1
|
Zhang YH, Lei PD, Ding Y, Zhai XT, Wan XC, Li WX, Zhang Y, Lv HP, Lin Z, Zhu Y. Uncovering characteristic and enantiomeric distribution of volatile components in Huangshan Maofeng and Zhejiang baked green teas. Food Chem 2025; 465:142001. [PMID: 39581079 DOI: 10.1016/j.foodchem.2024.142001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Huangshan Maofeng (HSMF) is a famous baked green tea from the Anhui Province of China, known for its "clean and fresh" flavor. Zhejiang, another major tea-producing province, focuses on the production of green teas. This study aimed to analyze the characteristic aroma components and specific enantiomeric distribution of significant chiral volatile compounds in HSMF and Zhejiang baked green tea (ZJ-BGT) with respect to their origins, cultivars and grades using stir bar sorptive extraction combined with non-targeted gas chromatography-mass spectrometry (GC-MS) and enantiomeric GC-MS approaches. Unique enantiomeric distributions were identified for 2-methylbutanal, γ-nonanolactone, jasmine lactone, α-pinene, cis-linalool oxide (furanoid), and linalool in HSMF and ZJ-BGT. Furthermore, the concentrations of hexanal, cis-3-hexenyl butyrate, geraniol, and the enantiomeric ratio of R-α-terpineol demonstrated a positive correlation with the HSMF grade. Additionally, S-jasmine lactone and R-γ-nonanolactone present in HSMF, along with S-linalool found in ZJ-BGT, significantly contribute to the flavor quality of their respective teas.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Pan-Deng Lei
- Tea Research Institution, Anhui Academy of Agricultural Sciences, Huangshan 245000, China.
| | - Yong Ding
- Tea Research Institution, Anhui Academy of Agricultural Sciences, Huangshan 245000, China.
| | - Xiao-Ting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Wei-Xuan Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yue Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Hai-Peng Lv
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Zhi Lin
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yin Zhu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
2
|
Rehman AU. Chemical profile and in vivo anti-hyperlipidaemic activity of chloroform fraction of Zygophyllum indicum in Triton X-100 induced hyperlipidaemic rats. Nat Prod Res 2025; 39:654-664. [PMID: 38018814 DOI: 10.1080/14786419.2023.2286612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Anti-hyperlipidaemic effect of chloroform fraction of aerial parts of Zygophyllum indicum (Fagonia indica Burm.f.) was studied in rats. Adult Wistar albino rats were distributed into five groups. Rats of all groups except group I were given an intraperitoneal injection (Triton X-100) to induce hyperlipidaemia. Groups (I and II) served as normal and hyperlipidaemic control groups respectively. Group III and group IV were administered with 250 and 500 mg/kg chloroform fraction of the plant respectively after 18 h of inducing hyperlipidaemia. Group V was given 10 mg/kg of the standard atorvastatin. Chloroform fraction had significant (p < 0.05) hypolipidaemic effects on lipid profile and biochemical parameters with a protective effect on the liver in comparison to group II. F. indica with hypolipidaemic effect is useful in the management of hyperlipidaemia. Chloroform fraction with its constituents can be used as an antihyperlipidaemic supplement in developing countries for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Atiq-Ur- Rehman
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
- Salar College of Pharmacy, Amna Inayat Medical College Faizpur Interchange, Lahore, Sheikhupura, Pakistan
| |
Collapse
|
3
|
Chen Y, Huang Y, Gan Q, Zhang W, Sun H, Zhu L, Wang W. Characterization of tea polysaccharides from Tieguanyin oolong tea and their hepatoprotective effects via AMP-activated protein kinase-mediated signaling pathways. J Food Sci 2024; 89:10064-10078. [PMID: 39636766 DOI: 10.1111/1750-3841.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
In the present study, we succeeded in extracting tea polysaccharide (TPS) from Tieguanyin oolong tea, and the TPS was characterized. TPS is an acidic heteropolysaccharide containing rhamnose, arabinose, galactose, glucose (Glc), xylose, mannose, galacturonic acid, and guluronic acid. We found that TPS supplementation partially reversed the elevated levels of serum alanine aminotransferase, total cholesterol, and low-density lipoprotein cholesterol in high-fat diet (HD)-induced nonalcoholic fatty liver disease (NAFLD) mice (p < 0.05), and hepatic steatosis and impaired Glc tolerance were also ameliorated. After HD intervention, the activity of Adenosine 5'-monophosphate-activated protein kinase (AMPK) and its downstream genes, including Sirtuin 1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP1c), acetyl-coenzyme A carboxylase 1 (ACC1), and adipose triglyceride lipase (ATGL), was significantly inhibited (p < 0.05). TPS can increase the expression of these genes. The hepatoprotective effects of TPS in AMPK-/- mice almost completely disappeared. Moreover, the expression levels of SIRT1, SREBP1c, ACC1, and ATGL did not significantly change after TPS supplementation (p > 0.05). Therefore, our findings suggest that TPS protects the liver from hepatic glucolipid metabolism disorders in HD-induced NAFLD mice by activating AMPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Yiqin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanxin Huang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nutrition, The 95th Hospital of Putian, Putian, Fujian, China
| | - Qiaorong Gan
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Sun
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingling Zhu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Sun Q, Du J, Wang Z, Li X, Fu R, Liu H, Xu N, Zhu G, Wang B. Structural characteristics and biological activity of a water-soluble polysaccharide HDCP-2 from Camellia sinensis. Int J Biol Macromol 2024; 277:134437. [PMID: 39116965 DOI: 10.1016/j.ijbiomac.2024.134437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Large-leaf Yellow tea (LYT) is a traditional beverage from Camellia Sinensis (L.) O. Kuntze in China and has unusual health-regulating functions. This investigation explored the structural characteristics of a polysaccharide extracted from LYT, which possesses anti-inflammatory activity. The polysaccharide HDCP-2, obtained through ethanol fractional precipitation and then DEAE-52 anion exchange column, followed by DPPH radical scavenging screening, exhibited a yield of 0.19 %. The HPGPC method indicated that the molecular weight of HDCP-2 is approximately 2.9 × 104 Da. Analysis of the monosaccharide composition revealed that HDCP-2 consisted of mannose, glucose, xylose, and galacturonic acid, and their molar ratio is approximately 0.4:0.5:1.2:0.7. The structure motif of HDCP-2 was probed carefully through methylation analysis, FT-IR, and NMR analysis, which identified the presence of β-d-Xylp(1→, →2, 4)-β-d-Xylp(1→, →3)-β-d-Manp(1→, α-d-Glcp(1→ and →2, 4)-α-d-GalAp(1→ linkages. A CCK-8 kit assay was employed to evaluate the anti-inflammatory action of HDCP-2. These results demonstrated that HDCP-2 could inhibit the migration and proliferation of the MH7A cells and reduce NO production in an inflammatory model induced by TNF-α. The abundant presence of xylose accounted for 39 % of the LYT polysaccharide structure, and its distinctive linking mode (→2, 4)-β-d-Xylp(1→) appears to be the primary contributing factor to its anti-inflammatory effect.
Collapse
Affiliation(s)
- Qiaoxu Sun
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Jiao Du
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Zhen Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Xinyue Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Ranze Fu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Hui Liu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China.
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, College of Chinese Medicine, School of Pharmacy, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230038, PR China; Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei 230038, PR China.
| |
Collapse
|
5
|
Huang R, Yu H. Extraction methods, chemical compositions, molecular structure, health functions, and potential applications of tea polysaccharides as a promising biomaterial: a review. Int J Biol Macromol 2024; 277:134150. [PMID: 39059531 DOI: 10.1016/j.ijbiomac.2024.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tea polysaccharides (TPS) have attracted much attention due to their multiple biological activities, excellent biocompatibility and good biodegradability, creating a wide range of potential applications in the food and pharmaceutical industries. However, the high molecular weight and complexity of TPS components have restricted its purification and bioactivity, limiting its potential applications. In this review, the effects of various extraction methods, tea processing, and degree of fermentation on the composition and structure of TPS were thoroughly investigated to overcome this dilemma. Through a comprehensive analysis of in vivo and in vitro studies, the health benefits of TPS are discussed in detail, including antioxidant, anti-obesity, modulation of gut microbial communities, and anticancer bioactivities. Typical structural characterization techniques of TPS are also summarized, and interactions with common food components are discussed in depth, providing a deeper perspective on the overall knowledge of TPS. Finally, this review offers an extensive overview of the wide range of applications of TPS, including its strong emulsifying properties and bio-accessibility, in various fields such as food nutrition, drug delivery, encapsulation films, and emulsifiers. This review aims to provide a theoretical basis for the profound development of TPS for productive utilization.
Collapse
Affiliation(s)
- Rong Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai 200030, China.
| | - Hongfei Yu
- North Ring Road no.1, Xinyang Agriculture and Forestry University, Pingqiao, Xinyang, He'nan, China
| |
Collapse
|
6
|
Zhou Q, Gao J, Sun X, Liang Y, Ye M, Liang D, Ling C, Fang B. In Vitro Characterization of Polysaccharides from Fresh Tea Leaves in Simulated Gastrointestinal Digestion and Gut Microbiome Fermentation. Foods 2024; 13:1561. [PMID: 38790861 PMCID: PMC11121227 DOI: 10.3390/foods13101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Tea plants have a long cultivation history in the world, but there are few studies on polysaccharides from fresh tea leaves. In this study, tea polysaccharides (TPSs) were isolated from fresh tea leaves. Then, we investigated the characteristics of TPSs during in vitro simulated digestion and fermentation; moreover, the effects of TPSs on gut microbiota were explored. The results revealed that saliva did not significantly affect TPSs' molecular weight, monosaccharide composition, and reducing sugar content, indicating that TPSs cannot be digested in the oral cavity. However, TPSs were partially decomposed in the gastrointestinal tract after gastric and intestinal digestion, resulting in the release of a small amount of free glucose monosaccharides. Our in vitro fermentation experiments demonstrated that TPSs are degraded by gut microbiota, leading to short-chain fatty acid (SCFA) production and pH reduction. Moreover, TPSs increased the abundance of Bacteroides, Lactobacillus, and Bifidobacterium but reduced that of Escherichia, Shigella, and Enterococcus, demonstrating that TPSs can regulate the gut microbiome. In conclusion, TPSs are partially decomposed by gut microbiota, resulting in the production of SCFAs and the regulation of gut microbiota composition and function. Therefore, TPSs may be used to develop a prebiotic supplement to regulate the gut microbiome and improve host health.
Collapse
Affiliation(s)
- Qiaoyi Zhou
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (Q.Z.); (J.G.); (X.S.); (Y.L.); (M.Y.)
| | - Jinjing Gao
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (Q.Z.); (J.G.); (X.S.); (Y.L.); (M.Y.)
| | - Xueyan Sun
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (Q.Z.); (J.G.); (X.S.); (Y.L.); (M.Y.)
| | - Yicheng Liang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (Q.Z.); (J.G.); (X.S.); (Y.L.); (M.Y.)
| | - Minqi Ye
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (Q.Z.); (J.G.); (X.S.); (Y.L.); (M.Y.)
| | - Dongxia Liang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China;
| | - Caijin Ling
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China;
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (Q.Z.); (J.G.); (X.S.); (Y.L.); (M.Y.)
| |
Collapse
|
7
|
Xu R, Xu P, Wei H, Huang Y, Zhu X, Lin C, Yan Z, Xin L, Li L, Lv W, Zeng S, Tian G, Ma J, Cheng B, Lu H, Chen Y. Ticlopidine induces embryonic development toxicity and hepatotoxicity in zebrafish by upregulating the oxidative stress signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115283. [PMID: 37531924 DOI: 10.1016/j.ecoenv.2023.115283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Ticlopidine exerts its anti-platelet effects mainly by antagonizing platelet p2y12 receptors. Previously, a few studies have shown that ticlopidine can induce liver injury, but the exact mechanism of hepatotoxicity remains unclear. Oxidative stress, metabolic disorders, hepatocyte apoptosis, lipid peroxidation, and inflammatory responses can all lead to hepatic liver damage, which can cause hepatotoxicity. In this study, in order to deeply explore the potential molecular mechanisms of ticlopidine -induced hepatotoxicity, we used zebrafish as a model organism to comprehensively evaluate the hepatotoxicity of ticlopidine and its associated mechanism. Three days post-fertilization, zebrafish larvae were exposed to varying concentrations (1.5, 1.75 and 2 μg/mL) of ticlopidine for 72 h, in contrast, adult zebrafish were exposed exposure to 4 μg/mL of ticlopidine for 28 days. Ticlopidine-exposed zebrafish larvae showed changes in liver morphology, shortened body length, and delayed development of the swim bladder development. Liver tissues of ticlopidine-exposed zebrafish larvae and adults stained with Hematoxylin & Eosin revealed vacuolization and increased cellular interstitial spaces in liver tissues. Furthermore, using Oil Red O and periodic acid-Schiff staining methods and evaluating different metabolic enzymes of ticlopidine-exposed zebrafish larvae and adults suggested abnormal liver metabolism and liver injury in both ticlopidine-exposed zebrafish larvae and adults. Ticlopidine also significantly elevated inflammation and oxidative stress and reduced hepatocyte proliferation. During the rescue intervention using N-acetylcysteine, we observed significant improvement in ticlopidine-induced morphological changes in the liver, shortened body length, delayed swim bladder development, and proliferation of liver tissues showed significant improvement. In conclusion, ticlopidine might inhibit normal development and liver proliferation in zebrafish by upregulation of oxidative stress levels, thus leading to embryonic developmental toxicity and hepatotoxicity. In this study, we used zebrafish as a model organism to elucidate the developmental toxicity and hepatotoxicity induced by ticlopidine upregulation of oxidative stress signaling pathway in zebrafish, providing a theoretical basis for clinical application.
Collapse
Affiliation(s)
- Rong Xu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Pengxiang Xu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Haiyan Wei
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Yong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330029, Jiangxi, PR China
| | - Xiaodan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Chuanming Lin
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Zhimin Yan
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Liuyan Xin
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Lin Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Weiming Lv
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Shuqin Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, PR China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, PR China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, PR China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000 Jiangxi, PR China.
| | - Yijian Chen
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Ganzhou 341000, China.
| |
Collapse
|
8
|
Liu Y, Lei S, Hou R, Li D, Wan X, Cai H, Chen G. Tea polysaccharides from Taiping Houkui may serve as a potential candidate for regulation of lipid metabolism: Roles of gut microbiota and metabolite in vitro. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
9
|
Wu G, Gu W, Chen G, Cheng H, Li D, Xie Z. Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
10
|
Xia B, Liu Q, Sun D, Wang Y, Wang W, Liu D. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Polysaccharides from Anji White Tea: Characterization and Comparison with the Conventional Method. Foods 2023; 12:foods12030588. [PMID: 36766120 PMCID: PMC9914869 DOI: 10.3390/foods12030588] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Deep eutectic solvent as a new green and safe solvent system has attracted more and more attention in recent years. In this study, three deep eutectic solvents (DES) were combined with ultrasound irradiation to extract tea polysaccharides (TPs) from Anji white tea, which was compared with conventional hot water extraction (HW). The physicochemical, structural, and biological properties of TPs extracted by ultrasound-assisted DES and hot water (HWP) were further investigated. Results showed that the DES system composed of choline chloride and 1,6-hexanediol (CH) with the molar ratio of 1:2 exhibited the optimal extraction yield (19.18%) and in vitro antioxidant activities for TPs (CHP). Furthermore, compared to the HWP, the CHP had a higher extraction yield and total carbohydrate content and a lower molecular weight. Monosaccharide composition analysis displayed that the molecular structure of CHP exhibited more arabinose but less glucose, mannose, galacturonic acid, and glucuronic acid than HWP. Little difference was observed in the preliminary structural characteristics between HWP and CHP from Fourier transform infrared analysis. Besides, CHP possessed better α-glucosidase inhibitory and hypoglycemic activity in L6 cells than HWP. Therefore, the ultrasound-assisted DES extraction method can be a promising strategy for extracting TPs with excellent bioactivities for future applications in functional foods.
Collapse
Affiliation(s)
- Bing Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Tea Group Co., Ltd., Hangzhou 310003, China
| | - Qi Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Da Sun
- Zhejiang Institute of Economics and Trade, Hangzhou 310018, China
| | - Yang Wang
- Zhejiang Tea Group Co., Ltd., Hangzhou 310003, China
| | - Wenjun Wang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
- Correspondence: (W.W.); (D.L.)
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Correspondence: (W.W.); (D.L.)
| |
Collapse
|
11
|
Yang Z, Zeng Y, Hu Y, Zhou T, Li J, He L, Zhang W, Zeng X, Fan J. Comparison of chemical property and in vitro digestion behavior of polysaccharides from Auricularia polytricha mycelium and fruit body. Food Chem X 2023; 17:100570. [PMID: 36845476 PMCID: PMC9945431 DOI: 10.1016/j.fochx.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
The antioxidant activity of Auricularia polytricha is associated tightly with its polysaccharide concentration, molar mass and architecture. This study aims to explore the differences in structural and physicochemical traits and oxidation resistances between the polysaccharides from fruit body (ABPs) and mycelial (IAPs) of Auricularia polytricha. The results showed that ABPs and IAPs were constituted by glucose, glucuronic acid, galactose and mannose. However, the molecular weight distribution of IAPs (3.22 × 104 Da (52.73%) and 1.95 × 106 Da (24.71%)) was wider than that of ABPs (5.4 × 106 Da (95.77%)). The shear-thinning performance and viscoelastic behavior of both IAPs and ABPs are representative. IAPs are scattered in sheets, with folds and holes, and have a triple helix structure. ABPs are compact in structure and clear in texture. The main functional groups and thermal stability of both polysaccharides were similar. Concerning the in-vitro oxidation resistance, both of the studied polysaccharides exhibited the potent potential to scavenge hydroxyl radicals (IC50 = 3.37 ± 0.32 and 6.56 ± 0.54 mg/mL, respectively) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (IC50 = 0.89 ± 0.22 and 1.48 ± 0.63 mg/mL, respectively), as well as the moderate reduction power. In addition, IAPs and ABPs were both completely undigested in simulated contexts of saliva, small intestine and stomach, and the two polysaccharide types maintained high DPPH and hydroxyl radical scavenging activities. DDPH scavenging rate during digestion was positively correlated with uronic acid content. To conclude, this study suggests the potential of IAPs as an equivalent alternative to ABPs.
Collapse
Affiliation(s)
- Zhengbin Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Yongde Zeng
- Guizhou Industrial Technology Research Institute of Rare Edible and Medicinal Fungi Co., Ltd, Guiyang 550025, China
| | - Yuedan Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Tingting Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Lapin He
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Wei Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Industrial Technology Research Institute of Rare Edible and Medicinal Fungi Co., Ltd, Guiyang 550025, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China,Corresponding authors at: School of Liquor and Food Engineering, Guizhou University, Guiyang, China.
| | - Jin Fan
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China,Corresponding authors at: School of Liquor and Food Engineering, Guizhou University, Guiyang, China.
| |
Collapse
|
12
|
Xu X, Liu S, Zhao Y, Wang M, Hu L, Li W, Xu H. Combination of Houttuynia cordata polysaccharide and Lactiplantibacillus plantarum P101 alleviates acute liver injury by regulating gut microbiota in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6848-6857. [PMID: 35639719 DOI: 10.1002/jsfa.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polysaccharides and probiotics can play an outstanding role in the treatment of liver disease by regulating gut microbiota. Recently, the combined therapeutic effect of probiotics and polysaccharides has attracted the attention of researchers. Houttuynia cordata polysaccharide (HCP) combined with Lactiplantibacillus plantarum P101 was used to prevent carbon tetrachloride (CCl4 )-induced acute liver injury (ALI) in mice, and its effect on gut microbiota regulation was explored. RESULTS Results showed that, in mice, HCP combined with L. plantarum P101 significantly alleviated oxidative stress and inflammatory injury in the liver by activating Nrf2 signals and inhibiting NF-κB signals. The analysis of gut microbiota revealed that the combination of HCP and L. plantarum P101 increased the abundance of beneficial bacteria such as Alloprevotella, Roseburia, and Akkermansia, but reduced that of the pro-inflammatory bacteria Alistipes, Enterorhabdus, Anaerotruncus, and Escherichia-Shigella. Correlation analysis also indicated that the expression of Nrf2 and TLR4/NF-κB was connected to the changes in gut microbiota composition. Houttuynia cordata polysaccharide combined with L. plantarum P101 can regulate the gut microbiota and then mediate the gut-liver axis to activate the antioxidant pathway and inhibit inflammatory responses, thereby alleviating CCl4 -induced ALI. CONCLUSION Our study provided a new perspective on the use of polysaccharides combined with probiotics in the treatment of liver disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Yang G, Liang X, Hu J, Li C, Hu W, Li K, Chang X, Zhang Y, Zhang X, Shen Y, Meng X. Feeding tea polysaccharides affects lipid metabolism, antioxidant capacity and immunity of common carp ( Cyprinus carpio L.). Front Immunol 2022; 13:1074198. [PMID: 36505461 PMCID: PMC9729247 DOI: 10.3389/fimmu.2022.1074198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Tea polysaccharides plays a role in lipid metabolism, antioxidant capacity and immunity of mammals. To investigate the functions of tea polysaccharides on fish, the common carp (Cyprinus carpio L.) was selected as the animal model in this study. In our study, the common carp (45±0.71g) were randomly divided into four groups and were fed fodder with 50% carbohydrate. The common carp were orally administrated with 0 mg/kg BW (control group), 200 mg/kg BW (low-dose group), 400 mg/kg BW (medium-dose group) and 800 mg/kg BW (high-dose group) tea polysaccharide for two week. At the end of experiment, the serum glucose, TG, MDA contents and antioxidase activities were measured by commercial kits. The serum immune factors levels were tested by ELISA. The genes expression levels related to antioxidant capacity, metabolism and immunity were measured by real-time PCR. The results showed that the glucose, TG and MDA contents in serum were significantly decreased by tea polysaccharides treatment. The serum activities of SOD were significantly increased by low-dose tea polysaccharides treatment. The serum activities of GPX were significantly increased by medium-dose tea polysaccharides treatment. The serum levels of IL-1β and TNFα were significantly decreased in the tea polysaccharides treatment group. In the high-dose treatment group, the serum level of TGFβ was significantly increased, and the serum level of IL-12 was markedly decreased. In the hepatopancreas, the expression of acc1, fas, srebp1c, lpl, gys and pparγ were significantly reduced, and the expression of pygl, cat, mnsod, ho-1 and gr were significantly up-regulated in the tea polysaccharides group. In the intestine, the expression of zo-1, occ and gip was significantly up-regulated in the high-dose treatment group. Moreover, the expression of glut2 and sglt1 were significantly down regulated. In the spleen, the expression of il-12, tnfα and il-6 were significantly decreased, and the expression of il-10 and tgfβ was significantly increased by the tea polysaccharides. In the spleen cells, the tea polysaccharides could relieve the LPS-induced immune damage. In conclusion, tea polysaccharides can improve antioxidant capacity, lipid metabolism and immunity of common carp.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jihong Hu
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Wenpan Hu
- Henan JinBaiHe Biotechnology Co., Ltd, Anyang, China
| | - Keke Li
- Henan JinBaiHe Biotechnology Co., Ltd, Anyang, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| |
Collapse
|
14
|
Ma Q, Qin M, Song L, Sun H, Zhang H, Wu H, Ren Z, Liu H, Duan G, Wang Y, Ding Z. Molecular Link in Flavonoid and Amino Acid Biosynthesis Contributes to the Flavor of Changqing Tea in Different Seasons. Foods 2022; 11:foods11152289. [PMID: 35954056 PMCID: PMC9368528 DOI: 10.3390/foods11152289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
The present study was aimed to elucidate the flavor formation mechanism of Changqing tea. High-performance liquid chromatography (HPLC) analysis showed that the total catechins of Changqing tea was 65–160 mg/g, with 16–34 mg/g non-galloyated catechins and 49–126 mg/g galloylated catechins. Tea polyphenols and free amino acids account for 286–312 mg/g and 35–89 mg/g, respectively. Transcriptome of Changqing tea during different seasons revealed 316, 130 and 12 DEGs in comparisons of spring vs. autumn, spring vs. summer, and summer vs. autumn, respectively. Compared to spring, the genes involved in flavonoid biosynthesis and bitter imparted amino acids were up-regulated in summer and autumn. Metabolome analysis was conducted by using HPLC-MS; the result indicated that umami and kokumi contributing amino acids were decreased in summer and autumn compared with spring. It could be concluded that the coordination of flavonoid biosynthesis and amino acids biosynthesis resulted in the special flavor of Changqing tea.
Collapse
Affiliation(s)
- Qingping Ma
- College of Agronomy, Liaocheng University, Liaocheng 252000, China; (Q.M.); (M.Q.); (L.S.)
| | - Mengyao Qin
- College of Agronomy, Liaocheng University, Liaocheng 252000, China; (Q.M.); (M.Q.); (L.S.)
| | - Laichao Song
- College of Agronomy, Liaocheng University, Liaocheng 252000, China; (Q.M.); (M.Q.); (L.S.)
| | - Haiwei Sun
- Taian Academy of Agricultural Sciences, Taian 271000, China; (H.S.); (H.Z.); (H.W.); (Z.R.)
| | - Hong Zhang
- Taian Academy of Agricultural Sciences, Taian 271000, China; (H.S.); (H.Z.); (H.W.); (Z.R.)
| | - Huanhuan Wu
- Taian Academy of Agricultural Sciences, Taian 271000, China; (H.S.); (H.Z.); (H.W.); (Z.R.)
| | - Zhihong Ren
- Taian Academy of Agricultural Sciences, Taian 271000, China; (H.S.); (H.Z.); (H.W.); (Z.R.)
| | - Hui Liu
- Jinan Bureau of Agriculture and Rural Areas, Jinan 271100, China; (H.L.); (G.D.)
| | - Gang Duan
- Jinan Bureau of Agriculture and Rural Areas, Jinan 271100, China; (H.L.); (G.D.)
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao 276800, China
- Correspondence: ; Tel.: +86-15853260396
| |
Collapse
|
15
|
Advances in the Utilization of Tea Polysaccharides: Preparation, Physicochemical Properties, and Health Benefits. Polymers (Basel) 2022; 14:polym14142775. [PMID: 35890551 PMCID: PMC9320580 DOI: 10.3390/polym14142775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Tea polysaccharide (TPS) is the second most abundant ingredient in tea following tea polyphenols. As a complex polysaccharide, TPS has a complex chemical structure and a variety of bioactivities, such as anti-oxidation, hypoglycemia, hypolipidemic, immune regulation, and anti-tumor. Additionally, it shows excellent development and application prospects in food, cosmetics, and medical and health care products. However, numerous studies have shown that the bioactivity of TPS is closely related to its sources, processing methods, and extraction methods. Therefore, the authors of this paper reviewed the relevant recent research and conducted a comprehensive and systematic review of the extraction methods, physicochemical properties, and bioactivities of TPS to strengthen the understanding and exploration of the bioactivities of TPS. This review provides a reference for preparing and developing functional TPS products.
Collapse
|
16
|
Ding Y, Yan Y, Li J, Chen X, Jiang H. Classification of Tea Quality Levels Using Near-Infrared Spectroscopy Based on CLPSO-SVM. Foods 2022; 11:foods11111658. [PMID: 35681408 PMCID: PMC9180160 DOI: 10.3390/foods11111658] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we propose a method for classifying tea quality levels based on near-infrared spectroscopy. Firstly, the absorbance spectra of Huangshan Maofeng tea samples were obtained in a wavenumber range of 10,000~4000 cm−1 using near-infrared spectroscopy. The spectral data were then converted to transmittance and smoothed using the Savitzky–Golay (SG) algorithm. The denoised transmittance spectra were dimensionally reduced using principal component analysis (PCA). The characteristic variables obtained using PCA were used as the input variables and the tea level was used as the output to establish a support vector machine (SVM) classification model. The penalty factor c and the kernel function parameter g in the SVM model were optimized using particle swarm optimization (PSO) and comprehensive-learning particle swarm optimization (CLPSO) algorithms. The final experimental results show that the CLPSO-SVM method had the best classification performance, and the classification accuracy reached 99.17%.
Collapse
Affiliation(s)
- Yuhan Ding
- Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Ministry of Education, Zhenjiang 212013, China; (Y.D.); (J.L.)
- High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
- Institute of High-Performance Electrical Machine System and Intelligent Control, Jiangsu University, Zhenjiang 212013, China
| | - Yuli Yan
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Y.); (X.C.)
| | - Jun Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Ministry of Education, Zhenjiang 212013, China; (Y.D.); (J.L.)
- High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
- School of Automation, Southeast University, Nanjing 210096, China
| | - Xu Chen
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Y.); (X.C.)
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Y.); (X.C.)
- Correspondence:
| |
Collapse
|
17
|
Wang W, Liu M, Zhang M, Sun W, Zhang J, Jia L. Agaricus blazei Murill polysaccharides alleviate oxidative stress and inflammatory responses against liver and lung injury. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Characterization of Acidic Tea Polysaccharides from Yellow Leaves of Wuyi Rock Tea and Their Hypoglycemic Activity via Intestinal Flora Regulation in Rats. Foods 2022; 11:foods11040617. [PMID: 35206093 PMCID: PMC8871580 DOI: 10.3390/foods11040617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
A bioactive acidic tea polysaccharide from yellow leaves of Wuyi rock tea was successively prepared via DEAE-52 and Superdex-200 columns. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-l-Araf-(1→, →5)-α-l-Araf-(1→, →4)-α-d-Glcp-(1→, Arap-(1→, →6)-α-d-Glcp-(1→, →2,4)-α-l-Rhap-(1→, →3,4)-α-d-Glcp-(1→, →4)-α-d-GalAp-(1→, →4)-α-d-GalAp-(1→, α-d-Galp-(1→, →6)-β-d-Galp-(1→ and →4)-β-d-Galp-(1→. The molecular weight was 3.9285 × 104 Da. The hypoglycemic effect of acidic tea polysaccharides on streptozotocin-induced type 2 diabetes mellitus rats was evaluated through histopathology and biochemistry analysis. The acidic tea polysaccharide could improve plasma and liver lipid metabolism. Moreover, 16S rRNA gene sequencing revealed that the composition of the intestinal flora changed drastically after treatment, namely, blooms of Bifidobacterium, Blautia, Dorea, and Oscillospira, and a strong reduction in Desulfovibrio and Lactobacillus. The above results illustrated that tea polysaccharides might serve as an effective ingredient to ameliorate glucose metabolism disorders and intestinal flora in hyperglycemic rats.
Collapse
|
19
|
Liu M, Shan S, Gao X, Zeng D, Lu W. Structure characterization and lipid-lowering activity of a homogeneous heteropolysaccharide from sweet tea (Rubus Suavissmus S. Lee). Carbohydr Polym 2022; 277:118757. [PMID: 34893212 DOI: 10.1016/j.carbpol.2021.118757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Sweet tea (Rubus Suavissmus S. Lee) is consumed as herbal tea in southwestern China, which has multiple functions such as relieving cough, alleviating allergic responses, and clearing away heat. Here we report the structure and lipid-lowering activity of a sweet tea polysaccharide (STP-60a). STP-60a is a homogeneous heteropolysaccharide with a molecular weight of 9.16 × 104 Da, and composed of rhamnose, arabinose, glucose, galactose and glucuronic acid. The main backbone of STP-60a consists of β-L-Rhap-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Glcp-UA-(1→, →3,6)-β-D-Galp-(1→, →6)-β-D-Galp-(1→, →3)-4-OAc-β-L-Arap-(1→, →3)-α-L-Araf-(1→ and the side chain are α-L-Araf-(1→ and →3)-α-D-Glcp-(1→. Using Caenorhabditis elegans (C. elegans) in a high-sugar diet as a model, we found that STP-60a significantly reduced the fat accumulation in the intestine of C. elegans, and extensively affected lipolysis, fatty acid synthesis and β-oxidation processes. In addition, sbp-1 and nhr-49 were essential for STP-60a to exert a lipid-lowering effect.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Deyong Zeng
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
20
|
Liu J, Lin J, Huang Z, Zheng Q, Lin F, Wu L. Chemical characterization of Tianshan green tea polysaccharides and its protective effects on cell oxidative injury. J Food Biochem 2021; 46:e14000. [PMID: 34825388 DOI: 10.1111/jfbc.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to analyze the chemical characterization of Tianshan green tea polysaccharides (TSPS), and evaluate its antioxidant activity by chemical-based and cellular-based antioxidant models in vitro. The results showed that the TSPS were composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose with a molar ratio of 14.5:33.5:10.5:6.5:111.5:22.3:59.5:51: 1.0, and an average molecular weight of 19.49 kDa. TSPS exhibited excellent antioxidant ability to DPPH radical, hydroxyl radical, and ABTS radical, and enhanced the ferric-reducing power (FRAP). The antioxidation model of LO2 and HepG2 cells was established, and found that TSPS had no significant toxicity to either of the two cells at the range of 0.1-5 mg/mL, but clearly protected cells from H2 O2 -induced apoptosis and significantly reduced intracellular ROS level. In addition, the activities of antioxidant-associated enzymes were detected in LO2 cells, which suggested that TSPS could significantly improve the activities of SOD and CAT enzyme when the concentration was higher than 0.5 mg/mL. Furthermore, TSPS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway by promoting Nrf2 nuclear translocation and inhibited the expression of Kelch-like ECH-associated protein 1 (Keap-1) and enhanced the expression of heme oxygenase-1 (HO-1). PRACTICAL APPLICATIONS: Tianshan green tea, a local variety in Fujian Province, belongs to unfermented tea. Polysaccharide is considered as the most promising component in Tianshan green tea. This study showed that TSPS had excellent antioxidant activity and had no significant toxicity to cells, which provides a scientific foundation and new idea for its further development and application in functional foods.
Collapse
Affiliation(s)
- Jianbing Liu
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Jun Lin
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Zuohua Huang
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuxia Zheng
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Feng Lin
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| | - Liyun Wu
- Fujian Engineering and Research Center for Microbial Techniques of Hongqu, Fujian Institute of Microbiology, Fuzhou, China
| |
Collapse
|
21
|
Liu J, Wu Y, Wang Y, Wu X, Li Y, Gao C, Liu Y, Zhang Q, Cai J, Su Z. Hepatoprotective effect of polysaccharide isolated from Sonneratia apetala fruits on acetaminophen-induced liver injury mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Xu A, Lai W, Chen P, Awasthi MK, Chen X, Wang Y, Xu P. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Xu Y, Li Y, Lu Y, Feng X, Tian G, Liu Q. Antioxidative and hepatoprotective activities of a novel polysaccharide (LSAP) from Lepista sordida mycelia. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
24
|
Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules 2021; 26:molecules26113457. [PMID: 34200163 PMCID: PMC8201348 DOI: 10.3390/molecules26113457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
Tea polysaccharides (TPSs) are one of the main bioactive constituents of tea with various biological activities such as hypoglycemic effect, antioxidant, antitumor, and immunomodulatory. The bioactivities of TPSs are directly associated with their structures such as chemical composition, molecular weight, glycosidic linkages, and conformation among others. To study the relationship between the structures of TPSs and their bioactivities, it is essential to elucidate the structure of TPSs, particularly the fine structures. Due to the vast variation nature of monosaccharide units and their connections, the structure of TPSs is extremely complex, which is also affected by several major factors including tea species, processing technologies of tea and isolation methods of TPSs. As a result of the complexity, there are few studies on their fine structures and chain conformation. In the present review, we aim to provide a detailed summary of the multiple factors influencing the characteristics of TPS chemical structures such as variations of tea species, degree of fermentation, and preparation methods among others as well as their applications. The main aspects of understanding the structural difference of TPSs and influencing factors are to assist the study of the structure and bioactivity relationship and ultimately, to control the production of the targeted TPSs with the most desired biological activity.
Collapse
|
25
|
Ye J, Zhao Y, Chen X, Zhou H, Yang Y, Zhang X, Huang Y, Zhang N, Lui EMK, Xiao M. Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Res Int 2021; 144:110360. [PMID: 34053553 DOI: 10.1016/j.foodres.2021.110360] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/03/2023]
Abstract
Obesity is regarded to be associated with fat accumulation, chronic inflammation, and gut microbiota dysbiosis. Raw and ripened pu-erh tea extract (PETe) have the effect of reducing body weight gain and fat accumulation, which are associated with gut microbiota. However, little is known about the difference of raw and ripened PETe on the regulation of gut microbiota. Here, our results suggested that supplementation of raw and ripened PETe displayed similar anti-obesogenic effect in high fat diet (HFD)-induced obesity mice, by attenuating the body weight gain, fat accumulation, oxidative injury, and low-grade inflammation, improving the glucose tolerance, alleviating the metabolic endotoxemia, and regulating the mRNA and protein expression levels of the lipid metabolism-related genes. 16S rRNA sequencing of fecal samples indicated that raw and ripened PETe intervention displayed different regulatory effect on the HFD-induced gut microbiota dysbiosis at different taxonomic levels. The microbial diversity, the relative abundance of Firmicutes and Bacteroidetes as well as F/B ratio were reversed more closer to normal by ripened PETe. Phylotypes of Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, Muribaculaceae, and Rikenellaceae which are negatively correlated with obesity were enhanced notably by the intervention of ripened PETe, while Erysipelotrichaceae and Lactobacillaceae which have positive correlation with obesity were decreased dramatically. In addition, the treatment of ripened PETe had better effect on the increase of benefical Bacteroides, Alistipes, and Akkemansia and decrease of obesity associated Faecalibaculum and Erysipelatoclostridium (p < 0.05). These findings suggested that pu-erh tea especially ripened pu-erh tea could serve as a great candidate for alleviation of obesity in association with the modulation of gut microbiota.
Collapse
Affiliation(s)
- Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Yan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiangming Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Huiyu Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yucheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Edmund M K Lui
- Physiology and Pharmacology, Western University, London, Ontario N6A 5B9, Canada
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| |
Collapse
|
26
|
Gao Y, Wang Y, Ji X, Xiao Y, Xiao B, Peng P. Tea polysaccharides from Camellia sinensis: chemical analysis, structural characterization, and inhibition of HeLa cells activity. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1877957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, China
| | | | - Xuening Ji
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yao Xiao
- Department of Foreign Languages, Northwest A&F University, Yangling, China
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
28
|
Yang C, Zhao Y, Ren D, Yang X. Protective Effect of Saponins-Enriched Fraction of Gynostemma pentaphyllum against High Choline-Induced Vascular Endothelial Dysfunction and Hepatic Damage in Mice. Biol Pharm Bull 2020; 43:463-473. [PMID: 32115504 DOI: 10.1248/bpb.b19-00805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Choline as a quaternary amine nutrient is metabolized to trimethylamine by gut microbiota and subsequently oxidized to circulating trimethylamine-N-oxide (TMAO), a gut-derived metabolite associated with liver toxicity and cardiovascular disease. The study was to probe the possible vasoprotective and hepatoprotective effects of total saponins of Gynostemma pentaphyllum (TSGP) in 3% high-choline water-feeding mice. The purified TSGP was obtained with content of 83.0% saponins, and its antioxidant activities were evaluated in vitro. Furthermore, the mice fed with high choline for 8 weeks significantly expressed vascular endothelial dysfunction and liver oxidative stress (p < 0.01 vs. Normal). Administration of TSGP at 400 and 800 mg/kg·body weight (b.w.) significantly lowered the serum total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), endothelin-1 (ET-1) and thromboxane A2 (TXA2) levels, as well as hepatic malondialdehyde (MDA) formation, but effectively elevated the serum nitric oxide (NO), endothelial nitric oxide synthase (eNOS) and prostaglandin I2 (PGI2) levels, as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), T-superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in high choline-fed mice. Hematoxylin-eosin (H&E) and oil red O staining also suggested that TSGP could exert the significant protection against endothelial dysfunction and liver injury in high choline-treated mice. These findings suggest that TSGP is of the saponins-enriched extract, and is a good candidate of dietary supplement and therapeutic application in vascular and hepatic oxidative injury.
Collapse
Affiliation(s)
- Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University
| |
Collapse
|
29
|
Zhang MQ, Ren X, Zhao Q, Yue SJ, Fu XM, Li X, Chen KX, Guo YW, Shao CL, Wang CY. Hepatoprotective effects of total phenylethanoid glycosides from Acanthus ilicifolius L. against carbon tetrachloride-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112795. [PMID: 32224197 DOI: 10.1016/j.jep.2020.112795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus ilicifolius L. has been used as a folk medicine in the treatment of acute and chronic hepatitis in China for a long time. Phenylethanoid glycosides are one of main components in A. ilicifolius L. AIM OF THE STUDY The aim of present study was to assess the hepatoprotective activities of total phenylethanoid glycosides from A. ilicifolius L. (APhGs) against carbon tetrachloride (CCl4)-induced liver injury in vivo and in vitro. MATERIALS AND METHOD The APhGs was separated by resin column chromatography. The purity of total phenylethanoid glycosides was determined by UV-Vis spectrophotometry using acteoside as a standard. The hepatoprotective activities of APhGs against CCl4-induced liver injury were performed on experimental mice and L-02 hepatocytes. Moreover, the antioxidant activities of APhGs were tested in vitro. RESULTS The results showed that pre-administration of APhGs to mice decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum, and improved superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) level in serum and liver tissue induced by CCl4. Specifically, the SOD activities of APhGs-H and APhGs-M treatment groups were stronger than that of silymarin treatment group. The protective activities of APhGs were confirmed by histopathological results. Moreover, immunohistochemical analysis showed that APhGs could remarkably down-regulate the protein expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In vitro experiment, APhGs was observed to increase L-02 hepatocyte viability against CCl4-induced hepatotoxicity. In addition, antioxidation assays revealed that APhGs showed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferric reducing ability. CONCLUSION Overall, total phenylethanoid glycosides from A. ilicifolius L. displayed promising hepatoprotective effects. These results offer a support for the medicine uses of A. ilicifolius L.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; College of Economics, Ocean University of China, Qingdao, 266100, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
30
|
Duan Z, Zhang Y, Zhu C, Wu Y, Du B, Ji H. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice. Int J Biol Macromol 2020; 162:533-547. [PMID: 32565302 DOI: 10.1016/j.ijbiomac.2020.06.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the basic structural features of phosphorylated Pleurotus ostreatus polysaccharide (PPOP) and study the protective effect of PPOP on liver injury induced by carbon tetrachloride in male Kunming mice. The phosphorylated polysaccharide was prepared from the natural polysaccharide extracted from Pleurotus ostreatus (POP). The structures of PPOP and POP were characterized by FT-IR, ESEM spectroscopy, and Congo red test. Chemical composition analysis revealed that PPOP was mainly composed of rhamnose, galacturonic acid, and xylose in a molar ratio of 0.10: 1.98: 1.00. Structural analysis indicated that PPOP had multi-strand structure and the absorption peaks of PO and P-O-C. Furthermore, animal experiments showed that the hepatoprotective effect of PPOP against liver injury was reflected by decreasing the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, trilaurin, and low-density lipoprotein cholesterol in the serum, increasing the content of high-density lipoprotein cholesterol and albumin in blood, reducing the content of malondialdehyde and promoting the activity of antioxidant enzymes in liver. PPOP exhibited stronger hepatoprotective effect and antioxidant activity in vivo than POP. The final results indicated that PPOP could be used in the treatment of chemical-induced hepatotoxicity based on the above biological research.
Collapse
Affiliation(s)
- Zhen Duan
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yang Zhang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Center of Shaanxi Province for Food and Health Sciences, Xi'an 710119, China.
| | - Yuan Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Biqi Du
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huijie Ji
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
31
|
Hepatoprotective Effects of Pleurotus ostreatus Protein Hydrolysates Yielded by Pepsin Hydrolysis. Catalysts 2020. [DOI: 10.3390/catal10060595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pleurotus ostreatus protein extract (POPE) was prepared by the alkali precipitation method with 0.3% (w/v) NaOH. POPEP-III with a MW of 3000–5000 Da was acquired by pepsin enenzymatic hydrolysis. POPEP-III displayed noteworthy effects of 1,1-diphenyl-2-picrylhydrazyl DPPH and H2O2 scavenging activities, Fe2+ chelating ability, lipid peroxidation inhibition capacity, and metal reducing power. The administration of POPEP-III in mice significantly prevented prior CCl4-induced strengthen serum ALT and AST activities, changing from 365.44 ± 36.87 IU/L to 220.23 ± 22.27 IU/L and 352.52 IU/L to 206.75 ± 17.26 IU/L, respectively (p < 0.001), and suppressed hepatic malondialdehyde (MDA) formation from 15.28 ± 3.47 nmol/mg prot to 10.04 ± 2.06 nmol/mg prot (p < 0.001). Mice treated with POPEP-III demonstrated augmented activities of superoxide dismutase (SOD) in the liver, from 187.49 ± 19.81 U/mg prot to 233.35 ± 34.23 U/mg prot, and of glutathione peroxidase (GSH-Px), from 84.01 ± 14.54 U/mg prot to 115.9 ± 16.57 U/mg prot (p < 0.05). POPEP-III also prevented CCl4-induced oxidative liver histological alteration. The results suggest that POPEP-III can protect the liver from CCl4-induced oxidative damage.
Collapse
|
32
|
Yang Y, Ji J, Di L, Li J, Hu L, Qiao H, Wang L, Feng Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr Polym 2020; 241:116355. [PMID: 32507196 DOI: 10.1016/j.carbpol.2020.116355] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Many natural polysaccharides from bio-resources hold advantages of multi-functions, high efficiency, non-toxicity or low side effect, and have strong potentials in protection against alcoholic liver damages. This review summarized the bio-resources, chemical and structural characteristics of natural polysaccharides with potentials in inhibition against alcoholic liver damages, and also emphasized knowledge on correlations between their chemical structure and function. Approximately 95 species were confirmed in generation of hepatoprotective polysaccharides. Products as crude polysaccharides originated from 17 species were sum up despite the indetermination of their accurate structure. Additional four polysaccharides were described for their known chemical structures. Possible roles of hepatoprotective polysaccharides were provided with evidence on antioxidant promotion, lipids regulation, apoptosis inhibition and anti-inflammation, as well as confirmations in immune enhancement, iron removal and anti-fibrosis when currently treated against the alcoholic liver damages. To sum up, this overview could serve to guide development and utilization of natural hepatoprotective polysaccharides.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
33
|
Ji X, Hou C, Yan Y, Shi M, Liu Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int J Biol Macromol 2020; 149:1008-1018. [DOI: 10.1016/j.ijbiomac.2020.02.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/24/2023]
|
34
|
Gong LL, Meng FJ, Hou YC, Liu Y, Xu JJ, Zhang WN, Chen Y. Purification, characterization, and bioactivity of two new polysaccharide fractions from Thelephora ganbajun mushroom. J Food Biochem 2019; 44:e13092. [PMID: 31721263 DOI: 10.1111/jfbc.13092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/28/2022]
Abstract
Two new polysaccharide fractions (TZP1-1 and TZP2-1) were obtained from the fruiting bodies of Thelephora ganbajun using DEAE-52 cellulose and Superdex 200 columns chromatography. The physiochemical characterization and biological activities of TZP1-1 and TZP2-1 were investigated. The relative molecular weight of TZP1-1 and TZP2-1 were 2.07 × 106 and 4,886 Da, respectively. TZP1-1 included mannose, rhamnose, galactose, and xylose (4:1:83.9:7.5), while TZP2-1 included mannose, glucose, galactose, and xylose (5.4:1:79.0:8.1). The Congo red experiment results confirmed that TZP2-1 had triple helix conformation. Furthermore, both TZP1-1 and TZP2-1 showed a certain cytotoxicity on HeLa and SH-SY5Y cells, while they exhibited a stronger inhibitory effect on HeLa than SH-SY5Y. Besides, the cytotoxicity of TZP1-1 was better than that of TZP2-1. Moreover, both of them exhibited a moderate inhibitory effect on α-amylase and α-glucosidase. These findings could promote the application of polysaccharides from T. ganbajun. PRACTICAL APPLICATIONS: Thelephora ganbajun is an edible fungus widely distributed in Southwestern China. T. ganbajun polysaccharides as important active ingredients have not been reported. In this current study, two polysaccharides fractions (TZP1-1 and TZP2-1) were characterized, and their cytotoxicities and antidiabetic effect were also assayed. These findings could promote polysaccharides from T. ganbajun to be better application.
Collapse
Affiliation(s)
- Li-Li Gong
- School of Life Sciences, Anhui University, Hefei, China
| | - Fan-Ju Meng
- School of Life Sciences, Anhui University, Hefei, China
| | - Yu-Chen Hou
- School of Life Sciences, Anhui University, Hefei, China
| | - Yu Liu
- School of Life Sciences, Anhui University, Hefei, China
| | - Jia-Jia Xu
- School of Life Sciences, Anhui University, Hefei, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei, China.,Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Anhui University, Hefei, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, China.,Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Anhui University, Hefei, China
| |
Collapse
|
35
|
Acute and Subchronic Oral Toxicity of Fermented Green Tea with Aquilariae Lignum in Rodents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8721858. [PMID: 31662782 PMCID: PMC6754909 DOI: 10.1155/2019/8721858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Green tea is generally considered safe, but there have been concerns regarding side effects relating to the main component, catechins, especially hepatotoxicities. We have previously shown beneficial effects of fermented green tea with Aquilariae Lignum (fGT) via an oral route in diabetic and obese models. Thus, the toxicological safety of fGT was assessed at limited oral doses for a rodent. Mice or rats of both genders were orally administered distilled water as a control and fGT at 2.0, 1.0, and 0.5 g/kg. There were no mortalities or gross abnormalities in the fGT groups for 2 weeks following the single oral dose in mice. No fGT-relevant abnormalities were found in postmortem and histopathological examinations, suggesting LD50 of fGT at more than 2.0 g/kg with no specific target organs. There were also no fGT-relevant mortalities or abnormal signs in the repeated oral dose for 13 weeks in rats. In the fGT groups, no body weight changes or daily metabolic changes were found, and hematological and serum biochemical ranges were normal. The postmortem and histopathological examinations revealed few fGT-related abnormalities in most of the organs including the liver, although slight lymphoid cell hyperplasia in the lymph node was observed in a few rats with fGT at 2.0 g/kg. This may be secondary to increased immune response to the highest dose because there were no histopathological lesions or organ weight changes. It suggests nontoxic safety of fGT at up to 2.0 g/kg, which provides useful information for clinical use.
Collapse
|
36
|
Antihyperlipidemic and hepatoprotective properties of alkali- and enzyme-extractable polysaccharides by Dictyophora indusiata. Sci Rep 2019; 9:14266. [PMID: 31582800 PMCID: PMC6776539 DOI: 10.1038/s41598-019-50717-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, a very common disease throughout the world, usually gives rise to severe liver damages. The current experiment was to investigate the antihyperlipidemic and hepatoprotective properties of alkali- and enzyme-extractable Dictyophora indusiata polysaccharides (Al-DPS and En-DPS) on the hyperlipidemic mice. The results of animal experiment in vivo showed that treatment with Al-DPS or En-DPS could improve the excessive level of lipid profiles in serum and liver, as well as strengthen antioxidant status. In addition, the histopathological observations of liver testified that polysaccharides were capable of attenuating hepatic cell injury. The primary structural features of Al-DPS and En-DPS were demonstrated by HPGPC, HPLC, FT-IR and NMR. Glucose tolerance test manifested that polysaccharides were able to restrain the rise of blood sugar. The results indicated that Al-DPS and En-DPS may be considered as novel compounds to treat hyperlipidemia and also act as hepatoprotective agents.
Collapse
|
37
|
Hou Y, Gong T, Zhang J, Yang X, Guo Y. Structural characterization and emulsifying properties of thinned-young apples polysaccharides. Biochem Biophys Res Commun 2019; 516:1175-1182. [PMID: 31296384 DOI: 10.1016/j.bbrc.2019.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/28/2023]
Abstract
The thinned-young apple polysaccharides from three varieties were obtained by hot water extraction at 88 ̊C for 120 min. The compositional monosaccharides of the three polysaccharides were shown to be the same (xylose, mannose, galactose and glucose) and the molecular weights of the polysaccharides were in the range of 200-300 kDa. Compared with "Qinyang" and "Pinklady", the polysaccharide from "Jinshiji" had the highest emulsifying capacity. Moreover, the variations in pH and cation ion concentrations had also a significant effect on the emulsifying properties of the extracted polysaccharides. At pH 2.0-4.0, the prepared emulsion had smaller droplet sizes than at higher pH values. Although the emulsion was stable at low concentrations of Na+ and Ca2+ ions, high concentrations of Na+ and Ca2+ led to significant destabilization of the emulsion. Conclusively, our results demonstrated the potential application of thinned-young apple polysaccharide as a natural polysaccharide emulsifying agent.
Collapse
Affiliation(s)
- Yanjie Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Tian Gong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Jiangtao Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
38
|
Li X, Chen S, Li JE, Wang N, Liu X, An Q, Ye XM, Zhao ZT, Zhao M, Han Y, Ouyang KH, Wang WJ. Chemical Composition and Antioxidant Activities of Polysaccharides from Yingshan Cloud Mist Tea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019. [DOI: https:/doi.org/10.1155/2019/1915967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study was designed to investigate the chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist Tea. The chemical composition of green tea polysaccharides (GTPS) was analyzed by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric (TGA), gas chromatograph (GC), and high-performance gel-permeation chromatography (HPGPC). Then, the antioxidant activities in vitro of GTPS, effects of GTPS on body weight, and the antioxidant activities in chickens were studied. The results showed that GTPS were composed of rhamnose (Rha), arabinose (Ara), xylose (Xyl), mannose (Man), glucose (Glu), and galactose (Gal) in a molar ratio of 11.4 : 26.1 : 1.9 : 3.0 : 30.7 : 26.8 and the average molecular weight was 9.69×104 Da. Furthermore, GTPS exhibited obvious capacity of scavenging DPPH radical, hydroxyl radical, and superoxide radical and enhanced the ferric-reducing power in vitro. Last, GTPS significantly increased the body weight of chickens, enhanced the T-AOC, SOD, and GSH-Px level, and decreased the content of MDA in chickens. The results indicated that GTPS might be a kind of natural antioxidant, which had the potential application in feed industry.
Collapse
Affiliation(s)
- Xiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
39
|
Li X, Chen S, Li JE, Wang N, Liu X, An Q, Ye XM, Zhao ZT, Zhao M, Han Y, Ouyang KH, Wang WJ. Chemical Composition and Antioxidant Activities of Polysaccharides from Yingshan Cloud Mist Tea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1915967. [PMID: 31531180 PMCID: PMC6721110 DOI: 10.1155/2019/1915967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
The study was designed to investigate the chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist Tea. The chemical composition of green tea polysaccharides (GTPS) was analyzed by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric (TGA), gas chromatograph (GC), and high-performance gel-permeation chromatography (HPGPC). Then, the antioxidant activities in vitro of GTPS, effects of GTPS on body weight, and the antioxidant activities in chickens were studied. The results showed that GTPS were composed of rhamnose (Rha), arabinose (Ara), xylose (Xyl), mannose (Man), glucose (Glu), and galactose (Gal) in a molar ratio of 11.4 : 26.1 : 1.9 : 3.0 : 30.7 : 26.8 and the average molecular weight was 9.69 × 104 Da. Furthermore, GTPS exhibited obvious capacity of scavenging DPPH radical, hydroxyl radical, and superoxide radical and enhanced the ferric-reducing power in vitro. Last, GTPS significantly increased the body weight of chickens, enhanced the T-AOC, SOD, and GSH-Px level, and decreased the content of MDA in chickens. The results indicated that GTPS might be a kind of natural antioxidant, which had the potential application in feed industry.
Collapse
Affiliation(s)
- Xiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
40
|
Li X, Chen S, Li JE, Wang N, Liu X, An Q, Ye XM, Zhao ZT, Zhao M, Han Y, Ouyang KH, Wang WJ. Chemical Composition and Antioxidant Activities of Polysaccharides from Yingshan Cloud Mist Tea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019. [DOI: https://doi.org/10.1155/2019/1915967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The study was designed to investigate the chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist Tea. The chemical composition of green tea polysaccharides (GTPS) was analyzed by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric (TGA), gas chromatograph (GC), and high-performance gel-permeation chromatography (HPGPC). Then, the antioxidant activities in vitro of GTPS, effects of GTPS on body weight, and the antioxidant activities in chickens were studied. The results showed that GTPS were composed of rhamnose (Rha), arabinose (Ara), xylose (Xyl), mannose (Man), glucose (Glu), and galactose (Gal) in a molar ratio of 11.4 : 26.1 : 1.9 : 3.0 : 30.7 : 26.8 and the average molecular weight was 9.69×104 Da. Furthermore, GTPS exhibited obvious capacity of scavenging DPPH radical, hydroxyl radical, and superoxide radical and enhanced the ferric-reducing power in vitro. Last, GTPS significantly increased the body weight of chickens, enhanced the T-AOC, SOD, and GSH-Px level, and decreased the content of MDA in chickens. The results indicated that GTPS might be a kind of natural antioxidant, which had the potential application in feed industry.
Collapse
Affiliation(s)
- Xiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
41
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|
42
|
Gao Z, Yuan F, Li H, Feng Y, Zhang Y, Zhang C, Zhang J, Song Z, Jia L. The ameliorations of Ganoderma applanatum residue polysaccharides against CCl 4 induced liver injury. Int J Biol Macromol 2019; 137:1130-1140. [PMID: 31295484 DOI: 10.1016/j.ijbiomac.2019.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 01/22/2023]
Abstract
This work investigated the protective effects of Ganoderma applanatum residue polysaccharides (GRP) on the CCl4-induced hepatotoxicity. The results indicated that GRP showed significantly effects on preventing the increase of AST, ALT and ALP levels in serum, elevating the activities of SOD, GSH-Px and CAT, decreasing the contents of MDA and LPO, and reducing the CYP2E1 and TGF-β concentrations in CCl4-induced mice, respectively. Meanwhile, the levels of TNF-α and IL-6 were significantly decreased, while the value of IL-10 was increased by GRP treatment. Besides, the western blot assay showed the IκBα expressions were significantly increased and the p-p65 was decreased by the treatment with GRP. The characterizations indicated that the GRP was heteropolysaccharide with lower molecular weights and α-furanoside residues. These results demonstrated that GRP might be a potential material for drug and functional food development against chemical hepatic injury.
Collapse
Affiliation(s)
- Zheng Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Fangfang Yuan
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Huaping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yanbo Feng
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yiwen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Chen Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
43
|
Ren X, Xin LT, Zhang MQ, Zhao Q, Yue SY, Chen KX, Guo YW, Shao CL, Wang CY. Hepatoprotective effects of a traditional Chinese medicine formula against carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Biomed Pharmacother 2019; 117:109190. [PMID: 31387170 DOI: 10.1016/j.biopha.2019.109190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Le-Cao-Shi (LCS), a formula of Traditional Chinese Medicine (TCM), has been used as a folk medicine for protection and treatment of liver injury. However, scientific evidences on its hepatoprotective effects have not been investigated. In this study, hepatoprotective activities of LCS water extracts (LCS-W) and ethanol extracts (LCS-E) against carbon tetrachloride (CCl4)-induced liver damage were investigated in vivo and in vitro. In vivo experiments, pretreatment of LCS-W and LCS-E to rats significantly declined the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and markedly increased the activity of superoxide dismutase (SOD) and ameliorated the level of malondialdehyde (MDA) induced by CCl4 treatment. Especially, LCS-WM group significantly prevented the elevation of lipid peroxidation level induced by CCl4, with the MDA level closed to that of normal group. Histopathological examinations further confirmed that LCS-W and LCS-E could protect the liver cells from CCl4-induced damage. In addition, immunohistochemically analysis revealed that LCS-W could significantly down-regulated the hepatic protein expression of necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Correspondingly, LCS-W and LCS-E were observed to promote cell viability and decline the levels of ALT, AST, and lactate dehydrogenase (LDH) in vitro. It could be concluded that LCS can exert a protective effect against CCl4-induced hepatotoxicity, which might be a potential therapeutic prescription for preventing or treating liver injury. Notably, LCS-W displayed better hepatoprotective activity against CCl4-induced injury than that of LCS-E, suggesting that LCS extracted by water decoction has good development prospects. Our results contribute towards the validation of the traditional use of LCS in the treatment of liver disorders.
Collapse
Affiliation(s)
- Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shi-Yun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
44
|
Chen G, Chen R, Chen D, Ye H, Hu B, Zeng X, Liu Z. Tea Polysaccharides as Potential Therapeutic Options for Metabolic Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5350-5360. [PMID: 30474370 DOI: 10.1021/acs.jafc.8b05338] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tea polysaccharides (TPS) are regarded as some of the main bioactive constituents of tea made from the leaves and buds of the tea plant ( Camellia sinensis L.). An increasing number of studies have demonstrated that TPS can reduce the risk of type 2 diabetes, obesity, and other metabolic diseases. However, the potential mechanisms responsible for antidiabetic and antiobesogenic activities of TPS remain unclear. Therefore, the cellular and physiological mechanisms that underlie the antidiabetic and antiobesogenic effects, including antioxidant and anti-inflammation effects, inhibition of digestive enzymes, prevention of macronutrient absorption, and expression of gene and protein, were summarized in this review. Furthermore, the gastrointestinal functions of TPS and the role of gut microbiota in the prevention and treatment of metabolic diseases were discussed. It is expected that the present review will be helpful for enhancing our knowledge about the health-promoting effects of TPS on metabolic diseases and stimulating further works on TPS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha , Hunan 410128 , People's Republic of China
| |
Collapse
|
45
|
Chang B, Kim T, Kim S. Polysaccharides from pectinase digests of green tea enhances host immune defence through toll-like receptor 4. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1494139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | | | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
46
|
Chen X, Shao S, Xie J, Yuan H, Li Q, Wu L, Wu Z, Yuan H, Jiang Y. Analysis of Protein Moiety of Polysaccharide Conjugates Water-extracted from Low Grade Green Tea. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7335-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Antioxidant Activity and Protective Effects of Enzyme-Extracted Oudemansiella radiata Polysaccharides on Alcohol-Induced Liver Injury. Molecules 2018; 23:molecules23020481. [PMID: 29473842 PMCID: PMC6017660 DOI: 10.3390/molecules23020481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
This work was to examine the antioxidation in vitro and hepatoprotective effects of enzyme-extracted Oudemansiella radiata polysaccharides (En-OPS) on alcohol-induced liver damage in mice. The antioxidant activities were determined according to the scavenging effects of En-OPS on hydroxyl, superoxide, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, and the level of reducing power. En-OPS showed hepatoprotective activities on decreasing the serum levels of aspertate aminotransferase (AST), alamine aminotransferase (ALT), and alkaline phosphatase (ALP), as well as hepatic lipid levels of total cholesterol (TC) and triacylglycerols (TG). En-OPS treatment reversed the acute impairment induced by alcohol consumption, including reactive oxygen species (ROS) generation, malondialdehyde (MAD), and lipid peroxide (LPO) elevation; and superoxide dismutase (SOD), GSH peroxide (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) impairment. The En-OPS effectively ameliorated alcohol metabolism by activating alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), and reducing cytochrome P450 2E1 (CYP2E1) levels. Furthermore, the histopathological observations also displayed that En-OPS could alleviate liver damage. These results indicated that En-OPS could be suitable to be an ingredient of preventing alcoholic liver diseases (ALD). In addition, the preliminary structure characteristics of En-OPS were also analyzed by Fourier transform infrared (FT-IR) spectroscopy and a gas chromatography-flame ionization detector (GC-FID).
Collapse
|
48
|
Liu LQ, Li HS, Nie SP, Shen MY, Hu JL, Xie MY. Tea Polysaccharide Prevents Colitis-Associated Carcinogenesis in Mice by Inhibiting the Proliferation and Invasion of Tumor Cells. Int J Mol Sci 2018; 19:ijms19020506. [PMID: 29419740 PMCID: PMC5855728 DOI: 10.3390/ijms19020506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 01/26/2023] Open
Abstract
The imbalance between cell proliferation and apoptosis can lead to tumor progression, causing oncogenic transformation, abnormal cell proliferation and cell apoptosis suppression. Tea polysaccharide (TPS) is the major bioactive component in green tea, it has showed antioxidant, antitumor and anti-inflammatory bioactivities. In this study, the chemoprophylaxis effects of TPS on colitis-associated colon carcinogenesis, especially the cell apoptosis activation and inhibition effects on cell proliferation and invasion were analyzed. The azoxymethane/dextran sulfate sodium (AOM/DSS) was used to induce the colorectal carcinogenesis in mice. Results showed that the tumor incidence was reduced in TPS-treated AOM/DSS mice compared to AOM/DSS mice. TUNEL staining and Ki-67 immunohistochemistry staining showed that the TPS treatment increased significantly the cell apoptosis and decreased cell proliferation among AOM/DSS mice. Furthermore, TPS reduced the expression levels of the cell cycle protein cyclin D1, matrix metalloproteinase (MMP)-2, and MMP-9. In addition, in vitro studies showed that TPS, suppressed the proliferation and invasion of the mouse colon cancer cells. Overall, our findings demonstrated that TPS could be a potential agent in the treatment and/or prevention of colon tumor, which promoted the apoptosis and suppressed the proliferation and invasion of the mouse colon cancer cells via arresting cell cycle progression.
Collapse
Affiliation(s)
- Li-Qiao Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
- Basic Medical College, Nanchang University, Nanchang 330047, China.
| | - Hai-Shan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ming-Yue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
49
|
Gao Y, Zhou Y, Zhang Q, Zhang K, Peng P, Chen L, Xiao B. Hydrothermal extraction, structural characterization, and inhibition HeLa cells proliferation of functional polysaccharides from Chinese tea Zhongcha 108. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
50
|
Abstract
Elemental selenium nanoparticles (SeNPs) have multiple biological activities. In this study, we investigated the protective effects of biogenic SeNPs (BioSeNPs) on CCl4-induced liver damage in mice. The results showed that: (i) when compared to sodium selenite (SS), BioSeNPs has a similar tissue distribution after intragastrical administration to mice; (ii) BioSeNPs and SS showed comparable efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase in liver cell lines, mice blood and liver; (iii) pretreatment with BioSeNPs inhibiting the elevation of activities of various enzymes significantly which included aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase and liver lipid peroxide (p < 0.05 or p < 0.01) in CCl4-treated mice; (iv) activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) were significantly increased (p < 0.05 or p < 0.01) after a pretreatment with BioSeNPs in CCl4-treated mice; (v) histopathological damages in the liver from CCl4-treated mice were ameliorated by a pretreatment with BioSeNPs. In conclusion, these results have shown that BioSeNPs is able to protect the liver from CCl4-induced hepatic damage via increasing the antioxidant capacity and inhibiting oxidative damage. BioSeNPs may have the potential to be used as a trace element food supplement inducing antioxidant bioactivities.
Collapse
|