, Qu C. Metabolite Characteristics Analysis of Siliques and Effects of Lights on the Accumulation of Glucosinolates in Siliques of Rapeseed. FRONTIERS IN PLANT SCIENCE 2022; 13:817419. [PMID: 35251085 PMCID: PMC8888874 DOI: 10.3389/fpls.2022.817419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Glucosinolates (GSLs) are naturally occurring secondary metabolites found in the Brassicaceae family, which mainly synthesize in the siliques with a wide range of functions. In this study, we investigated the effects of lights on metabolites in siliques of rapeseed through ultra high-performance liquid chromatography (UPLC)-heated electrospray ionization (HESI)-tandem mass spectrometry (MS/MS). A total of 249 metabolites, including 29 phenolic acids, 38 flavonoids, 22 GSLs, 93 uncalculated and 67 unknown compounds, were identified in siliques of rapeseed. Meanwhile, 62 metabolites showed significant differences after shading treatment, which were mainly GSLs and unknown compounds. Interestingly, the amounts of 10 GSLs had high accumulation levels in siliques, while the expression levels of their corresponding biosynthetic genes (AOP, GSL-OH, IGMT, and ST5a) were obviously reduced after shading treatment. Further evidence showed that the amounts of GSLs were significantly reduced in seeds, in accordance with the expression profiles of transporter genes (BnaGTRs). Our findings indicated that lights could affect the accumulation and transportation of GSLs from siliques to seeds in rapeseed. Therefore, this study facilitates a better understanding of metabolic characteristics of siliques and provides insight into the importance of light for GSLs accumulation and transportation in siliques and seeds of rapeseed.
Collapse
Affiliation(s)
- Farah Kamal
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ran Hu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qianwei Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yifang Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yuxiang Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
14
|
Santin M, Ranieri A, Castagna A. Anything New under the Sun? An Update on Modulation of Bioactive Compounds by Different Wavelengths in Agricultural Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1485. [PMID: 34371687 PMCID: PMC8309429 DOI: 10.3390/plants10071485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022]
Abstract
Plants continuously rely on light as an energy source and as the driver of many processes in their lifetimes. The ability to perceive different light radiations involves several photoreceptors, which in turn activate complex signalling cascades that ultimately lead to a rearrangement in plant metabolism as an adaptation strategy towards specific light conditions. This review, after a brief summary of the structure and mode of action of the different photoreceptors, introduces the main classes of secondary metabolites and specifically focuses on the influence played by the different wavelengths on the content of these compounds in agricultural plants, because of their recognised roles as nutraceuticals.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| |
Collapse
|
15
|
Shen Y, Wang J, Shaw RK, Yu H, Sheng X, Zhao Z, Li S, Gu H. Development of GBTS and KASP Panels for Genetic Diversity, Population Structure, and Fingerprinting of a Large Collection of Broccoli ( Brassica oleracea L. var. italica) in China. FRONTIERS IN PLANT SCIENCE 2021; 12:655254. [PMID: 34149754 PMCID: PMC8213352 DOI: 10.3389/fpls.2021.655254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most important and nutritious vegetables widely cultivated in China. In the recent four decades, several improved varieties were bred and developed by Chinese breeders. However, the efforts for improvement of broccoli are hindered by limited information of genetic diversity and genetic relatedness contained within the available germplasms. This study evaluated the genetic diversity, genetic relationship, population structure, and fingerprinting of 372 accessions of broccoli representing most of the variability of broccoli in China. Millions of SNPs were identified by whole-genome sequencing of 23 representative broccoli genotypes. Through several stringent selection criteria, a total of 1,167 SNPs were selected to characterize genetic diversity and population structure. Of these markers, 1,067 SNPs were genotyped by target sequencing (GBTS), and 100 SNPs were genotyped by kompetitive allele specific PCR (KASP) assay. The average polymorphism information content (PIC) and expected heterozygosity (gene diversity) values were 0.33 and 0.42, respectively. Diversity analysis revealed the prevalence of low to moderate genetic diversity in the broccoli accessions indicating a narrow genetic base. Phylogenetic and principal component analyses revealed that the 372 accessions could be clustered into two main groups but with weak groupings. STRUCTURE analysis also suggested the presence of two subpopulations with weak genetic structure. Analysis of molecular variance (AMOVA) identified 13% variance among populations and 87% within populations revealing very low population differentiation, which could be attributed to massive gene flow and the reproductive biology of the crop. Based on high resolving power, a set of 28 KASP markers was chosen for DNA fingerprinting of the broccoli accessions for seed authentication and varietal identification. To the best of our knowledge, this is the first comprehensive study to measure diversity and population structure of a large collection of broccoli in China and also the first application of GBTS and KASP techniques in genetic characterization of broccoli. This work broadens the understanding of diversity, phylogeny, and population structure of a large collection of broccoli, which may enhance future breeding efforts to achieve higher productivity.
Collapse
Affiliation(s)
- Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ranjan K. Shaw
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenqing Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sujuan Li
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Casajús V, Civello P, Martínez G, Howe K, Fish T, Yang Y, Thannhauser T, Li L, Gómez Lobato M. Effect of continuous white light illumination on glucosinolate metabolism during postharvest storage of broccoli. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Harvesting at different time-points of day affects glucosinolate metabolism during postharvest storage of broccoli. Food Res Int 2020; 136:109529. [DOI: 10.1016/j.foodres.2020.109529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022]
|
18
|
Li Z, Zheng S, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Xu D. Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method. Food Chem 2020; 334:127519. [PMID: 32721832 DOI: 10.1016/j.foodchem.2020.127519] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/05/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Abstract
We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.
Collapse
Affiliation(s)
- Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China; Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Shuning Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China; Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China, Beijing 100081, China; Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| |
Collapse
|
19
|
Radünz M, Hackbart HCDS, Bona NP, Pedra NS, Hoffmann JF, Stefanello FM, Da Rosa Zavareze E. Glucosinolates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells. Colloids Surf B Biointerfaces 2020; 192:111020. [PMID: 32339867 DOI: 10.1016/j.colsurfb.2020.111020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/19/2023]
Abstract
Gliomas, intracranial malignant tumors, are aggressive, asymptomatic and difficult to treat due to their degree of infiltration, alternatives are needed to treat the disease. In this sense, natural compounds from the specialized metabolism of plants can act to control the disease. Glucosinolates and phenolic compounds, present in broccoli, have a potential to promote tumor cell death, however due to the low stability of these compounds, encapsulation becomes an alternative for their preservation. The objective was to encapsulate the broccoli extract by electrospraying and to evaluate its cytotoxicity in the primary cell culture of astrocytes and gliomas. The capsules were produced and characterized by encapsulation efficiency, functional groups, thermal stability and morphology, the capsule that presented the best parameters was used for the evaluation of cell cytotoxicity and antitumor activity. Capsules with equal or less than 50 % extract showed high encapsulation efficiency, high thermal stability and uniform morphology due to non-saturation of the active zein sites, which allowed a complete encapsulation of the added extract, as well as a greater protection of the compounds. The capsule with 50 % of the extract showed good results of the efficiency, morphology and thermal stability and was used to evaluate the antitumor activity, since the addition of extract in proportions greater than 60 % promoted saturation of the active sites and lower encapsulation efficiency, and directly affects the morphology and thermal stability. The encapsulated and unencapsulated extracts showed strong selective antitumor effect against glial tumor cells without toxicity to non-tumor cells.
Collapse
Affiliation(s)
- Marjana Radünz
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil.
| | - Helen Cristina Dos Santos Hackbart
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Jessica Fernanda Hoffmann
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Elessandra Da Rosa Zavareze
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
20
|
Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head ( Brassica oleracea var. capitata) Germplasm. Molecules 2020; 25:molecules25081860. [PMID: 32316621 PMCID: PMC7221891 DOI: 10.3390/molecules25081860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively. GIB, GBS and NGBS were the most common GSLs found in all genotypes. GBS was the most dominant GSL, with an average value of 3.91 µmol g−1 (0.79 to 13.14 µmol g−1). SIN, GIB, PRO and GRA were the other major GSLs, showing average values of 3.45, 1.50, 0.77 and 0.62 µmol g−1, respectively. The genotypes with relatively high contents of GBS, SIN, GIB and GRA warrant detailed studies for future breeding programs since the hydrolysis products of these GSLs have several anti-cancer properties.
Collapse
|
21
|
Wang J, Yu H, Zhao Z, Sheng X, Shen Y, Gu H. Natural Variation of Glucosinolates and Their Breakdown Products in Broccoli ( Brassica oleracea var . italica) Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12528-12537. [PMID: 31631662 DOI: 10.1021/acs.jafc.9b06533] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Seeds of 32 pure lines and 6 commercial broccoli cultivars were used to investigate variation in glucosinolates and their breakdown products. The aliphatic glucosinolate content was 54.5-218.7 μmol/g fresh weight, accounting for >90% of the total glucosinolates. The major glucosinolates found were glucoraphanin and glucoerucin in 27 samples and progoitrin in 7 samples. A gas chromatography-flame ionization detector (GC-FID) method was used to identify glucosinolate breakdown products; nine products were directly determined using standards. Using Arabidopsis thaliana lines myb28myb29 and Landsberg erecta to hydrolyze each reference glucosinolate, seven products were tentatively identified. 4-(Methylsulfinyl)butyl isothiocyanate and 5-(methylsulfinyl)pentanenitrile contents were 2.6-91.1 μmol/g fresh weight and 0-35.4 μmol/g fresh weight, respectively, with epithionitriles being more common than nitriles in accessions rich in alkenyl glucosinolate. Additionally, (S)-5-vinyl-1,3-oxazolidine-2-thione was detected in accessions rich in progoitrin. Specific lines with altered glucosinolate profiles and breakdown products were obtained and discussed according to the putative glucosinolate metabolism pathway.
Collapse
Affiliation(s)
- Jiansheng Wang
- Institute of Vegetables , Zhejiang Academy of Agricultural Sciences , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Huifang Yu
- Institute of Vegetables , Zhejiang Academy of Agricultural Sciences , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Zhenqing Zhao
- Institute of Vegetables , Zhejiang Academy of Agricultural Sciences , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Xiaoguang Sheng
- Institute of Vegetables , Zhejiang Academy of Agricultural Sciences , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Yusen Shen
- Institute of Vegetables , Zhejiang Academy of Agricultural Sciences , Hangzhou , Zhejiang 310021 , People's Republic of China
| | - Honghui Gu
- Institute of Vegetables , Zhejiang Academy of Agricultural Sciences , Hangzhou , Zhejiang 310021 , People's Republic of China
| |
Collapse
|
22
|
Miao H, Lin J, Zeng W, Wang M, Yao L, Wang Q. Main Health-Promoting Compounds Response to Long-Term Freezer Storage and Different Thawing Methods in Frozen Broccoli Florets. Foods 2019; 8:foods8090375. [PMID: 31480590 PMCID: PMC6769634 DOI: 10.3390/foods8090375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of long-term freezer storage and different defrosting methods on the retention of glucosinolates, vitamin C, and total phenols in frozen broccoli florets were investigated in the present study. Frozen broccoli florets were stored in a freezer at -20 °C for 165 days or subjected to defrosting by three different house-hold thawing methods (water, air, and refrigerator defrosting). Results showed that all glucosinolates were well preserved, while vitamin C and total phenols were reduced by less than 12% and 19% of the control, respectively, during the storage. Besides, refrigerator and air defrosting were better than water defrosting in glucosinolates retention, and refrigerator defrosting was the best in vitamin C preservation. No difference was observed in reserving phenolic compounds among the three methods. In conclusion, long-term freezer storage is an excellent way to preserve broccoli florets, and refrigerator defrosting is the best way to maintain the nutritional compounds in frozen broccoli florets.
Collapse
Affiliation(s)
- Huiying Miao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Jiayao Lin
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Wei Zeng
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Mengyu Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Leishuan Yao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| |
Collapse
|
23
|
Sun B, Tian YX, Chen Q, Zhang Y, Luo Y, Wang Y, Li MY, Gong RG, Wang XR, Zhang F, Tang HR. Variations in the glucosinolates of the individual edible parts of three stem mustards ( Brassica juncea). ROYAL SOCIETY OPEN SCIENCE 2019; 6:182054. [PMID: 30891304 PMCID: PMC6408409 DOI: 10.1098/rsos.182054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
The composition and content of glucosinolates were investigated in the edible parts (petioles, peel and flesh) of tuber mustard, bamboo shoots mustard and baby mustard by high-performance liquid chromatography to reveal the association between the different cooking methods and their glucosinolate profiles. Eight glucosinolates were identified from tuber mustard and baby mustard, including three aliphatic glucosinolates, four indole glucosinolates and one aromatic glucosinolate. Only six of the eight glucosinolates were detected in bamboo shoots mustard. The results show that the distribution and content of glucosinolates varied widely among the different tissues and species. The highest contents of glucosinolates in tuber mustard, bamboo shoots mustard and baby mustard were found in flesh, petioles and peel, respectively. The content of total glucosinolates ranged from 5.21 µmol g-1 dry weight in bamboo shoots mustard flesh to 25.64 µmol g-1 dry weight in baby mustard peel. Aliphatic glucosinolates were predominant in the three stem mustards, followed by indole and aromatic glucosinolates. Sinigrin was the predominant glucosinolate in the three stem mustards. Sinigrin content in tuber mustard was slightly higher than that in baby mustard and much higher than that in bamboo shoots mustard, suggesting that the pungent-tasting stem mustards contained more sinigrin. In addition, a principal components analysis showed that bamboo shoots mustard was distinguishable from the other two stem mustards. A variance analysis indicated that the glucosinolates were primarily influenced by a species × tissue interaction. The correlations among glucosinolates were also analysed.
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yu-Xiao Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Meng-Yao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Rong-Gao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Xiao-Rong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Authors for correspondence: Fen Zhang e-mail:
| | - Hao-Ru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Authors for correspondence: Hao-Ru Tang e-mail:
| |
Collapse
|
24
|
Prieto MA, López CJ, Simal-Gandara J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:305-350. [PMID: 31445598 DOI: 10.1016/bs.afnr.2019.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Glucosinolates are a large group of plant secondary metabolites with nutritional effects and biologically active compounds. Glucosinolates are mainly found in cruciferous plants such as Brassicaceae family, including common edible plants such as broccoli (Brassica oleracea var. italica), cabbage (B. oleracea var. capitata f. alba), cauliflower (B. oleracea var. botrytis), rapeseed (Brassica napus), mustard (Brassica nigra), and horseradish (Armoracia rusticana). If cruciferous plants are consumed without processing, myrosinase enzyme will hydrolyze the glucosinolates to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. On the other hand, when cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. This review paper summarizes the glucosinolate molecular breakdown, their genetic aspects from biosynthesis to precursors, their bioavailability (assimilation, absorption, and elimination of these molecules), their sensory properties, identified healthy and adverse effects, as well as the impact of processing on their bioavailability.
Collapse
Affiliation(s)
- M A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Cecilia Jiménez López
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain.
| |
Collapse
|
25
|
Sun B, Tian YX, Jiang M, Yuan Q, Chen Q, Zhang Y, Luo Y, Zhang F, Tang HR. Variation in the main health-promoting compounds and antioxidant activity of whole and individual edible parts of baby mustard (Brassica juncea var. gemmifera). RSC Adv 2018; 8:33845-33854. [PMID: 35548826 PMCID: PMC9086739 DOI: 10.1039/c8ra05504a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
The main differences of health-promoting compounds and antioxidant activity of whole and individual edible parts of baby mustard were demonstrated.
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Yu-Xiao Tian
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Min Jiang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Qiao Yuan
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Qing Chen
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Yong Zhang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Ya Luo
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Fen Zhang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Hao-Ru Tang
- College of Horticulture
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
26
|
Thomas M, Badr A, Desjardins Y, Gosselin A, Angers P. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chem 2017; 245:1204-1211. [PMID: 29287343 DOI: 10.1016/j.foodchem.2017.11.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
The agrifood industry produces tons of waste and substandard products that are discarded at great expense. Valorization of industrial residues curbs issues related to food security and environmental problems. Broccoli (Brassica oleracea var. italica) is associated with varied beneficial health effects, but its production yields greater than 25% rejects. We aimed to characterize and quantify industrial broccoli by-products for their glucosinolate and polyphenol contents as a first step towards industrial bio-refining. Broccoli segments and rejected lots of 10 seed cultivars were analyzed using UPLC MS/MS. Variability in the contents of bioactive molecules was observed within and between the cultivars. Broccoli by-products were rich in glucosinolates (0.2-2% dry weight sample), predominantly glucoraphanin (32-64% of the total glucosinolates), whereas the polyphenolic content was less than 0.02% dry weight sample. Valorization of industrial residues facilitates the production of high value functional food ingredients along with socio-economic sustainability.
Collapse
Affiliation(s)
- Minty Thomas
- Department of Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada.
| | - Ashraf Badr
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Horticulture Department, Faculty of Agriculture, Zagazig University, Egypt.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Department of Phytology, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada.
| | - Andre Gosselin
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada; Department of Phytology, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada.
| | - Paul Angers
- Department of Food Sciences, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
27
|
Bell L, Wagstaff C. Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9379-9403. [PMID: 28968493 DOI: 10.1021/acs.jafc.7b03628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glucosinolates (GSLs) and isothiocyanates (ITCs) produced by Brassicaceae plants are popular targets for analysis due to the health benefits associated with them. Breeders aim to increase the concentrations in commercial varieties; however, there are few examples of this. The most well-known is Beneforté broccoli, which has increased glucoraphanin/sulforaphane concentrations compared to those of conventional varieties. It was developed through traditional breeding methods with considerations for processing, consumption, and health made throughout this process. Many studies presented in the literature do not take a holistic approach, and key points about breeding, cultivation methods, postharvest storage, sensory attributes, and consumer preferences are not properly taken into account. In this review, we draw together data for multiple species and address how such factors can influence GSL profiles. We encourage researchers and institutions to engage with industry and consumers to produce research that can be utilized in the improvement of Brassicaceae crops.
Collapse
Affiliation(s)
- Luke Bell
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| | - Carol Wagstaff
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| |
Collapse
|
28
|
Sahamishirazi S, Zikeli S, Fleck M, Claupein W, Graeff-Hoenninger S. Development of a near-infrared spectroscopy method (NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli ( Brassica oleracea convar. botrytis var. italica ). Food Chem 2017; 232:272-277. [DOI: 10.1016/j.foodchem.2017.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
|
29
|
Stability of Bioactive Compounds in Broccoli as Affected by Cutting Styles and Storage Time. Molecules 2017; 22:molecules22040636. [PMID: 28420123 PMCID: PMC6154435 DOI: 10.3390/molecules22040636] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022] Open
Abstract
Broccoli contains bioactive molecules and thus its consumption is related with the prevention of chronic and degenerative diseases. The application of wounding stress to horticultural crops is a common practice, since it is the basis for the fresh-cut produce industry. In this study, the effect of four different cutting styles (CSs) (florets (CS1), florets cut into two even pieces (CS2), florets cut into four even pieces (CS3), and florets processed into chops (CS4)) and storage time (0 and 24 h at 20 °C) on the content of bioactive compounds in broccoli was evaluated. Immediately after cutting, 5-O-caffeoylquinic acid and caffeic acid content increased by 122.4% and 41.6% in CS4 and CS2, respectively. Likewise, after storage, 3-O-caffeoylquinic acid and 5-O-caffeoylquinic acid increased by 46.7% and 98.2%, respectively in CS1. Glucoerucin and gluconasturtiin content decreased by 62% and 50%, respectively in CS3; whereas after storage most glucosinolates increased in CS1. Total isothiocyanates, increased by 133% immediately in CS4, and after storage CS1 showed 65% higher levels of sulforaphane. Total ascorbic acid increased 35% after cutting in CS2, and remained stable after storage. Results presented herein would allow broccoli producers to select proper cutting styles that preserve or increase the content of bioactive molecules.
Collapse
|
30
|
Identification and Quantification of Glucosinolates in Kimchi by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Int J Anal Chem 2017; 2017:6753481. [PMID: 28298926 PMCID: PMC5337378 DOI: 10.1155/2017/6753481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
A novel and simple method for detecting five glucosinolates (glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin, and 4-methoxyglucobrassicin) in kimchi was developed using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). The chromatographic peaks of the five glucosinolates were successfully identified by comparing their retention times, mass spectra. The mobile phase was composed of A (acetonitrile) and B (water). As for glucosinolate, the relative quantities were found through sinigrin, and five different compounds that have not been previously discovered in kimchi were observed. Monitoring was carried out on the glucosinolate in 20 kimchis distributed in markets, and this study examined the various quality and quantity compositions of the five components. The glucoalyssin content ranged from 0.00 to 7.07 μmol/g of day weight (DW), with an average content of 0.86 μmol/g of DW, whereas the gluconapin content ranged from 0.00 to 5.85 μmol/g of DW, with an average of 1.17 μmol/g of DW. The content of glucobrassicanapin varied between 0.00 and 11.87 μmol/g of DW (average = 3.03 μmol/g of DW), whereas that of glucobrassicin varied between 0.00 and 0.42 μmol/g of DW (average = 0.06 μmol/g of DW). The 4-methoxyglucobrassicin content ranged from 0.12 to 9.36 μmol/g of DW (average = 3.52 μmol/g of DW). A comparison of the contents revealed that, in most cases, the content of 4-methoxyglucobrassicin was the highest.
Collapse
|
31
|
Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F. Glucosinolates in Food. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
32
|
Yin L, Chen C, Chen G, Cao B, Lei J. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey). Molecules 2015; 20:20254-67. [PMID: 26569208 PMCID: PMC6332273 DOI: 10.3390/molecules201119688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/18/2023] Open
Abstract
Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.
Collapse
Affiliation(s)
- Ling Yin
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Changming Chen
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Guoju Chen
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Bihao Cao
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| | - Jianjun Lei
- Department of Hortscience, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Bhandari SR, Jo JS, Lee JG. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Molecules 2015; 20:15827-41. [PMID: 26334264 PMCID: PMC6331803 DOI: 10.3390/molecules200915827] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 11/16/2022] Open
Abstract
Glucosinolate (GSL) profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot) were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g(-1)) and sprouts (162.19 µmol·g(-1)), whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g(-1)) and roots (73.61 µmol·g(-1)). The lowest GSL concentrations were observed in radish across all tissues examined.
Collapse
Affiliation(s)
- Shiva Ram Bhandari
- Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Korea.
| | - Jung Su Jo
- Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Korea.
| | - Jun Gu Lee
- Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Korea.
- Institute of Agricultural Science & Technology, Chonbuk National University, Jeonju 561-756, Korea.
| |
Collapse
|
34
|
Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 2015. [PMID: 26205053 PMCID: PMC6332298 DOI: 10.3390/molecules200713089] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.
Collapse
|
35
|
Wang J, Zhao Z, Sheng X, Yu H, Gu H. Influence of leaf-cover on visual quality and health-promoting phytochemicals in loose-curd cauliflower florets. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Renaud ENC, Lammerts van Bueren ET, Myers JR, Paulo MJ, van Eeuwijk FA, Zhu N, Juvik JA. Variation in broccoli cultivar phytochemical content under organic and conventional management systems: implications in breeding for nutrition. PLoS One 2014; 9:e95683. [PMID: 25028959 PMCID: PMC4100739 DOI: 10.1371/journal.pone.0095683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/31/2014] [Indexed: 11/28/2022] Open
Abstract
Organic agriculture requires cultivars that can adapt to organic crop management systems without the use of synthetic pesticides as well as genotypes with improved nutritional value. The aim of this study encompassing 16 experiments was to compare 23 broccoli cultivars for the content of phytochemicals associated with health promotion grown under organic and conventional management in spring and fall plantings in two broccoli growing regions in the US (Oregon and Maine). The phytochemicals quantified included: glucosinolates (glucoraphanin, glucobrassicin, neoglucobrassin), tocopherols (δ-, γ-, α-tocopherol) and carotenoids (lutein, zeaxanthin, β-carotene). For glucoraphanin (17.5%) and lutein (13%), genotype was the major source of total variation; for glucobrassicin, region (36%) and the interaction of location and season (27.5%); and for neoglucobrassicin, both genotype (36.8%) and its interactions (34.4%) with season were important. For δ- and γ-tocopherols, season played the largest role in the total variation followed by location and genotype; for total carotenoids, genotype (8.41-13.03%) was the largest source of variation and its interactions with location and season. Overall, phytochemicals were not significantly influenced by management system. We observed that the cultivars with the highest concentrations of glucoraphanin had the lowest for glucobrassicin and neoglucobrassicin. The genotypes with high concentrations of glucobrassicin and neoglucobrassicin were the same cultivars and were early maturing F1 hybrids. Cultivars highest in tocopherols and carotenoids were open pollinated or early maturing F1 hybrids. We identified distinct locations and seasons where phytochemical performance was higher for each compound. Correlations among horticulture traits and phytochemicals demonstrated that glucoraphanin was negatively correlated with the carotenoids and the carotenoids were correlated with one another. Little or no association between phytochemical concentration and date of cultivar release was observed, suggesting that modern breeding has not negatively influenced the level of tested compounds. We found no significant differences among cultivars from different seed companies.
Collapse
Affiliation(s)
- Erica N. C. Renaud
- Wageningen UR Plant Breeding, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | | | - James R. Myers
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Maria João Paulo
- Biometris, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Ning Zhu
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - John A. Juvik
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
37
|
Hernández-Hierro JM, Esquerre C, Valverde J, Villacreces S, Reilly K, Gaffney M, González-Miret ML, Heredia FJ, O’Donnell CP, Downey G. Preliminary study on the use of near infrared hyperspectral imaging for quantitation and localisation of total glucosinolates in freeze-dried broccoli. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2013.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Sotelo T, Soengas P, Velasco P, Rodríguez VM, Cartea ME. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. PLoS One 2014; 9:e91428. [PMID: 24614913 PMCID: PMC3948865 DOI: 10.1371/journal.pone.0091428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/11/2014] [Indexed: 12/29/2022] Open
Abstract
Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.
Collapse
Affiliation(s)
- Tamara Sotelo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Víctor M. Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|
39
|
Ares AM, Nozal MJ, Bernal JL, Bernal J. Optimized extraction, separation and quantification of twelve intact glucosinolates in broccoli leaves. Food Chem 2013; 152:66-74. [PMID: 24444907 DOI: 10.1016/j.foodchem.2013.11.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/30/2022]
Abstract
A new method has been developed and validated to determine twelve intact glucosinolates (glucoiberin, GIB; glucoraphanin, GRA; glucoerucin GER; gluconapin, GNA; glucotropaeolin, GTL; glucobrassicin, GBC; gluconasturtiin, GST; glucoalyssin, ALY; 4-hydroxyglucobrassicin, 4-OH; 4-metoxyglucobrassicin, 4ME; neoglucobrassicin, NEO; sinigrin, SIN) in broccoli leaves using liquid chromatography (LC) coupled to diode array (DAD) and electrospray ionization mass spectrometry (ESI-MS) detection. An extraction procedure has also been proposed and optimized by means of statistical analysis (the Box-Behnken design and analysis of variance); this is based on the deactivation of myrosinase using a microwave and heated water. Low limits of detection and quantification were obtained, ranging from 10 to 72 μg/g with DAD and 0.01 to 0.23 μg/g with ESI-MS, and the resulting recovery values ranged from 87% to 106% in all cases. Finally, glucosinolates were analyzed in broccoli leaf samples from six different cultivars (Ramoso calabrese Parthenon, Marathon, Nubia, Naxos and Viola).
Collapse
Affiliation(s)
- Ana M Ares
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain
| | - María J Nozal
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain
| | - José L Bernal
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain
| | - José Bernal
- IU CINQUIMA, Analytical Chemistry Group, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
40
|
Pérez C, Barrientos H, Román J, Mahn A. Optimization of a blanching step to maximize sulforaphane synthesis in broccoli florets. Food Chem 2013; 145:264-71. [PMID: 24128476 DOI: 10.1016/j.foodchem.2013.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
A blanching step was designed to favor sulforaphane synthesis in broccoli. Blanching was optimised through a central composite design, and the effects of temperature (50-70 °C) and immersion time in water (5-15 min) on the content of total glucosinolates, glucoraphanin, sulforaphane, and myrosinase activity were determined. Results were analysed by ANOVA and the optimal condition was determined through response surface methodology. Temperature between 50 and 60 °C significantly increased sulforaphane content (p<0.05), whilst blanching at 70 and 74 °C diminished significantly this content, compared to fresh broccoli. The optimal blanching conditions given by the statistical model were immersion in water at 57 °C for 13 min; coinciding with the minimum glucosinolates and glucoraphanin content, and with the maximum myrosinase activity. In the optimal conditions, the predicted response of 4.0 μmol sulforaphane/g dry matter was confirmed experimentally. This value represents a 237% increase with respect to the fresh vegetable.
Collapse
Affiliation(s)
- Carmen Pérez
- Ph.D. Program in Food Science and Technology, University of Santiago of Chile, Obispo Manuel Umaña 050 Estación Central, Santiago, Chile
| | | | | | | |
Collapse
|
41
|
Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 2013; 1313:78-95. [PMID: 23899380 DOI: 10.1016/j.chroma.2013.07.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
Abstract
Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided.
Collapse
|
42
|
Sasaki K, Neyazaki M, Shindo K, Ogawa T, Momose M. Quantitative profiling of glucosinolates by LC–MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 903:171-6. [DOI: 10.1016/j.jchromb.2012.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/14/2012] [Accepted: 07/14/2012] [Indexed: 11/27/2022]
|