1
|
Liu X, Liu X, Wang J, Zang D, Yang Y, Chen Q, Guo DA. Machine learning and chemometric methods for high-throughput authentication of 53 Root and Rhizome Chinese Herbal using ATR-FTIR fingerprints. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1260:124630. [PMID: 40328017 DOI: 10.1016/j.jchromb.2025.124630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
To address the identification challenges caused by morphological similarities in Root and Rhizome Chinese Herbal (RRCH), this study developed a discrimination system integrating Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) with multimodal machine learning. 53 kinds of RRCH collected from China were analyzed using ATR-FTIR to acquire spectral fingerprints. An innovative analytical framework was established, combining chemometric Partial Least Squares Discriminant Analysis (PLS-DA) with optimized machine learning models: t-distributed Stochastic Neighbor Embedding (t-SNE), optimized decision trees, optimized discriminant analysis, naive Bayes, optimized SVM, optimized KNN, SVM kernels, and optimized ensemble learning. Multivariate analysis revealed distinct spatial distribution patterns of chemical characteristics among the 53 RRCH species. t-SNE projections demonstrated significant cluster separation in two-dimensional feature space, confirming strong correlations between spectral fingerprints and phytochemical compositions. The SVM model outperformed others, achieving 100 % classification accuracy on both training and validation sets, with a markedly shorter identification time compared to PLS-DA. This ATR-FTIR-machine learning hybrid system enables high-throughput authentication of RRCH and establishes a scalable technical framework for herbal quality standardization. The methodology provides critical insights into chemical marker discovery through vibrational spectrum-feature relationship mapping, advancing intelligent discrimination of botanically similar medicinal materials.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 582400, China
| | - Xiaokang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 582400, China
| | - Jiawei Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 582400, China
| | - Daidi Zang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 582400, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - De-An Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 582400, China; Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
2
|
Norouzzadeh M, Hasan Rashedi M, Azizi MH, Teymoori F, Maghsoomi Z, Shidfar F. Efficacy and safety of Hibiscus sabdariffa in cardiometabolic health: An overview of reviews and updated dose-response meta-analysis. Complement Ther Med 2025; 89:103135. [PMID: 39870328 DOI: 10.1016/j.ctim.2025.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Conventional treatments for cardiometabolic diseases face limitations related to cost, efficacy, and side effects. Hibiscus sabdariffa (HS) is a common food product and a potential alternative. However, previous studies have shown inconsistent results and lacked assessments of result certainty, intervention safety, and subgroup analysis credibility. This study evaluated the efficacy and safety of HS on blood pressure (BP), lipid profiles, glycemic control, anthropometric parameters, inflammatory markers, oxidative stress indicators, and liver enzymes. METHODS To conduct this umbrella review, a systematic search of eligible meta-analyses was performed up to May 2024. The random-effects model was used to synthesize results from individual trials. Quality, certainty, and credibility of evidence were evaluated using the Cochrane Risk of Bias tool, AMSTAR-II, GRADE, and ICEMAN frameworks. RESULTS Data from 26 randomized controlled trials involving 1797 participants revealed that HS dose-dependently reduced systolic and diastolic BP compared to placebo and other teas. Although no significant differences were found between HS and antihypertensive drugs, HS showed moderate credibility for therapeutic BP reduction (> 10 mmHg), especially in individuals over 50 years, in trials lasting over four weeks, and in those with a low risk of bias. HS also reduced total cholesterol, LDL-C, fasting blood glucose, and increased HDL-C. A minor, clinically insignificant increase in aspartate aminotransferase was observed without elevating adverse event risks. CONCLUSIONS HS showed BP-lowering effects comparable to antihypertensive drugs and beneficial impacts on lipid and glycemic profiles. Although HS is generally considered safe, long-term and therapeutic dosing safety requires careful monitoring.
Collapse
Affiliation(s)
- Mostafa Norouzzadeh
- Institute for Studies in Medicine History, Persian and Complementary Medicine, Iran University of Medical Science, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran; Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Hasan Rashedi
- Institute for Studies in Medicine History, Persian and Complementary Medicine, Iran University of Medical Science, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran; Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hesam Azizi
- Institute for Studies in Medicine History, Persian and Complementary Medicine, Iran University of Medical Science, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Maghsoomi
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farzad Shidfar
- Institute for Studies in Medicine History, Persian and Complementary Medicine, Iran University of Medical Science, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wafi A, Khan MM. Green synthesized ZnO and ZnO-based composites for wound healing applications. Bioprocess Biosyst Eng 2025; 48:521-542. [PMID: 39739126 DOI: 10.1007/s00449-024-03123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained much attention in biomedical applications because of their distinctive physicochemical features such as low toxicity and biocompatible properties. Traditional methods to produce ZnO NPs sometimes include harmful substances and considerable energy consumption, causing environmental issues and potential health risks. Nowadays, the concern of ZnO production has moved toward environmentally friendly and sustainable synthesis methods, using natural extracts or plant-based precursors. This review discusses the green synthesis of ZnO NPs utilizing various plant extracts for wound healing applications. Moreover, ZnO NPs have antibacterial characteristics, which can prevent infection, a substantial obstacle in wound healing. Their ability to maintain inflammation, proliferation, oxidative stress, and promote angiogenesis proves their critical role in wound closure. In addition, ZnO NPs can also be easily and ideally incorporated with wound dressings and scaffolds such as hydrogel, chitosan, cellulose, alginate, and other materials, due to their exceptional mechanical properties. The latest publication of green synthesis of ZnO NPs and their applications for wound healing has been discussed. Therefore, this review provides a current update of knowledge on the sustainable and biocompatible ZnO NPs for specific applications, i.e., wound healing applications. In addition, the green synthesis of ZnO NPs using plant extracts also provides a particular approach in terms of material preparation, which is different from previous review articles.
Collapse
Affiliation(s)
- Abdul Wafi
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
- Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
4
|
Cavalcante Neto AA, Chaux-Gutiérrez AM, Pérez-Monterroza EJ, Nagai LY, Huamaní-Meléndez VJ, Mauro MA. Powdered cuxá sauce from Hibiscus sabdariffa L. leaves obtained by foam-mat drying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:763-772. [PMID: 40109689 PMCID: PMC11914584 DOI: 10.1007/s13197-024-06067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 03/22/2025]
Abstract
Cuxá, a sauce from Roselle (Hibiscus sabdariffa L.) leaves, is a traditional dish in Maranhão, Brazil. This study evaluated foam-mat drying for cuxá powder production using albumin (ALB) and an emulsifier mixture (EMB) as foaming agents. Foam characteristics, density, stability, and overrun were evaluated. The effects of ALB, EMB, and drying temperatures (60, 70, 80 °C) on drying kinetics, color, total phenolic content, and powder morphology were examined. EMB resulted in higher air incorporation compared to ALB. Increased drying temperature led to faster drying times (regardless of foaming agent) and higher effective diffusion coefficients of water (1.12 × 10-9 to 1.97 × 10-9 m2 s-1). ALB influenced cuxá powder color, reducing vividness but maintaining a hue similar to the cuxá sauce for both ALB and EMB powders. Total phenolic content ranged from 4.96 (EMB, 60 °C) to 2.46 mg g-1 (ALB, 80 °C) and decreased with higher temperatures. ALB exhibited superior phenolic compound retention (74.8-71.1%), highlighting its potential for preserving heat-sensitive compounds during drying.
Collapse
Affiliation(s)
- Adeval Alexandre Cavalcante Neto
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (Unesp), Rua Cristovão Colombo 2265, São José Do Rio Preto, SP 15054-000 Brazil
| | - Ana Maria Chaux-Gutiérrez
- BIOALI, Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Ezequiel José Pérez-Monterroza
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (Unesp), Rua Cristovão Colombo 2265, São José Do Rio Preto, SP 15054-000 Brazil
| | - Letícia Yuri Nagai
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (Unesp), Rua Cristovão Colombo 2265, São José Do Rio Preto, SP 15054-000 Brazil
| | - Víctor Justiniano Huamaní-Meléndez
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (Unesp), Rua Cristovão Colombo 2265, São José Do Rio Preto, SP 15054-000 Brazil
| | - Maria Aparecida Mauro
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (Unesp), Rua Cristovão Colombo 2265, São José Do Rio Preto, SP 15054-000 Brazil
| |
Collapse
|
5
|
Gurung B, Li J, Fang D, Lin Q, Guo X, Chen G. Chromosome-level genome assembly of the threatened ornamental plant Hibiscus yunnanensis. Sci Data 2025; 12:503. [PMID: 40133413 PMCID: PMC11937252 DOI: 10.1038/s41597-025-04842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Hibiscus yunnanensis S.Y. Hu is an endangered species of the genus Hibiscus (Malvaceae), which has high potential economic value. However, the absence of a high-quality reference genome impedes the study of the ecology and molecular biology of H. yunnanensis. Here, we present a high-quality chromosome-level assembly of H. yunnanensis using BGI-DIPSEQ, Nanopore, and Hi-C sequencing. The assembled genome size is 2.2 Gb with a contig N50 of 12.1 Mb and a scaffold N50 of 137.1 Mb. Approximately 99.2% of the assembly is anchored into 17 pseudochromosomes, and a BUSCO analysis indicates a completeness score of 99.6%. Furthermore, we identify 42,085 protein-coding genes, of which 96.4% are functionally annotated. This genome resource provides a foundation for future studies on unique traits, including drought-tolerant, savanna-adapted, and long-flowering traits. Its ability to flower in winter, along with its automatic selfing and lack of delayed inbreeding depression, makes it an excellent model for studying style curvature mechanism and its adaptive significance in the Malvaceae.
Collapse
Affiliation(s)
- Bishal Gurung
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiani Li
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | - Xing Guo
- BGI Research, Wuhan, 430074, China
| | - Gao Chen
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
| |
Collapse
|
6
|
Trung VT, Linh KTP, Thu Trang D, Thanh Binh P, The Cuong N, Thanh NV, Cuong NX, Hoai Nam N, Thao NP. Antimicrobial constituents from the leaves of Hibiscus tiliaceus L. Nat Prod Res 2025; 39:1050-1057. [PMID: 38084396 DOI: 10.1080/14786419.2023.2293137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 03/04/2025]
Abstract
Repeated column chromatography resulted in the isolation of two new megastigmane derivatives, methyl-tiliaceates A and B (1 and 2), along with four known metabolites (3-6) from the leaves of Hibiscus tiliaceus L. The structures of the purified phytochemicals were elucidated by interpreting their NMR, HRESIMS, and CD spectroscopic data, as well as comparison with the previous literature. The compounds isolated were subjected to in vitro antimicrobial assays against a panel of pathogenic microorganisms (Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and Candida albicans). Compound 1 showed obvious selective inhibition against the B. cereus strain, whereas 3 - 5 showed weak inhibitory activities against E. faecalis and S. aureus bacterial, and C. albicans fungal strains (with MIC values ranging from 128 to 256 µg/mL).
Collapse
Affiliation(s)
- Vu Thanh Trung
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Kieu Thi Phuong Linh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Duong Thu Trang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Thanh Binh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen The Cuong
- Institute of Ecology and Biological Resources, VAST, Hanoi, Vietnam
| | - Nguyen Van Thanh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Xuan Cuong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Hoai Nam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Phuong Thao
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
7
|
Yang D, Xu HX, Wang WJ, Yin ZP, Chen JG, Yuan E, Zhang QF. Roselle Extract Ameliorates Abnormal Glucolipid Metabolism and Gut Microbiota in Obese Mice Fed With High-Fat Diet. Mol Nutr Food Res 2025; 69:e202400756. [PMID: 39935166 DOI: 10.1002/mnfr.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Roselle extract (RE) is rich in anthocyanins and chlorogenic acids. This study investigated the health-promoting effects of RE on lipid metabolism, oxidative stress, glycometabolism, and gut microbiota in obese mice fed a high-fat diet (HFD). The obesity model was induced by feeding mice a HFD, with RE supplementation added to their drinking water at concentrations of 2 and 4 mg/mL for 12 weeks. RE significantly reduced body weight gain and fat accumulation compared to the control group, alleviated hepatic steatosis, and improved insulin sensitivity. Additionally, RE restored antioxidative enzyme activities such as SOD and GSH-PX while reducing MDA levels. Transcriptomic analysis of the liver was performed to evaluate gene expression related to lipid metabolism, particularly in the PPAR signaling pathway. Gut microbiota analysis showed that RE increased beneficial bacteria and reduced the Firmicutes-to-Bacteroidetes ratio, suggesting an improvement in gut dysbiosis caused by the HFD. RE enhanced lipid metabolism, reduced oxidative stress, and improved insulin sensitivity in obese mice, potentially through modulation of the PPAR signaling pathway and gut microbiota, suggesting its potential as a therapeutic candidate for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dan Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Hai-Xia Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhong-Ping Yin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ji-Guang Chen
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Abdillah RAK, Budhy TI, Narmada IB, Ardani IGAW, Ramadhani NF, Sitalaksmi RM, Luthfi M, Ulfa NM, Nugraha AP, Tengku Ahmad Noor TNEB, Nugraha AP. Antibacterial activity of 1 % Roselle flower nano-emulsion extract (Hibiscus sabdariffa) against peri-implantitis-related bacteria on orthodontic mini-implants: An in vitro study. J Oral Biol Craniofac Res 2025; 15:170-177. [PMID: 39877333 PMCID: PMC11773234 DOI: 10.1016/j.jobcr.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/31/2025] Open
Abstract
Objective The orthodontic mini-implant (OMI) failure often occurs due to the accumulation of peri-implantitis bacteria surrounding it, which results in a stable, resistant form of absolute skeletal anchorage during orthodontic treatment. Administering doxycycline may be the solution, but long-term side effects result in antibiotic resistance. Roselle flowers (Hibiscus sabdariffa) possess beneficial active phytochemical substances, which may have potential as an OMI peri-implantitis alternative therapy. This study investigates the antibacterial activity of 1 % Roselle flower (H. sabdarifa) nanoemulsion (NE) extract (1 % RNE) toward peri-implantitis bacteria in OMIs. Methods A phytochemical analysis of 1 % RNE was carried out to examine the active substances possessed in it, such as flavonoids, quinone, saponin, alkaloids, tannins, terpenoids, and steroids. Nanoemulsion characterization was carried out using a particle size analyzer (PSA). The antibacterial activity of 1 % RNE toward Prevotella intermedia (Pi), Porphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) was carried out to determine the minimum inhibitory concentration, minimum bactericidal concentration, and inhibitory zone compared with doxycycline as a positive control. Results Roselle flower NE extract (1 %) possessed flavonoids, quinone, saponin, alkaloids, tannins, terpenoids, and steroids positively. The PSA showed that the 1 % RNE had a size of 98.13 d nm. The antibacterial activity of 1 % RNE against Aa, Pg, Pi, and Fn bacteria at 3.125 % showed significant differences (p < 0.05). The antibacterial activity of 1 % RNE toward peri-implantitis bacteria is lower than that of doxycycline. Conclusion Roselle flower NE extract (1 %) has antibacterial activity against peri-implantitis bacteria at a concentration of 3.125 %.
Collapse
Affiliation(s)
- Ridhofar Akbar Khusnul Abdillah
- Graduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Theresia Indah Budhy
- Oral and Maxillofacial Pathology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ida Bagus Narmada
- Orthodontic Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - I Gusti Aju Wahju Ardani
- Orthodontic Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Nastiti Faradilla Ramadhani
- Dentomaxillofacial Radiology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ratri Maya Sitalaksmi
- Prosthodontic Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Muhammad Luthfi
- Oral Biology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | | | | | | - Alexander Patera Nugraha
- Orthodontic Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
9
|
Li N, Simon JE, Wu Q. Development of a scalable, high-anthocyanin and low-acidity natural red food colorant from Hibiscus sabdariffa L. Food Chem 2024; 461:140782. [PMID: 39151341 DOI: 10.1016/j.foodchem.2024.140782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/15/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
The hibiscus calyx contains 0.3-2.4% total anthocyanins, and is a promising source for naturally red food colorants. In this study, commercially available hibiscus calyces were subjected to ethanolic-aqueous extraction and chromatographic enrichment with the XAD-7HP resin, to create scalable, high-anthocyanin and low-acidity natural food colorants. Anthocyanins, organic and phenolic acids were monitored after each step using UHPLC-DAD and UHPLC-QQQ/MS. 75.67% total anthocyanins were recovered from calyces after double extractions, and the content increased by 8.50-14.90 times after the column enrichment, reaching 14.51-31.90% (by dry weight) in the final product. Chromatographic fractionation was also shown to effectively increase the total phenolic acids by 11.01-16.22 times, and remove an average of 98.58% of the total organic acids. High intensity redness at pH 2.5-3.5 indicated that the final product may be a promising, versatile natural food and beverage colorant in low pH products.
Collapse
Affiliation(s)
- Nanxi Li
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University Core Facility for Natural Products & Bioanalysis, Rutgers University, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA.
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University Core Facility for Natural Products & Bioanalysis, Rutgers University, 59 Dudley Road, New Brunswick, NJ, 08901, USA.
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University Core Facility for Natural Products & Bioanalysis, Rutgers University, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
10
|
Ghorbani S, Jafarian S, Soltani MS, Nasiraie LR. Microbiological Characteristics of Beef Sausage Enriched With Roselle ( Hibiscus sabdariffa L.) Sepal Extract. Food Sci Nutr 2024; 12:10382-10392. [PMID: 39723070 PMCID: PMC11666936 DOI: 10.1002/fsn3.4582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 10/19/2024] [Indexed: 12/28/2024] Open
Abstract
Adding plant extracts to sausage and other meat products is very important to improve their quality, safety, and durability. The aim of this study was to evaluate the microbiological properties of beef sausage enriched with roselle (Hibiscus sabdariffa L.) sepal extract. The total content of phenolic and flavonoid compounds in hydroalcoholic extract of Roselle sepals was measured by Folin-Ciocalteu test and aluminum chloride colorimetric method, and antioxidant activity was measured by DPPH method. Pectin was used to encapsulate the extract. The characteristics of capsules, including particle size, zeta potential, and capsule efficiency were measured. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of extracts were performed by tube dilution method. Microbial tests were performed on sausage treatment samples. Analysis of the obtained data was done using SPSS and Excel software. The study revealed that the total phenolic and flavonoid compounds in the extract were 174.6 mg of gallic acid per gram and 16.8368 mg of quercetin, respectively. The extract displayed the highest antioxidant activity at elevated concentrations. Particle size ranged from 16.833 to 640.534 μm. The zeta potential and capsule efficiency were found to be satisfactory. Compared to the encapsulated extract, the free roselle extract better inhibited Staphylococcus aureus (s. aureus), Salmonella typhimurium (S. typhimurium), and Escherichia coli (E.coli). During storage until day 20, these bacteria did not grow in the free or encapsulated extract groups. However, S. aureus appeared in the free extract group from day 25 and the encapsulated extract group from day 20. Roselle extract has antimicrobial properties that can improve the quality and safety of beef sausage during storage.
Collapse
Affiliation(s)
- Sharif Ghorbani
- Department of Food Science and TechnologyNour Branch, Islamic Azad University NourNourIran
| | - Sara Jafarian
- Department of Food Science and TechnologyNour Branch, Islamic Azad University NourNourIran
| | | | - Leila Roozbeh Nasiraie
- Department of Food Science and TechnologyNour Branch, Islamic Azad University NourNourIran
| |
Collapse
|
11
|
Yu Y, Shiau S, Pan W, Yang Y. Extraction of Bioactive Phenolics from Various Anthocyanin-Rich Plant Materials and Comparison of Their Heat Stability. Molecules 2024; 29:5256. [PMID: 39598646 PMCID: PMC11596579 DOI: 10.3390/molecules29225256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Butterfly pea flower (BPF), roselle calyx (RC), and grape skin (GS) are rich in bioactive phenolics with health benefits. Due to its simplicity, safety, and environmental friendliness, this study used water as a solvent to explore different extraction conditions in these plant materials and compared the heat stability of anthocyanins in the aqueous extracts. To maximize the total anthocyanins and polyphenols in the aqueous extracts, the powders of BPF, GS, and RC should be extracted for 30 min at 90 °C; 30 min and 120 min at 90 °C; and 30 min and 60 min at 60 °C, respectively. Among the tested plant materials, the content of total anthocyanins was RC > GS > BPF, while the total phenolic content was GS > BPF > RC. Anthocyanins of the aqueous extracts underwent rapid thermal degradation at high temperatures and high pH values. The thermal stability of anthocyanins in the materials was in the order: BPF > GS > RC. This is likely related to the types and structures of the anthocyanins such as the degree of acylation and glycosylation. The study demonstrates that hot water extraction is efficient and practical for these materials, yielding extracts suitable for food and nutraceutical applications.
Collapse
Affiliation(s)
- Yanli Yu
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China; (Y.Y.); (Y.Y.)
| | - Syyu Shiau
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China; (Y.Y.); (Y.Y.)
- Department of Food Science and Technology, Tajen University, Pingtung 90741, Taiwan;
| | - Weichen Pan
- Department of Food Science and Technology, Tajen University, Pingtung 90741, Taiwan;
| | - Yvette Yang
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China; (Y.Y.); (Y.Y.)
| |
Collapse
|
12
|
de Oliveira D, Giordani M, Luvizotto R, do Nascimento A, dos Santos M, Santos K, Lima-Leopoldo A, Leopoldo A, Sugizaki M. Association of Hibiscus sabdariffa and high-intensity interval training induces reduction in adiposity and beneficial metabolic adaptations in obesity without changes in lipid metabolism. Braz J Med Biol Res 2024; 57:e13676. [PMID: 39504065 PMCID: PMC11540260 DOI: 10.1590/1414-431x2024e13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/25/2024] [Indexed: 11/08/2024] Open
Abstract
High-intensity interval training (HIIT) has stood out as a treatment for obesity, leading to adaptations of the cardiovascular system and reducing body adiposity. In addition, the search for alternative therapies for weight loss has intensified. The administration of Hibiscus sabdariffa (Hs) has been described as an efficient supplement in weight loss and in the treatment of metabolic changes associated with obesity. In this context, the objective was to investigate the effects of the association of Hs and HIIT on metabolic adaptations and lipid metabolism in obese rats. Wistars rats were subjected to obesity and subsequently randomized into 4 groups: obese (Ob), obese + HS (ObHs), obese + HIIT (ObHIIT), and obese + HS + HIIT (ObHsHIIT). For 8 weeks, ObHs and ObHsHIIT rats received Hs extract daily (150 mg/kg of body weight) and trained groups (ObHIIT and ObHsHIIT) were subjected to a HIIT program on a treadmill. Nutritional profile, glycemic curve, biochemical profile, and liver glycogen were determined. HIIT decreased caloric intake, feed efficiency, body adiposity, total body fat, and body weight gain, associated with improvements in physical performance parameters and a smaller glycemic curve and area. Hs had a hepatoprotective effect, reducing alkaline phosphatase values, but its effects were more pronounced when associated with HIIT. Therefore, the combination of treatments promoted a reduction in food consumption and body adiposity, as well as an improvement in physical performance and glycemic profile, but without changes in lipid metabolism.
Collapse
Affiliation(s)
- D.B.O. de Oliveira
- Programa de Pós-Graduação em Educação Física, Centro de Educação Física e Esportes, Universidade Federal do Mato Grosso, Cuiabá, MT, Brasil
| | - M.A. Giordani
- Programa de Pós-Graduação em Educação Física, Centro de Educação Física e Esportes, Universidade Federal do Mato Grosso, Cuiabá, MT, Brasil
| | - R.A.M. Luvizotto
- Programa de Pós-Graduação em Ciências em Saúde (PPGCS), Universidade Federal do Mato Grosso, Campus Universitário de Sinop, Sinop, MT, Brasil
| | - A.F. do Nascimento
- Programa de Pós-Graduação em Ciências em Saúde (PPGCS), Universidade Federal do Mato Grosso, Campus Universitário de Sinop, Sinop, MT, Brasil
| | - M.C. dos Santos
- Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - K.C.C. Santos
- Programa de Pós-Graduação em Nutrição e Saúde, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - A.P. Lima-Leopoldo
- Programa de Pós-Graduação em Nutrição e Saúde, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
- Programa de Pós-Graduação em Educação Física, Centro de Educação Física e Esportes, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - A.S. Leopoldo
- Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
- Programa de Pós-Graduação em Nutrição e Saúde, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
- Programa de Pós-Graduação em Educação Física, Centro de Educação Física e Esportes, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - M.M. Sugizaki
- Programa de Pós-Graduação em Educação Física, Centro de Educação Física e Esportes, Universidade Federal do Mato Grosso, Cuiabá, MT, Brasil
| |
Collapse
|
13
|
Leyva-López R, Vargas-Torres A, Guzmán-Ortiz FA, Aparicio-Saguilán A, Madariaga-Navarrete A, Palma-Rodríguez HM. Microencapsulation of Hibiscus sabdariffa L. extract using porous starch and gum Arabic: Optimized process, characterization, stability, and simulated gastrointestinal conditions. Int J Biol Macromol 2024; 277:133754. [PMID: 39084984 DOI: 10.1016/j.ijbiomac.2024.133754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Hibiscus extract exhibits considerable antioxidant activity and a high anthocyanin content, which suggesting potential health benefits. However, these compounds are highly susceptible to environmental factors. The aim of this study was to establish the optimal conditions for the encapsulation of Hibiscus sabdariffa extract (HSE) using mixed porous maize starch-gum Arabic to enhance the stability of bioactive compounds under accelerated aging conditions. Response surface methodology (RSM) was used to optimize microencapsulation conditions through spray drying. The optimal conditions for microencapsulation of HSE by RSM were determined to be 126 °C at the inlet temperature (IT) and 8.5 % at the total solid content (TSC). Using these conditions, the amount of bioactive compounds in optimized microcapsules (OMs) was 2368 mg GAE/100 g, 694 mg QE/100 g, and 930 mg EC3G/100 g, of phenolic compounds, flavonoids, and anthocyanin, respectively. The release rate of anthocyanins during in vitro digestion was more effectively regulated in the OM sample, which retained up to 40 % of anthocyanins compared with 10 % in the HSE. The experimental values in this study exhibit high assertiveness, which renders the optimization model technologically and financially viable for the encapsulation of bioactive compounds with potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Román Leyva-López
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico
| | - Apolonio Vargas-Torres
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico.
| | - Fabiola A Guzmán-Ortiz
- CONACYT-Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, Mexico
| | - Alejandro Aparicio-Saguilán
- Instituto de Biotecnología, Universidad Del Papaloapan, Circuito Central #200. Colonia Parque Industrial, Apartado Postal 68301, Tuxtepec, Oax., Mexico
| | - Alfredo Madariaga-Navarrete
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico
| | - Heidi M Palma-Rodríguez
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico
| |
Collapse
|
14
|
Calliari CM, Shirai MA, Casazza AA, Pettinato M, Perego P. Inulin as prebiotic encapsulating agent for the production of spray-dried Hibiscus sabdariffa L. tea microcapsules. Nat Prod Res 2024; 38:3311-3320. [PMID: 37585694 DOI: 10.1080/14786419.2023.2244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Due to the high content of phenolics and anthocyanins of Hibiscus sabdariffa L. tea and the sensibility of these bioactive compounds, this work aimed to optimize the obtention of microcapsules by spray-drying, using inulin as a carrier agent. Using a Box-Behnken Design, the effects of inlet temperature (130, 150, and 170 °C), feed flow rate (5, 10, and 15 mL min-1), and inulin concentration (5, 10, and 15 g L-1) were evaluated. It was possible to obtain pale-rose, slightly sweet instant powders with good total polyphenol content (1.12 mgGAE g-1) and anthocyanins encapsulation efficiency (32.3-60.6%), besides moisture (4.61-17.79%) and water activity (0.221-0.501), indicating physico-chemical and microbiological stability of the microcapsules. A simultaneous optimization with the desirability function was performed to maximize all the response variables analyzed, and the optimum conditions of 5 g L-1 of inulin, inlet temperature of 170 °C, and feed flow rate of 83 mL min-1 were found.
Collapse
Affiliation(s)
- Caroline Maria Calliari
- Academic Department of Food (DAALM), Technological Federal University of Parana, Londrina, Brazil
| | - Marianne Ayumi Shirai
- Academic Department of Food (DAALM), Technological Federal University of Parana, Londrina, Brazil
| | | | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Kim T, Lee JH, Seo HH, Moh SH, Choi SS, Kim J, Kim SG. Genome assembly of Hibiscus sabdariffa L. provides insights into metabolisms of medicinal natural products. G3 (BETHESDA, MD.) 2024; 14:jkae134. [PMID: 38995814 PMCID: PMC11304979 DOI: 10.1093/g3journal/jkae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Hibiscus sabdariffa L. is a widely cultivated herbaceous plant with diverse applications in food, tea, fiber, and medicine. In this study, we present a high-quality genome assembly of H. sabdariffa using more than 33 Gb of high-fidelity (HiFi) long-read sequencing data, corresponding to ∼20× depth of the genome. We obtained 3 genome assemblies of H. sabdariffa: 1 primary and 2 partially haplotype-resolved genome assemblies. These genome assemblies exhibit N50 contig lengths of 26.25, 11.96, and 14.50 Mb, with genome coverage of 141.3, 86.0, and 88.6%, respectively. We also utilized 26 Gb of total RNA sequencing data to predict 154k, 79k, and 87k genes in the respective assemblies. The completeness of the primary genome assembly and its predicted genes was confirmed by the benchmarking universal single-copy ortholog analysis with a completeness rate of 99.3%. Based on our high-quality genomic resources, we constructed genetic networks for phenylpropanoid and flavonoid metabolism and identified candidate biosynthetic genes, which are responsible for producing key intermediates of roselle-specific medicinal natural products. Our comprehensive genomic and functional analysis opens avenues for further exploration and application of valuable natural products in H. sabdariffa.
Collapse
Affiliation(s)
- Taein Kim
- Department of Biological Sciences, KAIST, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, 21990 Incheon, Republic of Korea
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, 04513 Seoul, Republic of Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Yuseong-gu, 34134 Daejeon, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Yuseong-gu, 34141 Daejeon, Republic of Korea
| |
Collapse
|
16
|
Javadi B, Farahmand A, Soltani-Gorde-Faramarzi S, Hesarinejad MA. Chitosan-coated nanoliposome: An approach for simultaneous encapsulation of caffeine and roselle-anthocyanin in beverages. Int J Biol Macromol 2024; 275:133469. [PMID: 38945345 DOI: 10.1016/j.ijbiomac.2024.133469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The objective of the present research was to develop chitosan-coated nanoliposomes using a modified heating method as a delivery system for simultaneous encapsulation of caffeine and roselle anthocyanin to fortify beverage. Response surface methodology was used to ascertain the optimized formulation, aiming to maximize the encapsulation efficiency, minimize the particle size, and maximize the zeta potential. The liposomes fabricated under the optimized conditions (lecithin to cholesterol ratio of 13 and wall to core ratio of 2.16) showed encapsulation efficiency values of 66.73 % for caffeine and 97.03 % for anthocyanin, with a size of 268.1 nm and a zeta potential of -39.11 mV. Fourier transform infrared spectroscopy confirmed the formation of hydrogen bonds between the polar sites of lecithin and the loaded core compounds. Thermal analysis suggested the successful encapsulation of the caffeine and anthocyanin. Transmission and scanning electron microscopy images confirmed a uniform spherical shape with a smooth surface. Fortifying the model beverage with the liposome and the chitosan-coated nanoliposome revealed higher values of encapsulation efficiency of anthocyanin (70.33 ± 3.11 %), caffeine (86.37 ± 2.17 %) and smaller size (280.5 ± 0.74 nm) of the chitosan-coated nanoliposomes at the end of 60the days. A hedonic sensory test of the fortified beverage with chitosan-coated nanoliposomes confirmed an improvement in the organoleptic properties of the beverage by masking its bitterness (receiving three more sensory scores in perceiving the bitterness intensity). Overall, our study indicates that the high potential of the chitosan-coated nanoliposomes for the simultaneous loading of the caffeine and anthocyanin, as well as their possible application in food and beverage formulations.
Collapse
Affiliation(s)
- Bahareh Javadi
- Research and development center, Abfam Govara Tejarat Shargh Co., Mashhad, Iran
| | - Atefeh Farahmand
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
17
|
Gutiérrez-Cuevas J, López-Cifuentes D, Sandoval-Rodriguez A, García-Bañuelos J, Armendariz-Borunda J. Medicinal Plant Extracts against Cardiometabolic Risk Factors Associated with Obesity: Molecular Mechanisms and Therapeutic Targets. Pharmaceuticals (Basel) 2024; 17:967. [PMID: 39065815 PMCID: PMC11280341 DOI: 10.3390/ph17070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Doctorate in Sciences in Molecular Biology in Medicine, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud (EMCS), Tecnologico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
18
|
Hu P, Wang Y, Ye L, Yan X, Zeng Y, Jiang Z, Gong Y, Huang P, Xia H. A novel anti-inflammatory flavonoid from flowers of Hibiscus mutabilis L. Nat Prod Res 2024:1-8. [PMID: 39021072 DOI: 10.1080/14786419.2024.2378993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Hibiscus mutabilis L. is a Traditional Chinese Medicinal plant of significant value. However, there has been limited research focusing specifically on its flowers. In this study, we report the isolation of one novel and nine known flavonoids from the flowers of H. mutabilis L. The structures of these compounds were elucidated using chemical and comprehensive spectral analysis, involving 1D, 2D NMR, and HRESIMS. The novel compound was further evaluated for its anti-inflammatory and cytotoxic activities using in vitro assays on RAW264.7 cells. Compound 1 at the concentration of 6.25 μM significantly inhibited the production of NO and TNF-α induced by LPS in RAW264.7 cells, exhibiting superior efficacy compared to the positive control dexamethasone, thus indicating its potential as an anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Pan Hu
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
| | - Yi Wang
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Lei Ye
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
| | - Yijia Zeng
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
| | - Zherui Jiang
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
| | - Yuanxiang Gong
- Chengdu Institute of Chinese Herbal Medicine, Chengdu, China
| | - Ping Huang
- Sichuan Institute of Food Inspection, Chengdu, China
| | - Houlin Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Su YZ, Lu PL. Combining Different Natural Plant Extracts to Stabilize the Antioxidative Activity of Dragon's Blood. Life (Basel) 2024; 14:786. [PMID: 39063541 PMCID: PMC11277873 DOI: 10.3390/life14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Dragon's blood () is a traditional Chinese medicine known for its wound hemostasis, blood circulation, and stasis properties. Recently, it has also been utilized in cosmetics, though its antioxidant capacity remains unclear. This study aims to stabilize the bioactivity of dragon's blood using various plant extracts. We evaluated single plant extracts and their combinations to identify the conditions that maintained the antioxidant capacity of dragon's blood the longest. Selected plants included Hibiscus sabdariffa, Clitoria ternatea, Hylocereus sp., Pandanus amaryllifolius, and Camellia sinensis. We used two sources of dragon's blood: Daemonorops draco and Dracaena cochinchinensis. Extraction conditions were optimized and antioxidant activity was assessed using the free radical scavenging ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH), total anthocyanin concentration (TAC), total polyphenol content (TPC), the free radical scavenging activity of ABTS, and a ferric reducing antioxidant power (FRAP) assay. The results showed that all plant extracts exhibited high antioxidant capacity. Clitoria ternatea had the highest DPPH scavenging ability at 93.81%, with the best combination being green tea and Daemonorops draco at 92.57%. Clitoria ternatea had the highest TPC at 9921 mg GAE/100 g, with the best combination (green tea and Dracaena cochinchinensis) at 10500 mg GAE/100 g. ABTS activity was highest for green tea at 98.3%, with the best combination (Clitoria ternatea and Daemonorops draco) at 93.29%. The FRAP assay showed that green tea had the highest electron-donating potential at 3.85 mg/mL, with the best combination (Daemonorops draco and Dracaena cochinchinensis) at 3.71 mg/mL. This study advances our understanding of the antioxidant properties of these plants and the traditional Chinese medicine dragon's blood, enhancing the efficacy of dragon's blood in skincare and cosmetics. Moreover, the application of these extracts could rejuvenate local agriculture, impacting the skincare, cosmetics, and sustainable agriculture sectors.
Collapse
Affiliation(s)
| | - Pei-Luen Lu
- Department of Life Sciences, National Taitung University, Taitung 950309, Taiwan;
| |
Collapse
|
20
|
Baptista F, Paié-Ribeiro J, Almeida M, Barros AN. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules 2024; 29:2576. [PMID: 38893451 PMCID: PMC11173950 DOI: 10.3390/molecules29112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a formidable global health concern, affecting one in six adults over 25. This review explores the potential of phenolic compounds in managing CKD and its complications. By examining the existing research, we highlight their diverse biological activities and potential to combat CKD-related issues. We analyze the nutritional benefits, bioavailability, and safety profile of these compounds. While the clinical evidence is promising, preclinical studies offer valuable insights into underlying mechanisms, optimal dosages, and potential side effects. Further research is crucial to validate the therapeutic efficacy of phenolic compounds for CKD. We advocate for continued exploration of their innovative applications in food, pharmaceuticals, and nutraceuticals. This review aims to catalyze the scientific community's efforts to leverage phenolic compounds against CKD-related challenges.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Jessica Paié-Ribeiro
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Mariana Almeida
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| |
Collapse
|
21
|
Albahri G, Badran A, Abdel Baki Z, Alame M, Hijazi A, Daou A, Baydoun E. Potential Anti-Tumorigenic Properties of Diverse Medicinal Plants against the Majority of Common Types of Cancer. Pharmaceuticals (Basel) 2024; 17:574. [PMID: 38794144 PMCID: PMC11124340 DOI: 10.3390/ph17050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these products have played a significant role in the development of novel treatments whose bioactive components serve as both chemotherapeutic and chemo-preventive agents. Phytochemicals are naturally occurring molecules obtained from plants that have potential applications in both cancer therapy and the development of new medications. These phytochemicals function by regulating the molecular pathways connected to the onset and progression of cancer. Among the specific methods are immune system control, inducing cell cycle arrest and apoptosis, preventing proliferation, raising antioxidant status, and inactivating carcinogens. A thorough literature review was conducted using Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent to obtain the data. To provide an overview of the anticancer effects of several medicinal plants, including Annona muricata, Arctium lappa, Arum palaestinum, Cannabis sativa, Catharanthus roseus, Curcuma longa, Glycyrrhiza glabra, Hibiscus, Kalanchoe blossfeldiana, Moringa oleifera, Nerium oleander, Silybum marianum, Taraxacum officinale, Urtica dioica, Withania somnifera L., their availability, classification, active components, pharmacological activities, signaling mechanisms, and potential side effects against the most common cancer types were explored.
Collapse
Affiliation(s)
- Ghosoon Albahri
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Adnan Badran
- Department of Nutrition, University of Petra Amman Jordan, Amman P.O. Box 961343, Jordan;
| | - Zaher Abdel Baki
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Alame
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Akram Hijazi
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
22
|
Aghaebrahimi Z, Sabaghzadeh J, Soudi S, Tanhayi Ahary M, Nabavi SH, Ranjbaran M. Simultaneous effect of medicinal plants as natural photosensitizers and low-level laser on photodynamic inactivation. Lasers Med Sci 2024; 39:95. [PMID: 38538952 DOI: 10.1007/s10103-024-04037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/11/2024] [Indexed: 02/01/2025]
Abstract
Photodynamic inactivation (PDI) technology is a promising alternative to antibiotics. This technology is defined as the inhibition of bacterial growth with photosensitizers while irradiated with low-level laser light in the wavelength of 532 ± 2.08 nm. A challenging area in this field is selecting photosensitizers with antibacterial potential. In this paper, to enhance the antibacterial efficiency, the photosensitizers (the selected plant extracts) with a high absorption peak at the selected laser frequency, 532 nm, were prepared. Low-concentration ethanolic plant extracts of Hibiscus sabdariffa and Opuntia ficus-indica were found to exhibit significant antibacterial activity against, Acinetobacter baumannii ATCC 19606 and, Staphylococcus aureus ATCC 33591 as two important human pathogenic bacteria. The effectiveness of these natural photosensitizers was measured by determining their Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values and by performing a time-killing assay in the absence and the presence of laser irradiation. Our results showed that the combination of low-level laser irradiation and the selected photosensitizers had excellent potential for treating in vitro bacterial infections. Therefore, PDI technology has great potential as a viable alternative to traditional antibiotics for combating bacterial infections. This study presents a promising avenue for further exploration of PDI and the use of laser technology in medical science.
Collapse
Affiliation(s)
- Zahra Aghaebrahimi
- Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Jamshid Sabaghzadeh
- Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Sasan Soudi
- Department of Medical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Maliheh Ranjbaran
- Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Hoang NTN, Nguyen NNK, Nguyen LTK, Le ATH, Dong DTA. Research on optimization of spray drying conditions, characteristics of anthocyanins extracted from Hibiscus sabdariffa L. flower, and application to marshmallows. Food Sci Nutr 2024; 12:2003-2015. [PMID: 38455187 PMCID: PMC10916676 DOI: 10.1002/fsn3.3898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024] Open
Abstract
Anthocyanin, a main-colored bioactive compound found in Hibiscus sabdariffa L., is well-known for a varied range of applications as food additives in foodstuff, and natural colorants in food, pharmaceutical, and printing industries. The study aimed to find out the suitable conditions for the spray-drying process to obtain anthocyanin powder from the extract as well as characterized the powder. In addition, the obtained powder was applied to marshmallows and determined the acceptability of appearance, quality, and scavenging capacity of the candy. The carrier of maltodextrin and gum arabic was selected for spray-drying, which had optimal conditions at 144°C and 7 mL/min, resulting in 100.22 mg/g anthocyanin content with an encapsulation efficiency of 93.87%. The obtained anthocyanin has appropriate moisture of 5.14%, quite appropriate bulk density, and tapped density, it also was high solubility, and poor flowability but easy compression. The shape of the particle by SEM analysis was low particle size (2-10 μm), wrinkled, unequal spherical size, rough surfaces with indentations, and slight cracks. The X-ray diffraction (XRD) spectrum of the sample had very low crystallinity and diffuse wide peaks revealing that anthocyanin still exists inside maltodextrin particles. The FT-IR spectrum had oscillations of characteristic groups of anthocyanin structure. Marshmallow samples added 5% anthocyanin powder gained high acceptability of appearance and maintained the scavenging capacity (DPPH) with an IC50 value of 7368.31 ppm after a month of storage.
Collapse
Affiliation(s)
- Nhon Thi Ngoc Hoang
- Faculty of Food Science and TechnologyHo Chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Nga Ngoc Kieu Nguyen
- Faculty of Food Science and TechnologyHo Chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Ly Thi Kim Nguyen
- Faculty of Food Science and TechnologyHo Chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Anh Thi Hong Le
- Faculty of Food Science and TechnologyHo Chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Dao Thi Anh Dong
- Department of Food Technology, Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM)Ho Chi Minh CityVietnam
| |
Collapse
|
24
|
Hamadjida A, Mbomo REA, Minko SE, Ntchapda F, Kilekoung Mingoas JP, Nnanga N. Antioxidant and anti-inflammatory effects of Boswellia dalzielii and Hibiscus sabdariffa extracts in alloxan-induced diabetic rats. Metabol Open 2024; 21:100278. [PMID: 38455229 PMCID: PMC10918424 DOI: 10.1016/j.metop.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes mellitus (DM) is one of the leading worldwide public health problems. It is characterized by hyperglycemia which induces oxidative stress and inflammation, both involved in the pathogenesis of diabetes. We previously showed that Boswellia dalzielii (BD) and Hibiscus sabdariffa (HS) extracts reduced hyperglycemia and hyperlipidemia in alloxan-induced diabetic rats. In the present study, we evaluated the antioxidant and anti-inflammatory activities of both plants in alloxan-induced diabetic rats. Two sets of experiments were conducted in male Wistar rats subjected to a single intraperitoneal injection of alloxan monohydrate (150 mg/kg, b. w.). Then, diabetic rats were daily administered with either BD (1st set of experiments) or HS (2nd set of experiments) at 100, 200, and 400 mg/kg orally for 21 consecutive days. Glibenclamide (10 mg/kg) was also administered as a reference drug. At the end of the study, the animals were anesthetized, and blood samples were collected from each animal. Then, oxidative stress and inflammatory biomarkers in the serum were determined. We found that treatment with BD and HS significantly reduced malondialdehyde (MDA) and enhanced the levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). These extracts also significantly decreased the inflammatory markers tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β). From the results obtained, it can therefore be concluded that BD and HS have the potential to being developed as natural sources of antioxidant and anti-inflammatory agents that can be used for the prevention or treatment of DM.
Collapse
Affiliation(s)
- Adjia Hamadjida
- Department of Life Science, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
- Pharmacological Research Laboratory of Medicinal Plants, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
| | | | - Stéphane Essono Minko
- Department of Life Science, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
- Research Unit of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Fidèle Ntchapda
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Nga Nnanga
- Department of Galenic Pharmacy and Pharmaceutical Legislation, Faculty of Medicine and Biomedical Science, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
25
|
Abdelhameed RE, Abdalla H, Ibrahim MA. Unique properties of titanium dioxide quantum dots assisted regulation of growth and biochemical parameters of Hibiscus sabdariffa plants. BMC PLANT BIOLOGY 2024; 24:112. [PMID: 38365586 PMCID: PMC10870679 DOI: 10.1186/s12870-024-04794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Owing to the uniqueness of quantum dots (QDs) as a potential nanomaterial for agricultural application, hence in the present study, titanium dioxide quantum dots (TiO2 QDs) were successfully synthesized via sol-gel technique and the physico-chemical properties of the prepared TiO2 QDs were analyzed. Based on the results, the TiO2 QDs showed the presence of anatase phase of TiO2. TEM examination revealed spherical QDs morphology with an average size of 7.69 ± 1.22 nm. The large zeta potential value (-20.9 ± 2.3 mV) indicate greater stability of the prepared TiO2 QDs in aqueous solutions. Moreover, in this work, the application of TiO2 QDs on Hibiscus sabdariffa plants was conducted, where H. sabdariffa plants were foliar sprayed twice a week in the early morning with different concentrations of TiO2 QDs (0, 2, 5, 10, 15 and 30 ppm) to evaluate their influence on these plants in terms of morphological indexes and biochemical parameters. The results exhibited an increasing impact of the different used concentrations of TiO2 QDs on morphological indexes, such as fresh weight, dry weight, shoot length, root length, and leaf number, and physio-biochemical parameters like chlorophyll a, chlorophyll b, carotenoid contents, total pigments and total phenolic contents. Remarkably, the most prominent result was recorded at 15 ppm TiO2 QDs where plant height, total protein and enzymatic antioxidants like catalase and peroxidase were noted to increase by 47.6, 20.5, 29.5 and 38.3%, respectively compared to control. Therefore, foliar spraying with TiO2 QDs positively serves as an effective strategy for inducing optimistic effects in H. sabdariffa plants.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Sharqia, 44519, Egypt.
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Sharqia, 44519, Egypt
| | - Manar A Ibrahim
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Sharqia, 44519, Egypt
| |
Collapse
|
26
|
Sanou A, Konaté K, Belemnaba L, Sama H, Kaboré K, Dakuyo R, Nitiéma M, Dicko MH. In Vivo Diuretic Activity and Anti-Hypertensive Potential of Hibiscus sabdariffa Extract by Inhibition of Angiotensin-Converting Enzyme and Hypertension Precursor Enzymes. Foods 2024; 13:534. [PMID: 38397511 PMCID: PMC10888337 DOI: 10.3390/foods13040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2024] Open
Abstract
Aqueous extracts of calyx from Hibiscus sabdariffa (HS) (roselle) are highly appreciated for their nutritional and therapeutic effects, especially as anti-hypertensive substances. This study aimed to evaluate their anti-hypertensive potential through an in vitro inhibition assay of angiotensin-converting enzyme (ACE) and hypertension precursor enzymes and to assess the in vivo diuretic activity of HS. Results showed that HS extract inhibited enzymes belonging to several classes, such as α-amylase, trypsin, chymotrypsin, xanthine oxidase, lipoxygenase, and angiotensin-converting enzyme. In particular, enzymatic kinetics of ACE indicated a competitive inhibition fashion of HS extract. Furthermore, the extracts showed remarkable diuretic and natriuretic effects at doses of 50 mg/kg/bw, 100 mg/kg/b.w, and 200 mg/kg.b.w. These activities can be explained by the high content of phenolic compounds and essential amino acids. Roselle could be a potential source of nutraceuticals and anti-hypertensive bioactive compounds.
Collapse
Affiliation(s)
- Abdoudramane Sanou
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Kiessoun Konaté
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
- Applied Sciences and Technologies Training and Research Unit, Department of Biochemistry and Microbiology, University of Dedougou, Dedougou 09 BP 176, Burkina Faso
| | - Lazare Belemnaba
- Department of Traditional Medicine and Pharmacopoeia and Pharmacy, Institute of Research in Health Sciences/National Centre for Scientific and Technological Research (MEPHATRA PH/IRSS/CNRST), Ouagadougou 03 BP 7034, Burkina Faso
| | - Hemayoro Sama
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Kabakdé Kaboré
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Roger Dakuyo
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Mathieu Nitiéma
- Department of Traditional Medicine and Pharmacopoeia and Pharmacy, Institute of Research in Health Sciences/National Centre for Scientific and Technological Research (MEPHATRA PH/IRSS/CNRST), Ouagadougou 03 BP 7034, Burkina Faso
| | - Mamoudou Hama Dicko
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| |
Collapse
|
27
|
Li N, Simon JE, Wu Q. Determination of anthocyanins, organic acids, and phenolic acids in hibiscus market products using LC/UV/MS. J Food Sci 2024; 89:1098-1113. [PMID: 38235990 DOI: 10.1111/1750-3841.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Hibiscus sabdariffa has gained increasing attention from consumers as a natural, healthy food ingredient, leading to a myriad of available products, yet there is a lack of understanding of the quality and chemical diversity among commercially available hibiscus products. Here, we conducted a survey on the chemistry of 29 hibiscus products (calyces, beverages, and extracts). UHPLC-DAD and UHPLC-QQQ/MS methods with high sensitivity and selectivity were developed to evaluate the chemical profiles pertaining to the sensory attributes (color and taste). Two major anthocyanins (delphinidin-3-sambubioside and cyanindin-3-sambubioside), eight organic acids, and 23 phenolic acids were identified and quantified in hibiscus market products. The results showed that hibiscus samples contained < 0.001-2.372% of total anthocyanins, 0.073-78.002% of total organic acids, and 0.001-1.041% of total phenolic acids, and demonstrated significant variations in market products. This is the first time that an in-depth organic acid profiling was conducted on hibiscus products using UHPLC-QQQ/MS. This method can also be extended to chemical profiling, sensory analysis, quality control, authentication, and standardization of other natural products.
Collapse
Affiliation(s)
- Nanxi Li
- New Use Agriculture and Natural Plant Products Program, University Core Facility for Natural Products & Bioanalysis, Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, University Core Facility for Natural Products & Bioanalysis, Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, University Core Facility for Natural Products & Bioanalysis, Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
28
|
Simionescu N, Petrovici AR. Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract. Antioxidants (Basel) 2024; 13:165. [PMID: 38397763 PMCID: PMC10886145 DOI: 10.3390/antiox13020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Lactic acid bacteria (LAB) produce important metabolites during fermentation processes, such as exopolysaccharides (EPS), which represent powerful natural antioxidants. On the other hand, H. sabdariffa L. anthocyanin extracts protect LAB and support their development. This study uncovers for the first time, the antioxidant profile of Weissella confusa PP29 probiotic media and focuses on elevating its impressive antioxidant attributes by synergistically integrating H. sabdariffa L. anthocyanin extract. The multifaceted potential of this innovative approach is explored and the results are remarkable, allowing us to understand the protective capacity of the fermented product on the intestinal mucosa. The total phenolic content was much lower at the end of the fermentation process compared to the initial amount, confirming their LAB processing. The DPPH radical scavenging and FRAP of the fermented products were higher compared to ascorbic acid and antioxidant extracts, while superoxide anion radical scavenging and lipid peroxidation inhibitory activity were comparable to that of ascorbic acid. The antioxidant properties of the fermented products were correlated with the initial inoculum and anthocyanin concentrations. All these properties were preserved for 6 months, demonstrating the promising efficacy of this enriched medium, underlining its potential as a complex functional food with enhanced health benefits.
Collapse
Affiliation(s)
- Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Anca-Roxana Petrovici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| |
Collapse
|
29
|
Chew LY, Teng SK, Neo YP, Sim YY, Chew SC. The Potential of Roselle (Hibiscus sabdariffa) Plant in Industrial Applications: A Promising Source of Functional Compounds. J Oleo Sci 2024; 73:275-292. [PMID: 38432993 DOI: 10.5650/jos.ess23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Roselle is an annual botanical plant that widely planted in different countries worldwide. Its different parts, including seeds, leaves, and calyces, can offer multi-purpose applications with economic importance. The present review discusses the detailed profile of bioactive compounds present in roselle seeds, leaves, and calyces, as well as their extraction and processing, to explore their potential application in pharmaceutical, cosmetic, nutraceutical, food and other industries. Roselle seeds with high phenolics, fiber, and protein contents, which are suitable to use in functional food product development. Besides, roselle seeds can yield 17-20% of roselle seed oil with high content of linoleic acid (35.0-45.3%) and oleic acid (27.1- 36.9%). This unique fatty acid composition of roselle seed oil makes it suitable to use as edible oil to offer the health benefits of essential fatty acid. Moreover, high contents of tocopherols, phenolics, and phytosterols were detected in roselle seed oil to provide nutritional, pharmaceutical, and therapeutic properties. On the other hand, roselle leaves with valuable contents of phenols, flavonoids, organic acid, and tocopherols can be applied in silver nanoparticles, food product development, and the pharmaceutical industry. Roselle calyces with high content of anthocyanins, protocatechuic acids, and organic acids are widely applied in food and colorant industries.
Collapse
Affiliation(s)
- Lye Yee Chew
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Sook Chin Chew
- School of Foundation Studies, Xiamen University Malaysia Campus
| |
Collapse
|
30
|
Fatima N, Ashique S, Upadhyay A, Kumar S, Kumar H, Kumar N, Kumar P. Current Landscape of Therapeutics for the Management of Hypertension - A Review. Curr Drug Deliv 2024; 21:662-682. [PMID: 37357524 DOI: 10.2174/1567201820666230623121433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 06/27/2023]
Abstract
Hypertension is a critical health problem. It is also the primary reason for coronary heart disease, stroke, and renal vascular disease. The use of herbal drugs in the management of any disease is increasing. They are considered the best immune booster to fight against several types of diseases. To date, the demand for herbal drugs has been increasing because of their excellent properties. This review highlights antihypertensive drugs, polyphenols, and synbiotics for managing hypertension. Evidence is mounting in favour of more aggressive blood pressure control with reduced adverse effects, especially for specific patient populations. This review aimed to present contemporary viewpoints and novel treatment options, including cutting-edge technological applications and emerging interventional and pharmaceutical therapies, as well as key concerns arising from several years of research and epidemiological observations related to the management of hypertension.
Collapse
Affiliation(s)
- Neda Fatima
- Department of Pharmacology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh 226010, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Aakash Upadhyay
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Himanshu Kumar
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Prashant Kumar
- College of Pharmacy, Teerthanker Mahaveer University, Moradabad-244001, UP, India
| |
Collapse
|
31
|
Yang D, Ding XYY, Xu HX, Guo YX, Zhang QF. Chemical profile of Roselle extract and its inhibitory activities on three digestive enzymes in vitro and in vivo. Int J Biol Macromol 2023; 253:126902. [PMID: 37714233 DOI: 10.1016/j.ijbiomac.2023.126902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Roselle is rich in an extensive diversity of beneficial substances, including phenolic acids, amino acids, anthocyanins, vitamins, and flavonoids. Herein, the chemical constituents in Roselle extract (RE) were identified by UPLC-DAD-QTOF-MS. Besides, its inhibitory effects on three digestive enzymes, i.e. α-amylase, α-glucosidase, and pancreatic lipase, were investigated in both in vitro and in vivo. Thirty-three constituents including hibiscus acid, 18 phenolic acids, 2 anthocyanins and 12 flavonoids were identified. The anthocyanins content in RE was 21.44 ± 0.68 %, while the contents of chlorogenic acids, rutin and quercetin were 17.76 ± 2.28 %, 0.31 ± 0.01 % and 0.32 ± 0.01 %, respectively. RE inhibited pancreatic lipase in a non-competitive way with an IC50 value of 0.84 mg/mL. Besides, it demonstrated a mixed-type inhibition on both α-glucosidase and α-amylase with IC50 values of 0.59 mg/mL and 1.93 mg/mL, respectively. Fluorescence quenching assays confirmed the binding of RE to the enzyme proteins. Furthermore, rats pre-treated with RE at doses of 50 and 100 mg/kg body weight (bwt) exhibited significant reductions in fat absorption and improvements in fat excretion through feces. Additionally, the in vivo study revealed that RE was effective in suppressing the increase of blood glucose after starch consumption, while its effects on maltose and sucrose consumption were relatively weak.
Collapse
Affiliation(s)
- Dan Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin-Yu-Yao Ding
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai-Xia Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu-Xian Guo
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
32
|
Mat Noor M, Mohamad Zin NFA, Shamsusah NA. Keberkesanan Ekstrak Akua Kaliks Hibiscus sabdariffa Sebagai Agen Anti-Obesiti dan Peningkat parameter Kesuburan Tikus Jantan Aruhan Obesiti. MALAYSIAN APPLIED BIOLOGY 2023; 52:137-147. [DOI: 10.55230/mabjournal.v52i6.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Obesiti meningkatkan risiko gangguan proses spermatogenesis yang boleh mengakibatkan penurunan kesuburan lelaki. Hibiscus sabdariffa merupakan tumbuhan yang mampu mengurangkan jumlah lipid dalam darah haiwan. Penggunaan ekstrak akua kaliks H. sabdariffa sebagai peningkat parameter kesuburan lelaki masih kurang jelas. Oleh itu, kajian ini menggunakan tikus jantan aruhan obesiti sebagai model haiwan bagi mengenal pasti kesan ekstrak akua kaliks H. sabdariffa dalam memulihkan masalah kesuburan jantan di samping bertindak sebagai agen anti-obesiti. Sebanyak 36 ekor tikus jantan Sprague Dawley dibahagikan kepada dua kumpulan utama iaitu kumpulan kawalan dan kumpulan rawatan yang setiapnya terdiri daripada enam ekor tikus. Kumpulan kawalan terdiri daripada kumpulan normal, negatif (tikus teraruh obesiti tanpa rawatan) dan positif (tikus teraruh obesiti yang diberi 10 mg/kg berat tubuh orlistat). Kumpulan rawatan ekstrak akua kaliks H. sabdariffa pula dibahagi kepada tiga iaitu Hs100 (100 mg/kg berat tubuh), Hs200 (200 mg/kg berat tubuh) dan Hs300 (300 mg/kg berat tubuh) selama 14 hari tempoh rawatan. Semua tikus kajian kecuali kumpulan normal diaruh obesiti dengan diberi diet tinggi lemak (HFD) sehingga mencapai nilai indeks Lee melebihi 310. Tikus kumpulan rawatan Hs100, Hs200 dan Hs300 yang diberi ekstrak akua kaliks H. sabdariffa mengikut dos masing-masing menunjukkan penurunan berat badan yang signifikan (p<0.05) berbanding kumpulan negatif. Analisis kuantiti sperma dalam kumpulan rawatan Hs100 menunjukkan peningkatan secara signifikan (p<0.05) berbanding kumpulan normal dan negatif. Analisis histologi testis juga menunjukkan ekstrak akua kaliks H. sabdariffa pada kumpulan rawatan membantu memperbaiki struktur tubul seminiferus dengan kepadatan spermatozoa yang tinggi pada lumen serta peningkatan berat testis dan diameter tubul seminiferus berbanding kumpulan kawalan normal dan kawalan negatif. Kesimpulannya, rawatan ekstrak akua kaliks H. sabdariffa iaitu Hs100 merupakan dos optimum yang mampu meningkatkan parameter kesuburan berbanding kumpulan rawatan normal dan kawalan negatif, serta mempunyai kesan anti-obesiti pada tikus jantan teraruh obesiti.
Collapse
|
33
|
Naidoo K, Khathi A. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. Int J Mol Sci 2023; 24:17609. [PMID: 38139436 PMCID: PMC10743819 DOI: 10.3390/ijms242417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused by insulin resistance and dysfunctional beta (β)-cells in the pancreas. Hyperglycaemia is a characteristic of uncontrolled diabetes which eventually leads to fatal organ system damage. In T2DM, free radicals are continuously produced, causing extensive tissue damage and subsequent macro-and microvascular complications. The standard approach to managing T2DM is pharmacological treatment with anti-diabetic medications. However, patients' adherence to treatment is frequently decreased by the side effects and expense of medications, which has a detrimental impact on their health outcomes. Quercetin, a flavonoid, is a one of the most potent anti-oxidants which ameliorates T2DM. Thus, there is an increased demand to investigate quercetin and its derivatives, as it is hypothesised that similar structured compounds may exhibit similar biological activity. Gossypetin is a hexahydroxylated flavonoid found in the calyx of Hibiscus sabdariffa. Gossypetin has a similar chemical structure to quercetin with an extra hydroxyl group. Furthermore, previous literature has elucidated that gossypetin exhibits neuroprotective, hepatoprotective, reproprotective and nephroprotective properties. The mechanisms underlying gossypetin's therapeutic potential have been linked to its anti-oxidant, anti-inflammatory and immunomodulatory properties. Hence, this review highlights the potential role of gossypetin in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
34
|
Boldea LS, Aprodu I, Enachi E, Dumitrașcu L, Păcularu-Burada B, Chițescu C, Râpeanu G, Stănciuc N. Advanced interactional characterization of the inhibitory effect of anthocyanin extract from Hibiscus sabdariffa L. on apple polyphenol oxidase. J Food Sci 2023; 88:5026-5043. [PMID: 37872831 DOI: 10.1111/1750-3841.16808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
In this study, a comprehensive approach to advance the inhibitory effect of Hibiscus sabdariffa extract on apple polyphenol oxidase (PPO) was performed. PPO was extracted, purified, and characterized for optimal activity, whereas response surface methodology generated a quadratic polynomial model to fit the experimental results for hibiscus extraction. The optimum conditions allowed to predict a maximum recovery of anthocyanins (256.11 mg delphinidin-3-O-glucoside/g), with a validated value of 272.87 mg delphinidin-3-O-glucoside/g dry weight (DW). The chromatographic methods highlighted the presence of gallic acid (36,812.90 µg/g DW extract), myricetin (141,933.84 µg/g DW extract), caffeic acid (101,394.07 µg/g DW extract), sinapic acid (1157.46 µg/g DW extract), kaempferol (2136.76 µg/g DW extract), and delphinidin 3-O-β-d-glucoside (226,367.08 µg/g DW extract). The inactivation of PPO followed a first-order kinetic model. A temperature-mediated flexible fit between PPO and anthocyanins was suggested, whereas the molecular docking tests indicated that PPO is a good receptor for cafestol, gallic acid, and catechin, involving hydrophobic and hydrogen bond interactions. PRACTICAL APPLICATION: It is well known that enzymatic browning is one of the most important challenges in the industrial minimal processing of selected fruit and vegetable products. Novel inhibitors for polyphenol oxidase are proposed in this study by using an anthocyanin-enriched extract from Hibiscus sabdariffa L. Based on our results, combining the chemical effect of phytochemicals from hibiscus extract with different functional groups with minimal heating could be an interesting approach for the development of a new strategy to inhibit apple polyphenol oxidase.
Collapse
Affiliation(s)
- Lavinia Stan Boldea
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, Galaţi, Romania
| | - Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Carmen Chițescu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, Galaţi, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| |
Collapse
|
35
|
Arce-Reynoso A, Mateos R, Mendivil EJ, Zamora-Gasga VM, Sáyago-Ayerdi SG. Bioavailability of bioactive compounds in Hibiscus sabdariffa beverage as a potential anti-inflammatory. Food Res Int 2023; 174:113581. [PMID: 37986526 DOI: 10.1016/j.foodres.2023.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The absorption and metabolism of bioactive compounds (BCs) in a Hibiscus sabdariffa drink (HbD) were evaluated by the in vivo bioavailability of organic acids (OA) and phenolic compounds (PC's). An acute single-blind clinical study in humans was conducted. Twelve volunteers consumed a HbD and a control drink (CD). Urine and plasma samples were taken after consuming both beverages. OA and PC's of the beverages (HbD and CD) and the biological samples (urine and plasma) were characterized by HPLC-DAD-MS. Thirthy-eight compounds in HbD and four CD were detected and quantified, equivalent to 937.37 mg and 1.22 mg per 60 mL, respectively. Hibiscus acid was the most abundant OA in both drinks. Additionally, hydroxycinnamic acids, flavonoids, anthocyanins, and anthocyanidins were also detected in HbD, although their amount represented 10% of the total BCs. 25 different metabolites were identified, 15 in urine and 23 in plasma. The microbiota extensively biotransformed PCs and their amount was lower than organic acids, particularly hibiscus acid and hydroxycitric acid. The colonic metabolites derived from PCs and organic acids would be behind the anti-inflammatory bioactivity described for Hibiscus sabdariffa L. (Malvaceae family). However, further studies are necessary to evaluate the metabolites responsible for their anti-inflammatory activity.
Collapse
Affiliation(s)
- Alejandro Arce-Reynoso
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico, No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit México
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), c/José Antonio Nováis 10, 28040 Madrid, Spain
| | - Edgar J Mendivil
- Health Department, Universidad Iberoamericana, Mexico City, Mexico; Nutrition and Food Science Research Group, ITESO, Jesuit University of Guadalajara, Tlaquepaque, Mexico
| | - Víctor M Zamora-Gasga
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico, No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit México
| | - S G Sáyago-Ayerdi
- Tecnológico Nacional de México/ Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico, No 2595, Col. Lagos del Country CP 63175, Tepic, Nayarit México.
| |
Collapse
|
36
|
Yagi S, Uba AI, Sinan KI, Piatti D, Sagratini G, Caprioli G, Eltigani SM, Lazarova I, Zengin G. Comparative Study on the Chemical Profile, Antioxidant Activity, and Enzyme Inhibition Capacity of Red and White Hibiscus sabdariffa Variety Calyces. ACS OMEGA 2023; 8:42511-42521. [PMID: 38024777 PMCID: PMC10652262 DOI: 10.1021/acsomega.3c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Hibiscus sabdariffa L. (Family: Malvaceae) is believed to be domesticated by the people of western Sudan sometime before 4000 BC for their nutritional and medicinal properties. This study aimed to investigate the chemical profile, antioxidant activity, and enzyme inhibition property of extracts from red roselle (RR) and white roselle (WR) varieties grown in Sudan. Three aqueous extracts obtained by maceration, infusion, and decoction, in addition to the methanolic one, were prepared from the two roselle varieties. Results showed that the highest total phenolic and flavonoid contents of RR were obtained from the extracts prepared by infusion (28.40 mg GAE/g) and decoction (7.94 mg RE/g) respectively, while those from the WR were recorded from the methanolic extract (49.59 mg GAE/g and 5.81 mg RE/g respectively). Extracts of RR were mainly characterized by high accumulation of chlorogenic acid (6502.34-9634.96 mg kg-1), neochlorogenic acid (937.57-8949.61 mg kg-1), and gallic acid (190-4573.55 mg kg-1). On the other hand, neochlorogenic acid (1777.05-6946.39 mg kg-1) and rutin (439.29-2806.01 mg kg-1) were the dominant compounds in WR. All extracts from RR had significant (p < 0.05) higher antioxidant activity than their respective WR except in their metal chelating power, where the methanolic extract of the latter showed the highest activity (3.87 mg EDTAE/g). RR extracts prepared by infusion recorded the highest antioxidant values (35.09, 52.17, 65.62, and 44.92 mg TE/g) in the DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), CUPRAC (cupric ion reducing antioxidant capacity), and FRAP (ferric reducing antioxidant power) assays, respectively. All aqueous extracts from the WR exerted significant (p < 0.05) acetylcholinesterase (AChE) inhibitory activity (3.42-4.77 mg GALAE/g; GALAE = galantamine equivalents), while only one extract, obtained by maceration, from RR exerted AChE inhibitory activity (4.79 mg GALAE/g). All extracts of the RR showed relatively higher BChE (butyrylcholinesterase) inhibitory activity (3.71-4.23 mg GALAE/g) than the WR ones. Methanolic extracts of the two roselle varieties displayed the highest Tyr (tyrosinase) inhibitory activity (RR = 48.25 mg KAE/g; WR = 42.71 mg KAE/g). The methanolic extract of RR exhibited the highest amylase (0.59 mmol ACAE/g) and glucosidase (1.46 mmol ACAE/g) inhibitory activity. Molecular docking analysis showed that delphinidin 3,5-diglucoside, rutin, isoquercitrin, hyperoside, and chlorogenic acid exerted the most promising enzyme inhibitory effect. In conclusion, these findings indicated that the chemical profiles and biological activity of roselle varied according to the variety, extraction solvent, and technique used. These two roselle varieties can serve as a valuable source for the development of multiple formulations in food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Sakina Yagi
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Abdullahi Ibrahim Uba
- Department
of Molecular Biology and Genetics, Istanbul
AREL University, Istanbul 34537, Turkey
| | - Kouadio Ibrahime Sinan
- Physiology
and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Diletta Piatti
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Gianni Sagratini
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Giovanni Caprioli
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Sayadat M. Eltigani
- Department
of Botany, Faculty of Science, University
of Khartoum, Khartoum 0001, Sudan
| | - Irina Lazarova
- Department
of Chemistry, Faculty of Pharmacy, Medical
University-Sofia, 2, Dunav Street, Sofia 1000, Bulgaria
| | - Gökhan Zengin
- Physiology
and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| |
Collapse
|
37
|
Coyago-Cruz E, Moya M, Méndez G, Villacís M, Rojas-Silva P, Corell M, Mapelli-Brahm P, Vicario IM, Meléndez-Martínez AJ. Exploring Plants with Flowers: From Therapeutic Nutritional Benefits to Innovative Sustainable Uses. Foods 2023; 12:4066. [PMID: 38002124 PMCID: PMC10671036 DOI: 10.3390/foods12224066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flowers have played a significant role in society, focusing on their aesthetic value rather than their food potential. This study's goal was to look into flowering plants for everything from health benefits to other possible applications. This review presents detailed information on 119 species of flowers with agri-food and health relevance. Data were collected on their family, species, common name, commonly used plant part, bioremediation applications, main chemical compounds, medicinal and gastronomic uses, and concentration of bioactive compounds such as carotenoids and phenolic compounds. In this respect, 87% of the floral species studied contain some toxic compounds, sometimes making them inedible, but specific molecules from these species have been used in medicine. Seventy-six percent can be consumed in low doses by infusion. In addition, 97% of the species studied are reported to have medicinal uses (32% immune system), and 63% could be used in the bioremediation of contaminated environments. Significantly, more than 50% of the species were only analysed for total concentrations of carotenoids and phenolic compounds, indicating a significant gap in identifying specific molecules of these bioactive compounds. These potential sources of bioactive compounds could transform the health and nutraceutical industries, offering innovative approaches to combat oxidative stress and promote optimal well-being.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Melany Moya
- Facultad de Ciencias Médicas, Carrera de Obstetricia, Universidad Central del Ecuador, Iquique, Luis Sodiro N14-121, Quito 170146, Ecuador
| | - Gabriela Méndez
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Michael Villacís
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Patricio Rojas-Silva
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Mireia Corell
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Carretera de Utrera Km 1, 41013 Sevilla, Spain
- Unidad Asociada al CSIC de Uso Sostenible del Suelo y el Agua en la Agricultura (US-IRNAS), Crta. de Utrera Km 1, 41013 Sevilla, Spain
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| | - Isabel M. Vicario
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| | - Antonio J. Meléndez-Martínez
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| |
Collapse
|
38
|
Koshimizu S, Masuda S, Shibata A, Ishii T, Shirasu K, Hoshino A, Arita M. Genome and transcriptome analyses reveal genes involved in the formation of fine ridges on petal epidermal cells in Hibiscus trionum. DNA Res 2023; 30:dsad019. [PMID: 37691489 PMCID: PMC10558197 DOI: 10.1093/dnares/dsad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Hibiscus trionum, commonly known as the 'Flower of an Hour', is an easily cultivated plant in the Malvaceae family that is widespread in tropical and temperate regions, including drylands. The purple base part of its petal exhibits structural colour due to the fine ridges on the epidermal cell surface, and the molecular mechanism of ridge formation has been actively investigated. We performed genome sequencing of H. trionum using a long-read sequencing technology with transcriptome and pathway analyses to identify candidate genes for fine structure formation. The ortholog of AtSHINE1, which is involved in the biosynthesis of cuticular wax in Arabidopsis thaliana, was significantly overexpressed in the iridescent tissue. In addition, orthologs of AtCUS2 and AtCYP77A, which contribute to cutin synthesis, were also overexpressed. Our results provide important insights into the formation of fine ridges on epidermal cells in plants using H. trionum as a model.
Collapse
Affiliation(s)
- Shizuka Koshimizu
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| | - Sachiko Masuda
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Arisa Shibata
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori 680-001, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Atsushi Hoshino
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masanori Arita
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| |
Collapse
|
39
|
Yasmin R, Gogoi S, Bora J, Chakraborty A, Dey S, Ghaziri G, Bhattacharjee S, Singh LH. Novel Insight into the Cellular and Molecular Signalling Pathways on Cancer Preventing Effects of Hibiscus sabdariffa: A Review. J Cancer Prev 2023; 28:77-92. [PMID: 37830114 PMCID: PMC10564632 DOI: 10.15430/jcp.2023.28.3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 10/14/2023] Open
Abstract
A category of diseases known as cancer includes abnormal cell development and the ability to infiltrate or spread to other regions of the body, making them a major cause of mortality worldwide. Chemotherapy, radiation, the use of cytotoxic medicines, and surgery are the mainstays of cancer treatment today. Plants or products produced from them hold promise as a source of anti-cancer medications that have fewer adverse effects. Due to the presence of numerous phytochemicals that have been isolated from various parts of the Hibiscus sabdariffa (HS) plant, including anthocyanin, flavonoids, saponins, tannins, polyphenols, organic acids, caffeic acids, citric acids, protocatechuic acid, and others, extracts of this plant have been reported to have anti-cancer effects. These compounds have been shown to reduce cancer cell proliferation, induce apoptosis, and cause cell cycle arrest. They also increase the expression levels of the cell cycle inhibitors (p53, p21, and p27) and the pro-apoptotic proteins (BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9). This review highlights various intracellular signalling pathways involved in cancer preventive potential of HS.
Collapse
Affiliation(s)
- Raihana Yasmin
- Department of Zoology, Royal Global University, Guwahati, India
| | - Sangeeta Gogoi
- Department of Zoology, Royal Global University, Guwahati, India
| | - Jumi Bora
- Department of Zoology, Royal Global University, Guwahati, India
| | - Arijit Chakraborty
- Department of Sports Physiology and Nutrition, National Sports University, Imphal, India
| | - Susmita Dey
- Department of Zoology, Royal Global University, Guwahati, India
| | - Ghazal Ghaziri
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Surajit Bhattacharjee
- Department of Biological Sciences, Dr. BR Ambedkar English Model School, Agartala, India
| | | |
Collapse
|
40
|
Tsai MC, Chen CC, Tseng TH, Chang YC, Lin YJ, Tsai IN, Wang CC, Wang CJ. Hibiscus Anthocyanins Extracts Induce Apoptosis by Activating AMP-Activated Protein Kinase in Human Colorectal Cancer Cells. Nutrients 2023; 15:3972. [PMID: 37764756 PMCID: PMC10535221 DOI: 10.3390/nu15183972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Apoptosis, a programmed cell death process preventing cancer development, can be evaded by cancer cells. AMP-activated protein kinase (AMPK) regulates energy levels and is a key research topic in cancer prevention and treatment. Some bioactive components of Hibiscus sabdariffa L. (HAs), including anthocyanins, have potential anticancer properties. Our study investigated the in vitro cytotoxic potential and mode of action of HAs extracts containing anthocyanins in colorectal cancer cells. The results showed that Hibiscus anthocyanin-rich extracts induced apoptosis in human colorectal cancer cells through the activation of multiple signaling pathways of AMPK. We observed the dose-response and time-dependent induction of apoptosis with HAs. Subsequently, the activation of Fas-mediated proteins triggered apoptotic pathways associated with Fas-mediated apoptosis-related proteins, including caspase-8/tBid. This caused the release of cytochrome C from the mitochondria, resulting in caspase-3 cleavage and apoptosis activation in intestinal cancer cells. These data elucidate the relationship between Has' regulation of apoptosis-related proteins in colorectal cancer cells and apoptotic pathways.
Collapse
Affiliation(s)
- Ming-Chang Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- School of Medical, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ching-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.C.); (I.-N.T.)
| | - Tsui-Hwa Tseng
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-J.L.)
| | - Yi-Jie Lin
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-J.L.)
| | - I-Ning Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-C.C.); (I.-N.T.)
| | - Chi-Chih Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- School of Medical, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-J.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
41
|
Hamza AA, Heeba GH, Hassanin SO, Elwy HM, Bekhit AA, Amin A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed Pharmacother 2023; 165:115148. [PMID: 37450997 DOI: 10.1016/j.biopha.2023.115148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cisplatin (CIS) is a broad-spectrum anti-carcinogen that causes cytotoxic effects both in normal and cancer cells. The purpose of this study was to test whether Hibiscus sabdariffa (HS) extract can reduce CIS-induced hepatotoxicity in rodents and to assess its anticancer activity in vitro. Treatment with HS extract at daily doses of 500 mg/kg before and after a single dose of CIS (10 mg/kg) reduced hepatotoxicity in Wistar male albino rats. HS extract reduced activity of hepatic damage marker enzymes ( i.e. alanine and aspartate aminotransferases), necrosis, and apoptosis in liver tissues of CIS-treated rats. This hepatic protection was associated with reduced oxidative stress in liver tissues. The antioxidant effects of HS were manifested as a normalization of malondialdehyde levels and glutathione levels which were all raised after CIS-induction. In addition, HS treatment resulted in a decrease of catalase, and superoxide dismutase activity. The combined effects of CIS and HS were also studied in two human lung cancer cell lines (A549 and H460). Treatment with HS (20 μg /mL) enhanced the cytotoxic activity of CIS both in A549 and H460 cell lines. Interestingly, HS increased CIS-induced apoptosis and oxidative stress more clearly in A549 cells indicating that HS extract in combination with CIS could increase the efficacy of CIS in the treatment of cancer.
Collapse
Affiliation(s)
- Alaaeldin Ahmed Hamza
- Biology Department, National Organization for Drug Control and Research, Giza 12611, Egypt.
| | - Gehan Hussein Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Soha Osama Hassanin
- Biochemistry Department, Modern University for Technology and information, Cairo 11585, Egypt
| | - Hanan Mohamed Elwy
- Analytical Chemistry Department, National Organization for Drug Control and Research, Giza 12611, Egypt
| | | | - Amr Amin
- Department of Biology, College of Science U.A.E. University, P.O. Box 15551, Al-Ain, UAE.
| |
Collapse
|
42
|
Manzano-Pech L, Guarner-Lans V, Elena Soto M, Díaz-Díaz E, Pérez-Torres I. Alteration of the aortic vascular reactivity associated to excessive consumption of Hibiscus sabdariffa Linnaeus: Preliminary findings. Heliyon 2023; 9:e20020. [PMID: 37810051 PMCID: PMC10559753 DOI: 10.1016/j.heliyon.2023.e20020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
The moderate production of reactive oxidative species (ROS) is important because ROS act as second messengers. However, their depletion through the over-activity of the antioxidant system may lead to reductive stress (RS) which is characterized by an increase in reducing equivalents and an elevation of some components of the antioxidant system disturbing redox homeostasis. Hibiscus sabdariffa Linnaeus (HSL) is a plant with antioxidant properties that provides compounds that favor the antioxidant system. However, excess chronic consumption could lead to the over expression of the antioxidant enzymatic system, and this could contribute to decrease ROS. Therefore, the objective of this study was to evaluate the alteration of the vascular reactivity associated to excessive and chronic consumption of HSL infusions at different percentages. 40 male Wistar rats were divided into 4 groups. Group 1 control (drinking tap water), group 2, 3 and 4, drinking water supplemented with 15, 30 and 60 g/L of HSL calyxes respectively. The systolic blood pressure (SBP), vascular reactivity, morphological changes, and different components of the enzymatic antioxidant system were evaluated in the thoracic aorta by spectrophotometry. We also determined glucose-6-phosphate dehydrogenase (G6PD), glutathione-S-transferase (GST), thioredoxin-reductase (TrxR), glutathione peroxidase (GPx) and glutathione reductase (GR) and some markers of the non-enzimatic system such as the NO3-/NO2-ratio, glutathione (GSH), selenium, thiols, lipoperoxidation (LPO), and 3-nitrityrosine (3-NT). Vasoconstriction was increased and vasorelaxation was decreased. These alterations were reversed by O2- and H2O2. There was an increase in the wall thickness and elastic fibers (p = 0.004 and p = 0.02, respectively) and in G6PD, GPX, TrxR (p = 0.02, p = 0.03, and p = 0.01 respectively). LPO, GSH (p = 0.01), and selenium (p = 0.04) were decreased. There was a decrease in thiols (p < 0.001), 3-NT (p = 0.04) and GST (p = 0.0005) in rats that received the infusion at 3 and 6%. The excess antioxidants provided by the HSL infusions at 3% and 6% modified vascular reactivity, increasing the enzymatic antioxidant system, and depleting ROS.
Collapse
Affiliation(s)
- Linaloe Manzano-Pech
- Departments of Cardiovascular Biomedicine, Institute National of Cardiology Ignacio Chávez, Juan Badiano 1, Section XVI, Tlalpan, 14080, México, USA
| | - Verónica Guarner-Lans
- Physiology Institute National of Cardiology Ignacio Chávez, Juan Badiano 1, Section XVI, Tlalpan 14080, México, USA
| | - María Elena Soto
- Immunology, Institute National of Cardiology Ignacio Chávez, Juan Badiano 1, Section XVI, Tlalpan, 14080, México, USA
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Institute National of medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Section XVI, Tlalpan, 14000, México, USA
| | - Israel Pérez-Torres
- Departments of Cardiovascular Biomedicine, Institute National of Cardiology Ignacio Chávez, Juan Badiano 1, Section XVI, Tlalpan, 14080, México, USA
| |
Collapse
|
43
|
M’be CU, Scher J, Gaiani C, Amani NG, Burgain J. Impact of Processing and Physicochemical Parameter on Hibiscus sabdariffa Calyxes Biomolecules and Antioxidant Activity: From Powder Production to Reconstitution. Foods 2023; 12:2984. [PMID: 37627982 PMCID: PMC10453219 DOI: 10.3390/foods12162984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Hibiscus sabdariffa is a tropical plant with red calyxes whose anthocyanins, phenols, and antioxidant activity make it attractive to consumers both from a nutritional and medicinal standpoint. Its seasonality, perishability, and anthocyanin instability, led to the setup of stabilization methods comprising drying and powdering. However, its properties can often be altered during these stabilization processes. Treatments such as dehumidified-air-drying, infrared drying, and oven-drying, and their combination showed better quality preservation. Moreover, powder production enables superior biomolecule extractability which can be linked to a higher bioaccessibility. However, the required temperatures for powder production increase the bioactive molecules degradation leading to their antioxidant activity loss. To overcome this issue, ambient or cryogenic grinding could be an excellent method to improve the biomolecule bioavailability and accessibility if the processing steps are well mastered. To be sure to benefit from the final nutritional quality of the powder, such as the antioxidant activity of biomolecules, powders have to offer excellent reconstitutability which is linked to powder physicochemical properties and the reconstitution media. Typically, the finest powder granulometry and using an agitated low-temperature reconstitution media allow for improving anthocyanin extractability and stability. In this review, the relevant physicochemical and processing parameters influencing plant powder features from processing transformation to reconstitution will be presented with a focus on bioactive molecules and antioxidant activity preservation.
Collapse
Affiliation(s)
| | - Joël Scher
- LIBio, Université de Lorraine, 54000 Nancy, France (C.G.)
| | - Claire Gaiani
- LIBio, Université de Lorraine, 54000 Nancy, France (C.G.)
| | | | | |
Collapse
|
44
|
Janik M, Khachatryan K, Khachatryan G, Krystyjan M, Żarska S, Ciesielski W. Preparation and Characterisation of Acid-Base-Change-Sensitive Binary Biopolymer Films with Olive Oil and Ozonated Olive Oil Nano/Microcapsules and Added Hibiscus Extract. Int J Mol Sci 2023; 24:11502. [PMID: 37511263 PMCID: PMC10380360 DOI: 10.3390/ijms241411502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to develop and characterise bionanocomposites based on chitosan (CHIT) and alginate (ALG) in two series, which were subsequently functionalised with emulsions based on a combination of water, oil, ozonated oil and hibiscus flower extracts. The structure and morphology of the materials produced were characterised by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and ultraviolet and visible light (UV-Vis) absorption spectroscopy, along with a surface colour analysis and the determination of the mechanical and thermal properties of the resulting composites. Functionalisation did affect the analysed composite parameters. The FTIR spectra indicated that the polysaccharide matrix components were compatible. The SEM images also confirmed the presence of nano/microcapsules in the polysaccharide matrix. The obtained results indicate that the order of adding polysaccharides has a significant impact on the encapsulation capacity. The encapsulation resulted in the improved thermal stability of the composites. The emissions analysis showed that the composites containing nano/microcapsules are characterised by a higher emission intensity and are sensitive to acid or base changes. Significant differences in emission intensity were observed even at low concentrations of acids and bases. A drop in the mechanical properties was observed following functionalisation. The results of this study suggest that these bionanocomposites can be used as active and/or smart packaging materials.
Collapse
Affiliation(s)
- Magdalena Janik
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland
| | - Sandra Żarska
- Faculty of Mathematics and Natural Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Wojciech Ciesielski
- Faculty of Mathematics and Natural Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
45
|
Cho WK, Kim SY, Jang SJ, Lee S, Kim HI, Kim E, Lee JH, Choi SS, Moh SH. Comparative Analysis of Water Extracts from Roselle ( Hibiscus sabdariffa L.) Plants and Callus Cells: Constituents, Effects on Human Skin Cells, and Transcriptome Profiles. Int J Mol Sci 2023; 24:10853. [PMID: 37446030 DOI: 10.3390/ijms241310853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Roselle (Hibiscus sabdariffa L.) is a plant that has traditionally been used in various food and beverage products. Here, we investigated the potential of water extracts derived from Roselle leaves and callus cells for cosmetic and pharmaceutical purposes. We generated calluses from Roselle leaves and produced two different water extracts through heat extraction, which we named Hibiscus sabdariffa plant extract (HSPE) and Hibiscus sabdariffa callus extract (HSCE). HPLC analysis showed that the two extracts have different components, with nucleic acids and metabolites such as phenylalanine and tryptophan being the most common components in both extracts. In vitro assays demonstrated that HSCE has strong anti-melanogenic effects and functions for skin barrier and antioxidant activity. Transcriptome profiling of human skin cells treated with HSPE and HSCE showed significant differences, with HSPE having more effects on human skin cells. Up-regulated genes by HSPE function in angiogenesis, the oxidation-reduction process, and glycolysis, while up-regulated genes by HSCE encode ribosome proteins and IFI6, functioning in the healing of radiation-injured skin cells. Therefore, we suggest that the two extracts from Roselle should be applied differently for cosmetics and pharmaceutical purposes. Our findings demonstrate the potential of Roselle extracts as a natural source for skincare products.
Collapse
Affiliation(s)
- Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soo-Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sak Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Hye-In Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Jeong Hun Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul 04513, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| |
Collapse
|
46
|
Carvalho A, Domingues I, Carvalho C, Silva AMS, Soares AMVM, Marques CR. In Vitro Antiprotozoal Activity of Hibiscus sabdariffa Extract against a Ciliate Causing High Mortalities in Turbot Aquaculture. BIOLOGY 2023; 12:912. [PMID: 37508344 PMCID: PMC10376481 DOI: 10.3390/biology12070912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Philasterides dicentrarchi is an histophagous parasite that infects flatfish, namely turbot (Scophthalmus maximus), and cause significant losses in aquaculture units. The available measures for P. dicentrarchi control have limited efficiency, and some cause harm to fish. Hence, sustainable and natural control strategies are urgently needed. This study evaluated the in vitro bioactivity of the ethanol extract of Hibiscus sabdariffa calyces on P. dicentrarchi population growth rate (PGR), oxidative stress biomarkers (glutathione-S-transferases (GST), glutathione reductase (GR), glutathione peroxidase (GPx), total glutathione (TG) and catalase (CAT), neurotoxicity (acetylcholinesterase, AChE), activity and gene expression of proteases as major virulence factors. H. sabdariffa extract inhibited parasite PGR (IC50 = 1.57 mg mL-1), and caused significant changes in the activity of antioxidant enzymes (LOEC = 0.22 mg mL-1), especially GPx, TG, and CAT. The activity of proteases was also severely inhibited (IC50 = 0.76 mg mL-1), and gene expression of catepsin 90 and leishmanolysin proteases was downregulated. Organic acids and phenolic phytochemicals in hibiscus extract are potentially responsible for the antiprotozoal bioactivity herein determined. Therefore, H. sabdariffa extract can be a promising disease-control alternative against the ciliate proliferation, cellular defense mechanisms and pathogenicity. Still, its applicability in aquaculture settings, and potential effects on farmed fish, should be further elucidated.
Collapse
Affiliation(s)
- Ana Carvalho
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Carla Carvalho
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- Laboratório Associado para a Química Verde (LAQV)-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Catarina R Marques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
47
|
Dos Santos Silva LY, da Silva Ramos A, Cavalcante DN, Kinupp VF, da Silva Rodrigues JV, Ventura BML, de Oliveira Mendes TA, Sanches EA, Campelo PH, de Araújo Bezerra J. Hibiscus acetosella: An Unconventional Alternative Edible Flower Rich in Bioactive Compounds. Molecules 2023; 28:4819. [PMID: 37375373 DOI: 10.3390/molecules28124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The interest in the consumption of edible flowers has increased since they represent a rich source of bioactive compounds, which are significantly beneficial to human health. The objective of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers presented pH value of 2.8 ± 0.00, soluble solids content of 3.4 ± 0.0 °Brix, high moisture content of about 91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was better than the results observed for other edible flowers (507.8 ± 2.7 μM TE and 783.9 ± 30.8 μM TE, respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives, kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting that the extract has no directly harmful effects to cells. The important bioactive compound identified in this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential without showing cytotoxicity.
Collapse
Affiliation(s)
- Laila Yasmim Dos Santos Silva
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Andrezza da Silva Ramos
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Débora Nogueira Cavalcante
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Valdely Ferreira Kinupp
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | | | | | | | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers, Materials Physics Department, Federal University of Amazonas, Manaus 69067-005, Brazil
| | | | - Jaqueline de Araújo Bezerra
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| |
Collapse
|
48
|
Qu S, Yu S, Ma X, Wang R. "Medicine food homology" plants promote periodontal health: antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front Nutr 2023; 10:1193289. [PMID: 37396128 PMCID: PMC10307967 DOI: 10.3389/fnut.2023.1193289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
"Medicine food homology" (MFH) is a term with a lengthy history. It refers to the fact that a lot of traditional natural products have both culinary and therapeutic benefits. The antibacterial, anti-inflammatory and anticancer effects of MFH plants and their secondary metabolites have been confirmed by numerous research. A bacterially generated inflammatory illness with a complicated pathophysiology, periodontitis causes the loss of the teeth's supporting tissues. Several MFH plants have recently been shown to have the ability to prevent and treat periodontitis, which is exhibited by blocking the disease's pathogens and the virulence factors that go along with them, lowering the host's inflammatory reactions and halting the loss of alveolar bone. To give a theoretical foundation for the creation of functional foods, oral care products and adjuvant therapies, this review has especially explored the potential medicinal benefit of MFH plants and their secondary metabolites in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
49
|
García-Muñoz AM, García-Guillén AI, Victoria-Montesinos D, Abellán-Ruiz MS, Alburquerque-González B, Cánovas F. Effect of the Combination of Hibiscus sabdariffa in Combination with Other Plant Extracts in the Prevention of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Foods 2023; 12:foods12112269. [PMID: 37297513 DOI: 10.3390/foods12112269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Metabolic syndrome is a complex and multifactorial disorder associated with increased risk of cardiovascular disease and type 2 diabetes, exacerbated by a sedentary lifestyle and situations such as the COVID-19 pandemic. Recent studies have shown that consumption of fruits and vegetables high in polyphenols has a protective effect, reducing cardiovascular risk. Hibiscus sabdariffa (HS) in combination with other plant extracts has recently attracted scientists' attention due to its potential use in the treatment of metabolic syndrome. This systematic review and meta-analysis examines the effects of HS in combination with other plant extracts on the prevention of metabolic syndrome, exploring their synergistic effects and potential as therapeutic agents. For this purpose, a systematic search of randomized clinical trials (RCTs) was conducted in four different databases and the data obtained were then used for a meta-analysis. Initially, the titles and abstracts of 1368 studies were read. From these, 16 studies were examined closely for their eligibility, and finally, seven RCTs with 332 participants were included in both the meta-analysis and the qualitative analysis. Our results show that HS in combination with other plant extracts improved anthropometric parameters, blood pressure, and lipid profile (low density lipoprotein cholesterol and total cholesterol) compared to a placebo control group. It is important to note that although this meta-analysis suggests that HS in combination with other plant extracts may have a beneficial effect on cardiovascular parameters, further research is needed to determine the optimal dose and intake duration.
Collapse
Affiliation(s)
- Ana María García-Muñoz
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Ana I García-Guillén
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | | | | | - Begoña Alburquerque-González
- Izpisua Lab, HiTech, Sport and Health Innovation Hub, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Fernando Cánovas
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| |
Collapse
|
50
|
Almisbah SRE, Mohammed AMA, Elgamouz A, Bihi A, Kawde A. Green synthesis of CuO nanoparticles using Hibiscus sabdariffa L. extract to treat wastewater in Soba Sewage Treatment Plant, Sudan. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:3059-3071. [PMID: 37387430 PMCID: wst_2023_153 DOI: 10.2166/wst.2023.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Looking for a cost-effective and ecofriendly method for wastewater treatment is a global challenge. Therefore, this study investigated the removal of wastewater pollutants using copper oxide nanoparticles (CuONPs). CuONPs synthesized by a green solution combustion synthesis (SCS) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), powder X-ray diffraction analysis (PXRD), and scanning electron microscopy (SEM) techniques. PXRD showed nanoparticle sizes ranging from 10 to 20 polycrystalline patterns indexed with two peaks corresponding to (111) and (113) reflections of the face-centered cubic CuO crystal. The energy-dispersive spectroscopy analysis obtained in conjunction with SEM analysis proved the presence of Cu and O atoms at 86.3 and 13.6%, respectively, confirming the reduction and capping of Cu with Hibiscus sabdariffa extract's phytochemicals. The CuONPs proved to be a promising decontaminant for wastewater found to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 56%, and very efficient in reducing both the total dissolved matter (TDS) and conductivity (σ) by 99%. The CuONPs removed simultaneously chromium, copper, and chloride with respective percentages of 26, 78.8, and 78.2%. Green synthesis of nanoparticles is a simple, rapid, cost-effective, and ecofriendly method that successfully removed contaminants from wastewater.
Collapse
Affiliation(s)
- Samaher R E Almisbah
- Department of Chemistry, Alzaiem Alazhari University, Khartoum North 13311, Sudan E-mail:
| | - Abdelhafeez M A Mohammed
- Department of Chemistry, Alzaiem Alazhari University, Khartoum North 13311, Sudan; Department of Chemistry, College of Science & Arts, King Abdul-Aziz University, Rabigh, Saudi Arabia
| | - Abdelaziz Elgamouz
- Pure and Applied Chemistry Research Group, Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Alaa Bihi
- Pure and Applied Chemistry Research Group, Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Abdelnasser Kawde
- Pure and Applied Chemistry Research Group, Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|