1
|
Xie J, Yang L, Hu W, Song J, Kuang L, Huang Y, Liu D, Liu Y. The CsMYB44-csi-miR0008-CsCER1 module regulates cuticular wax biosynthesis and drought tolerance in citrus. THE NEW PHYTOLOGIST 2025; 246:1757-1779. [PMID: 40149021 DOI: 10.1111/nph.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Cuticular wax covering aboveground organs serves as the first line of defense shielding plants from nonstomatal water loss and diverse environmental stresses. While there have been several wax-related genes identified, the molecular mechanisms responsible for the control of wax biosynthesis remain poorly understood in citrus, particularly at the posttranscriptional level. Here, we demonstrated that the CsMYB44-csi-miR0008-CsCER1 module is responsible for regulating drought tolerance in citrus through its control of cuticular wax biosynthesis. In this study, microRNA (miRNA) sequencing analyses of 'Newhall' navel oranges and the wax-deficient 'Ganqi 3' mutant variety led to the identification of a novel cuticular wax biosynthesis-related miRNA, csi-miR0008. csi-miR0008 suppresses the expression of CsCER1, an aldehyde decarbonylase-encoding gene associated with n-alkane biosynthesis. The leaves of csi-miR0008-silencing and CsCER1-overexpressing plants exhibited increases in total wax levels, with particularly pronounced increases in n-alkane levels, contributing to enhanced drought tolerance. csi-miR0008-overexpressing and CsCER1-silencing plants exhibited the opposite phenotypes. CsMYB44 was confirmed to promote wax accumulation by directly inhibiting the expression of csi-miR0008. Taken together, our study offers new insight into the mechanisms responsible for the posttranscriptional control of citrus cuticular wax biosynthesis, while also providing a foundation for the breeding of novel citrus varieties exhibiting enhanced drought tolerance.
Collapse
Affiliation(s)
- Jingheng Xie
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Song
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuqing Kuang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingjie Huang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
2
|
Zhou Y, Chen D, Wang C, Zhang H, Zhao L, Wang J, Peng Q. Analysis of the composition, characteristics, and antifungal properties of cutin in goji berry fruits at different developmental stages. FRONTIERS IN PLANT SCIENCE 2025; 16:1528881. [PMID: 40007959 PMCID: PMC11850552 DOI: 10.3389/fpls.2025.1528881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Cutin is the main component of the fruit cuticle framework and plays a role in resisting biological stress. However, little is known about the cutin composition and antifungal properties of goji berry (Lycium barbarum L.). In the current study, paraffin sections and gas chromatography/mass spectrometry (GC/MS) techniques were used to identify differences in cuticle structure and chemical composition of Ningqi-1 and Ningqi-5 goji berries at different developmental stages. Meanwhile, cutin extracts from goji berries at four developmental stages were evaluated for their effects on spore germination, germ tube elongation, and mycelial growth of A. alternata. Twenty-six cutin compounds were identified in Ningqi-1 and Ningqi-5. Fatty acids, alkanes, aromatic acids, and small molecule acids were the main components of goji berry cutin, which are related to the formation of cutin structures. Spore germination and germ tube elongation in A. alternata were significantly inhibited by treatment with cutin extracts from goji berries at different developmental stages. Moreover, the cutin monomer content in goji berries may be closely related to antifungal properties. This study provides a research basis for further investigation of the accumulation mechanism of natural antifungal substances during the growth and development of goji berries.
Collapse
Affiliation(s)
| | | | | | | | | | - Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological
Science and Engineering, North Minzu University, Yinchuan, China
| | - Qiding Peng
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological
Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
3
|
Wang J, Sun Q, Ma C, Wei M, Wang C, Zhao Y, Wang W, Hu D. MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3244-3261. [PMID: 39180170 PMCID: PMC11606422 DOI: 10.1111/pbi.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.
Collapse
Affiliation(s)
- Jia‐Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
- College of HorticultureAgricultural University of HebeiBaodingHebeiChina
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Chang‐Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Meng‐Meng Wei
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Chu‐Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Yu‐Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Wen‐Yan Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Da‐Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| |
Collapse
|
4
|
Ezer R, Manasherova E, Gur A, Schaffer AA, Tadmor Y, Cohen H. The dominant white color trait of the melon fruit rind is associated with epicuticular wax accumulation. PLANTA 2024; 260:97. [PMID: 39278990 DOI: 10.1007/s00425-024-04527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
MAIN CONCLUSION Microscopic analyses and chemical profiling demonstrate that the white rind phenotype in melon fruit is associated with the accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters. Serving as an indicator of quality, the rind (or external) color of fruit directly affects consumer choice. A fruit's color is influenced by factors such as the levels of pigments and deposited epicuticular waxes. The latter produces a white-grayish coating often referred to as "wax bloom". Previous reports have suggested that some melon (Cucumis melo L.) accessions may produce wax blooms, where a dominant white rind color trait was genetically mapped to a major locus on chromosome 7 and suggested to be inherited as a single gene named Wi. We here provide the first direct evidence of the contribution of epicuticular waxes to the dominant white rind trait in melon fruit. Our light and electron microscopy and gas chromatography-mass spectrometry (GC-MS) comparative analysis of melon accessions with white or green rinds reveals that the rind of melon fruit is rich in epicuticular waxes. These waxes are composed of various biochemical classes, including fatty acids, fatty alcohols, aldehydes, fatty amides, n-alkanes, tocopherols, triterpenoids, and wax esters. We show that the dominant white rind phenotype in melon fruit is associated with increased accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters, which are linked with the deposition of crystal-like wax platelets on their surfaces. Together, this study broadens the understanding of natural variation in an important quality trait of melon fruit and promotes the future identification of the causative gene for the dominant white rind trait.
Collapse
Affiliation(s)
- Ran Ezer
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel
- Cucurbits Section, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Institute, Newe Ya'Ar Research Center, Ramat Yishay, Israel
- Department of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Robert H. Smith, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel
| | - Amit Gur
- Cucurbits Section, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Institute, Newe Ya'Ar Research Center, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel
| | - Yaakov Tadmor
- Cucurbits Section, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Institute, Newe Ya'Ar Research Center, Ramat Yishay, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel.
| |
Collapse
|
5
|
Zhang W, Guo M, Guo H, Yang W, Wang Z, Cheng S, Chen G. Cuticle properties, wax composition, and crystal morphology of Hami melon cultivars (Cucumis melo L.) with differential resistance to fruit softening. Food Chem 2024; 449:139234. [PMID: 38608604 DOI: 10.1016/j.foodchem.2024.139234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Cuticle wax chemicals are cultivar-dependent and contribute to storage quality. Few research reported on wax analysis between melting flesh-type (MF; 'Jinhuami 25') and nonmelting flesh-type (NMF; 'Xizhoumi 17' and 'Chougua') Hami melons. Chemicals and crystal structures of Hami melon cuticular wax, cell wall metabolism related to fruit melting, and fruit physiology were analyzed to observe wax functions. Results showed that Hami melon cuticle wax predominantly consists of esters, alkanes, alcohols, aldehydes, and terpenoids. MF-type has a lower alkane/terpenoid ratio, concomitant to its higher weight loss and cuticle permeability. Micromorphology of wax crystals appears as numerous platelets with irregular crystals, and the transformation of wax structure in NMF Hami melon is delayed. Waxy components affect cell wall metabolism and physiological quality, which results in the pulp texture difference between MF-type and NMF-type during storage. Results provide a reference for the regulation of wax synthesis in both types of melons.
Collapse
Affiliation(s)
- Weida Zhang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Minrui Guo
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Huijing Guo
- Institute of Agricultural Products Processing, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, PR China
| | - Wanting Yang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shaobo Cheng
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
6
|
Tswaai POJ, Augustyn WA, Regnier T, du Plooy W. Identification of Biomarkers Associated with Phyllosticta citricarpa Tolerance. Molecules 2024; 29:3582. [PMID: 39124986 PMCID: PMC11313913 DOI: 10.3390/molecules29153582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa Kiely, (McAlpine Van der Aa), with most cultivars being susceptible to infection. Currently, disease control is based on the application of protective fungicides, which is restricted due to resistance, health and environmental concerns. Although using natural products for disease management is gaining momentum, more advances are required. This study obtained the metabolic profiles of the essential oil and cuticular waxes of two citrus cultivars with a varying susceptibility to CBS infection using gas chromatography-mass spectrometry. A multivariate data analysis identified possible biomarker compounds that contributed to the difference in susceptibility between the two cultivars. Several identified biomarkers were tested in vitro for their antifungal properties against P. citricarpa. Two biomarkers, propanoic acid and linalool, were able to completely inhibit pathogen growth at 750 mg/L and 2000 mg/L, respectively.
Collapse
Affiliation(s)
- Puseletso O. J. Tswaai
- Department of Chemistry, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa;
| | - Wilma A. Augustyn
- Department of Chemistry, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa;
| | - Thierry Regnier
- Department of Biotechnology and Food Technology, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa;
| | - Wilma du Plooy
- Citrus Research International, P.O. Box 28, Mbombela 1200, South Africa;
| |
Collapse
|
7
|
Huang H, Yan J, Yan H, Jiang B. Chemical compositions and cryo-adhesive probing of the epicuticular wax crystals on fruit surface of wax gourd (Benincasa hispida). Food Chem 2024; 441:138277. [PMID: 38176138 DOI: 10.1016/j.foodchem.2023.138277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Surface wax crystals play important roles in protecting plants from pest and disease invasions, and UV irradiation. The wax crystals are less probed individually from the fruit surfaces. Herein the morphologies, chemicals and an efficient method to sample the wax blooms of white wax gourd were addressed. Various crystalloids such as rodlets, platelets, fragments, and granules were observed, which stacked as fine wax film covering on wax gourd fruit surface. The wax blooms were effectively removed by cryo-adhesive after consecutive manipulating set by a high-end device with cylinders. Wax crystals were dominated by triterpenols and triterpenol acetates over 61 % of total crystals, followed by vey-long-chain aliphatics. Accordingly, the high-end device with cryo-adhesive provides an efficient approach to selectively probe the wax crystals from those fruits covering wax blooms. The elucidation of morphologies and chemical compositions of wax crystals may help to better understand their regulations on fruit quality traits.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Huaxue Yan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| |
Collapse
|
8
|
Qin K, Ge S, Xiao G, Chen F, Ding S, Wang R. 1-MCP treatment improves the postharvest quality of Jinxiu yellow peach by regulating cuticular wax composition and gene expression during cold storage. J Food Sci 2024; 89:2787-2802. [PMID: 38563098 DOI: 10.1111/1750-3841.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
This study aimed to analyze the effect of 1-methylcyclopropene (1-MCP) treatment on the postharvest quality, epidermal wax morphology, composition, and gene expression of Jinxiu yellow peach during cold storage. The results showed that 1-MCP treatment could maintain the postharvest quality of peach fruit as compared to control (CK) during cold storage. The wax crystals of peach fruit were better retained by 1-MCP, and they still existed in 0.6 and 0.9 µL/L 1-MCP treated fruit at 36 days. The total wax content in all the fruit increased first and then decreased during cold storage. Meanwhile, n-alkanes and primary alcohols were the main wax components. Compared to CK, 1-MCP treatment could delay the reduction of wax content during cold storage. The correlation analysis indicated that the postharvest quality of yellow peach was mainly affected by the contents of fatty acids and triterpenoids in cuticular wax. The transcriptomics results revealed PpaCER1, PpaKCS, PpaKCR1, PpaCYP86B1, PpaFAR, PpaSS2, and PpaSQE1 played the important roles in the formation of peach fruit wax. 1-MCP treatment upregulated PpaCER1 (18785414, 18786441, and 18787644), PpaKCS (18774919, 18789438, and 18793503), PpaKCR1 (18790432), and PpaCYP86B1 (18789815) to deposit more n-alkanes and fatty acids during cold storage. This study could provide a new perspective for regulating the postharvest quality of yellow peach in view of the application of cuticular wax. PRACTICAL APPLICATION: 'Jinxiu' yellow peach fruit is favorable among consumers because of its high commercial value. However, it ripens and deteriorates rapidly during storage, leading to serious economic loss and consumer disappointment. The effect of 1-methylcyclopropene (1-MCP) treatment on the postharvest quality, epidermal wax morphology, composition, and genes regulation of 'Jinxiu' yellow peach during cold storage was assessed. Compared to control, 1-MCP treatment could retain the storage quality of yellow peach by affecting cuticular wax composition and gene expression. This study could provide new perspective for regulating the postharvest quality of yellow peach in view of the application of cuticular wax.
Collapse
Affiliation(s)
- Keying Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Guangjian Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Zhou Q, Huang S, Zou L, Ren D, Wu X, Xu D. Application of hydroxypropyl methylcellulose to improve the wettability of chitosan coating and its preservation performance on tangerine fruits. Int J Biol Macromol 2024; 263:130539. [PMID: 38432263 DOI: 10.1016/j.ijbiomac.2024.130539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Hydroxypropyl methylcellulose (HPMC) was employed as an intermediate layer to enhance interfacial interaction between chitosan (CS) coating and tangerine fruits, thereby improving the preservation effect. Owing to the low surface tension of tangerine fruit (26.04 mN/m), CS coating solutions showed poor wetting properties on fruit peels (contact angle > 100°). However, by applying a 1.0 % (w/v) HPMC coating on fruits, the contact angle of CS solutions with concentrations of 0.5 %, 1.0 %, and 1.5 % (w/v) decreased to 47.0°, 47.4°, and 48.5°, respectively, whereas the spreading coefficient increased to -16.0 mN/m, -17.6 mN/m and -19.8 mN/m, respectively. Subsequently, the effects of the coatings on fruit quality were investigated. The results demonstrated the promising performance of HPMC-CS two-layer coating in inhibiting fruit respiration, reducing decay rate, and maintaining nutrient content. Notably, HPMC-1.5%CS coating not only reduced the decay rate of tangerine fruit by 45 % and 31 %, in comparison to the uncoated group (CK) and pure CS coating respectively, but also maintained a high content of ascorbic acid. Therefore, this study confirmed that the use of amphiphilic polymers for improving the surface properties of fruits can effectively facilitate the wetting of hydrophilic coatings on fruits, and significantly improve the fresh-keeping performance of edible coatings.
Collapse
Affiliation(s)
- Qianyi Zhou
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shuangshuang Huang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Lina Zou
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Dan Ren
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China
| | - Xiyu Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China
| | - Dan Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, PR China; National Citrus Engineering Research Center, Chongqing 400712, PR China.
| |
Collapse
|
10
|
Wu S, Li X, Jiang J, Huang H, Cheng X, Li G, Shan Y, Zhu X. Reveal the relationship between the quality and the cuticle composition of Satsuma mandarin (Citrus unshiu) by postharvest heat treatment. J Food Sci 2023; 88:4879-4891. [PMID: 37876294 DOI: 10.1111/1750-3841.16803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
To investigate the influence of heat treatment (HT) on Satsuma mandarin fruit's postharvest quality and cuticle composition, we immersed the fruit for 3 min in hot water at 52°C and subsequently stored them at room temperature (25°C) for 28 days, and fruit quality parameters, such as good fruit rate, weight loss rate, firmness, total soluble solids, total titratable acidity, and ascorbic acid content, were monitored. Additionally, changes in the peel's cuticle composition were analyzed, and wax crystal morphologies on the fruit surface were examined using scanning electron microscopy (SEM). The findings revealed that appropriate HT effectively preserved fruit quality. The main compositions of wax and cutin on the fruit's surface remained consistent between the HT and the CK during storage. The total content of wax and cutin initially increased, peaking on the 14th day of storage, and then decreased, falling below the levels observed on day 0. Notably, the total amount of cutin in the HT group exceeded that of the control group. Specifically, ω-hydroxy fatty acids with mid-chain oxo groups and mid-oh-ω-hydroxy fatty acids constituted approximately 90% of the total cutin content. Moreover, the HT group exhibited higher (p < 0.05) total wax content in relation to the control. Fatty acids and alkanes were the predominant components, accounting for approximately 87.5% of the total wax. SEM analysis demonstrated that HT caused wax crystals to melt and redistribute, effectively filling wax gaps. It suggests that HT holds promising potential as a green, safe, and eco-friendly commercial treatment for preserving the postharvest quality of Satsuma mandarin. PRACTICAL APPLICATION: In this study, Satsuma citrus (Citrus unshiu) underwent heat treatment (HT) and was subsequently preserved at room temperature (25°C) for 28 days. The findings revealed that HT significantly improved fruit quality compared to the control group. These findings provide valuable insights into the advancement of eco-friendly and pollution-free citrus preservation methods, offering essential strategies and process parameters for their practical application.
Collapse
Affiliation(s)
- Sisi Wu
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Xiang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| | - Jing Jiang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Hua Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Xiaomei Cheng
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| | - Xiangrong Zhu
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Laboratory on Fruits and Vegetables Processing Quality and Safety, Changsha, China
| |
Collapse
|
11
|
Liu R, Shang F, Niu B, Wu W, Han Y, Chen H, Gao H. Melatonin treatment delays the softening of blueberry fruit by modulating cuticular wax metabolism and reducing cell wall degradation. Food Res Int 2023; 173:113357. [PMID: 37803698 DOI: 10.1016/j.foodres.2023.113357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
The effects of postharvest melatonin (MT) treatment on cuticular wax and cell wall metabolism in blueberry fruit (Vaccinium spp.) were evaluated. The results revealed that MT treatment maintained the cuticular wax rod-like structure and delayed wax degradation. The gas chromatography-mass spectrometry analysis results revealed that MT application changed the cuticular wax composition in blueberries, and 25 metabolic components were screened. The metabolic regulation of wax quality in blueberry fruit may therefore be influenced by MT. Additionally, MT slowed down pectin and cellulose degradation by reducing the activities of cell wall degrading enzymes like pectin methyl esterase polygalacturonase, β-galactosidase, and cellulose in the later stages of storage. It also downregulated the transcriptional expression of related genes like VcPE, VcPG, VcBG6, and VcGAL1. Thus, MT prevented softening and senescence by postponing the degradation of the cell wall in postharvest blueberry fruit.
Collapse
Affiliation(s)
- Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fanchen Shang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
12
|
Wang Y, Liu Y, Pan X, Wan Y, Li Z, Xie Z, Hu T, Yang P. A 3-Ketoacyl-CoA Synthase 10 ( KCS10) Homologue from Alfalfa Enhances Drought Tolerance by Regulating Cuticular Wax Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14493-14504. [PMID: 37682587 DOI: 10.1021/acs.jafc.3c03881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cuticular wax, forming the first line of defense against adverse environmental stresses, comprises very long-chain fatty acids (VLCFAs) and their derivatives. 3-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme for VLCFA biosynthesis. In this study, we isolated KCS10, a KCS gene from alfalfa, and analyzed the effect of gene expression on wax production and drought stress in transgenic plants. MsKCS10 overexpression increased compact platelet-like crystal deposition and promoted primary alcohol biosynthesis through acyl reduction pathways in alfalfa leaves. Overexpression of MsKCS10 induced the formation of coiled-rodlet-like crystals and increased n-alkane content through decarbonylation pathways in tobacco and tomato fruits. Overexpression of MsKCS10 enhanced drought tolerance by limiting nonstomatal water loss, improving photosynthesis, and maintaining osmotic potential under drought stress in transgenic tobacco. In summary, MsKCS10 plays an important role in wax biosynthesis, wax crystal morphology, and drought tolerance, although the mechanisms are different among the plant species. MsKCS10 can be targeted in future breeding programs to improve drought tolerance in plants.
Collapse
Affiliation(s)
- Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yushi Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xinya Pan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yiqi Wan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ziyan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhiguo Xie
- Shaanxi Academy of Forestry Xi'an, 710082, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Wu J, You Y, Wu X, Liu F, Li G, Yin H, Gu C, Qi K, Wei Q, Wang S, Yao Q, Zhan R, Zhang S. The dynamic changes of mango ( Mangifera indica L.) epicuticular wax during fruit development and effect of epicuticular wax on Colletotrichum gloeosporioides invasion. FRONTIERS IN PLANT SCIENCE 2023; 14:1264660. [PMID: 37860233 PMCID: PMC10584308 DOI: 10.3389/fpls.2023.1264660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Mango fruits are susceptible to diseases, such as anthracnose, during fruit development, leading to yield reduction. Epicuticular wax is closely related to resistance of plants to pathogenic bacterial invasion. In this study, the effect of mango fruit epicuticular wax on the invasion of Colletotrichum gloeosporioides was investigated, followed by to understand the changes of wax chemical composition and crystal morphology during mango fruit development using GC-MS and SEM. Results showed that the epicuticular wax of mango fruits can prevent the invasion of C. gloeosporioides, and 'Renong' showed the strongest resistance to C. gloeosporioides. The wax content of four mango varieties first increased and then decreased from 40 days after full bloom (DAFB) to 120 DAFB. In addition, 95 compounds were detected in the epicuticular wax of the four mango varieties at five developmental periods, in which primary alcohols, terpenoids and esters were the main wax chemical composition. Furthermore, the surface wax structure of mango fruit changed dynamically during fruit development, and irregular platelet-like crystals were the main wax structure. The present study showed the changes of wax content, chemical composition and crystal morphology during mango fruit development, and the special terpenoids (squalene, farnesyl acetate and farnesol) and dense crystal structure in the epicuticular wax of 'Renong' fruit may be the main reason for its stronger resistance to C. gloeosporioides than other varieties. Therefore, these results provide a reference for the follow-up study of mango fruit epicuticular wax synthesis mechanism and breeding.
Collapse
Affiliation(s)
- Jingbo Wu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yuquan You
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wu
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Feng Liu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Guoping Li
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Chao Gu
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qing Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agriculture Sciences, Sanya, China
| | - Songbiao Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agriculture Sciences, Sanya, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Li X, Pei Z, Meng L, Jiang Y, Liu H, Pan Y. Investigation on epidermal structure and water migration of postharvest passion fruit during storage. J Food Sci 2023; 88:4046-4058. [PMID: 37602822 DOI: 10.1111/1750-3841.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/15/2023] [Accepted: 07/22/2023] [Indexed: 08/22/2023]
Abstract
Passion fruit is a tropical fruit that has plenty of fruit fragrance. During storage, passion fruit quickly loses water, resulting in its poor quality. Researching the mechanism of water loss contributes to prolonging the storage time. In this study, passion fruit was stored at 7 or 25°C to analyze the relationship between epidermal structure and water migration. The epidermal wax and structure of passion fruit began to show signs of destruction from the middle stage (day 8) during storage. The mobility of free water was decreased at 7°C and increased at 25°C in passion fruit from the middle stage of storage (day 8). The migration rate of free water in passion fruit stored at 7°C was lower than that at 25°C. The mobility of immobile water was weaker in the late storage period but that of bound water changed barely. These results showed that the migration of free, immobile, and bound water had a connection with the epidermal structure. Incomplete epidermal structure promoted water loss in passion fruit, with the most pronounced loss of free water. PRACTICAL APPLICATION: Maintaining the epidermal structure of passion fruit well can decrease the water loss ratio. Passion fruit stored at low temperatures could better sustain the integrity of epidermal wax and structure; it was able to change the water migration rate in the epidermis of passion fruit, which was conducive to maintaining the water content.
Collapse
Affiliation(s)
- Xingyan Li
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yue Jiang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Hanmei Liu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| |
Collapse
|
15
|
Liu C, Yu L, Yang L, Tan C, Shi F, Ye X, Liu Z. Identification of a new allele of BraA09g066480.3C controlling the wax-less phenotype of Chinese cabbage. BMC PLANT BIOLOGY 2023; 23:408. [PMID: 37658308 PMCID: PMC10472645 DOI: 10.1186/s12870-023-04424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Epidermal wax covers the surfaces of terrestrial plants to resist biotic and abiotic stresses. Wax-less flowering Chinese cabbage (Brassica campestris L. ssp. chinesis var. utilis tsen et lee) has the charateristics of lustrous green leaves and flower stalks, which are of high commercial value. RESULTS To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line 'CX001' and Chinese cabbage DH line 'FT', obtained from isolated microspore culture, were used in the experiments. Genetic analysis showed that the wax-less phenotype of 'CX001' was controlled by a recessive nuclear gene, named wlm1 (wax-less mutation 1), which was fine-mapped on chromosome A09 by bulked segregant analysis sequencing (BSA-seq) of B.rapa genome V3.0. There was only one gene (BraA09g066480.3C) present in the mapping region. The homologous gene in Arabidopsis thaliana is AT1G02205 (CER1) that encodes an aldehyde decarboxylase in the epidermal wax metabolism pathway. Semi-quantitative reverse transcription PCR and transcriptome analysis indicated that BraA09g066480.3C was expressed in 'FT' but not in 'CX001'. BraA09g066480.3C was lost in the CXA genome to which 'CX001' belonged. CONCLUSION The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage 'CX001'. This study will lay a foundation for further research on the molecular mechanism of epidermal wax synthesis in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Chuanhong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Longfei Yu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Lu Yang
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Fengyan Shi
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xueling Ye
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Zhiyong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
16
|
Cheng JH, He L, Sun DW, Pan Y, Ma J. Inhibition of cell wall pectin metabolism by plasma activated water (PAW) to maintain firmness and quality of postharvest blueberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107803. [PMID: 37406406 DOI: 10.1016/j.plaphy.2023.107803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
Blueberry is a class of berries with high nutritional and economic value but has short shelf life due to its rapid softening at room temperature. This study investigated the effects of plasma-activated water (PAW) treatment on the softening quality and cell wall pectin metabolism of blueberries stored for 10 d at 25 °C after being immersed in PAW for 10 min. PAW was generated by plasma with different times (1 and 2 min), fixed frequency (10 kHz) and fixed voltage (50 kV). The analysis showed that the firmness of PAW-treated fruit significantly increased (P < 0.05) by 36.4% after 10 d storage. PAW treatment controlled the solubilization of pectin from water-insoluble to water-soluble. The activities of cell wall pectin-degrading enzymes like polygalacturonase (PG), β-galactosidase (β-Gal) and pectin methylesterase (PME) in PAW-treated blueberries decreased by 15.7%, 18.3%, and 27.9%, respectively, on day 10. After PAW treatment, blueberries also maintained better postharvest quality (firmness, colour, soluble solid content and anthocyanin content) and intact epidermal waxy and cell wall structure. These results suggested that PAW showed great potential for postharvest fresh-keeping of blueberry.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ling He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Yawen Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
17
|
Liu R, Zhang L, Xiao S, Chen H, Han Y, Niu B, Wu W, Gao H. Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity. Food Chem 2023; 415:135753. [PMID: 36870211 DOI: 10.1016/j.foodchem.2023.135753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Cuticular wax has been reported to play an essential role in resisting pathogens in various fruits. This study investigated the antifungal ability of the components in blueberry cuticular wax. We showed that the cuticular wax of blueberry inhibited the growth of Botrytis cinerea and ursolic acid (UA) was the key antifungal compound. UA inhibited B. cinerea growth in vitro and in vivo. Furthermore, UA increased extracellular conductivity and cellular leakage in B. cinerea, deformed the mycelial morphology, and destroyed cell ultrastructure. We also demonstrated that UA stimulated the accumulation of reactive oxygen species (ROS) and inactivated ROS scavenging enzymes. These results indicate that UA may exert antifungal effects against B. cinerea by disrupting cell membrane integrity. Thus, UA has significant potential as an agent for the control of gray mold in blueberry.
Collapse
Affiliation(s)
- Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shangyue Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
18
|
Šafranko S, Šubarić D, Jerković I, Jokić S. Citrus By-Products as a Valuable Source of Biologically Active Compounds with Promising Pharmaceutical, Biological and Biomedical Potential. Pharmaceuticals (Basel) 2023; 16:1081. [PMID: 37630996 PMCID: PMC10458533 DOI: 10.3390/ph16081081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Citrus fruits processing results in the generation of huge amounts of citrus by-products, mainly peels, pulp, membranes, and seeds. Although they represent a major concern from both economical and environmental aspects, it is very important to emphasize that these by-products contain a rich source of value-added bioactive compounds with a wide spectrum of applications in the food, cosmetic, and pharmaceutical industries. The primary aim of this review is to highlight the great potential of isolated phytochemicals and extracts of individual citrus by-products with bioactive properties (e.g., antitumor, antimicrobial, antiviral, antidiabetic, antioxidant, and other beneficial activities with health-promoting abilities) and their potential in pharmaceutical, biomedical, and biological applications. This review on citrus by-products contains the following parts: structural and chemical characteristics; the utilization of citrus by-products; bioactivities of the present waxes and carotenoids, essential oils, pectins, and phenolic compounds; and citrus by-product formulations with enhanced biocactivities. A summary of the recent developments in applying citrus by-products for the treatment of different diseases and the protection of human health is also provided, emphasizing innovative methods for bioaccessibility enhancements (e.g., extract/component encapsulation, synthesis of biomass-derived nanoparticles, nanocarriers, or biofilm preparation). Based on the representative phytochemical groups, an evaluation of the recent studies of the past six years (from 2018 to 2023) reporting specific biological and health-promoting activities of citrus-based by-products is also provided. Finally, this review discusses advanced and modern approaches in pharmaceutical/biological formulations and drug delivery (e.g., carbon precursors for the preparation of nanoparticles with promising antimicrobial activity, the production of fluorescent nanoparticles with potential application as antitumor agents, and in cellular imaging). The recent studies implementing nanotechnology in food science and biotechnology could bring about new insights into providing innovative solutions for new pharmaceutical and medical discoveries.
Collapse
Affiliation(s)
- Silvija Šafranko
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Stela Jokić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| |
Collapse
|
19
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
20
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
21
|
Ge S, Wang R, Yang L, Kong H, Chang X, Fu X, Shan Y, Ding S. Transcriptomics and gas chromatography-mass spectrometry metabolomics reveal the mechanism of heat shock combined with 1-methylcyclopropene to regulate the cuticle wax of jujube fruit during storage. Food Chem 2023; 408:135187. [PMID: 36527923 DOI: 10.1016/j.foodchem.2022.135187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Cuticle wax is closely related to fruit quality during storage. In this study, changes in epidermal wax morphology, composition, and genes regulation induced by heat shock (HT), 1-methylcyclopropene (1-MCP) or their combination (HT + 1-MCP) were investigated in jujube fruit during cold storage. HT, 1-MCP, or HT + 1-MCP caused a smoother wax layer and fewer micro-cracks compared to the control (CK) during cold storage. It was confirmed that acids and terpenoids were the main wax components by gas chromatography-mass spectrometry. HT + 1-MCP and 1-MCP treatments could significantly increase (p < 0.05) the wax content at 45 d of cold storage. The transcriptomics results indicated that HT + 1-MCP treatment up-regulated FATB, FATB, FAB2, FAD2 and CYP716A, and maintained the wax content of jujube fruit during cold storage. These results could provide new perspective for regulating the cuticle characteristics to extend the shelf life of jujube fruit.
Collapse
Affiliation(s)
- Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Lvzhu Yang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hui Kong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China.
| |
Collapse
|
22
|
Guo B, Wen A, Yu H, Guo Y, Cheng Y, Xie Y, Qian H, Yao W. Interaction between Six Waxy Components in Summer Black Grapes ( Vitis vinifera) and Mancozeb and Its Effect on the Residue of Mancozeb. Int J Mol Sci 2023; 24:ijms24097705. [PMID: 37175414 PMCID: PMC10178566 DOI: 10.3390/ijms24097705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Mancozeb, an antifungal typically used for the growth of fruits, has the characteristic of non-internal absorption, and has a risk of binding to the waxy components of fruits. This work investigated the interaction of pesticide molecules with the waxy layer on the grape surface and their effects on pesticide residues in grapes. The study observed significant changes in the compositions of the waxy layer on the grape surface after soaking in a mancozeb standard solution. The six substances-oleanolic acid, ursolic acid, lupeol, octacosanol, hexacosanal, and γ-sitosterol-with discernible content differences were chosen for molecular docking. Docking results were further visualized by an independent gradient model based on Hirshfeld partition (IGMH). Hydrogen bonds and van der Waals forces were found between mancozeb and the six waxy components. Moreover, the negative matrix effects caused by the presence or absence of wax for the determination of mancozeb were different through the QuEChERS-HPLC-MS method. Compared with the residue of mancozeb in grapes (5.97 mg/kg), the deposition of mancozeb in grapes after dewaxing was significantly lower (1.12 mg/kg), which further supports that mancozeb may interact with the wax layer compositions. This work not only provides insights into the study of the interaction between pesticides and small molecules but also provides theoretical guidelines for the investigation of the removal of pesticide residues on the surface of fruits.
Collapse
Affiliation(s)
- Boru Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Aying Wen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Zhu S, Huang S, Lin X, Wan X, Zhang Q, Peng J, Luo D, Zhang Y, Dong X. The Relationships between Waxes and Storage Quality Indexes of Fruits of Three Plum Cultivars. Foods 2023; 12:foods12081717. [PMID: 37107512 PMCID: PMC10137498 DOI: 10.3390/foods12081717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, the cuticular wax morphology, composition and the relationship with storage quality in three plum cultivars of Prunus salicina 'Kongxin' (KXL), Prunus salicina 'Fengtang' (FTL) and Prunus salicina 'Cuihong' (CHL) were investigated during storage at room temperature of 25 ± 1 °C. The results illustrated that the highest cuticular wax concentration was discovered in KXL, followed by FTL and the lowest in CHL. The fruit wax composition of the three plum cultivars was similar and principally composed of alkanes, alcohols, fatty acids, ketones, aldehydes, esters, triterpenes and olefins. Alcohols, alkanes and triterpenes were the dominant fruit wax compounds of the three plum cultivars. After storage for 20 d at room temperature, the variation of cuticular wax crystal structure and composition showed significant cultivar-associated differences. The total wax content decreased for FTL and CHL and increased for KXL, and the wax crystal degraded and melted together over time. The higher contents of the main components in the three plum cultivars were nonacosane, 1-triacontanol, 1-heneicosanol, nonacosan-10-one, octacosanal, ursolic aldehyde and oleic acid. Alcohols, triterpenes, fatty acids and aldehydes were most dramatically correlated with the softening of fruit and storage quality, and alkanes, esters and olefins were most significantly correlated with the water loss. Nonacosane and ursolic aldehyde can enhance the water retention of fruit. Overall, this study will provide a theoretical reference for the further precise development of edible plum fruit wax.
Collapse
Affiliation(s)
- Shouliang Zhu
- Guizhou Workstation for Fruit and Vegetables, Guiyang 550025, China
| | - Shian Huang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
- Guiyang Agricultural Reclamation Investment Development Group Co., Ltd., Guiyang 550001, China
| | - Xin Lin
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Xuan Wan
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Qin Zhang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Junsen Peng
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Dengcan Luo
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yun Zhang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Xiaoqing Dong
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| |
Collapse
|
24
|
Erndwein L, Kawash J, Knowles S, Vorsa N, Polashock J. Cranberry fruit epicuticular wax benefits and identification of a wax-associated molecular marker. BMC PLANT BIOLOGY 2023; 23:181. [PMID: 37020185 PMCID: PMC10074888 DOI: 10.1186/s12870-023-04207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND As the global climate changes, periods of abiotic stress throughout the North American cranberry growing regions will become more common. One consequence of high temperature extremes and drought conditions is sunscald. Scalding damages the developing berry and reduces yields through fruit tissue damage and/or secondary pathogen infection. Irrigation runs to cool the fruit is the primary approach to controlling sunscald. However, it is water intensive and can increase fungal-incited fruit rot. Epicuticular wax functions as a barrier to various environmental stresses in other fruit crops and may be a promising feature to mitigate sunscald in cranberry. In this study we assessed the function of epicuticular wax in cranberries to attenuate stresses associated with sunscald by subjecting high and low epicuticular wax cranberries to controlled desiccation and light/heat exposure. A cranberry population that segregates for epicuticular wax was phenotyped for epicuticular fruit wax levels and genotyped using GBS. Quantitative trait loci (QTL) analyses of these data identified a locus associated with epicuticular wax phenotype. A SNP marker was developed in the QTL region to be used for marker assisted selection. RESULTS Cranberries with high epicuticular wax lost less mass percent and maintained a lower surface temperature following heat/light and desiccation experiments as compared to fruit with low wax. QTL analysis identified a marker on chromosome 1 at position 38,782,094 bp associated with the epicuticular wax phenotype. Genotyping assays revealed that cranberry selections homozygous for a selected SNP have consistently high epicuticular wax scores. A candidate gene (GL1-9), associated with epicuticular wax synthesis, was also identified near this QTL region. CONCLUSIONS Our results suggest that high cranberry epicuticular wax load may help reduce the effects of heat/light and water stress: two primary contributors to sunscald. Further, the molecular marker identified in this study can be used in marker assisted selection to screen cranberry seedlings for the potential to have high fruit epicuticular wax. This work serves to advance the genetic improvement of cranberry crops in the face of global climate change.
Collapse
Affiliation(s)
- Lindsay Erndwein
- ORISE Postdoctoral Research Associate, Chatsworth, NJ, 08019, USA
| | - Joseph Kawash
- Genetic Improvement of Fruit and Vegetables Laboratory, Agricultural Research Service, USDA-ARS, Chatsworth, NJ, 08019, USA
| | - Sara Knowles
- P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ, 08019, USA
| | - Nicholi Vorsa
- P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ, 08019, USA
| | - James Polashock
- Genetic Improvement of Fruit and Vegetables Laboratory, Agricultural Research Service, USDA-ARS, Chatsworth, NJ, 08019, USA.
| |
Collapse
|
25
|
Li D, Li X, Cheng Y, Guan J. Effect of 1-methylcyclopropene on peel greasiness, yellowing, and related gene expression in postharvest 'Yuluxiang' pear. FRONTIERS IN PLANT SCIENCE 2023; 13:1082041. [PMID: 36714764 PMCID: PMC9878607 DOI: 10.3389/fpls.2022.1082041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
'Yuluxiang' pear (Pyrus sinkiangensis) commonly develop a greasy coating and yellowing during storage. In this study, 1.0 μL L-1 1-methylcyclopropene (1-MCP) was applied to 'Yuluxiang' pear to investigate its effects on fruit quality, peel wax composition, greasiness index, chlorophyll content, and the expression pattern of related genes during storage at ambient temperature (25°C). The results showed that 1-MCP treatment maintained higher fruit firmness and chlorophyll content, decreased respiration rate, and postponed the peak of ethylene production rate, lowered the greasy index of the peel. The main wax components of peel accumulated during storage, the principal ones being alkenes (C23, C25, and C29), fatty acids (C16, C18:1, and C28), aldehydes (C24:1, C26:1, and C28:1), and esters (C22:1 fatty alcohol-C16 fatty acid, C22:1 fatty alcohol-C18:1 fatty acid, C22 fatty alcohol-C16 fatty acid, C22 fatty alcohol-C18:1 fatty acid, C24:1 fatty alcohol-C18:1 fatty acid, and C24 fatty alcohol-C18:1 fatty acid), and were reduced by 1-MCP. 1-MCP also decreased the expression of genes associated with ethylene biosynthesis and signal transduction (ACS1, ACO1, ERS1, ETR2, and ERF1), chlorophyll breakdown (NYC1, NOL, PAO, PPH, and SGR), and wax accumulation (LACS1, LACS6, KCS1, KCS2, KCS4, KCS10L, KCS11L, KCS20, FDH, CER10, KCR1, ABCG11L, ABCG12, ABCG21L, LTPG1, LTP4, CAC3, CAC3L, and DGAT1L). There were close relationships among wax components (alkanes, alkenes, fatty acids, esters, and aldehydes), chlorophyll content, greasiness index, and level of expression of genes associated with wax synthesis and chlorophyll breakdown. These results suggest that 1-MCP treatment decreased the wax content of 'Yuluxiang' pear and delayed the development of peel greasiness and yellowing by inhibiting the expression of genes related to the ethylene synthesis, signal transduction, wax synthesis, and chlorophyll degradation.
Collapse
Affiliation(s)
- Dan Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- School of Life Science and Engineering, Handan University, Handan, China
| | - Xueling Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
26
|
Lima RP, de Sousa ASB, Abeli P, Beaudry RM, Silva SDM. Setting a safe target internal atmosphere for starch-based coated fruits and vegetables. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Transcription factor CsESE3 positively modulates both jasmonic acid and wax biosynthesis in citrus. ABIOTECH 2022; 3:250-266. [PMID: 36533263 PMCID: PMC9755798 DOI: 10.1007/s42994-022-00085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
PLIP lipases can initiate jasmonic acid (JA) biosynthesis. However, little is known about the transcriptional regulation of this process. In this study, an ERF transcription factor (CsESE3) was found to be co-expressed with all necessary genes for JA biosynthesis and several key genes for wax biosynthesis in transcriptomes of 'Newhall' navel orange. CsESE3 shows partial sequence similarity to the well-known wax regulator SHINEs (SHNs), but lacks a complete MM protein domain. Ectopic overexpression of CsESE3 in tomato (OE) resulted in reduction of fruit surface brightness and dwarf phenotype compared to the wild type. The OE tomato lines also showed significant increases in the content of wax and JA and the expression of key genes related to their biosynthesis. Overexpression of CsESE3 in citrus callus and fruit enhanced the JA content and the expression of JA biosynthetic genes. Furthermore, CsESE3 could bind to and activate the promoters of two phospholipases from the PLIP gene family to initiate JA biosynthesis. Overall, this study indicated that CsESE3 could mediate JA biosynthesis by activating PLIP genes and positively modulate wax biosynthesis. The findings provide important insights into the coordinated control of two defense strategies of plants represented by wax and JA biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00085-2.
Collapse
|
28
|
Li D, Cheng Y, Shang Z, Guan J. Changing surface wax compositions and related gene expression in three cultivars of Chinese pear fruits during cold storage. PeerJ 2022; 10:e14328. [PMID: 36340202 PMCID: PMC9635359 DOI: 10.7717/peerj.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The surface wax of fruit has a significant effect on abiotic stress and fruit quality. In this study, the composition of the waxes found on fruit surfaces and the related gene expression of three different pear cultivars (Xuehua, Yali, and Yuluxiang) were investigated during cold storage. The results showed that 35 wax compositions were found on the surfaces of the three pear cultivars, mainly including C29 alkane, three fatty acids, two esters, three aldehydes, three fatty alcohols, and three triterpenoids. The largest amount of C29 alkane, three fatty acids and two esters were found in Yuluxiang (YLX) on day 90, while aldehydes with carbons of C30 and C32 were the highest in Yali (YL). Xuehua (XH) showed the largest amount of C22 fatty alcohol on day 180 compared to YLX and YL. Larger amounts of triterpenoids were found in XH and YL when compared to YLX. The expression levels of fifteen wax related genes (LACS1, KCS2, KCS6, FDH, KCS20, GL8, CER10, CER60, LTPG1, LTP4, ABCG12, CER1L, CAC3, CAC3L, and DGAT1L) reached their peak at day 45 in YLX, compared to XH and YL, their expression levels in YLX were higher to different degrees. These results suggest that the different expression patterns of wax-related genes may be closely related to the difference in wax compositions of the surface wax of three pear cultivars.
Collapse
Affiliation(s)
- Dan Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China,College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China,School of Life Science and Engineering, Handan University, Handan, Hebei, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
29
|
Addition of montmorillonite to improve the barrier and wetting properties of chitosan-based coatings and the application on the preservation of Shatang mandarin. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Mao H, Lv Y, Chen G, Jiang Y. Effects of cuticular wax on the postharvest physiology in fragrant pear at different storages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4425-4434. [PMID: 35089595 DOI: 10.1002/jsfa.11796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Epidermal wax is an important factor affecting the storage quality of fruits and vegetables. Previous studies have shown that the epidermal wax of fruits undergoes significant changes during storage, but there are few studies on the effects of different storage methods on the changes in waxes and the relationship with storage quality. To investigate the effect of cuticular wax on the postharvest physiology in fragrant pear, equal numbers of fragrant pear fruits were stored in room temperature storage (control), cold storage and controlled atmosphere (CA) storage environs, respectively. RESULTS Gas chromatography-mass spectrometry analysis revealed that the prevailing compositions of cuticular wax of fragrant pear were alkanes, alkenes, alcohols, aldehydes, esters and fatty acids. Compared with the control, cold storage and CA storage significantly inhibited changes in postharvest physiology, total wax contents and wax compositions of fragrant pear, and the effects of CA storage were more pronounced than cold storage. Under different storage methods, total wax contents and wax compositions show different correlations with various physiological indicators. CONCLUSION The results obtained in the present study indicate that cold storage and CA storage altered the fragrant pear cuticular wax contents and constituents, thus changing the postharvest physiology quality. The changes in the metabolism of wax components caused by the changes in storage environment mainly affect the changes in the hardness of fragrant pears. The present study provides a theoretical basis for the preservation and storage of fruits. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huijuan Mao
- Angelica Research Institute of Min County, Dingxi, China
| | - Yunhao Lv
- College of Food Science, Shihezi University, Shihezi, China
| | - Guogang Chen
- College of Food Science, Shihezi University, Shihezi, China
| | - Ying Jiang
- College of Food Science, Shihezi University, Shihezi, China
| |
Collapse
|
31
|
Cao Y, Zang Y, Wu S, Li T, Li J, Xu K, Hong SB, Wu B, Zhang W, Zheng W. Melatonin affects cuticular wax profile in rabbiteye blueberry (Vaccinium ashei) during fruit development. Food Chem 2022; 384:132381. [DOI: 10.1016/j.foodchem.2022.132381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/12/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
|
32
|
Kim M, Park Y, Yun SK, Kim SS, Joa J, Moon YE, Do GR. The Anatomical Differences and Physiological Responses of Sunburned Satsuma Mandarin (Citrus unshiu Marc.) Fruits. PLANTS 2022; 11:plants11141801. [PMID: 35890435 PMCID: PMC9317485 DOI: 10.3390/plants11141801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Sunburn causes fruit browning and other physiological symptoms, reducing fruit production and quality. Therefore, we aimed to investigate the anatomical differences and abiotic stress responses in ‘Nichinan 1 gou’ satsuma mandarin (Citrus unshiu Marc.) according to the severity of sunburn damage (five grades: control, no sunburn; I to IV, increasing severity of sunburn). Additionally, the quality of sunburned and non-sunburned fruits was compared, and the sunburn-inducing temperature was estimated. Anatomical observations confirmed that with increased severity of symptoms, the damage to fruit rind surface and oil glands was increased. In the analysis of peel pigments, chlorophyll content in the rind gradually decreased compared with IV, whereas the carotenoid content gradually increased up to III. The flavonoid content in the peel and pulp was the highest in III. In the 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical analyses, the IC50 (the concentration of compound at which the percentage of inhibition is 50%) value was the lowest in grade III in peel or IV in pulp, indicating a high free radical scavenging ability. The fruit quality analysis between sunburned and non-sunburned fruits showed differences in total soluble solid content, total acidity, firmness, coloration, and free sugar and organic acid contents, indicating a significant effect on fruit quality. In the heat tolerance tests on fruit rind in the laboratory and field, the damage was confirmed at temperatures above 47 °C.
Collapse
Affiliation(s)
- Misun Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo-si 63607, Jeju-do, Korea; (M.K.); (S.K.Y.); (S.S.K.); (J.J.); (Y.-E.M.)
| | - Yosup Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo-si 63607, Jeju-do, Korea; (M.K.); (S.K.Y.); (S.S.K.); (J.J.); (Y.-E.M.)
- Correspondence: ; Tel.: +82-64-730-4172
| | - Seok Kyu Yun
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo-si 63607, Jeju-do, Korea; (M.K.); (S.K.Y.); (S.S.K.); (J.J.); (Y.-E.M.)
| | - Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo-si 63607, Jeju-do, Korea; (M.K.); (S.K.Y.); (S.S.K.); (J.J.); (Y.-E.M.)
| | - Jaeho Joa
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo-si 63607, Jeju-do, Korea; (M.K.); (S.K.Y.); (S.S.K.); (J.J.); (Y.-E.M.)
| | - Young-Eel Moon
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo-si 63607, Jeju-do, Korea; (M.K.); (S.K.Y.); (S.S.K.); (J.J.); (Y.-E.M.)
| | - Gyung-Ran Do
- Planning and Coordination Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea;
| |
Collapse
|
33
|
Zou Y, Wan H, Yang H, Xu R, Xiang Y, Cheng Y. C24 and C26 aldehydes are potential natural additives of coating for citrus water retention. Food Chem 2022; 397:133742. [DOI: 10.1016/j.foodchem.2022.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
|
34
|
Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity. Int J Mol Sci 2022; 23:ijms23105660. [PMID: 35628469 PMCID: PMC9145189 DOI: 10.3390/ijms23105660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Drought is one of the main abiotic stresses limiting the quality and yield of citrus. Cuticular waxes play an important role in regulating plant drought tolerance and water use efficiency (WUE). However, the contribution of cuticular waxes to drought tolerance, WUE and the underlying molecular mechanism is still largely unknown in citrus. 'Longhuihong' (MT) is a bud mutant of 'Newhall' navel orange with curly and bright leaves. In this study, significant increases in the amounts of total waxes and aliphatic wax compounds, including n-alkanes, n-primary alcohols and n-aldehydes, were overserved in MT leaves, which led to the decrease in cuticular permeability and finally resulted in the improvements in drought tolerance and WUE. Compared to WT leaves, MT leaves possessed much lower contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), significantly higher levels of proline and soluble sugar, and enhanced superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress, which might reduce reactive oxygen species (ROS) damage, improve osmotic regulation and cell membrane stability, and finally, enhance MT tolerance to drought stress. Transcriptome sequencing results showed that seven structural genes were involved in wax biosynthesis and export, MAPK cascade, and ROS scavenging, and seven genes encoding transcription factors might play an important role in promoting cuticular wax accumulation, improving drought tolerance and WUE in MT plants. Our results not only confirmed the important role of cuticular waxes in regulating citrus drought resistance and WUE but also provided various candidate genes for improving citrus drought tolerance and WUE.
Collapse
|
35
|
García-Coronado H, Tafolla-Arellano JC, Hernández-Oñate MÁ, Burgara-Estrella AJ, Robles-Parra JM, Tiznado-Hernández ME. Molecular Biology, Composition and Physiological Functions of Cuticle Lipids in Fleshy Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091133. [PMID: 35567134 PMCID: PMC9099731 DOI: 10.3390/plants11091133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle's structure and composition change in response to the fruit's developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits' postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops.
Collapse
Affiliation(s)
- Heriberto García-Coronado
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Julio César Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Coahuila, Mexico;
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Alexel Jesús Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico;
| | - Jesús Martín Robles-Parra
- Coordinación de Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| |
Collapse
|
36
|
Yang H, Zhu Z, Zhang M, Li X, Xu R, Zhu F, Xu J, Deng X, Cheng Y. CitWRKY28 and CitNAC029 promote the synthesis of cuticular wax by activating CitKCS gene expression in citrus fruit. PLANT CELL REPORTS 2022; 41:905-920. [PMID: 34982198 DOI: 10.1007/s00299-021-02826-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
CitWRKY28 and CitNAC029 are involved in cuticular wax synthesis as indicated by the comparative analysis of fruit aliphatic wax content between Citrus reticulata and Citrus trifoliata and gene co-expression analysis. Cuticular wax covers the fruit surface, playing important roles in reduction of fruit water loss and resistance to pathogen invasion. However, there is limited research on the synthesis and transcriptional regulation of cuticular wax in citrus fruit. In this study, we characterized the variations of aliphatic wax in HJ (Citrus reticulata) and ZK (Citrus trifoliata) from young fruit to mature fruit, as well as performed transcriptome sequencing on 27 samples at different fruit developmental stages. The results revealed that the ZK fruit always had a higher aliphatic wax content than the HJ fruit during development. qRT-PCR analysis demonstrated that two KCS genes, CitKCS1 and CitKCS12, had the most significant difference in expression between HJ and ZK. Furthermore, a heterologous expression assay in Arabidopsis indicated that CitKCS1 and CitKCS12 are involved in cuticular wax synthesis. Subsequently, gene co-expression network analysis screened CitWRKY28 and CitNAC029. Dual luciferase and EMSA assays indicated that CitWRKY28 might bind to the promoter of CitKCS1 and CitKCS12 and CitNAC029 might bind to that of CitKCS1 to activate their expression. Moreover, CitWRKY28 and CitNAC029 could promote the accumulation of cuticular wax in Arabidopsis leaves. Our findings provide new insights into the synthesis and regulation of cuticular wax and valuable information for further mining of wax-related genes in citrus fruit.
Collapse
Affiliation(s)
- Hongbin Yang
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhifeng Zhu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingfei Zhang
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Li
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rangwei Xu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Zhu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Xu
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Postharvest Technology, Wuhan, 430070, China.
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Romero P, Lafuente MT. Ethylene-driven changes in epicuticular wax metabolism in citrus fruit. Food Chem 2022; 372:131320. [PMID: 34653780 DOI: 10.1016/j.foodchem.2021.131320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022]
Abstract
Epicuticular waxes are important natural compounds that influence cuticle properties and can protect fruit from factors that harm its external quality. We demonstrated that, at a dose that reduces postharvest citrus fruit quality loss (4 d 2 µL L-1), ethylene redirected epicuticular wax metabolism towards the synthesis of primary alcohols, mostly behenyl alcohol, by favouring the acyl-reduction pathway. This treatment also reduced the synthesis of terpenoids by redirecting the mevalonate pathway towards farnesol accumulation to the detriment of the accumulation of most triterpenoids, but not of their precursor squalene. Moreover, the 4 d ethylene treatment sharply increased the synthesis of docosane and lignoceric acid and lowered that of cerotic acid. Longer ethylene exposure (8 d) reversed some of these effects by lowering the contents of most alcohols, lignoceric acid and squalene, while increasing that of its derivative sitosterol. The 8 d ethylene treatment also increased farnesol and docosane contents.
Collapse
Affiliation(s)
- Paco Romero
- Department of Food Biotechnology, Institute of Chemistry and Food Technology (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - María Teresa Lafuente
- Department of Food Biotechnology, Institute of Chemistry and Food Technology (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
38
|
Relative humidity regimes modify epicuticular wax metabolism and fruit properties during Navelate orange conservation in an ABA-dependent manner. Food Chem 2022; 369:130946. [PMID: 34469840 DOI: 10.1016/j.foodchem.2021.130946] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022]
Abstract
Relative humidity (RH) during conservation and the chemical composition of epicuticular wax layer are factors that determine fruit quality and weight loss. This study investigates the influence of RH on the epicuticular wax metabolism during citrus fruit storage, and how it is affected by abscisic acid (ABA). Low RH conditions increased alcohols and fatty acids abundance, mainly due to accumulation of docosanol and lignoceric and cerotic acids. Low RH also decreased terpenoids and nonacosane and hentriacontane contents, the most abundant alkanes. Consequently, the alkane/terpenoid ratio was decreased concomitantly with fruit weight loss and cuticle permeability increments. ABA treatment differently mediated wax compositional changes at high or low RH. At low RH, ABA attenuated the increase in fatty acids and enhanced the decrease in alcohols and the accumulation of terpenoids, mainly affecting lignoceric and cerotic acids, docosanol, α-amyrin, sitosterol, friedelin and friedelanone contents. These trends were inversed under high RH conditions.
Collapse
|
39
|
Zhang M, Wang J, Liu R, Liu H, Yang H, Zhu Z, Xu R, Wang P, Deng X, Xue S, Zhu F, Cheng Y. CsMYB96 confers resistance to water loss in citrus fruit by simultaneous regulation of water transport and wax biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:953-966. [PMID: 34599807 DOI: 10.1093/jxb/erab420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/24/2021] [Indexed: 05/19/2023]
Abstract
A Citrus sinensis R2R3 MYB transcription factor (CsMYB96) has previously been shown to be strongly associated with the expression of many genes related to wax biosynthesis in the fruit. In this study, CsMYB96 was found to alleviate water loss by simultaneously regulating the expression of genes encoding plasma membrane intrinsic proteins (CsPIPs) and wax-related genes. Expression profiling indicated that CsPIP1;1 and CsPIP2;4 had high expression that was representative of other aquaporins, and they were down-regulated in the peel of post-harvest citrus fruit. CsPIP2;4 was further characterized as the predominant CsPIP, with high expression and high-water channel activity. Transient overexpression of CsPIP2;4 accelerated water loss in citrus fruit. In silico analysis further indicated that the expression of CsMYB96 had a significant negative correlation with that of CsPIPs. In vivo and in vitro experiments confirmed that CsMYB96 was able to directly repress the expression of CsPIPs. In addition, CsMYB96 was able to activate wax-related genes and promote wax biosynthesis for defense against water loss. Transient and stable overexpression of CsMYB96 reduced water loss from both citrus fruit and Arabidopsis.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ruilian Liu
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Zhifeng Zhu
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Pengwei Wang
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Xiuxin Deng
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
40
|
Wang Y, Yang X, Chen Z, Zhang J, Si K, Xu R, He Y, Zhu F, Cheng Y. Function and transcriptional regulation of CsKCS20 in the elongation of very-long-chain fatty acids and wax biosynthesis in Citrus sinensis flavedo. HORTICULTURE RESEARCH 2022; 9:uhab027. [PMID: 35039844 PMCID: PMC8824539 DOI: 10.1093/hr/uhab027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/18/2022] [Accepted: 09/15/2021] [Indexed: 05/05/2023]
Abstract
Cuticular wax on plant aerial surfaces plays a vital role in the defense against various stresses, and the genes related to wax metabolism have been well documented in several model plants. However, there is very limited research on the key enzymes and transcription factors (TFs) associated with carbon chain distribution and wax biosynthesis in citrus fruit. In this study, an analysis of wax metabolites indicated that even carbon-chain (C24-C28) metabolites are the dominant wax components in citrus fruit, and a 3-ketoacyl-CoA synthase (KCS) family gene (CsKCS20) plays an important role in the carbon chain distribution during wax biosynthesis in a wax-deficient mutant (MT). Expression of CsKCS20 in yeast indicated that CsKCS20 can catalyze the biosynthesis of C22 and C24 very-long-chain fatty acids (VLCFAs). In addition, transcriptome and sequence analysis indicated that the differential expression of CsKCS20 between the wild-type (WT) and MT fruit can be partly attributed to the regulation of CsMYB96, which was further confirmed by yeast one-hybrid (Y1H) assays, electrophoretic mobility shift assays (EMSAs) and dual luciferase assays. The functions of CsMYB96 and CsKCS20 in wax biosynthesis were further validated by heterologous expression in Arabidopsis. In summary, this study elucidates the important roles of CsKCS20 and CsMYB96 in regulating VLCFA elongation and cuticular wax biosynthesis, which provides new directions for the improvement of citrus fruit wax quality in genetic breeding programs.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhaoxing Chen
- Institute of Citrus Science Research of Ganzhou, Ganzhou 341000, China
| | - Jin Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Si
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yizhong He
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
41
|
Zhang M, Zhang P, Lu S, Ou-Yang Q, Zhu-Ge Y, Tian R, Jia H, Fang J. Comparative Analysis of Cuticular Wax in Various Grape Cultivars During Berry Development and After Storage. Front Nutr 2022; 8:817796. [PMID: 35028308 PMCID: PMC8748257 DOI: 10.3389/fnut.2021.817796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Cuticular wax covering the surface of fleshy fruit is closely related to fruit glossiness, development, and post-harvest storage quality. However, the information about formation characteristics and molecular mechanisms of cuticular wax in grape berry is limited. In this study, crystal morphology, chemical composition, and gene expression of cuticular wax in grape berry were comprehensively investigated. Morphological analysis revealed high density of irregular lamellar crystal structures, which were correlated with the glaucous appearances of grape berry. Compositional analysis showed that the dominant wax compounds were triterpenoids, while the most diverse were alkanes. The amounts of triterpenoids declined sharply after véraison, while those of other compounds maintained nearly constant throughout the berry development. The amounts of each wax compounds varied among different cultivars and showed no correlation with berry skin colors. Moreover, the expression profiles of related genes were in accordance with the accumulation of wax compounds. Further investigation revealed the contribution of cuticular wax to the water preservation capacity during storage. These findings not only facilitate a better understanding of the characteristics of cuticular wax, but also shed light on the molecular basis of wax biosynthesis in grape.
Collapse
Affiliation(s)
- Mengwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peian Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Suwen Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qixia Ou-Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zhu-Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruiping Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Changes on epicuticular waxes and colour induced by ozone in blueberries (Vaccinium corymbosum L. ‘O’ Neal’). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Liu D, Guo W, Guo X, Yang L, Hu W, Kuang L, Huang Y, Xie J, Liu Y. Ectopic Overexpression of CsECR From Navel Orange Increases Cuticular Wax Accumulation in Tomato and Enhances Its Tolerance to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924552. [PMID: 35865286 PMCID: PMC9294922 DOI: 10.3389/fpls.2022.924552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 05/03/2023]
Abstract
Drought stress often occurred in citrus to limit its growth, distribution, and fruit quality. Cuticular waxes play an important role in regulating plant tolerance to drought stress. Plant enoyl-CoA reductase (ECR) is involved in the biosynthesis of cuticular waxes and catalyzes the last step of very long-chain fatty acids (VLCFAs) elongation. In this study, a putative ECR gene, named CsECR, was cloned from "Newhall" navel orange. CsECR protein has high identities with other plant ECR proteins and contained a conserved NADP/NAD-binding motif and three conserved functional sites. The highest expression of CsECR was observed in leaves, followed by stems, flavedos, ovaries, juice sacs, stigmas, stamens, albedos, and petals. Besides, the expression of CsECR was significantly induced by PEG6000 and ABA treatments. Ectopic overexpression of CsECR increased the contents of total waxes and aliphatic wax fractions (n-fatty acids, unsaturated fatty acids, n-alkanes, alkenes, iso-, and anteiso-alkanes) in the leaves and fruits of the transgenic tomato. Furthermore, ectopic overexpression of CsECR reduced the cuticle permeability in the leaves and fruits of the transgenic tomato and increased its tolerance to drought stress. Taken together, our results revealed that CsECR plays an important role in plant response to drought stresses by regulating cuticular wax biosynthesis.
Collapse
|
44
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
45
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
46
|
Liu D, Ma Q, Yang L, Hu W, Guo W, Wang M, Zhou R, Liu Y. Comparative analysis of the cuticular waxes and related gene expression between 'Newhall' and 'Ganqi 3' navel orange during long-term cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1049-1060. [PMID: 34600182 DOI: 10.1016/j.plaphy.2021.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
Previously, we obtained a wax-deficient mutant 'Ganqi 3' (MT) from 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall, WT). The weight loss and postharvest decay in MT fruit were much higher than those in WT fruit after long-term cold storage. To understand the underlying mechanism, the changes in the morphology, chemical composition and gene expression of cuticular waxes between WT and MT fruit were compared during 150 days of storage at 4 °C. The density of epicuticular wax crystals and the contents of most of the aliphatic wax fractions in MT fruit were much lower than those in WT fruit over 90 days of storage. Further research revealed that the differences in the morphology and chemical composition of cuticular waxes might be important causes for the differences of postharvest weight loss and decay rates between WT and MT fruit. Notably, the expression profiles of 16 wax-related genes in WT and MT fruit were consistent with the change trends of corresponding cuticular wax components during cold storage. These results suggest that the morphology and chemical composition of cuticular waxes may be regulated by wax-related genes and play an important role in regulating the postharvest weight loss and the tolerances to postharvest decay in navel orange.
Collapse
Affiliation(s)
- Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Qingling Ma
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Wenfang Guo
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Minli Wang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Rui Zhou
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Conagen Inc., 15 DeAngelo Drive, Bedford, MA 01730, USA
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
| |
Collapse
|
47
|
Romero P, Lafuente MT. The Combination of Abscisic Acid (ABA) and Water Stress Regulates the Epicuticular Wax Metabolism and Cuticle Properties of Detached Citrus Fruit. Int J Mol Sci 2021; 22:ijms221910242. [PMID: 34638581 PMCID: PMC8549707 DOI: 10.3390/ijms221910242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The phytohormone abscisic acid (ABA) is a major regulator of fruit response to water stress, and may influence cuticle properties and wax layer composition during fruit ripening. This study investigates the effects of ABA on epicuticular wax metabolism regulation in a citrus fruit cultivar with low ABA levels, called Pinalate (Citrus sinensis L. Osbeck), and how this relationship is influenced by water stress after detachment. Harvested ABA-treated fruit were exposed to water stress by storing them at low (30-35%) relative humidity. The total epicuticular wax load rose after fruit detachment, which ABA application decreased earlier and more markedly during fruit-dehydrating storage. ABA treatment changed the abundance of the separated wax fractions and the contents of most individual components, which reveals dependence on the exposure to postharvest water stress and different trends depending on storage duration. A correlation analysis supported these responses, which mostly fitted the expression patterns of the key genes involved in wax biosynthesis and transport. A cluster analysis indicated that storage duration is an important factor for the exogenous ABA influence and the postharvest environment on epicuticular wax composition, cuticle properties and fruit physiology. Dynamic ABA-mediated reconfiguration of wax metabolism is influenced by fruit exposure to water stress conditions.
Collapse
|
48
|
Zhang M, Wang J, Luo Q, Yang C, Yang H, Cheng Y. CsMYB96 enhances citrus fruit resistance against fungal pathogen by activating salicylic acid biosynthesis and facilitating defense metabolite accumulation. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153472. [PMID: 34315028 DOI: 10.1016/j.jplph.2021.153472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 05/21/2023]
Abstract
Citrus fruit are generally confronted with various fungal diseases that cause fruit deterioration and economic loss. Salicylic acid (SA), a plant hormone, is an important signal molecule required for stimulating the disease resistance of plants. However, there has been limited information about the molecular mechanism of SA biosynthesis involving biotic stress response in citrus fruit. In the present study, an R2R3 MYB transcription factor (CsMYB96) was identified to mediate SA signaling in response to fungal diseases. The transient overexpression assay revealed that CsMYB96 contributed to the strong tolerance of citrus fruit to Penicillium italicum along with an increase in SA content; meanwhile, CsMYB96 conferred resistance to Botrytis cinerea in Arabidopsis plants. Further metabolomic profiling of stable transgenic Arabidopsis revealed that CsMYB96 participated in the regulation of various metabolism pathways and enhanced the accumulation of phenolic acids. RNA-seq analysis confirmed that overexpression of CsMYB96 activated the expression of genes involved in plant-pathogen interaction, phenylpropanoid biosynthesis, and SA signaling. Besides, CsMBY96 directly activated the transcription of calmodulin binding protein 60g (CsCBP60g), a predominant transcription factor required for the activation of SA signaling. In summary, our results reveal that CsMYB96 promotes SA biosynthesis and the accumulation of defense metabolites to enhance the fungal pathogen resistance of citrus fruit and Arabidopsis and provide new insights into the regulation of disease response.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China.
| | - Qujuan Luo
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Ce Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
49
|
Wen X, Geng F, Cheng Y, Wang J. Ectopic expression of CsMYB30 from Citrus sinensis enhances salt and drought tolerance by regulating wax synthesis in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:777-788. [PMID: 34217134 DOI: 10.1016/j.plaphy.2021.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 05/19/2023]
Abstract
Epidermal wax plays a critical role in plant resistance and fruit storage properties. As such, the regulation of wax production is of great importance in fruit, but there is limited information about this process in citrus plants. In this study, we investigated the role of the Citrus sinensis transcription factor CsMYB30 in the regulation of wax synthesis by cloning and ectopically expressing the gene in Arabidopsis and examining the effects on wax formation and stress tolerance. CsMYB30 transgenic Arabidopsis plants showed improved tolerance to salt and drought stresses compared to their wild-type counterparts. Ectopic expression of CsMYB30 also caused changes to the microstructure of wax crystals and wax composition, a significant increase in wax load, and a decrease in the permeability of leaf epidermis. Additionally, most genes related to the wax synthesis pathway were upregulated at the transcription level. These findings suggest that CsMYB30 is a transcriptional regulator of wax production in citrus and can serve as a potential target gene in genetic engineering or breeding efforts to improve citrus fruit resistance and storage performance.
Collapse
Affiliation(s)
- Xuefei Wen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Yunjiang Cheng
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China.
| |
Collapse
|
50
|
Gori M, Thakur A, Sharma A, Flora SJS. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides. Top Curr Chem (Cham) 2021; 379:33. [PMID: 34346011 DOI: 10.1007/s41061-021-00345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
Organophosphorus (OP) compounds are typically a broad class of compounds that possess various uses such as insecticides, pesticides, etc. One of the most evil utilizations of these compounds is as chemical warfare agents, which pose a greater threat than biological weapons because of their ease of access. OP compounds are highly toxic compounds that cause irreversible inhibition of enzyme acetylcholinesterase, which is essential for hydrolysis of neurotransmitter acetylcholine, leading to series of neurological disorders and even death. Due to the extensive use of these organophosphorus compounds in agriculture, there is an increase in the environmental burden of these toxic chemicals, with severe environmental consequences. Hence, the rapid and sensitive, selective, real-time detection of OP compounds is very much required in terms of environmental protection, health, and survival. Several techniques have been developed over a few decades to easily detect them, but still, numerous challenges and problems remain to be solved. Major advancement has been observed in the development of sensors using the spectroscopic technique over recent years because of the advantages offered over other techniques, which we focus on in the presented review.
Collapse
Affiliation(s)
- Muskan Gori
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|