1
|
Sargsyan T, Simonyan HM, Stepanyan L, Tsaturyan A, Vicidomini C, Pastore R, Guerra G, Roviello GN. Neuroprotective Properties of Clove ( Syzygium aromaticum): State of the Art and Future Pharmaceutical Applications for Alzheimer's Disease. Biomolecules 2025; 15:452. [PMID: 40149988 PMCID: PMC11940766 DOI: 10.3390/biom15030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
This study explores the neuropharmacological potential of various molecular and amino acid components derived from Syzygium aromaticum (clove), an aromatic spice with a long history of culinary and medicinal use. Key bioactive compounds such as eugenol, α-humulene, β-caryophyllene, gallic acid, quercetin, and luteolin demonstrate antioxidant, anti-inflammatory, and neuroprotective properties by scavenging free radicals, modulating calcium channels, and reducing neuroinflammation and oxidative stress. Moreover, gallic acid and asiatic acid may exhibit protective effects, including neuronal apoptosis inhibition, while other useful properties of clove phytocompounds include NF-κB pathway inhibition, membrane stabilization, and suppression of pro-inflammatory pathways, possibly in neurons or other relevant cell types, further contributing to neuroprotection and cognitive enhancement. Amino acid analysis revealed essential and non-essential amino acids such as aspartic acid, serine, glutamic acid, glycine, histidine, and arginine in various clove parts (buds, fruits, branches, and leaves). These amino acids play crucial roles in neurotransmitter synthesis, immune modulation, antioxidant defense, and metabolic regulation. Collectively, these bioactive molecules and amino acids contribute to clove's antioxidant, anti-inflammatory, neurotrophic, and neurotransmitter-modulating effects, highlighting its potential as a preventive and therapeutic candidate for neurodegenerative disorders. While preliminary preclinical studies support these neuroprotective properties, further research, including clinical trials, is needed to validate the efficacy and safety of clove-based interventions in neuroprotection.
Collapse
Affiliation(s)
- Tatevik Sargsyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Hayarpi M. Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Lala Stepanyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
| | - Avetis Tsaturyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Raffaele Pastore
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2229-2258. [PMID: 39392484 PMCID: PMC11920337 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Sun Y, Zhou D, Liu A, Zhou Y, Zhao Y, Yuan Y, Guo W, Li J. Liangxue Tongyu Prescription exerts neuroprotection by regulating the microbiota-gut-brain axis of rats with acute intracerebral hemorrhage. Brain Res Bull 2025; 220:111186. [PMID: 39746523 DOI: 10.1016/j.brainresbull.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Liangxue Tongyu Prescription (LTP) is a classic herbal formula for treating acute intracerebral hemorrhage (AICH) in China. Previous studies have shown that LTP significantly ameliorates neurological impairments and gastrointestinal dysfunction in patients with AICH. However, the underlying molecular mechanism remains unclear. The aim of this study is to investigate whether LTP exerts its neuroprotective effect on AICH rats through the microbiota-gut-brain axis and explore its potential underlying mechanism. In the current study, AICH models were established by injecting autologous whole blood into the right caudate nucleus of rats. Behavioural and pathological evaluations demonstrated that LTP ameliorated neuronal and intestinal damage in AICH rats. Analysis via western blot, quantitative real-time PCR, immunohistochemistry (IHC) and tunel staining indicated that LTP upregulated the expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor(NGF) and reduced neuronal cell apoptosis. Additionally, 16S rDNA sequencing revealed that LTP mitigated dysbiosis of intestinal microbiota in AICH rats. LTP increased the levels of noradrenaline (NA), dopamine (DA), glutamate (GLU) and modulated brain-gut peptides such as gastrin (GAS), motilin (MTL), ghrelin in AICH rats. Furthermore, LTP enhanced vagus nerve discharge. In summary, this research provides evidence suggesting that LTP's influence on AICH may involve modulation of the microbiota-gut-brain axis, offering a potential scientific rationale for its therapeutic efficacy in improving outcomes of AICH.
Collapse
Affiliation(s)
- Yingying Sun
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dandan Zhou
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Anlan Liu
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yu Zhou
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Zhao
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Yuan
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Weifeng Guo
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jianxiang Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China.
| |
Collapse
|
4
|
Alimohammadi S, Mohaddes G, Keyhanmanesh R, Athari SZ, Azizifar N, Farajdokht F. Intranasal AdipoRon mitigates motor and cognitive deficits in hemiparkinsonian rats through neuroprotective mechanisms against oxidative stress and synaptic dysfunction. Neuropharmacology 2025; 262:110180. [PMID: 39393589 DOI: 10.1016/j.neuropharm.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
While motor symptoms are the most well-known manifestation of Parkinson's disease (PD), patients may also suffer from non-motor signs like cognitive impairments. The adiponectin receptor agonist AdipoRon (Adipo) has shown neuroprotective effects in preclinical studies. The objective of this study was to determine the potential benefits of chronic intranasal treatment of Adipo on motor function and cognitive performance in a hemiparkinsonian rat model caused by injecting 6-hydroxydopamine (6-OHDA) into the left forebrain bundle. After one week, PD rats were given either a vehicle or one of three dosages of Adipo (0.1, 1, and 10 μg) or levodopa (10 mg/kg orally) daily for 21 days. Recognition and spatial memory were determined using the novel object recognition test (NORT) and the Barnes maze test, respectively. The hippocampal tissues of the animals were harvested to examine oxidative stress status as well as the protein expressions of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD-95). In hemiparkinsonian rats, motor impairments, recognition memory, and spatial memory were all improved by chronic intranasal Adipo at 1 and 10 μg. Furthermore, we found that unilateral 6-OHDA injection elevated hippocampal oxidative stress (ROS) while concurrently reducing total antioxidant capacity (TAC), BDNF, PSD-95, and antioxidant enzymes (SOD, GPx). However, Adipo 10 μg significantly reduced these biochemical alterations in the hippocampus of 6-OHDA-lesioned rats. Chronic intranasal Adipo ameliorated spatial and recognition memory deterioration in hemiparkinsonian rats, presumably by increasing hippocampal synaptic protein levels, reducing oxidative stress, and increasing BDNF.
Collapse
Affiliation(s)
- Soraya Alimohammadi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Azizifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Emil AB, Hassan NH, Ibrahim S, Hassanen EI, Eldin ZE, Ali SE. Propolis extract nanoparticles alleviate diabetes-induced reproductive dysfunction in male rats: antidiabetic, antioxidant, and steroidogenesis modulatory role. Sci Rep 2024; 14:30607. [PMID: 39715797 DOI: 10.1038/s41598-024-81949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetes can affect male fertility via oxidative stress and endocrine system disruption. Nanomedicine based on natural products is employed to address diabetes complications. The current study aims to investigate the potential beneficial effect of propolis extract nanoparticles against diabetes-induced testicular damage in male rats. Sixty male rats were randomly allocated to six groups (n = 10). The first group served as a control group. The second and third received propolis extract (Pr) and propolis extract nanoparticles (PrNPs). The fourth group is the diabetic group that received streptozotocin (STZ) (55 mg kg/bwt) single-dose i/p. The fifth and sixth groups are diabetic rats treated with Pr and PrNPs. Both Pr and PrNPs were received at a dose (100 mg/kg bwt) orally. After 60 days, animals were euthanized, then pancreatic and testicular tissues were collected for redox status evaluation, gene expression analysis, and histopathological examination. Also, hormonal analysis (Insulin, total testosterone, and luteinizing hormone (LH) ) along with semen quality evaluation were done. Results showed that the induction of diabetes led to testicular and pancreatic redox status deterioration showing a reduction in reduced glutathione (GSH) as well as elevation of malondialdehyde (MDA), and nitric oxide (NO) levels. Also, relative transcript levels of testicular cytochrome P450 family 11 subfamily A member 1 (CYP11A1), 3β-Hydroxysteroid dehydrogenase (HSD-3β), and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) were significantly down-regulated, While the advanced glycation end-product receptor (AGER) relative gene expression was significantly upregulated. Furthermore, hormonal and semen analysis disturbances were observed. Upon treatment with Pr and PrNPs, a marked upregulation of testicular gene expression of CYP11A1, HSD-3β, and NFE2L2 as well as a downregulation of AGER, was observed. Hormones and semen analysis were improved. In addition, the testicular and pancreatic redox status was enhanced. Results were confirmed via histopathological investigations. PrNPs outperformed Pr in terms of steroidogenesis pathway improvement, testicular antioxidant defense mechanism augmentation, and prospective antidiabetic activity.
Collapse
Affiliation(s)
- Abram B Emil
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef, 62511, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
6
|
Niu C, Dong M, Niu Y. Role of Glutathione in Parkinson's Disease Pathophysiology and Therapeutic Potential of Polyphenols. Phytother Res 2024; 38:5567-5582. [PMID: 39290049 DOI: 10.1002/ptr.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Oxidative stress is recognized to have a central role in the initiation and progression of Parkinson's disease (PD). Within the brain, neurons are particularly sensitive to oxidation due in part to their weak intrinsic antioxidant defense. Theoretically, neurons mostly depend on neighboring astrocytes to provide antioxidant protection by supplying cysteine-containing products for glutathione (GSH) synthesis. Astrocytes and neurons possess several amino acid transport systems for GSH and its precursors. Indeed, GSH is the most abundant intrinsic antioxidant in the central nervous system. The GSH depletion and/or alterations in its metabolism in the brain contribute to the pathogenesis of PD. Noteworthy, polyphenols possess potent antioxidant activity and can augment the GSH redox system. Numerous in vitro and in vivo studies have indicated that polyphenols exhibit potent neuroprotective effects in PD. Epidemiological studies have found an association between the consumption of dietary polyphenols and a lower PD risk. In this review, we summarize current knowledge on the biosynthesis and metabolism of GSH in the brain, with an emphasis on their contribution and therapeutic potential in PD. In particular, we focus on polyphenols that can increase brain GSH levels against PD. Furthermore, some current challenges and future perspectives for polyphenol-based therapies are also discussed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, New York, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
7
|
N P D, Kondengadan MS, Sweilam SH, Rahman MH, Muhasina KM, Ghosh P, Bhargavi D, Palati DJ, Maiz F, Duraiswamy B. Neuroprotective role of coconut oil for the prevention and treatment of Parkinson's disease: potential mechanisms of action. Biotechnol Genet Eng Rev 2024; 40:3346-3378. [PMID: 36208039 DOI: 10.1080/02648725.2022.2122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neurodegenerative disease (ND) is a clinical condition in which neurons degenerate with a consequent loss of functions in the affected brain region. Parkinson's disease (PD) is the second most progressive ND after Alzheimer's disease (AD), which affects the motor system and is characterized by the loss of dopaminergic neurons from the nigrostriatal pathway in the midbrain, leading to bradykinesia, rigidity, resting tremor, postural instability and non-motor symptoms such as cognitive declines, psychiatric disturbances, autonomic failures, sleep difficulties, and pain syndrome. Coconut oil (CO) is an edible oil obtained from the meat of Cocos nucifera fruit that belongs to the palm family and contains 92% saturated fatty acids. CO has been shown to mediate oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and excitotoxicity-induced effects in PD in various in vitro and in vivo models as a multi-target bioagent. CO intake through diet has also been linked to a decreased incidence of PD in people. During digestion, CO is broken down into smaller molecules, like ketone bodies (KBs). The KBs then penetrate the blood-brain barrier (BBB) and are used as a source of energy its ability to cross BBB made this an important class of natural remedies for the treatment of ND. The current review describes the probable neuroprotective potential pathways of CO in PD, either prophylactic or therapeutic. In addition, we briefly addressed the important pathogenic pathways that might be considered to investigate the possible use of CO in neurodegeneration such as AD and PD.
Collapse
Affiliation(s)
- Deepika N P
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - K M Muhasina
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Bhargavi
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Jyothi Palati
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Fathi Maiz
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia, P.O. Box 9004
- Laboratory of Thermal Processes, Center for Energy Research and Technology, Borj-Cedria, BP:95 Tunisia
| | - B Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| |
Collapse
|
8
|
Recart VM, Spohr L, de Aguiar MSS, de Souza AA, Goularte KCM, Bona NP, Pedra NS, Teixeira FC, Stefanello FM, Spanevello RM. Gallic acid attenuates lipopolysaccharide - induced memory deficits, neurochemical changes, and peripheral alterations in purinergic signaling. Metab Brain Dis 2024; 40:43. [PMID: 39601942 DOI: 10.1007/s11011-024-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2024] [Indexed: 11/29/2024]
Abstract
Neuroinflammation is associated with many neurological disorders. Gallic acid (GA) has attracted significant attention due to its biological properties, such as neuroprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the effects of GA in memory, TNF-α levels, oxidative stress, and activities of acetylcholinesterase (AChE), Na+, K+-ATPase and Ca2+-ATPase in the brain of mice exposed to lipopolysaccharide (LPS). Additionally, we evaluated alterations in adenine nucleotides and nucleosides in the serum. Male mice were orally pretreated with vehicle or GA (50 or 100 mg/kg) for 14 days. Between days 8 and 14, the animals also received LPS injection (250 µg/kg) or saline. At the end of the experimental protocol, the animals were submitted to object recognition test, euthanized and cerebral cortex, hippocampus, striatum and blood were collected. LPS induced memory deficits, which were prevented by GA treatment. GA protected against LPS-induced oxidative damage in the cerebral cortex, hippocampus and striatum by reducing reactive oxygen species and nitrite levels, while increasing total thiol content and activities of antioxidant enzymes. GA also prevented LPS-induced alterations in AChE, Na+, K+-ATPase, and Ca2+-ATPase activities in brain structures. LPS elevated TNF-α levels in the hippocampus and cerebral cortex, which were attenuated by GA treatment. Furthermore, LPS caused a reduction in ADP and AMP hydrolysis and an increase in adenosine deamination in the serum, which were also prevented by GA. The effects of GA against neuroinflammation may be attributed to its potent antioxidant and anti-inflammatory properties, which modulate various pathways, including those involved in memory mechanisms.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil.
| |
Collapse
|
9
|
Dastan M, Rajaei Z, Sharifi M, Salehi H. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Metab Brain Dis 2024; 40:12. [PMID: 39556267 DOI: 10.1007/s11011-024-01441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
Neuroinflammation and apoptosis play critical roles in the pathogenesis of Alzheimer's disease (AD), which is responsible for most cases of dementia in the elderly people. Gallic acid is a phenolic compound with radical scavenging, anti-inflammatory and anti-apoptotic activities. This study aimed to explore the protective effects of gallic acid on LPS-induced spatial memory impairment and find the underlying mechanisms. Gallic acid was orally administered (100 mg/kg) to male Wistar rats for 12 days. LPS was injected intraperitoneally at a dose of 1 mg/kg on days 8-12. Morris water maze paradigm was used to evaluate spatial learning and memory. The mRNA level of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α) and Caspase 3, lipid peroxidation and total thiol level was assessed in the rat hippocampus. Neuronal loss and histological changes were also evaluated in the brain. LPS treatment resulted in spatial learning and memory impairment, upregulation of NF-κB, TNF-α, and Caspase 3 mRNA expression, increased lipid peroxidation, decreased total thiol level, and neuronal loss in the hippocampus. Moreover, treatment with gallic acid at a dosage of 100 mg/kg ameliorated memory decline, reduced the mRNA level of NF-κB, TNF-α, and Caspase 3, decreased lipid peroxidation and increased total thiol level in the hippocampus. Gallic acid also prevented LPS-induced neuronal loss and histological changes in the brain. Conclusively, our study demonstrated that gallic acid exerts neuroprotective effect against LPS-induced memory decline in rats. This outcome could be due to anti-inflammatory, antioxidant, and anti-apoptotic activities of gallic acid.
Collapse
Affiliation(s)
- Maryam Dastan
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Khongrum J, Yingthongchai P, Tateing S, Kaewkaen P. Cognitive-Enhancing Effect of Marine Brown Algae-Derived Phenolics through S100B Inhibition and Antioxidant Activity in the Rat Model of Ischemic Stroke. Mar Drugs 2024; 22:451. [PMID: 39452859 PMCID: PMC11509588 DOI: 10.3390/md22100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Cognitive impairments are frequently reported after ischemic strokes. Novel and effective treatments are required. This study aimed to develop a functional ingredient obtained from marine algae and to determine the effect of the extract on antioxidative stress, as well as neuroprotective effects, in a rat model of MCAO-induced ischemic stroke. Among the selected marine algal extracts, Sargassum polycystum displayed the highest total phenolic content and antioxidative potential, and was subsequently used to evaluate cognitive function in rat models of ischemic stroke. The S. polycystum extract, administered at doses of 100, 300, and 500 mg/kg BW, significantly improved cognitive function by enhancing cognitive performance in the Morris water maze and novel object recognition tests. Biochemical changes revealed that providing S. polycystum increased the activities of SOD, CAT, and GSH-Px by 52.48%, 50.77%, and 66.20%, respectively, and decreased the concentrations of MDA by 51.58% and S100B by 36.64% compared to the vehicle group. These findings suggest that S. polycystum extract may mitigate cognitive impairment in ischemic stroke by reducing oxidative stress and inhibiting S100B expression, thus highlighting its potential as a functional ingredient for drugs and nutraceuticals aimed at neuroprotection.
Collapse
Affiliation(s)
- Jurairat Khongrum
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (P.Y.)
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pratoomporn Yingthongchai
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (P.Y.)
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pratchaya Kaewkaen
- Animal Cognitive Neuroscience Laboratory (ACoN), Faculty of Education, Burapha University, Chon Buri 20131, Thailand
| |
Collapse
|
11
|
Ismail OI, Hassanin HM. Ameliorative effects of gallic acid on tebuconazole-induced adverse effects in the cerebellum of adult albino rats: histopathological and immunohistochemical evidence. Ultrastruct Pathol 2024; 48:351-366. [PMID: 39105544 DOI: 10.1080/01913123.2024.2387685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Tebuconazole (TEB) is a common triazole sterol demethylation inhibitor fungicide utilized to manage a variety of diseases in crops like cereals, fruits, and vegetables. The aim of this work was to assess the effects of TEB on the structure of the cerebellum in adult albino rats and possible protective impact of co-administration of Gallic acid (GA). Four groups of forty adult male albino rats were randomly selected, and the rats in group I received corn oil through daily gavage for 4 weeks. Group II received GA dissolved in the normal saline at a dose of 100 mg/kg through daily gavage for 4 weeks, group III administered with TEB dissolved in corn oil at its acceptable daily intake dose (0.02 mg/kg body weight) through daily gavage for 4 weeks, group IV rats received both TEB and GA. For light microscopic, ultrastructural, and immunohistochemical investigations, cerebellar specimens were prepared. TEB exposure led to neuronal damage in the form of degenerated Purkinje cells with vacuolated cytoplasm, areas of lost Purkinje cells, the basket cells appeared vacuolated with degenerated neuropil, the granule cells clumped with congested areas between them, dilated cerebellar islands, weak positive bcl2 immunoreactions in the Purkinje cells, and numerous GFAP-positive astrocytes. GA mitigated TEB-mediated histological changes in the cerebellar cortex. We concluded that TEB caused Purkinje neurons in the rat cerebellar cortex to degenerate and undergo apoptosis. GA had a neuroprotective benefit against TEB toxicity in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Omnia I Ismail
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hala Mohamed Hassanin
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Thong-Asa W, Wassana C, Sukkasem K, Innoi P, Dechakul M, Timda P. Neuroprotective effect of gallic acid in mice with rotenone-induced neurodegeneration. Exp Anim 2024; 73:259-269. [PMID: 38296489 PMCID: PMC11254496 DOI: 10.1538/expanim.23-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 07/12/2024] Open
Abstract
We investigated the effect of gallic acid (Gal) against neurodegenerative pathophysiology relevant to Parkinsion's disease (PD) in mice with rotenone-induced toxicity. Forty male institute of cancer research (ICR) mice were randomly divided into four groups: sham-veh, PD-veh (received subcutaneous injection with 2.5 mg/kg/48 h of rotenone); PD-Gal50; and PD-Gal100 (the latter two groups received subcutaneous injection with 2.5 mg/kg/48 h of rotenone and oral gavage with gallic acid 50 and 100 mg/kg/48 h, respectively). All treatments continued for 5 weeks with motor ability assessments once per week using hanging and rotarod tests. Brain tissue evaluation of oxidative status, together with striatal and substantia nigra par compacta (SNc) histological and immunohistological assessments were performed. The results indicate that rotenone significantly induced muscle weakness and motor coordination deficit from the first week of rotenone injection, and a significant increase in neuronal degeneration was presented in both the striatum and SNc. Decreased tyrosine hydroxylase and increment of glia fibrillary acidic protein expression in SNc were depicted. The deteriorating effects of rotenone were ameliorated by gallic acid treatment, especially 100 mg/kg dose. Rotenone did not induce a significant change of lipid peroxidation indicated, but gallic acid exhibited a significant inhibitory effect on the lipid peroxidation increment. Rotenone showed a significant reduction of superoxide dismutase activity, and neither 50 nor 100 mg/kg of gallic acid could alleviate this enzyme activity. In conclusion, gallic acid ameliorated motor deficits and preserving SNc neurons which led to maintaining of the dopaminergic source, including a nurturing effect on supporting astrocytes in mice with rotenone-induced neurodegeneration.
Collapse
Affiliation(s)
- Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| | - Chatrung Wassana
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| | - Kunyarat Sukkasem
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| | - Pichcha Innoi
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| | - Montira Dechakul
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| | - Pattraporn Timda
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| |
Collapse
|
13
|
Pulido-Mateos EC, Lessard-Lord J, Desjardins Y, Roy D. Biotransformation of camu-camu galloylated ellagitannins by Lactiplantibacillus plantarum with extracellular tannase activity. Food Funct 2024; 15:7189-7199. [PMID: 38895881 DOI: 10.1039/d4fo00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Some strains of Lactiplantibacillus plantarum produce specific tannases that could enable the metabolism of ellagitannins into more bioavailable phenolic metabolites, thereby promoting the health effects of these polyphenols. However, the metabolic ability of these strains remains poorly understood. In this study, we analyzed the ability of broad esterase-producing (Est_1092+) and extracellular tannase-producing (TanA+) strains to convert a wide assortment of ellagitannins from camu-camu (Myrciaria dubia) fruit. To this end, forty-three strains were screened to identify and sequence (WGS) those producing Est_1092. In addition, six previously reported TanA+ strains were included in the study. Each strain (Est_1092+ or TanA+) was inoculated into a minimal culture medium supplemented with an aqueous camu-camu extract. After fermentation, supernatants were collected for semi-quantification of ellagitannins and their metabolites by mass spectrometry. For analysis, the strains were grouped according to their enzyme type and compared with an Est_1092 and TanA-lacking strain. Out of the forty-three isolates, three showed Est_1092 activity. Of the Est_1092+ and TanA+ strains, only the latter hydrolyzed the tri-galloyl-HHDP-glucose and various isomers of HHDP-galloyl-glucose, releasing HHDP-glucose and gallic acid. TanA+ strains also transformed three isomers of di-HHDP-galloyl-glucose, liberating di-HHDP-glucose and gallic acid. Overall, TanA+ strains released 3.6-4.9 times more gallic acid than the lacking strain. In addition, those exhibiting gallate decarboxylase activity pursued gallic acid metabolism to release pyrogallol. Neither Est_1092+ nor TanA+ strains transformed ellagitannin-core structures. In summary, TanA+ L. plantarum strains have the unique ability to hydrolyze a wide range of galloylated ellagitannins, releasing phenolic metabolites with additional health benefits.
Collapse
Affiliation(s)
- Elena C Pulido-Mateos
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
- Laboratoire de génomique microbienne, Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada
| | - Jacob Lessard-Lord
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
| | - Yves Desjardins
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
| | - Denis Roy
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
- Laboratoire de génomique microbienne, Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada
| |
Collapse
|
14
|
Carvalho F, Lahlou RA, Silva LR. Phenolic Compounds from Cherries and Berries for Chronic Disease Management and Cardiovascular Risk Reduction. Nutrients 2024; 16:1597. [PMID: 38892529 PMCID: PMC11174419 DOI: 10.3390/nu16111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. Therefore, there is increasing interest in dietary interventions to reduce risk factors associated with these conditions. Cherries and berries are rich sources of bioactive compounds and have attracted attention for their potential cardiovascular benefits. This review summarises the current research on the effects of cherry and berry consumption on cardiovascular health, including in vivo studies and clinical trials. These red fruits are rich in phenolic compounds, such as anthocyanins and flavonoids, which have multiple bioactive properties. These properties include antioxidant, anti-inflammatory, and vasodilatory effects. Studies suggest that regular consumption of these fruits may reduce inflammation and oxidative stress, leading to lower blood pressure, improved lipid profiles, and enhanced endothelial function. However, interpreting findings and establishing optimal dosages is a challenge due to the variability in fruit composition, processing methods, and study design. Despite these limitations, the evidence highlights the potential of cherries and berries as components of preventive strategies against CVD. Further research is needed to maximise their health benefits and improve clinical practice.
Collapse
Affiliation(s)
- Filomena Carvalho
- SPRINT—Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.)
| | - Radhia Aitfella Lahlou
- SPRINT—Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.)
| | - Luís R. Silva
- SPRINT—Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
15
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Weian W, Yunxin Y, Ziyan W, Qianzhou J, Lvhua G. Gallic acid: design of a pyrogallol-containing hydrogel and its biomedical applications. Biomater Sci 2024; 12:1405-1424. [PMID: 38372381 DOI: 10.1039/d3bm01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.
Collapse
Affiliation(s)
- Wu Weian
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Ye Yunxin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Wang Ziyan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Jiang Qianzhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Guo Lvhua
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| |
Collapse
|
17
|
Rangsinth P, Pattarachotanant N, Wang W, Shiu PHT, Zheng C, Li R, Tencomnao T, Chuchawankul S, Prasansuklab A, Cheung TMY, Li J, Leung GPH. Neuroprotective Effects of Polysaccharides and Gallic Acid from Amauroderma rugosum against 6-OHDA-Induced Toxicity in SH-SY5Y Cells. Molecules 2024; 29:953. [PMID: 38474465 DOI: 10.3390/molecules29050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The pharmacological activity and medicinal significance of Amauroderma rugosum (AR) have rarely been documented. We examined the antioxidant and neuroprotective effects of AR on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in an SH-SY5Y human neuroblastoma cell model of Parkinson's disease (PD) and explored the active ingredients responsible for these effects. The results showed that the AR aqueous extract could scavenge reactive oxygen species and reduce SH-SY5Y cell death induced by 6-OHDA. In addition, the AR aqueous extract increased the survival of Caenorhabditis elegans upon juglone-induced toxicity. Among the constituents of AR, only polysaccharides and gallic acid exhibited antioxidant and neuroprotective effects. The AR aqueous extract reduced apoptosis and increased the expression of phospho-Akt, phospho-mTOR, phospho-MEK, phospho-ERK, and superoxide dismutase-1 in 6-OHDA-treated SH-SY5Y cells. The polysaccharide-rich AR extract was slightly more potent than the aqueous AR extract; however, it did not affect the expression of phospho-Akt or phospho-mTOR. In conclusion, the AR aqueous extract possessed antioxidant and neuroprotective properties against 6-OHDA-induced toxicity in SH-SY5Y cells. The mechanism of action involves the upregulation of the Akt/mTOR and MEK/ERK-dependent pathways. These findings indicate the potential utility of AR and its active ingredients in preventing or treating neurodegenerative disorders associated with oxidative stress such as PD.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wen Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Kim J, Kim BK, Moh SH, Jang G, Ryu JY. Investigation of the General Molecular Mechanisms of Gallic Acid via Analyses of Its Transcriptome Profile. Int J Mol Sci 2024; 25:2303. [PMID: 38396979 PMCID: PMC10888745 DOI: 10.3390/ijms25042303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase β and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses.
Collapse
Affiliation(s)
- Jiyeon Kim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - Bo Kyung Kim
- Department of Biotechnology, Duksung Women’s University, 33 Samyang-Ro 144-Gil, Dobong-gu, Seoul 01369, Republic of Korea;
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women’s University, 33 Samyang-Ro 144-Gil, Dobong-gu, Seoul 01369, Republic of Korea;
| |
Collapse
|
19
|
Kim HB, Hong YJ, Lee SH, Kee HJ, Kim M, Ahn Y, Jeong MH. Gallic Acid Inhibits Proliferation and Migration of Smooth Muscle Cells in a Pig In-Stent Restenosis Model. Chonnam Med J 2024; 60:32-39. [PMID: 38304132 PMCID: PMC10828086 DOI: 10.4068/cmj.2024.60.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
In-stent restenosis (ISR) develops primarily due to neointimal hyperplasia. Gallic acid (GA) has anti-inflammatory, antioxidant, and cardioprotective effects. This study sought to investigate the effects of GA on neointimal hyperplasia and proliferation and migration of vascular smooth muscle cells (VSMCs) in a pig ISR model. In vitro proliferation and migration experiments were confirmed, after VSMCs were treated with platelet-derived growth factor (PDGF-BB) and GA (100 µM) using a 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay and a scratch wound assay for 24 hours and 48 hours. A bare metal stent (BMS) was implanted in the pig coronary artery to induce ISR with overdilation (1.1-1.2:1), and GA (10 mg/kg/day) was administered for 4 weeks. At the 4-week follow-up, optical coherence tomography (OCT) and histopathological analyses were performed. GA decreased the proliferation of VSMCs by PDGF-BB for 24 hours (89.24±24.56% vs. 170.04±19.98%, p<0.001) and 48 hours (124.87±7.35% vs. 187.64±4.83%, p<0.001). GA inhibited the migration of VSMCs induced by PDGF-BB for 24 hours (26.73±2.38% vs. 65.38±9.73%, p<0.001) and 48 hours (32.96±3.04% vs. 77.04±10.07%, p<0.001). Using OCT, % neointimal hyperplasia was shown to have significantly decreased in the GA group compared with control vehicle group (28.25±10.07% vs. 37.60±10.84%, p<0.001). GA effectively reduced neointimal hyperplasia by inhibiting the proliferation and migration of VSMCs in a pig ISR model. GA could be a potential treatment strategy for reducing ISR after stent implantation.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Young Joon Hong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung Hun Lee
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Munki Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
20
|
Bahari H, Zeraattalab-Motlagh S, Hezaveh ZS, Namkhah Z, Golafrouz H, Taheri S, Sahebkar A. The Effects of Sumac Consumption on Inflammatory and Oxidative Stress Factors: A Systematic Review of Randomized Clinical Trials. Curr Pharm Des 2024; 30:2142-2151. [PMID: 38920072 DOI: 10.2174/0113816128305609240529114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Rhus coriaria L., commonly known as Sumac, is a plant from the Anacardiaceae family that is known for its high phytochemical content. These phytochemicals have the potential to effectively manage inflammation and oxidative stress. To explore the existing evidence on the impact of Sumac consumption on inflammation and oxidative stress, we conducted a systematic review of randomized controlled trials. METHODS We conducted a comprehensive search of Medline/PubMed, Scopus, and Web of Science from inception to August 2023 to identify relevant studies examining the effects of Sumac on biomarkers of inflammation and oxidative stress. The selected studies were assessed for risk of bias using the Cochrane tool. RESULTS A total of seven trials were included in this review. Among these trials, three focused on diabetes patients, while the remaining four involved individuals with fatty liver, overweight individuals with depression, and those with polycystic ovary or metabolic syndrome. Five studies reported the effects of Sumac on oxidative stress, with four of them demonstrating a significant reduction in malondialdehyde (MDA) levels and an increase in total antioxidant capacity (TAC) and paraoxonase 1 (PON1). Regarding inflammation, one study reported no significant difference in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels between the intervention and control groups. The results for high-sensitivity C-reactive protein levels, reported in five trials, were inconsistent. CONCLUSION Sumac consumption over time may positively affect oxidative stress, although short-term use shows minimal impact. While one study found no significant effect on IL-6 and TNF-α, hs-CRP levels could decrease or remain unchanged. Further meta-analyses are needed to fully understand Sumac's potential benefits in managing metabolic diseases.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Health & Human Performance, University of Houston, Houston, TX 77004, USA
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Sajadi Hezaveh
- Department of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniyeh Golafrouz
- Department of Medical Sciences and Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Taheri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
22
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
23
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
24
|
Obafemi TO, Ekundayo BE, Adewale OB, Obafemi BA, Anadozie SO, Adu IA, Onasanya AO, Ekundayo SK. Gallic acid and neurodegenerative diseases. PHYTOMEDICINE PLUS 2023; 3:100492. [DOI: 10.1016/j.phyplu.2023.100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Qiao J, Wang C, Chen Y, Yu S, Liu Y, Yu S, Jiang L, Jin C, Wang X, Zhang P, Zhao D, Wang J, Liu M. Herbal/Natural Compounds Resist Hallmarks of Brain Aging: From Molecular Mechanisms to Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12040920. [PMID: 37107295 PMCID: PMC10136184 DOI: 10.3390/antiox12040920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Aging is a complex process of impaired physiological integrity and function, and is associated with increased risk of cardiovascular disease, diabetes, neurodegeneration, and cancer. The cellular environment of the aging brain exhibits perturbed bioenergetics, impaired adaptive neuroplasticity and flexibility, abnormal neuronal network activity, dysregulated neuronal Ca2+ homeostasis, accumulation of oxidatively modified molecules and organelles, and clear signs of inflammation. These changes make the aging brain susceptible to age-related diseases, such as Alzheimer's and Parkinson's diseases. In recent years, unprecedented advances have been made in the study of aging, especially the effects of herbal/natural compounds on evolutionarily conserved genetic pathways and biological processes. Here, we provide a comprehensive review of the aging process and age-related diseases, and we discuss the molecular mechanisms underlying the therapeutic properties of herbal/natural compounds against the hallmarks of brain aging.
Collapse
Affiliation(s)
- Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Yu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiawen Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
26
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
27
|
Zhang SN, Li HM, Liu Q, Li XZ, Yang WD, Zhou Y. Omics combined with network pharmacology reveal the neuroprotective mechanism of Sophora tonkinensis based on the biolabel research pattern: The treatment of Parkinson's disease against oxidative stress and neuroexcitatory toxicity. Biomed Chromatogr 2023; 37:e5557. [PMID: 36453605 DOI: 10.1002/bmc.5557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
Based on the biolabel research pattern, omics and network pharmacology were used for exploring the neuroprotection of Sophora tonkinensis (ST) in the treatment of brain diseases. Multi-omics were applied to investigate biolabels for ST intervention in brain tissue. Based on biolabels, the therapeutic potential, mechanism and material basis of ST for treating brain diseases were topologically analyzed by network pharmacology. A Parkinson's disease (PD) mouse model was used to validate biolabel analysis results. Four proteins and three metabolites were involved in two key pathways (alanine, aspartate and glutamate metabolism and arginine biosynthesis) and considered as biolabels. Network pharmacology showed that ST has the potential to treat some brain diseases, especially PD. Eight compounds (including caffeic acid, gallic acid and cinnamic acid) may serve as the material basis of ST treating brain diseases via the mediation of three biolabels. In the PD model, ST and its active compounds (caffeic acid and gallic acid) may protect dopaminergic neurons (maximum recovery rate for dopamine, 49.5%) from oxidative stress (E3 ubiquitin-protein ligase parkin, reactive oxygen species, nitric oxide, etc.) and neuroexcitatory toxicity (glutamate dehydrogenase, glutamine, glutamic acid, etc.). These findings indicated that omics and network pharmacology may contribute to the achievement of the objectives of this study based on the biolabel research pattern.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, China
| | - Hong-Mei Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, China
| | - Wu-de Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, China
| |
Collapse
|
28
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
29
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
30
|
Abrishamdar M, Farbood Y, Sarkaki A, Rashno M, Badavi M. Evaluation of betulinic acid effects on pain, memory, anxiety, catalepsy, and oxidative stress in animal model of Parkinson's disease. Metab Brain Dis 2023; 38:467-482. [PMID: 35708868 DOI: 10.1007/s11011-022-00962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is known for motor impairments. Betulinic acid (BA) is a natural compound with antioxidant activity. The present study addresses the question of whether BA affects motor and non-motor dysfunctions and molecular changes in the rat model of PD. The right medial forebrain bundle was lesioned by injection of 6-hydroxydopamine in Male Wistar rats (10-12 weeks old, 270-320 g). Animals were divided into Sham, PD, 3 treated groups with BA (0.5, 5, and 10 mg/kg, IP), and a positive control group received L-dopa (20 mg/kg, P.O) for 7 days. rigidity, anxiety, analgesia, and memory were assessed by bar test, open-field, elevated plus-maze (EPM), tail-flick, and shuttle box. Additionally, the malondialdehyde (MDA), Superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, Brain-derived neurotrophic factor (BDNF) and Interleukin 10 (IL10) levels in the whole brain were measured. BA significantly reversed the 6-hydroxydopamine-induced motor and memory complication in the bar test and shuttle box. It modified anxiety-like behavior neither in open-field nor in EPM. It only decreased the time spent in open arms. Moreover, no significant changes were found in the tail-flick between treatment and sham groups. On the other hand, the level of MDA & IL10 were decreased, while the activity of GPx levels of SOD & BDNF in the rats' brains was increased. Our results showed that BA as a free radical scavenger can account for a possible promise as a good therapeutic agent for motor and non-motor complications in PD however further studies may be needed.
Collapse
Affiliation(s)
- M Abrishamdar
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Medicine Faculty and Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - A Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Rashno
- Department of Immunulogy, Cellular and Molecular Research Center, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Badavi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Gallic acid abates cadmium chloride toxicity via alteration of neurotransmitters and modulation of inflammatory markers in Wistar rats. Sci Rep 2023; 13:1577. [PMID: 36709339 PMCID: PMC9884205 DOI: 10.1038/s41598-023-28893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that disrupts membranes and causes oxidative stress in the brain. The study aimed to investigate the neuroprotective effect of gallic acid on oxidative damage in the brains of Wistar rats exposed to cadmium chloride (CdCl2). Male Wistar rats were divided into four groups of five rats each. Group 1 was administered distilled water only throughout the study. Throughout the study, Group 2 received CdCl2 alone (5 mg/kg b.w./day), Group 3 received gallic acid (20 mg/kg b.w./day), and Group 4 received CdCl2 + gallic acid (20 mg/kg). Treatments were oral with distilled water as a vehicle. The study lasted 21 days. In the brain, the activities of cholinesterase and antioxidant enzymes were evaluated, as well as the levels of reduced glutathione, malondialdehyde, neurotransmitters, Na+/K+ ATPase, myeloperoxidase activity, nitric oxide, and interleukin-6. CdCl2-induced brain impairments in experimental animals and gallic acid prevents the following CdCl2-induced activities: inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), elevated neurotransmitters (serotonin and dopamine), decreased antioxidant enzymes (superoxide dismutase, catalase), decreased glutathione, Na+/K+ ATPases, and increased MDA and neuroinflammatory markers (myeloperoxidase (MPO), nitric oxide, and interleukin-6 in the brain of experimental rats exposed to CdCl2 (p < 0.05). Taken together, the neuroprotective effects of gallic acid on CdCl2-induced toxicity in the brains of rats suggest its potent antioxidant and neurotherapeutic properties.
Collapse
|
32
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
33
|
Nabavi Zadeh F, Nazari M, Amini A, Adeli S, Barzegar Behrooz A, Fahanik Babaei J. Pre- and post-treatment of α-Tocopherol on cognitive, synaptic plasticity, and mitochondrial disorders of the hippocampus in icv-streptozotocin-induced sporadic Alzheimer's-like disease in male Wistar rat. Front Neurosci 2023; 17:1073369. [PMID: 37152606 PMCID: PMC10157075 DOI: 10.3389/fnins.2023.1073369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Most dementia cases in the elderly are caused by Alzheimer's disease (AD), a complex, progressive neurological disease. Intracerebroventricular (ICV) administration of streptozotocin (STZ) in rat's results in aberrant brain insulin signaling, oxidative stress, and mitochondrial dysfunction that impair cognition change neural plasticity, and eventually lead to neuronal death. The current study aims to define the neuroprotective action of alpha-tocopherol in enhancing mitochondrial function and the function of synapses in memory-impaired rats brought on by icv-STZ. Methods Male Wistar rats were pre-treated with (α-Tocopherol 150 mg/kg) orally once daily for 7 days before and 14 days after being bilaterally injected with icv-STZ (3 mg/kg), while sham group rats received the same volume of STZ solvent. After 2 weeks of icv-STZ infusion, rats were tested for cognitive performance using a behaviors test and then were prepared electrophysiology recordings or sacrificed for biochemical and histopathological assays. Results The cognitive impairment was significantly minimized in the behavioral paradigms for those who had taken α-Tocopherol. In the hippocampus of icv-STZ rat brains, α-Tocopherol ocopherol effectively prevented the loss of glutathione levels and superoxide dismutase enzyme activity, lowered mitochondrial ROS and mitochondrial membrane potential, and also brought about a decrease in Aβ aggregation and neuronal death. Conclusion Our findings demonstrated that by lowering neurobehavioral impairments caused by icv-STZ, oxidative stress, and mitochondrial dysfunction, α-Tocopherol enhanced intracellular calcium homeostasis and corrected neurodegenerative defects in the brain. These findings examine the available approach for delaying AD connected to mitochondrial malfunction and plasticity issues.
Collapse
Affiliation(s)
- Fatemeh Nabavi Zadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Javad Fahanik Babaei, ,
| |
Collapse
|
34
|
Pulido-Mateos EC, Lessard-Lord J, Guyonnet D, Desjardins Y, Roy D. Comprehensive analysis of the metabolic and genomic features of tannin transforming Lactiplantibacillus plantarum strains. Sci Rep 2022; 12:22406. [PMID: 36575241 PMCID: PMC9794748 DOI: 10.1038/s41598-022-26005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular tannase Lactiplantibacillus plantarum-producing strains (TanA+) release bioactive metabolites from dietary tannins. However, there is a paucity of knowledge of TanA+ strains and their hydrolyzing capacities. This study aimed to shed light on the metabolic and genomic features of TanA+ L. plantarum strains and to develop a screening technique. The established spectrophotometric was validated by UPLC-UV-QToF. Eight of 115 screened strains harbored the tanA gene, and six presented TanA activity (PROBI S126, PROBI S204, RKG 1-473, RKG 1-500, RKG 2-219, and RKG 2-690). When cultured with tannic acid (a gallotannin), TanA+ strains released 3.2-11 times more gallic acid than a lacking strain (WCFS1) (p < 0.05). TanA+ strains with gallate decarboxylase (n = 5) transformed this latter metabolite, producing 2.2-4.8 times more pyrogallol than the TanA lacking strain (p < 0.05). However, TanA+ strains could not transform punicalagin (an ellagitannin). Genomic analysis revealed high similarity between TanA+ strains, as only two variable regions of phage and polysaccharide synthesis were distinguished. A phylogenetic analysis of 149 additional genome sequences showed that tanA harboring strains form a cluster and present two bacteriocin coding sequences profile. In conclusion, TanA+ L. plantarum strains are closely related and possess the ability to resist and transform gallotannins. TanA can be screened by the method proposed herein.
Collapse
Affiliation(s)
- Elena C. Pulido-Mateos
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada ,grid.23856.3a0000 0004 1936 8390Laboratoire de Génomique Microbienne, Département des Sciences des Aliments, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| | - Jacob Lessard-Lord
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| | | | - Yves Desjardins
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| | - Denis Roy
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada ,grid.23856.3a0000 0004 1936 8390Laboratoire de Génomique Microbienne, Département des Sciences des Aliments, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| |
Collapse
|
35
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
36
|
Hegde AS, Gupta S, Sharma S, Srivatsan V, Kumari P. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Res Int 2022; 162:111977. [DOI: 10.1016/j.foodres.2022.111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
37
|
Abdel-Moneim A, Abd El-Twab SM, Yousef AI, Ashour MB, Reheim ESA, Hamed MAA. New insights into the in vitro, in situ and in vivo antihyperglycemic mechanisms of gallic acid and p-coumaric acid. Arch Physiol Biochem 2022; 128:1188-1194. [PMID: 32401050 DOI: 10.1080/13813455.2020.1762659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objective: To explore the probable in vitro, in situ and in vivo mechanisms of gallic acid (GA) and p-coumaric acid (PCA) as anti-hyperglycemic agents.Animals and methods: Male albino rats were allocated into four groups, group1 was used as normal control. Group 2 was established as a diabetic control and group3 and 4 were treated with an oral dose of GA and PCA, respectively.Results: GA and PCA revealed a significant decrease in the activity of α-amylase, a noticeable rise in glucose induced-insulin secretion and glucose-uptake in peripheral glucose-uptake in vitro, increase also liver glycogen and serum insulin levels in vivo. Further, GA and PCA exhibited a significant reduction in intestinal glucose absorption in situ compared to blank.Conclusion: The antihyperglycemic activities of GA and PCA can be mediated through delaying intestinal glucose absorption, enhancing β-cell activity and promoting glucose uptake by peripheral tissue via enhancing insulin sensitivity.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sanaa M Abd El-Twab
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed I Yousef
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed B Ashour
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Eman S Abdel Reheim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
38
|
Jiang L, Wu Y, Qu C, Lin Y, Yi X, Gao C, Cai J, Su Z, Zeng H. Hypouricemic effect of gallic acid, a bioactive compound from Sonneratia apetala leaves and branches, on hyperuricemic mice. Food Funct 2022; 13:10275-10290. [PMID: 36125096 DOI: 10.1039/d2fo02068h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a tropical medicinal plant, Sonneratia apetala is mainly distributed in the southeast coastal areas of China. Recently, the hypouricemic effect of Sonneratia apetala leaves and branches (SAL) has been reported, but the active compound and its mechanism are unclear. Thus, this study aims to explore the effective fraction of SAL and the mechanism of its active compound on uric acid formation and excretion. SAL was extracted with ethyl acetate and concentrated to obtain solvent-free extracts (SAL-EA). The remains fraction (SAL-E) and the supernatant fraction (SAL-S) of SAL resulting from water extraction and alcohol precipitation were collected and dried. The effects of different fractions were explored on hyperuricemic mice. SAL-S showed excellent activities in decreasing the levels of uric acid (UA), blood urea nitrogen (BUN), and creatinine (CRE) in serum and in attenuating kidney damage. Then, the active compound gallic acid (GA) identified by HPLC was assayed for its mechanism of regulating uric acid metabolism in hyperuricemic mice. The hypouricemic effect of GA was probably associated with the downregulation of URAT1 and GLUT9, upregulation of ABCG2 and decreased activities of adenosine deaminase (ADA) and xanthine oxidase (XOD). Moreover, GA suppressed the level of MDA, IL-6, IL-1β, TNF-α, TGF-β1, COX-2 and cystatin-C (Cys-C), and enhanced the activities of SOD, GSH-Px, CAT, and Na+-K+-ATPase (NKA) in the kidneys. These results indicated that GA protects against hyperuricemia-induced kidney injury via suppressing oxidative stress and inflammation as well as decreasing the serum levels of UA by regulating urate transporters.
Collapse
Affiliation(s)
- Linyun Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China. .,School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chang Qu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510006, People's Republic of China
| | - Yinsi Lin
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Xiaoqing Yi
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China
| | - Changjun Gao
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China
| | - Jian Cai
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
39
|
Omeiza NA, Bakre AG, Abdulrahim HA, Isibor H, Ezurike PU, Sowunmi AA, Ben-Azu B, Aderibigbe AO. Pretreatment with Carpolobia lutea ethanol extract prevents schizophrenia-like behavior in mice models of psychosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115432. [PMID: 35659625 DOI: 10.1016/j.jep.2022.115432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carpolobia lutea decoction is widely used as a phytotherapeutic against central nervous system-related disorders including insomnia, migraine headache, and mental illness in West and Central Tropical Africa. AIM This study was designed to investigate the antipsychotic activity of Carpolobia lutea (EECL) in mice models of psychosis. METHODS Male Swiss mice (n = 5/group) were given EECL (100, 200, 400, and 800 mg/kg), haloperidol (1 mg/kg), clozapine (5 mg/kg) and vehicle (10 mL/kg) orally before amphetamine (5 mg/kg)-induced hyperlocomotion and stereotypy, apomorphine (2 mg/kg)-induced stereotypy, or ketamine (10, 30, and 100 mg/kg)-induced hyperlocomotion, enhancement of immobility and cognitive impairment. RESULTS EECL (200, 400, and 800 mg/kg) prevented amphetamine- and apomorphine-induced stereotypies, as well as reduced hyperlocomotion induced by amphetamine and ketamine, all of which are predictors of positive symptoms. Regardless of the dose administered, EECL prevented the index of negative symptoms induced by ketamine. Furthermore, higher doses of EECL (400 and 800 mg/kg) also prevented ketamine-induced cognitive impairment, a behavioral phenotype of cognitive symptoms. CONCLUSION Pretreatment with EECL demonstrated antipsychotic activity in mice, preventing amphetamine-, apomorphine-, and ketamine-induced schizophrenia-like symptoms, with 800 mg/kg being the most effective dose.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale G Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Happy Isibor
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Precious U Ezurike
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
40
|
Adebiyi O, Adigun K, David-Odewumi P, Akindele U, Olayemi F. Gallic and ascorbic acids supplementation alleviate cognitive deficits and neuropathological damage exerted by cadmium chloride in Wistar rats. Sci Rep 2022; 12:14426. [PMID: 36002551 PMCID: PMC9402671 DOI: 10.1038/s41598-022-18432-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that interferes with DNA repair mechanisms via generation of reactive oxygen species. The potentials of polyphenols and antioxidants as effective protective agents following heavy metal-induced neurotoxicity are emerging. We therefore explored the neuroprotective potentials of gallic and ascorbic acids in CdCl2-induced neurotoxicity. Seventy-two Wistar rats were divided into six groups. Group A received distilled water, B: 3 mg/kg CdCl2, C: 3 mg/kg CdCl2 + 20 mg/kg gallic acid (GA), D: 3 mg/kg CdCl2 + 10 mg/kg ascorbic acid (AA), E: 20 mg/kg GA and F: 10 mg/kg AA orally for 21 days. Depression, anxiety, locomotion, learning and memory were assessed using a battery of tests. Neuronal structure and myelin expression were assessed with histological staining and immunofluorescence. The Morris Water Maze test revealed significant increase in escape latency in CdCl2 group relative to rats concurrently treated with GA or AA. Similarly, time spent in the target quadrant was reduced significantly in CdCl2 group relative to other groups. Concomitant administration of gallic acid led to significant reduction in the durations of immobility and freezing that were elevated in CdCl2 group during forced swim and open field tests respectively. Furthermore, GA and AA restored myelin integrity and neuronal loss observed in the CdCl2 group. We conclude that gallic and ascorbic acids enhance learning and memory, decrease anxiety and depressive-like behavior in CdCl2-induced neurotoxicity with accompanying myelin-protective ability.
Collapse
Affiliation(s)
- Olamide Adebiyi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria.
| | - Kabirat Adigun
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Praise David-Odewumi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uthman Akindele
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Funsho Olayemi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
41
|
Subchronic Toxicity Study of Alternanthera philoxeroides in Swiss Albino Mice Having Antioxidant and Anticoagulant Activities. J Toxicol 2022; 2022:8152820. [PMID: 35875616 PMCID: PMC9300360 DOI: 10.1155/2022/8152820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/12/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Alternanthera philoxeroides, a tropical herb and edible vegetable, has been popular as a medicinal plant. Applying in vitro approach, we initially attempted to assess the phytochemicals, bioactive chemicals, as well as antioxidant and anticoagulant activities of this plant. Following that, the in vivo toxicological effects of methanolic extracts of A. philoxeroides using different doses on the kidney, heart, lung, liver, stomach, brain, and blood of female Swiss Albino mice were investigated. We estimated phytochemicals content as well as antioxidant activity through DPPH, NO, CUPRAC, and reducing power assays, followed by the anticoagulant activities of PT and aPTT and bioactive compounds using HPLC. To confirm the biocompatibility of A. philoxeroides extracts, histopathological and hematological parameters were examined in a mice model. Total phenol, flavonoid, and tannin content in A. philoxeroides was 181.75 ± 2.47 mg/g, 101.5 ± 3 .53 mg/g, and 68.58 ± 0.80 mg/g, respectively. Furthermore, the HPLC study confirmed the presence of four phenolic compounds: catechin, tannic acid, gallic acid, and vanillic acid. The methanolic extract of A. philoxeroides showed considerable antioxidant activity in all four antioxidant assay methods when compared to the standard. In comparison to ascorbic acid, A. philoxeroides also demonstrated a minor concentration-dependent ferric and cupric reduction activity. In vivo evaluation indicated that A. philoxeroides extracts (doses: 250, 500, and 1000 mg/kg) had no negative effects on the relative organ or body weight, or hematological indicators. Our study concluded that A. philoxeroides had significant antioxidant and anticoagulant activities and demonstrated no negative effects on the body or relative organ weight, histopathological, and hematological indices in the mouse model.
Collapse
|
42
|
Baldin SL, de Pieri Pickler K, de Farias ACS, Bernardo HT, Scussel R, da Costa Pereira B, Pacheco SD, Dondossola ER, Machado-de-Ávila RA, Wanderley AG, Rico EP. Gallic acid modulates purine metabolism and oxidative stress induced by ethanol exposure in zebrafish brain. Purinergic Signal 2022; 18:307-315. [PMID: 35687211 DOI: 10.1007/s11302-022-09869-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.
Collapse
Affiliation(s)
- Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Rahisa Scussel
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Suzielen Damin Pacheco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil. .,Laboratory of Translational Biomedicine Laboratory, University of Southern Santa Catarina (UNESC), Criciuma, Santa Catarina, Brazil.
| |
Collapse
|
43
|
Amini N, Badavi M, Mard SA, Dianat M, Moghadam MT. The renoprotective effects of gallic acid on cisplatin-induced nephrotoxicity through anti-apoptosis, anti-inflammatory effects, and downregulation of lncRNA TUG1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:691-701. [PMID: 35303125 DOI: 10.1007/s00210-022-02227-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
Abstract
Cisplatin, an antineoplastic drug used in cancer therapy, -induced nephrotoxicity mediated by the production of reactive oxygen species (ROS). Gallic acid (GA) is identified as an antioxidant substance with free radical scavenging properties. This research was designed to examine the ameliorative impact of GA caused by cisplatin-induced nephrotoxicity through apoptosis and long non-coding RNA (lncRNA) Taurine-upregulated gene 1 (TUG1) expression. Thirty-two male Sprague Dawley rats (200 - 220 g) were randomly allocated to four groups: (1) control group; (2) rats treated with cisplatin (7.5 mg/kg, i.p.) on the fourth day; and the two other groups include rats pretreated with GA (20 and 40 mg/kg by gavage) for s7 days and cisplatin (7.5 mg/kg, i.p.) at the fourth day. The rats were anesthetized and sacrificed for collecting samples, 72 h after cisplatin administration. The blood samples were used to investigate biochemical factors and kidney tissue was evaluated for measuring oxidative stress and inflammatory factors and the gene expression of molecular parameters. The results indicated that GA administration increased the B-cell lymphoma-2 (Bcl-2) mRNA and lncRNA TUG1 expression, and reduced Bcl-2-associated x protein (Bax), and caspase-3 expression. Likewise, the TAC level increased, and kidney MDA content decreased by administration of GA. GA also decreased the inflammatory factor levels, including IL-1β and TNF-α. Moreover, GA led to the improvement of kidney dysfunction as evidenced by reducing plasma BUN (blood urea nitrogen) and Cr (creatinine). Taken together, GA could protect the kidney against cisplatin-induced nephrotoxicity through antioxidant, anti-inflammatory, and anti-apoptosis properties and reduction of lncRNA TUG1 expression.
Collapse
Affiliation(s)
- Negin Amini
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Ali Mard
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Khan M, Koivisto JT, Kellomäki M. Injectable and self‐healing biobased composite hydrogels as future anticancer therapeutic biomaterials. NANO SELECT 2022. [DOI: 10.1002/nano.202100354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Musammir Khan
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Chemistry University of Wah Quaid Avenue, Wah Cantt Rawalpindi Punjab 47040 Pakistan
| | - Janne T. Koivisto
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Laboratory Medicine Karolinska Institute Huddinge Stockholm Sweden
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
| |
Collapse
|
45
|
Abbasalipour H, Hajizadeh Moghaddam A, Ranjbar M. Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats. J Biochem Mol Toxicol 2022; 36:e23035. [PMID: 35307911 DOI: 10.1002/jbt.23035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/07/2022]
Abstract
Autism spectrum disorders cover a range of neurodevelopmental disorders characterized by impairments in social interaction and cognitive deficits. Phenolic compound applications have been restricted due to their poor solubility, bioavailability, and low stability. This paper aimed to explore the neuroprotective effects of sumac and gallic acid-loaded nanophytosomes (GNP) on oxidative stress-induced cognitive impairment and Nrf2/Keap1 gene expression in the autism model. Valproic acid (VPA) was administered intraperitoneally at doses of 500 mg/kg to female rats during gestational 12.5 days (E12.5). The prenatal VPA-exposed rats were divided into five groups, including VPA, VPA treated with sumac, gallic acid (GA), sumac-loaded nanophytosome (SNP), and GNP at doses of 20 mg/kg for 4 weeks (n = 6). A novel object test was conducted and antioxidant parameters and Nrf2/Keap1gene expression were evaluated in the hippocampus. According to the obtained results, the rat model of autism exhibited recognition memory impairment. We observed an increase in glutathione peroxidase (GPx), glutathione reductase (GRx), superoxide dismutase (SOD), catalase (CAT) enzyme activity, total antioxidant capacity (TAC), and glutathione (GSH) levels. Furthermore, sumac and GNP improved recognition memory deficits and increased GPx, GRx, SOD, and CAT activities, GSH and TAC levels, and Nrf2/Keap1gene expression in the hippocampal area. Our results also suggested that SNP and GNP ameliorate VPA-induced learning and memory deficits more efficiently than sumac extract and pure GA by reducing oxidative stress, enhancing antioxidant enzyme activity, and Keap1/Nrf2 gene expression. The present study demonstrated that the utilization of SNP and GNP significantly improved recognition memory deficits.
Collapse
Affiliation(s)
- Haniyeh Abbasalipour
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
46
|
Wang Y, Zhao Y, Liu X, Li J, Zhang J, Liu D. Chemical constituents and pharmacological activities of medicinal plants from Rosa genus. CHINESE HERBAL MEDICINES 2022; 14:187-209. [PMID: 36117670 PMCID: PMC9476647 DOI: 10.1016/j.chmed.2022.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The genus Rosa (Rosaceae family) includes about 200 species spread in the world, and this genus shows unique advantages in medicine and food. To date, several scholars concentrated on compounds belonging to flavonoids, triterpenes, tannins, polysaccharide, phenolic acids, fatty acids, organic acids, carotenoids, and vitamins. Pharmacological effects such as antineoplastic and anti-cancer properties, anti-inflammatory, antioxidant, liver protection, regulate blood sugar, antimicrobial activity, antiviral activity, as well as nervous system protection and cardiovascular protection were wildly reported. This article reviews the chemical constituents, pharmacological effects, applications and safety evaluations of Rosa plants, which provides a reference for the comprehensive utilization of medicine and food resources and gives a scientific basis for the development of medicinal plants of the genus Rosa.
Collapse
Affiliation(s)
- Yansheng Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Yanmin Zhao
- Logistics College of Chinese People’s Armed Police Forces, Tianjin 300309, China
| | - Xinnan Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyang Li
- Logistics College of Chinese People’s Armed Police Forces, Tianjin 300309, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- Corresponding authors.
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
- Corresponding authors.
| |
Collapse
|
47
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
48
|
Santos MDO, Camilo CJ, Macedo JGF, Lacerda MNSD, Lopes CMU, Rodrigues AYF, Costa JGMD, Souza MMDA. Copaifera langsdorffii Desf.: A chemical and pharmacological review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Saleem U, Bibi S, Shah MA, Ahmad B, Saleem A, Chauhdary Z, Anwar F, Javaid N, Hira S, Akhtar MF, Shah GM, Khan MS, Muhammad H, Qasim M, Alqarni M, Algarni MA, Blundell R, Vargas-De-La-Cruz C, Herrera-Calderon O, Alhasani RH. Anti-Parkinson's evaluation of Brassica juncea leaf extract and underlying mechanism of its phytochemicals. FRONT BIOSCI-LANDMRK 2021; 26:1031-1051. [PMID: 34856751 DOI: 10.52586/5007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Background: Parkinson's disease (PD) is associated with progressive neuronal damage and dysfunction. Oxidative stress helps to regulate neurodegenerative and neuronal dysfunction. Natural compounds could attenuate oxidative stress in a variety of neurological disorders. B. juncea is a rich source of antioxidants. The present study aimed to evaluate the therapeutic potential of B. juncea leaves for the treatment of PD by applying behavioral, in vivo and in silico studies. For in vivo studies rats were divided into six groups (n = 6). Group-I served as normal control (vehicle control). Group-II was disease control (haloperidol 1 mg/kg). Group-III was kept as a standard group (L-Dopa 100 mg/kg + carbidopa 25 mg/kg). Groups (IV-VI) were the treatment groups, receiving extract at 200-, 400- and 600 mg/kg doses respectively, for 21 days orally. Results: In vivo study results showed that the extract was found to improve muscles strength, motor coordination, and balance in PD. These behavioral outcomes were consistent with the recovery of endogenous antioxidant defence in biochemical analysis which was further corroborated with histopathological ameliorations. Dopamine levels increased and monoamine oxidase B (MAO-B) levels decreased dose-dependently in the brain during the study. Herein, we performed molecular docking analysis of the proposed extracted phytochemicals has explained that four putative phytochemicals (sinapic acid, rutin, ferulic acid, and caffeic acid) have presented very good results in terms of protein-ligand binding interactions as well as absorption, distribution, metabolism, excretion & toxicity (ADMET) profile estimations. Conclusion: The undertaken study concluded the anti-Parkinson activity of B. juncea and further suggests developments on its isolated compounds in PD therapeutics.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, 650091 Kunming, Yunnan, China
- International Joint Research Center for Sustainable Utilization of CordycepsBioresouces in China and South-east Asia, Yunnan University, 650091 Kunming, Yunnan, China
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Nimra Javaid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000 Lahore, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Biological and Health Sciences, Hazara University, 21120 Mansehra, Pakistan
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, 57000 Sahiwal, Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Science & Technology, 75300 Karachi, Pakistan
| | - Muhammad Qasim
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270 Karachi, Pakistan
| | - Mohammad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, 21944 Taif, Saudi Arabia
| | - Majed A Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, 21944 Taif, Saudi Arabia
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001 Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, 15001 Lima, Peru
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, 15001 Lima, Peru
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| |
Collapse
|
50
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson's effect. J Biochem Mol Toxicol 2021; 35:e22902. [PMID: 34464010 DOI: 10.1002/jbt.22902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Oxidative stress (OS) is involved in the multifaceted pathogenic paradigm of neurodegenerative diseases like Parkinson's disease (PD). Monoterpenes like α-pinene (ALP) is considered to be a therapeutically potent antioxidant agent able to attenuate and scavenge various reactive oxygen species and reactive nitrogen species. The present study aimed to evaluate the in vitro and in vivo neuroprotective effect of α-pinene self-emulsifying nanoformulation (ALP-SENF) for PD. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was done to evaluate the neurotoxic dose of the ALP-SENF; however, the neuroprotective effect was assessed by 6-hydroxydopamine (6-OHDA) induced neurotoxicity model on SH-SY5Y taking NAC (N-acetyl-l-cysteine) as standard. The in vivo anti-Parkinson's activity of the ALP-SENF was compared with that of the plain ALP suspension by using reserpine antagonism and haloperidol-induced Parkinsonism model in rats. Various behavioral tests and biochemical antioxidant enzymes were estimated. The in vitro results revealed that treatment with ALP-SENF at a concentration of 100 and 200 µM was found to show significant neuronal SH-SY5Y cell viability against 50 µM 6-OHDA. ALP-SENF treated animals have seen significant neurobehavioral improvement. Furthermore, the levels of antioxidative enzymes in biochemical test reveals a marked enhancement in the expression of antioxidant enzymes that significantly attenuated the OS induced neurodegeneration. Due to the mechanisms of their antioxidant action, it was probably due to the scavenging of free radicals and the expression of antioxidant enzymes. It also improved neurobehavioral changes induced by reserpine and haloperidol.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Pratim K Choudhury
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Suresh K Dev
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|