1
|
Usme-Duque LK, Claudio-Rizo JA, Nuncio-Esquivel JA, León-Campos MI, Cruz-Requena M, Ríos-González LJ, Ascacio-Valdés JA, Medina-Morales MA. Optimization of fungal fermentation for the extraction of polyphenols from Flourensia cernua and its effect on cellular metabolism. J Biotechnol 2025; 401:60-73. [PMID: 39988099 DOI: 10.1016/j.jbiotec.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
This study aimed to maximize the potential of Flourensia cernua as a source of phenolic compounds through solid-state fermentation with Aspergillus niger, focusing on evaluating the antioxidant activity of the extracted compounds and their effects on modulating the metabolism of animal, cancerous, and plant cells. Initially, a comparison of the phytochemical profiles between macerated and fermented extracts was conducted. Different culture conditions were then assessed using a Plackett-Burman design (including salt concentration, inoculum concentration, moisture, and pH) to identify the most significant factors. This was followed by a response surface methodology to optimize the concentration of hydrolyzable phenolic compounds. Moisture and KH₂PO₄ concentration were identified as critical parameters for enhancing phenolic content, resulting in a final concentration of 43.440 mg GAE/g. The chemical composition of these extracts was analyzed using infrared spectroscopy and X-ray diffraction, confirming the presence of characteristic polyphenol functional groups, along with inorganic compounds such as MgO, SiO₂, and CaO. In vitro metabolic evaluations of animal and plant cells exposed to the extracts revealed a marked stimulation of 3T3 fibroblast and bone cell metabolism with the fermented extract. Moreover, the phenolic compounds in the extract exhibited cytotoxic effects on HeLa and colon cancer cells at 48 hours. Regarding plant cells derived from red and green tomato, cantaloupe, and watermelon seeds, the fermented extract significantly stimulated metabolic activity after 48 hours of exposure. These findings suggest that fermented extracts of Flourensia cernua with Aspergillus niger hold promise for various biotechnological applications.
Collapse
Affiliation(s)
- Lesly Katleya Usme-Duque
- Agro-environmental Biotechnology Group, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza s/n, República Oriente, Saltillo, Coahuila 25280, Mexico
| | - Jesús A Claudio-Rizo
- Laboratorio de Materiales Avanzados, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza s/n, República Oriente, Saltillo, Coahuila 25280, Mexico.
| | - José Alberto Nuncio-Esquivel
- Agro-environmental Biotechnology Group, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza s/n, República Oriente, Saltillo, Coahuila 25280, Mexico
| | - María I León-Campos
- Laboratorio de Materiales Avanzados, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza s/n, República Oriente, Saltillo, Coahuila 25280, Mexico
| | - Marisol Cruz-Requena
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio NarroCalzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila 25315, Mexico
| | - Leopoldo J Ríos-González
- Agro-environmental Biotechnology Group, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza s/n, República Oriente, Saltillo, Coahuila 25280, Mexico
| | - Juan A Ascacio-Valdés
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza s/n, República Oriente, Saltillo, Coahuila 25280, Mexico
| | - Miguel A Medina-Morales
- Agro-environmental Biotechnology Group, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza s/n, República Oriente, Saltillo, Coahuila 25280, Mexico.
| |
Collapse
|
2
|
Quradha MM, Tamfu AN, Duru ME, Kucukaydin S, Iqbal M, Qahtan AMF, Khan R, Ceylan O. Evaluation of HPLC Profile, Antioxidant, Quorum Sensing, Biofilm, Swarming Motility, and Enzyme Inhibition Activities of Conventional and Green Extracts of Salvia triloba. Food Sci Nutr 2024; 12:10716-10733. [PMID: 39723056 PMCID: PMC11666897 DOI: 10.1002/fsn3.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
The current study aims to prepare a green extract using a new method in addition to conventional extraction methods including; methanolic and ultrasonic extraction of Salvia triloba, to compare their phenolic composition utilizing high-performance liquid chromatograph equipped with a diode array detector (HPLC-DAD), anti-bacterial, anti-oxidant, and enzyme inhibition activities. The results of HPLC-DAD analysis showed that Rosmarinic acid was found the highest amount in the methanolic extract followed by ultrasonic and green extracts as 169.7 ± 0.51, 135.1 ± 0.40, and 28.58 ± 0.46 μg/g respectively. The Trans-cinnamic acid (4.40 ± 0.09 μg/g) was found exclusively in ultrasonic extract. For bioactivities, the green extract exhibited the highest biofilm inhibition against Enterococcus faecalis compared to other extracts, while the methanolic extract outperformed both ultrasonic-assisted and green extract against Staphylococcus aureus and Escherichia coli strains at minimum inhibitory concentration. The methanolic and green extract exhibited considerable quorum sensing inhibition against Chromobacterium violaceum CV026, while no activity was recorded from ultrasonic-assisted extract. The methanolic and ultrasonic-assisted extracts of S. triloba recorded moderate butyrylcholinesterase inhibition; each extract demonstrated limited inhibitory effects on the urease enzyme. Similarly, each extract of S. triloba demonstrated significant antioxidant activity, with the highest activity exhibited by methanolic extract as β-carotene-linoleic acid assay (IC50 = 10.29 ± 0.36 μg/mL), DPPH• assay (IC50 = 27.77 ± 0.55 μg/mL), ABTS•+ assay (IC50 = 15.49 ± 0.95 μg/mL), metal chelating assay (IC50 = 57.80 ± 0.95 μg/mL), and CUPRAC (assay A 0.50 = 32.54 ± 0.84 μg/mL). Furthermore, the methanolic extract exhibited antioxidant activity better than α-tocopherol (Standard used). The current study demonstrated the potential of green solvent(s) as eco-friendly alternative for extractin phenolic compounds from S. triloba and evaluated their biological activities for the first time.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral IndustriesUniversity of NgaoundereNgaoundereCameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of ScienceMugla Sitki Kocman UniversityMenteşeMuglaTurkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health ServicesMugla Sıtkı Kocman UniversityKoycegizMuglaTurkey
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and BiochemistryThe University of Agriculture PeshawarPeshawarPakistan
| | | | - Rasool Khan
- Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| |
Collapse
|
3
|
Melo JOF, Conchinhas B, Leitão AEB, Ramos ALCC, de Sousa IMN, Ferreira RMDSB, Ribeiro AC, Batista-Santos P. Phenolic Compounds Characterization of Caryocar brasiliense Peel with Potential Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2016. [PMID: 39124134 PMCID: PMC11314331 DOI: 10.3390/plants13152016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
The pequi (Caryocar brasiliense) fruit peel, despite being frequently discarded, has a high content of bioactive compounds, and therefore has a high nutritional value. The present study aimed to explore the bioactivities in the pequi peel, particularly their potential health benefits at the level of antioxidant activity. The exploitation of this fruit could also present significant economic benefits and applications of pequi by-products would represent a reduction in waste, having a positive impact on the environment. Phenolic compounds present in the pequi exocarp and external mesocarp were identified by paper spray mass spectrometry (PS-MS) and quantified by HPLC. The total phenolic content (TPC) along with the amount of 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and the amount of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) were also determined in peel extracts. Epicatechin was the most abundant phenolic compound found, followed by the caffeic, salicylic, and gallic acids. In addition, fingerprinting revealed compounds related to several beneficial health effects. In short, the results obtained were encouraging for potential applications of pequi peel in the field of functional foods.
Collapse
Affiliation(s)
- Júlio Onésio Ferreira Melo
- Departamento Ciências Exatas e Biológicas, Universidade Federal de São João Del-Rei (UFSJ), Sete Lagoas 35701-970, MG, Brazil
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
| | - Beatriz Conchinhas
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
| | - António Eduardo Baptista Leitão
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Isabel Maria Nunes de Sousa
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Ricardo Manuel de Seixas Boavida Ferreira
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Ana Cristina Ribeiro
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- Faculdade Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Paula Batista-Santos
- Tropical College of the University of Lisbon—CTROP-ULisboa, Alameda da Universidade—Cidade Universitária, 11649-004 Lisbon, Portugal
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
4
|
Tian X, Wang X, Xu W, Gong M, Zhou C, Jiang E, Tang Y, Jia L, Zeng L, Deng S, Duan F. Penthorum chinense Pursh leaf tea debittering mechanisms via green tea manufacturing process and its influence on NAFLD-alleviation activities. Food Chem 2024; 445:138715. [PMID: 38382251 DOI: 10.1016/j.foodchem.2024.138715] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
The green-tea manufacturing process showed good effect of flavor improving, debittering and shaping in making Penthorum chinensePursh leaf (PL) tea (PLT), which serves as a polyphenol dietary supplement and beverage raw material. GC-MS results showed that its unpleasant grassy odor decreased by 42.8% due to dodecanal, geranylacetone, and (E)-2-nonenal reduction, coupled with 1-hexadecanol increasing. UPLC-ESI-TOF-MS identified 95 compounds and showed that the debittering effect of green-tea manufacturing process was attributed to decreasing of flavonols and lignans, especially quercetins, kaempferols and luteolins, and increasing of dihydrochalcones which act as sweeteners bitterness-masking agents, while astringency was weakened by reducing delphinidin-3,5-O-diglucoside chloride, kaempferol-7-O-β-d-glucopyranoside, and tannins. The increase of pinocembrins and catechins in aqueous extracts of PLT, maintained its hepatoprotective, NAFLD-alleviation, and hepatofibrosis-prevention activities similar to PL in high fat-diet C57BL/6 mice, with flavonoids, tannins, tannic acids, and some newfound chemicals, including norbergenin, gomisin K2, pseudolaric acid B, tanshinol B, as functional ingredients.
Collapse
Affiliation(s)
- Xue Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xingyue Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Chuanyuan Zhou
- Sichuan Chunxiangyuan Tea Co., Ltd., Luzhou 646500, China
| | - Ercheng Jiang
- Sichuan Neautus Traditional Chinese Medicine Co., Ltd., Chengdu 610000, China
| | - Yongqing Tang
- Luzhou Institute of Advanced Technology, Luzhou 646000, China
| | - Lirong Jia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Zeng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Feixia Duan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Cano-Gómez CI, Alonso-Castro AJ, Carranza-Alvarez C, Wong-Paz JE. Advancements in Litchi chinensis Peel Processing: A Scientific Review of Drying, Extraction, and Isolation of Its Bioactive Compounds. Foods 2024; 13:1461. [PMID: 38790761 PMCID: PMC11119950 DOI: 10.3390/foods13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This article systematically reviews the advancements in processing litchi peel (Litchi chinensis), emphasizing drying, extraction, purification methods, and the potential of bioactive compounds obtained from litchi peel. This work also highlights the impact of various drying techniques on phytochemical profiles, focusing on how methods such as hot air and freeze-drying affect the preservation of bioactive compounds. The study delves into extraction methods, detailing how different solvents and techniques influence the efficiency of extracting bioactive compounds from litchi peel. Furthermore, the purification and characterization of active compounds, showcasing the role of chromatographic techniques in isolating specific bioactive molecules, is discussed. Biological properties and mechanisms of action, such as antioxidant, antihyperglycemic, cardioprotective, hepatoprotective, anti-atherosclerotic, and anticancer activities, are reviewed, providing insight into the potential health benefits of litchi peel compounds. This review highlights the importance of optimizing and selecting accurate drying and extraction methods to maximize the therapeutic effects of litchi peel and its bioactive compounds. This review also reveals the broad pharmacological potential of the isolated compounds, underscoring the need for further research to discover their specific actions and health benefits.
Collapse
Affiliation(s)
- Christian Iván Cano-Gómez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36250, Mexico;
| | - Candy Carranza-Alvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| | - Jorge E. Wong-Paz
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| |
Collapse
|
7
|
Scaramussa SADL, Soares LDA, Santana LCLDA. Extracts from jatobá ( Hymenaea courbaril L.) peel and seeds: Antioxidant and antimicrobial activities and synergistic effect of extract combinations. FOOD SCI TECHNOL INT 2024; 30:128-136. [PMID: 36330665 DOI: 10.1177/10820132221136589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
In this work, the in vitro antioxidant and antimicrobial potential of hydroalcoholic extracts from the peel and seeds of jatobá fruit and the synergistic effect of their combination against pathogenic bacteria were evaluated. The 80% ethanol fruit seed extract showed a greater antioxidant potential and higher total phenolic content (5135.61 GAE/100 g dry residue) than the maximum value obtained from peel extract using 50% ethanol (2614.74 1 GAE/100 g dry residue). Moreover, 70% and 80% ethanol seed extracts inhibited most bacteria, especially Pseudomonas aeruginosa, with the lowest values of minimum inhibitory concentration (1.0 and 8.0 mg/mL), when compared with extracts from peel. Combining the 70% ethanol extracts from peels and seeds reduced their inhibitory concentration by about 4 to 32 times against Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, P. aeruginosa and Salmonella enteritidis, when compared to each extract alone. Extracts from the peel and seeds of the jatobá fruit showed potential as natural antioxidants and antimicrobials.
Collapse
Affiliation(s)
- Simone Aparecida de Lima Scaramussa
- Department of Food Technology, Laboratory of Food Microbiology and Bioengineering, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Larissa de Almeida Soares
- Biotechnology Doctoral Program (Northeast Biotechnology Network - RENORBIO), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luciana Cristina Lins de Aquino Santana
- Department of Food Technology, Laboratory of Food Microbiology and Bioengineering, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Biotechnology Doctoral Program (Northeast Biotechnology Network - RENORBIO), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
8
|
Quradha MM, Duru ME, Kucukaydin S, Tamfu AN, Iqbal M, Bibi H, Khan R, Ceylan O. Comparative assessment of phenolic composition profile and biological activities of green extract and conventional extracts of Salvia sclarea. Sci Rep 2024; 14:1885. [PMID: 38253648 PMCID: PMC10803343 DOI: 10.1038/s41598-024-51661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been an attempt to develop safe and environmental friendly solvents to replace conventional solvents, and use for extraction bioactive compounds from natural sources. A current investigation involved the preparation of green, methanolic, and ultrasonic extracts of S. sclarea, and compared their phenolic profiling using HPLC-DAD, antibacterial, antioxidant, and enzyme inhibition activities. The HPLC-DAD analysis revealed that Rosmarinic acid was the main content in all extracts, with Ellagic acid only present in the green extract. The green extract exhibited superior anti-biofilm activity against S. Aureus and E. Faecalis compared to the other extracts at MIC concentration. Furthermore, the green extract also displayed the highest inhibition of swarming motility in P. Aeruginosa with inhibition range 68.0 ± 2.1 (MIC) to 19.5 ± 0.6 (MIC/4). and better enzyme inhibitory activity against BChE (with IC50 = 131.6 ± 0.98 µg/mL) and AChE (with inhibition 47.00 ± 1.50%) compared to the other extracts; while, the ultrasonic extract showed strong inhibition of violacein production by C. Violaceum with a inhibition range 05.5 ± 0.1 (MIC/32) to 100 ± 0.00 (MIC), followed by the green extract with a inhibition range 15.0 ± 0.5 (MIC/8) to 100 ± 0.00 (MIC), additionally, the ultrasonic and methanoic extracts showed significant activity against urease enzyme with (IC50 = 171.6 ± 0.95 µg/mL and IC5 0 = 187.5 ± 1.32 µg/mL) respectively. Both the green and methanolic extracts showed considerable antioxidant activities, as β-carotene-linoleic acid (IC50 = 5.61 ± 0.47 µg/mL and 5.37 ± 0.27 µg/mL), DPPH· (IC50 = 19.20 ± 0.70 µg/mL and 16.31 ± 0.23 µg/mL), ABTS·+(IC50 = 8.64 ± 0.63 µg/mL and 6.50 ± 0.45 µg/mL) and CUPRAC (A0.5 = 17.22 ± 0.36 µg/mL and 12.28 ± 0.12 µg/mL) respectively, likewise the green extract performing better in metal chelating compared to the other extracts. The green extraction is reported as a cost effective and solvent free method for extracting natural products that produces compounds free of toxic chemicals. This could be the method to be used in the industries as a renewable method.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of Education, Seiyun University, Seiyun, Yemen.
- Pharmacy Department, Medical Sciences, Aljanad University for Science and Technology, Taiz, Yemen.
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sıtkı Kocman University, Koycegiz/Mugla, Turkey
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454, Ngaoundere, Cameroon
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Hamida Bibi
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Ula Mugla, 48147, Turkey
| |
Collapse
|
9
|
Siniawska M, Wojdyło A. Polyphenol Profiling by LC QTOF/ESI-MS and Biological Activity of Purple Passion Fruit Epicarp Extract. Molecules 2023; 28:6711. [PMID: 37764487 PMCID: PMC10535944 DOI: 10.3390/molecules28186711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), anti-inflammatory activity (COX-1, COX-2, 15-LOX) and antioxidant activity based on ORAC and ABTS. The polyphenolic preparation of the passion fruit epicarp extract contained 51 polyphenolic compounds representing five groups-flavones (25 compounds; 52% of total polyphenolic), flavonols (8; 16%), flavan-3-ols (6; 7%), phenolic acids (4; 3%), and anthocyanins (7; 21%), with derivatives of luteolin (13 derivatives) and apigenin (8 derivatives) as dominant compounds. The preparation was characterized by an antioxidant activity of 160.7 (ORAC) and 1004.4 mmol Trolox/100 mL (ABTS+o). The inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase reached IC50 of 7.99, 12.80, and 0.42, respectively. The inhibition of cholinesterases (IC50) was 18.29 for AChE and 14.22 for BuChE. Anti-inflammatory activity as IC50 was 6.0 for COX-1, 0.9 for COX-2, and 4.9 for 15-LOX. Food enriched with passion fruit epicarp extract has a potentially therapeutic effect.
Collapse
Affiliation(s)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
10
|
Coronado-Reyes JA, Tinoco-Salazar J, Guisa-Morales LM, Cortés-Penagos CDEJ, González-Hernández JC. Obtaining polyphenolic extracts from pomegranate peel (Punica granatum) to evaluate the bactericide and antioxidant activity. AN ACAD BRAS CIENC 2023; 95:e20200153. [PMID: 37646704 DOI: 10.1590/0001-3765202320200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 11/11/2020] [Indexed: 09/01/2023] Open
Abstract
Pomegranate (Punica granatum) contains secondary metabolites with antioxidant and bactericide activity; however, the study of the peel in the endemic varieties of Mexico has not been deepened. The polyphenols extraction of peel pomegranate endemic to the state of Michoacan, Mexico could be used in the formlulation of healthy food due contains antioxidant compounds or could be used like drugs due contains antibactericide compunds.In this work 3 varieties of pomegranate were analyzed; Wonderful, Apaseo and Tecozautla harvested in 2017 and 2018, carrying out a physicochemical characterization to establish the ripening, application of an experimental design of response surface for drying the peel and extracting polyphenols using two solvents (acetone and ethanol) by the Soxhlet method. As a result, the pomegranates were in the correct ripening, in the drying an optimal point of operation was found without affecting the metabolites (36 h at 55 °C) and in the extraction, the bactericide and antioxidant activity was evaluated observing that in the ketone extracts the best results were obtained in the Apaseo variety being; ABTS•+ technique of 150.78 ET mM/g, DPPH• 109.8 ET mM/g and 11.82 EAG mg/g in dry extract. For the bactericide activity measured by inhibition halos in S. aureus and E. coli it was had; 20.03 mm and 14.05 mm respectively for the Apaseo variety, which is why it is convenient to extract polyphenols under this method in peel of Mexican pomegranate varieties.
Collapse
Affiliation(s)
- Jesús Alberto Coronado-Reyes
- Tecnológico Nacional de México, Instituto Tecnológico Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, C.P. 58120, Morelia, Michoacán, México
| | - Javier Tinoco-Salazar
- Tecnológico Nacional de México, Instituto Tecnológico Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, C.P. 58120, Morelia, Michoacán, México
| | - Lizeth María Guisa-Morales
- Tecnológico Nacional de México, Instituto Tecnológico Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, C.P. 58120, Morelia, Michoacán, México
| | - Consuleo DE Jesús Cortés-Penagos
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, Col. Matamoros, C.P. 58240, Morelia, Michoacán, México
| | - Juan Carlos González-Hernández
- Tecnológico Nacional de México, Instituto Tecnológico Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, C.P. 58120, Morelia, Michoacán, México
| |
Collapse
|
11
|
Martins GR, Bronzel Junior JL, Granero FO, Figueiredo CCM, Silva LP, Silva RMGDA. Phytoconstituents, antioxidant and antiglycation activity of Chrysophyllum cainito L., Hancornia speciosa Gomes and Plinia glomerata Berg. fruits. AN ACAD BRAS CIENC 2023; 95:e20201853. [PMID: 37556705 DOI: 10.1590/0001-3765202320201853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/12/2021] [Indexed: 08/11/2023] Open
Abstract
The present study verified the presence of phytoconstituents and evaluated antioxidant (DPPH, FRAP, NO and TBARS tests) and antiglycation (REM test) activities of unconventional wild edible fruits Chrysophyllum cainito, Hancornia speciosa and Plinia glomerata. It was verified the presence of phenolic compounds for all fruits and flavonoids were observed only for C. cainito, which presented in its peel the highest total phenols (90.34 μg GAE mg-1) and flavonoids (30.4 μg RE mg-1) content. Sugar concentration was significant for all fruits, where H. speciosa showed the highest reducing sugar content (576.12 mg g-1) and C. cainito pulp showed the highest total sugar content (858.67 mg g-1). All fruits presented vitamin C and carotenoids, highlighting P. glomerata with the best results for ascorbic acid (2260.94 mg 100 g-1) and carotenoids (59.62 µg g-1). Extracts presented antioxidant activity, highlighting C. cainito peel that presented 65.64% (DPPH), 231.34 µM TE L-1 (FRAP), 49.34% (NO) and 22.56% (TBARS), while in antiglycation evaluation, P. glomerata showed evident activity. Therefore, it was possible to determine different phytoconstituents, and antioxidant and antiglycation activities of the fruits. These data provide subsidies for application of these fruits in new studies, to increase knowledge and preservation of these species.
Collapse
Affiliation(s)
- Gustavo R Martins
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
- Fundação Educacional do Município de Assis/FEMA, Av. Getúlio Vargas, 1200, Vila Nova Santana, 19807-130 Assis, SP, Brazil
| | - João Luiz Bronzel Junior
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Filipe O Granero
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Célia Cristina M Figueiredo
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Luciana P Silva
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
| | - Regildo Márcio G DA Silva
- Universidade Estadual Paulista/UNESP, Instituto de Química, Rua Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-060 Araraquara, SP, Brazil
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Letras de Assis, Departamento de Biotecnologia, Laboratório de Plantas Medicinais e Produtos Naturais, Av. Dom Antônio, 2100, Parque Universitário, 19806-900 Assis, SP, Brazil
| |
Collapse
|
12
|
Saikaew K, Siripornadulsil W, Siripornadulsil S. Improvements in the color, phytochemical, and antioxidant properties of frozen ripe mango pieces using calcium chloride dipping and chitosan coating. J Food Sci 2023; 88:3239-3254. [PMID: 37458283 DOI: 10.1111/1750-3841.16699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 08/05/2023]
Abstract
This study aimed to investigate the influences of a dipping/coating composed of calcium chloride (CaCl2 ) or chitosan on the quality of ripe mango pieces during frozen storage for 6 months. The fruits were dipped in solutions with concentrations of 0.5% and 1% for different times (15 or 30 min for CaCl2 and 1 or 15 min for chitosan). We found that treatment with 1% CaCl2 for 30 min significantly retarded the color changes with the highest L* (p < 0.05) and the lowest of b* and ∆E (p ≥ 0.05). Interestingly, treatment with 0.5% CaCl2 for 30 min significantly preserved the contents of total phenolics and total flavonoids and the antioxidant activities at values higher than the control levels, as determined by DPPH and ABTS assays (p < 0.05). Moreover, treatment with 0.5%-1% chitosan for 1 min effectively delayed the loss of moisture and weight. The results indicate that dipping in CaCl2 is an alternative simple food processing technique for improving the quality of ripe mango pieces during frozen storage that effectively delays the color changes and preserves the antioxidant content and activity. HIGHLIGHTS: The coating of frozen ripe mango pieces with CaCl2 and chitosan was first investigated. CaCl2 effectively retarded the color change during storage and after thawing. Chitosan effectively delayed the loss of moisture and weight of mango pulp. Coating with 0.5% CaCl2 for 30 min maintained the phytochemicals and antioxidant activities. Coating treatment can preserve mango qualities and could be commercialized with cost savings. PRACTICAL APPLICATION: The present article proposes a strategy that effectively delays the physicochemical changes and preserves the nutritional properties of mango fruit and could be commercialized with cost savings. A frozen mango can either be consumed (ready-to-eat frozen mango) or used as a food raw material.
Collapse
Affiliation(s)
- Kawinchaya Saikaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Murugesan M, Kandhavelu M, Thiyagarajan R, Natesan S, Rajendran P, Murugesan A. Marine halophyte derived polyphenols inhibit glioma cell growth through mitogen-activated protein kinase signaling pathway. Biomed Pharmacother 2023; 159:114288. [PMID: 36682245 DOI: 10.1016/j.biopha.2023.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase - 3 and - 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.
Collapse
Affiliation(s)
- Monica Murugesan
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Meenakshisundaram Kandhavelu
- BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland; Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland.
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Priyatharsini Rajendran
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Akshaya Murugesan
- Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India.
| |
Collapse
|
14
|
Comparison of In Vitro Estrogenic Activity of Polygoni multiflori Radix and Cynanchi wilfordii Radix via the Enhancement of ERα/β Expression in MCF7 Cells. Molecules 2023; 28:molecules28052199. [PMID: 36903444 PMCID: PMC10005224 DOI: 10.3390/molecules28052199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Postmenopausal women experience several symptoms, including inflammation and a sharp rise in oxidative stress caused by estrogen deprivation. Although estrogen replacement therapy (ERT) is generally regarded as an effective treatment for menopause, it has been used less frequently due to some adverse effects and high costs. Therefore, there is an immediate need to develop an effective herbal-based treatment that is affordable for low-income populations. Acordingly, this study explored the estrogen-like properties of methanol extracts from Cynanchum wilfordii (CW) and Poligonum multiflorum (PM), two important medicinal plants in Republic of Korea, Japan, and China. Due to the similar names and morphologies of these two radixes, they are frequently confused in the marketplace. Our previous colleagues discriminated between these two plants. In this study, we investigated the estrogenic activity of PM and CW using several in vitro assays with their possible mechanism of action. First, their phytochemical contents, such as gallic acid, 2,3,5,4'-tetrahydroxystilbene-2-O-glucoside (TSG) and emodin, were quantified using high-performance liquid chromatography (HPLC). Secondly, estrogen-like activity was assessed utilizing the well-known E-screen test and gene expression analysis in estrogen receptor (ER)-positive MCF7 cells. ROS inhibition and anti-inflammatory effects were analyzed using HaCaT and Raw 264.7 cells, respectively. Our findings demonstrate that PM extracts significantly increased the expression of the estrogen-dependent genes (ERα, ERβ, pS2) and boosted MCF7 cell proliferation in comparison to CW extracts. Additionally, PM extract demonstrated a significant reduction in reactive oxygen species (ROS) production as well as an enhanced antioxidant profile compared to the CW extract. Further, the PM extract treatment significantly reduced the generation of nitric oxide (NO) in RAW 264.7 cells, a murine macrophage cell line, demonstrating the anti-inflammatory properties of the extract. Finally, this research offers an experimental foundation for the use of PM as a phytoestrogen to minimize menopausal symptoms.
Collapse
|
15
|
Kariminejad M, Naimabadi A, Morshedi A, Mohammadi-Moghaddam T, Shokuhi A, Bordbar M. Oxidative stability of sunflower and soybean oils enriched with black plum peel extract in comparison with synthetic antioxidants. PLoS One 2023; 18:e0279735. [PMID: 36662706 PMCID: PMC9858042 DOI: 10.1371/journal.pone.0279735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
Black plum peel is the by-product of plum processing and is a valuable source of antioxidants and phenolic compounds. In this research, total phenolic compounds, total flavonoid content and antioxidant activity of black plum peel were measured. After that, black plum peel extract (in concentrations 0, 400, 800, 1200 and 2000 ppm) as a natural antioxidant for improving the stability of soybean and sunflower oil was used. The oxidative stability parameters of oils (peroxide value, free fatty acids, thiobarbituric acid, conjugated dienes, and carbonyl value) were measured at 60 °C for 4-16 days. Antioxidant activity, total phenolic compounds and total flavonoid content of black plum peel were 86.87% and 100.53 mg GA /g and 871.062 mg Quercetin/g respectively. Black plum peel extract could have a significant positive effect (P<0.05) on improvement of the quality and stability parameters of soybean oil and sunflower oil. The oxidative stability parameters for commercial oils and samples containing black plum peel extract were near each other and in an acceptable range. So, black plum peel is recommended as an oxidative stabilizer of oils and alternative synthetic antioxidants.
Collapse
Affiliation(s)
- Mohaddeseh Kariminejad
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Abolfazl Naimabadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Afsaneh Morshedi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Abolfazl Shokuhi
- Student Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahsa Bordbar
- Student Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
16
|
Rajan M, Santana Andrade JK, Chagas Barros RG, Farias Lima Guedes TJ, Narain N. Enhancement of polyphenolics and antioxidant activities of jambolan (Syzygium cumini) fruit pulp using solid state fermentation by Aspergillus niger and A. flavus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Prediction of degradation pathways of phenolic compounds in the human gut microbiota through enzyme promiscuity methods. NPJ Syst Biol Appl 2022; 8:24. [PMID: 35831427 PMCID: PMC9279433 DOI: 10.1038/s41540-022-00234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
The relevance of phenolic compounds in the human diet has increased in recent years, particularly due to their role as natural antioxidants and chemopreventive agents in different diseases. In the human body, phenolic compounds are mainly metabolized by the gut microbiota; however, their metabolism is not well represented in public databases and existing reconstructions. In a previous work, using different sources of knowledge, bioinformatic and modelling tools, we developed AGREDA, an extended metabolic network more amenable to analyze the interaction of the human gut microbiota with diet. Despite the substantial improvement achieved by AGREDA, it was not sufficient to represent the diverse metabolic space of phenolic compounds. In this article, we make use of an enzyme promiscuity approach to complete further the metabolism of phenolic compounds in the human gut microbiota. In particular, we apply RetroPath RL, a previously developed approach based on Monte Carlo Tree Search strategy reinforcement learning, in order to predict the degradation pathways of compounds present in Phenol-Explorer, the largest database of phenolic compounds in the literature. Reactions predicted by RetroPath RL were integrated with AGREDA, leading to a more complete version of the human gut microbiota metabolic network. We assess the impact of our improvements in the metabolic processing of various foods, finding previously undetected connections with output microbial metabolites. By means of untargeted metabolomics data, we present in vitro experimental validation for output microbial metabolites released in the fermentation of lentils with feces of children representing different clinical conditions.
Collapse
|
18
|
Uddin N, Muhammad N, Nisar M, Aisha, Ali N, Ullah R, Ali EA, Khan AA, Rahman IU, Khan A, Zeb A. Distribution of polyphenolic compounds, antioxidant potential, and free amino acids in Ziziphus fruits extract; a study for determining the influence of wider geography. Food Sci Nutr 2022; 10:1414-1430. [PMID: 35592302 PMCID: PMC9094459 DOI: 10.1002/fsn3.2726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Ziziphus fruits have attracted much attention within the field of medicine due to their high potential against central nervous system disorders. Abundance of secondary metabolites and their composition is key to the pharmaceutical potential and commercial qualities of plants. The in vitro antioxidant activities of Ziziphus nummularia (Burm. f.) and Ziziphus oxyphylla Edgew fruit extract were analyzed using 2,2‐diphenil‐1‐pycrilhydrazyl (DPPH) and 2,2′‐azino‐bis (3‐ethylbenzothiazoline)‐6‐sulfonic acid (ABTS) free radical scavenging assay methods. Phenolic profiles were explored using high‐performance liquid chromatography‐diode array detector (HPLC‐DAD). The result revealed high concentration of polyphenols and their antioxidant potential. In Z. nummularia, the total phenolic content (TPC) (80.270 ± 0.422 μg/ml), DPPH (62.03 ± 0.98 μg/ml), ABTS (66.32 ± 0.73 μg/ml), and TFC (90.683 ± 0.274 μg/ml) were recorded. However, in Z. oxyphylla, DPPH and ABTS values were 60.66 ± 0.56 μg/ml and 61.55 ± 0.77 μg/ml, respectively, indicative of the impacts of climate and soil nutrients. The overall screening of phytochemicals revealed that both the Ziziphus species contain diverse bioactive compounds, including spinacetine‐3‐O‐(2 feruloyl glucopyranosyl)‐glucopyranoside, kaempferol‐3‐O‐glucoside‐7‐O‐glucoside, and caffeic acid; p‐hydroxybenzoyl hexose, p‐coumaric acid, salicylic acid, and ellagic acid pentoxide. Additionally, the highest concentrated amino acid noted was of Lue 0.19 g/100 g with 596.00 retention time (RT), followed by Thr>Ale>Isl>Phya>Val in Z. nummularia. Similarly, the highest concentration of Lue amino acid was recorded as 0.18/100 g with 564.52 RT followed by Pr>Thr>Ale>Lue>Isl>Phya>Val in all genotypes of Z. oxyphylla. Reporting of polyphenols rich and stable species along with identification of favorable regions of cultivation for amino acid, polyphenols, and higher antioxidant potential may lead the way for the identification of elite clones of the species as well as may result in new drug discovery.
Collapse
Affiliation(s)
- Nisar Uddin
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Noor Muhammad
- Department of Pomology College of Horticulture Hebei Agricultural University Baoding China
| | - Mohammad Nisar
- Department of Botany University of Malakand Checkdara Pakistan
| | - Aisha
- Department of Chemistry University of Gujrat Gujrat Pakistan
| | - Niaz Ali
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Azhar Abbas Khan
- Department of Biochemistry Hazara University Mansehra Mansehra Pakistan
| | - Inayat Ur Rahman
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Anwar Khan
- Institute of Molecular Plant Science University of Edinburgh Edinburgh UK.,Department of Microbiology BUITEMS Quetta Pakistan
| | - Alam Zeb
- Department of Biochemistry University of Malakand KP Pakistan
| |
Collapse
|
19
|
Al-Radadi NS. Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications. Saudi J Biol Sci 2022; 29:3848-3870. [PMID: 35844411 PMCID: PMC9280260 DOI: 10.1016/j.sjbs.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
|
20
|
Liu Q, Hamid N, Liu Y, Kam R, Kantono K, Wang K, Lu J. Bioactive Components and Anticancer Activities of Spray-Dried New Zealand Tamarillo Powder. Molecules 2022; 27:2687. [PMID: 35566037 PMCID: PMC9103875 DOI: 10.3390/molecules27092687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tamarillo fruit contains many phytochemicals that have beneficial therapeutic and nutritional properties. Spray-drying is widely used to preserve fruit puree in powder form. However, to obtain high-quality fruit powder, the optimisation of spray-drying conditions is necessary, as a high drying temperature can damage sensitive bioactive compounds. This study investigated the effects of spray-drying on the microstructure, polyphenolics, total flavonoids, total carotenoids, antioxidant activity, and anticancer capacity of tamarillo powder. Response surface methodology (RSM) was used to optimise the spray-drying process to produce tamarillo powder. The independent variables were inlet drying temperature (120-160 °C), flow rate (1-5 g/mL), and maltodextrin concentration (0-10%). These variables influenced the microstructural attributes, bioactive components, and cytotoxicity of the spray-dried tamarillo powder. The increase in polyphenols and antioxidant activities were favoured under high-temperature spray drying conditions and a low carrier concentration. The optimised spray-drying conditions for producing tamarillo powder with high antioxidant and anticancer activities, high yield, and stable bioactive compounds were found to be at 146.8 °C inlet temperature, and a flow rate of 1.76 g/mL.
Collapse
Affiliation(s)
- Qian Liu
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Nazimah Hamid
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Ye Liu
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Rothman Kam
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Kevin Kantono
- Department of Food Science and Microbiology, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Q.L.); (Y.L.); (R.K.); (K.K.)
| | - Kelvin Wang
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand; (K.W.); (J.L.)
| | - Jun Lu
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand; (K.W.); (J.L.)
- School of Public Health & Interdisciplinary Studies, Faculty of Health & Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| |
Collapse
|
21
|
Characterization and Evaluation of Antioxidant and Anti-Inflammatory Activities of Flavonoids from the Fruits of Lycium barbarum. Foods 2022; 11:foods11030306. [PMID: 35159457 PMCID: PMC8834156 DOI: 10.3390/foods11030306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The fruits of Lycium barbarum are rich in flavonoids, which may contribute to the health-promoting function of Lycium barbarum. However, the composition of flavonoids in the fruits of Lycium barbarum (LBFs) has received little attention. Thus, the goal of this work was to identify more kinds of flavonoids from fruits of Lycium barbarum by liquid chromatography–mass spectrometry. The potential antioxidant and anti-inflammatory activities of LBFs in vitro were also investigated. Thirteen flavonoid compounds were identified in LBFs, of which daphnetin, 6,7-dihydroxycoumarin, astragalin, taxifolin, eriodictyol, naringenin, and chrysoeriol were identified for the first time in the fruits of Lycium barbarum, which greatly enriched the variety of flavonoids in the fruits of Lycium barbarum. LBFs showed a similar superior antioxidant activity to vitamin C. Furthermore, LBFs exhibited an anti-inflammatory activity by suppressing the production of nitric oxide and pro-inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1β, and interleukin-6, in lipopolysaccharide-treated RAW264.7 macrophage cells. This study demonstrated the potential development of LBFs as functional foods.
Collapse
|
22
|
OLIVEIRA CSD, ANDRADE JKS, RAJAN M, NARAIN N. Influence of the phytochemical profile on the peel, seed and pulp of margarida, breda and geada varieties of avocado (Persea Americana Mill) associated with their antioxidant potential. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Santana Andrade JK, Chagas Barros RG, Pereira UC, Nogueira JP, Gualberto NC, Santos de Oliveira C, Shanmugam S, Narain N. Bioaccessibility of bioactive compounds after in vitro gastrointestinal digestion and probiotics fermentation of Brazilian fruits residues with antioxidant and antidiabetic potential. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
ZAPATA JE, SEPÚLVEDA CT, ÁLVAREZ AC. Kinetics of the thermal degradation of phenolic compounds from achiote leaves (Bixa orellana L.) and its effect on the antioxidant activity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.30920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Santana Andrade JK, Chagas Barros RG, Gualberto NC, Santos de Oliveira C, Shanmugam S, Narain N. Influence of in vitro gastrointestinal digestion and probiotic fermentation on the bioaccessibility of gallic acid and on the antioxidant potential of Brazilian fruit residues. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Hamid SB, Hamid AFA. Roles of Nutraceuticals and Functional Food in Prevention of Cardiovascular Disease. RESEARCH ANTHOLOGY ON RECENT ADVANCEMENTS IN ETHNOPHARMACOLOGY AND NUTRACEUTICALS 2022:810-839. [DOI: 10.4018/978-1-6684-3546-5.ch041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The chapter provides an overview of cardiovascular disease, a major cause of mortality worldwide. It relates economic and social impacts to the disease, especially in developing countries. One of the approaches to addressing this challenge is increasing awareness within society, through implementation of education programs. It is important for society to understand the types and roles of the risk factors leading to cardiovascular disease. Emphasis is on the role of functional food and nutraceuticals as dietary sources that could prevent development of cardiovascular disease. The chapter highlights roles of nutraceuticals and functional food sources from medical plants, seeds, berries, and tropical fruits in lowering risk factors. Key findings from trials conducted in Asia, China, Europe, and America provide supporting evidence for the importance of functional food to health, and its potential for modifying the level of risk factors related to cardiovascular diseases.
Collapse
|
27
|
Rafiq S, Sofi SA, Kumar H, Kaul RK, Mehra R, Awuchi CG, Okpala COR, Korzeniowska M. Physicochemical, antioxidant, and polyphenolic attributes of microencapsulated freeze‐dried kinnow peel extract powder using maltodextrin as wall material. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shafiya Rafiq
- Division of Food Science & Technology Sher‐e‐Kashmir University of Agricultural Science & Technology Chatha India
| | - Sajad Ahmad Sofi
- Department of Food Technology Islamic University of Science & Technology Awantipora India
| | - Harish Kumar
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur India
| | - Raj Kumari Kaul
- Division of Food Science & Technology Sher‐e‐Kashmir University of Agricultural Science & Technology Chatha India
| | - Rahul Mehra
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur India
| | - Chinaza G. Awuchi
- Department of Biochemistry Kampala International University Bushenyi Uganda
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Małgorzata Korzeniowska
- Department of Functional Foods Product Development Wrocław University of Environmental and Life Sciences Wrocław Poland
| |
Collapse
|
28
|
Wang Y, Chen Y, Jia Y, Xue Z, Chen Z, Zhang M, Panichayupakaranant P, Yang S, Chen H. Chrysophyllum cainito. L alleviates diabetic and complications by playing antioxidant, antiglycation, hypoglycemic roles and the chemical profile analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114569. [PMID: 34454054 DOI: 10.1016/j.jep.2021.114569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysophyllum cainito L. (C. cainito) is a traditional folk medicine in tropical area which can be an alternative agent for diabetes mellitus. Although the antioxidant and antidiabetic activity of the extracts are reported, little is known on the antiglycation activity and effects on diabetic complications. AIM OF THE STUDY This work was aimed to investigate the chemical profile, antidiabetic, antioxidant activities of C. cainito. Especially, the antiglycation potential as well as the relationships between components and activities were evaluated. MATERIALS AND METHODS The content of the primary components (polyphenols, flavonoids, steroids, and triterpenes), antioxidant, and hypoglycemic effects of ethanolic extracts from C. cainito leaves (CCE-1, 2, 3, 4) and stems (CSE-1, 2, 3, 4) were analyzed and detected. The chemical profiles of CCE-2 were characterized by HPLC-Q-TOF-MS/MS. The antiglycation and protection against oxidative stress effects were determined by in vitro assays. Relationship between bioactivities and components was analyzed by principal component analysis (PCA), heatmap analysis, and Pearson correlation analysis. RESULTS The composition was diverse between leaves and stem extracts with different activities. CCE-2 possessed the highest DPPH scavenging activity. CSE-2 displayed the highest ABTS scavenging activity and ferric reducing power. While CCE-3 showed the most effective inhibition on α-amylase and α-glucosidase activity (IC50 4.103 ± 0.332 μg/mL and 0.180 ± 0.006 mg/mL, respectively). PCA analysis showed that the most important variables in PC1 (60.7%) were total polyphenol and antioxidant activities. The hypoglycemic activity and contents of steroids showed important correlation. Advanced glycation end products formation was effectively inhibited by CCE-2 with myricetin 3-O-rhamnoside as the main constituent. CCE-3 displayed the highest protection effect against L02 cell line oxidation damage. CONCLUSIONS C. cainito leaves might be a promising candidate for antioxidant, hypoglycemic and antiglycation dietary supplement or potential agent against diabetes associated chronic diseases.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
29
|
Andrade JKS, Barros RGC, Pereira UC, Gualberto NC, de Oliveira CS, Shanmugam S, Narain N. α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chem 2021; 373:131494. [PMID: 34753077 DOI: 10.1016/j.foodchem.2021.131494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
The aim of this work was to evaluate the bioaccessibility, cytotoxicity, antioxidant and antidiabetic potential of peel and seeds of cupuassu (Theobroma grandiflorum). Thus, the extracts of cupuassu were evaluated for inhibition of α-amylase, cytotoxicity, and bioaccessibility after gastrointestinal digestion and probiotic fermentation (Lactobacillus delbrueckii, Lactobacillus jhonsoni, Lactobacillus rhamus and Bifidobacterium longum). Digestion increased concentrations of phenolics, showing bioaccessibility of up to 274.13% (total phenolics) and 1105.15% (ORAC). β-carotene, quinic, tartaric, malic, citric, epicatechin, ethyl gallate, epigallocatechin gallate, gallic acid, pyrocatechol, vanillin, ramnetine were the main compounds while the epicatechin, ethyl gallate, gallic acid and pyrocatechol were the major effective phenolic compounds. The extracts did not show toxic effects and the cupuassu seeds showed 97% inhibition of α-amylase and 47.91% bioaccessibility of pyrocatechol. This study suggests that cupuassu extracts are sources of natural antioxidants with promising antidiabetic potential, and probiotics are able to increase phenolic compounds, responsible for health benefits.
Collapse
Affiliation(s)
| | - Romy Gleyse Chagas Barros
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ubatã Corrêa Pereira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
30
|
Magangana TP, Makunga NP, la Grange C, Stander MA, Fawole OA, Opara UL. Blanching Pre-Treatment Promotes High Yields, Bioactive Compounds, Antioxidants, Enzyme Inactivation and Antibacterial Activity of 'Wonderful' Pomegranate Peel Extracts at Three Different Harvest Maturities. Antioxidants (Basel) 2021; 10:1119. [PMID: 34356352 PMCID: PMC8301009 DOI: 10.3390/antiox10071119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
'Wonderful' pomegranate (Punica granatum L.) peel contains a wide range of phytochemicals including vitamins, dietary fibre, phenolic compounds, and antioxidant properties. Yet, it is often used as animal feed or discarded in landfills, which is not the best eco-friendly way to utilize this phenolic-rich bioresource. Finding novel ways of utilizing pomegranate peel waste could prove a more profitable and eco-friendlier alternative that is far more beneficial to the economy. Adding a blanching pre-treatment step at optimal conditions prior to processing of pomegranate peel aids in the inactivation of quality changing enzymes such as polyphenol oxidase (PPO) and peroxidase (POD), which are accountable for the degradation reactions that cause breakdown of nutrients and phytochemicals. This study aimed to determine the effect of blanching at 80 °C for 3 min on the yield, polyphenol content, antioxidant properties, enzyme inactivation, and antibacterial activity of 'Wonderful' pomegranate peel ethanolic extracts from three different harvest maturities (unripe, ripe, and over ripe), including a comprehensive characterization and quantification using liquid chromatography-mass spectrometry (LC-MS). The blanched unripe peel extracts exhibited the highest total phenolic content, total tannin content, 2,2-diphenyl-1-picryl hydrazyl (DPPH) antioxidant activity, 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity and ferric ion reducing antioxidant power (FRAP) at 14.0 mg gallic acid equivalent (GAE)/g dry mass (DM), 1.0 mg GAE/g DM, 359.1 µmol Trolox/g DM, 912.2 µmol Trolox/g DM and 802.5 µmol Trolox/g DM, respectively. There was significant (p < 0.05) decrease in PPO and POD activity of all blanched pomegranate peel extracts. The blanched unripe peel extracts had the lowest PPO activity at 0.2 U/g fresh weight (FW), with a 70% PPO inactivation compared to ripe and over ripe harvest, whereas the highest POD inactivation was recorded at 67% in over ripe peel extracts. All blanched peel extracts, irrespective of harvest maturity, had minimum inhibitory concentration (MIC) values at 160 µg/mL against all four bacteria strains tested, which included two Gram-positive bacterial strains (Bacillus subtilis ATCC 6051 and Staphylococcus aureus ATCC 12600) and two Gram-negative bacteria (Escherichia coli 11775 and Klebsiella pneumonia ATCC 13883). A total of 25 metabolites including phenolic acids (4), organic acids (1), flavonoids (4), ellagitannins (13), and other polyphenols (3) in all three pomegranate peel samples were tentatively identified after LC-MS profiling. The blanched unripe peel extracts showed significantly higher punicalin α and β, β punicalagin, catechin, epicatechin content at 414 mg/g, and 678 mg/g, 151 mg/g, 229 mg/g, respectively, compared to peel extracts from other harvest maturities. This study provides supportive information for the commercial utilization of pomegranate fruit peel as source of value-added ingredients for the development of novel food, cosmetics, and pharmacological products.
Collapse
Affiliation(s)
- Tandokazi Pamela Magangana
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.); (C.l.G.)
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.); (C.l.G.)
| | - Chris la Grange
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.); (C.l.G.)
| | - Maria A. Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Enugu State, Nigeria
| |
Collapse
|
31
|
Zhang J, Gao N, Shu C, Cheng S, Sun X, Liu C, Xin G, Li B, Tian J. Phenolics Profile and Antioxidant Activity Analysis of Kiwi Berry ( Actinidia arguta) Flesh and Peel Extracts From Four Regions in China. FRONTIERS IN PLANT SCIENCE 2021; 12:689038. [PMID: 34276738 PMCID: PMC8282361 DOI: 10.3389/fpls.2021.689038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The kiwi berry (Actinidia arguta) has been widely studied because of its rich phenolic, flavonoid, and vitamin C contents. Numerous reports have demonstrated that fruit peels contain higher phenolic content and antioxidant activity than that of flesh. In this study, the phytochemical content and antioxidant activities of peel and flesh extracts of six kiwi berries were analyzed from four regions (namely, Dandong, Benxi, Taian, and Tonghua) in China. The antioxidant activity was determined using the peroxyl radical scavenging capacity (PSC) and cellular antioxidant activity (CAA) assays. The phenolic, flavonoid, and vitamin C contents of kiwi berry peel were 10.77, 13.09, and 10.38 times richer than that of kiwi berry flesh, respectively. In addition, the PSC and CAA values of kiwi berry peel were higher than those of kiwi berry flesh. The analysis of the separation and contents of phenolics were performed by the high-performance liquid chromatography (HPLC)-diode-array detectormass spectrometry/mass (DAD-MS/MS) system, and the results illustrated that protocatechuic acid, caffeic acid, chlorogenic acid, and quinic acid were the major phenolic compounds. In conclusion, this study indicated that kiwi berry peel contains a rich source of antioxidants. These data are of great significance for the full development and utilization of kiwi berries in these four regions of China to produce nutraceutical and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Li
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinlong Tian
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
32
|
Evaluation of bioactive compounds, phytochemicals profile and antioxidant potential of the aqueous and ethanolic extracts of some traditional fruit tree leaves used in Brazilian folk medicine. Food Res Int 2021; 143:110282. [PMID: 33992382 DOI: 10.1016/j.foodres.2021.110282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
The aim of this study was to analyze eight selected species of leaves, used in the traditional medicine of the Northeast region of Brazil obtained from several fruit trees (grageru, soursop, jambolanum, passion fruit, insulin, nogueira, pedra ume kaá and stévia), regarding their polyphenols contents and antioxidant activity. Condensed and hydrolysable tannins, phenolics and flavonoids contents were determined and the antioxidant activities measured by ABTS, FRAP and ORAC assays. Organic acids were analyzed by HPLC-DAD system. Phenolic compounds of aqueous and ethanolic extracts were determined by UHPLC-DAD-MS. The results revealed high contents of total phenolics (13.34 ± 0.19 - 127.65 ± 0.21 mg.g-1 of GAE:QE (2:1) of sample) and flavonoids (12.30 ± 0.42 - 71.79 ± 0.00 mg.g-1 QE of sample). The ABTS results exhibited extraordinary activity in the extracts (74.48 ± 6.23 - 1487.33 ± 2.67 µmol Trolox.g-1 of sample). Acids quinic, tartaric, citric, gallic, chlorogenic, p-coumaric, ferulic and vanillic along with naringenin, rutin, vanillin, catechin, epicatechin, kaempferol were the most important compounds. Thus, these leaves extracts may be considered as sources of phenolics compounds having a high potential as natural antioxidants. In addition, the polyphenols present in these leaves have many beneficial effects and can also be used in medicinal and nutraceuticals products with enhanced bioactivities.
Collapse
|
33
|
Effects of consumption of acerola, cashew and guava by-products on adiposity and redox homeostasis of adipose tissue in obese rats. Clin Nutr ESPEN 2021; 43:283-289. [PMID: 34024528 DOI: 10.1016/j.clnesp.2021.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fruit by-products contain phytochemicals, fibers and other components that can improve the redox imbalance of obesity. OBJECTIVE The objective was to evaluate the effects of consumption of by-products of acerola, cashew and guava on the adiposity and redox homeostasis of adipose tissue in obese rats. METHODS The animals were separated into 5 groups, control (CTL), high fat (HF), HF supplemented with acerola (HFA), cashew (HFC) and guava (HFG). RESULTS Thiol quantification, lipid profile, catalase (CAT) and glutathione peroxidase (GPX) test were performed. TGL and VLDL levels were increased in HF group, and the treated groups did not change the lipid profile. CAT activity was increased in HFA and HFG groups. HFA was able to reduce the weight of the subcutaneous cushion. CONCLUSION Treatment with fruit by-products did not alter weight gain, energy efficiency and body weight. Thus, the by-products of acerola and guava can be used as a sustainable alternative in the treatment of obesity.
Collapse
|
34
|
Brito Cangussu L, P Leão D, Oliveira LS, Franca AS. Profile of bioactive compounds in pequi (Caryocar brasilense Camb.) peel flours. Food Chem 2021; 350:129221. [PMID: 33618096 DOI: 10.1016/j.foodchem.2021.129221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The bioactive compounds of pequi peel flours were characterized. Flavonoid contents ranged from 19.67 to 87.61 mg/100 g, high in comparison to many vegetables described in the literature. Gallic acid (11.52-418.67 mg/100 g), gallate ethyl (2026.75 - 5205.90 mg/100 g), ellagic acid (509.47 - 1630.66 mg/100 g), lutein (0.17-1.36 mg/100 g), β-carotene (0.82 - 1.49 mg/100 g), and β-cryptoxanthin (0.07 - 0.11 mg/100 g) were identified by HPLC, contributing to a greater valorization of the pequi peel flours. Phytochemical tests indicated the presence of hydrolyzable tannins and saponins. The detection of these compounds makes the product commercially attractive, in addition to generating value for an agro-industrial residue. The results obtained in this study confirm the multifunctional potential of pequi peel flour as a functional ingredient.
Collapse
Affiliation(s)
- Lais Brito Cangussu
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Daniela P Leão
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Leandro S Oliveira
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; DEMEC/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Adriana S Franca
- PPGCA/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; DEMEC/Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
35
|
The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021; 26:molecules26020515. [PMID: 33478152 PMCID: PMC7835992 DOI: 10.3390/molecules26020515] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The food sector includes several large industries such as canned food, pasta, flour, frozen products, and beverages. Those industries transform agricultural raw materials into added-value products. The fruit and vegetable industry is the largest and fastest-growing segment of the world agricultural production market, which commercialize various products such as juices, jams, and dehydrated products, followed by the cereal industry products such as chocolate, beer, and vegetable oils are produced. Similarly, the root and tuber industry produces flours and starches essential for the daily diet due to their high carbohydrate content. However, the processing of these foods generates a large amount of waste several times improperly disposed of in landfills. Due to the increase in the world’s population, the indiscriminate use of natural resources generates waste and food supply limitations due to the scarcity of resources, increasing hunger worldwide. The circular economy offers various tools for raising awareness for the recovery of waste, one of the best alternatives to mitigate the excessive consumption of raw materials and reduce waste. The loss and waste of food as a raw material offers bioactive compounds, enzymes, and nutrients that add value to the food cosmetic and pharmaceutical industries. This paper systematically reviewed literature with different food loss and waste by-products as animal feed, cosmetic, and pharmaceutical products that strongly contribute to the paradigm shift to a circular economy. Additionally, this review compiles studies related to the integral recovery of by-products from the processing of fruits, vegetables, tubers, cereals, and legumes from the food industry, with the potential in SARS-CoV-2 disease and bacterial diseases treatment.
Collapse
|
36
|
Amarowicz R, Pegg RB. Tree Nuts and Peanuts as a Source of Natural Antioxidants in our Daily Diet. Curr Pharm Des 2020; 26:1898-1916. [PMID: 32186272 DOI: 10.2174/1381612826666200318125620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/27/2020] [Indexed: 01/17/2023]
Abstract
Tree nuts and peanuts are healthy foods with a proven track record of helping to reduce the incidence of chronic diseases, most notably cardiovascular disease. At the point of consumption, all nuts contain low moisture and ≥ 50% lipid contents, but this is where similarities end. The levels of key nutrients and bioactives including vitamin C, vitamin E, L-arginine, minerals (such as selenium and zinc), and phenolics can differ markedly. Distinctions in the types and quantities of phenolic constituents for tree nut species, as well as the impact of digestion, will affect the nuts' antioxidant potential in vivo. This work provides some insight into the different types of phenolics found in tree nuts and peanuts, the antioxidant potential of their phenolic extracts using in vitro chemical assays, the effect of thermal processing on the stability of the nuts' endogenous phenolics, and the impact on biomarkers of human health arising from randomized clinical trials. Key biomarkers include measures in the reduction of LDL oxidation as well as increases in the levels of vitamin E and selected phenolic compounds in blood plasma postprandially from those of baseline.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, 100 Cedar Street, Athens, GA, 30602-2610, United States
| |
Collapse
|
37
|
A low-cost optical sensor to quantify bioactive compounds in fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00601-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Flores DR, Casados LE, Velasco SF, Ramírez AC, Velázquez G. Comparative study of composition, antioxidant and antimicrobial activity of two adult edible insects from Tenebrionidae family. BMC Chem 2020; 14:55. [PMID: 32944716 PMCID: PMC7488255 DOI: 10.1186/s13065-020-00707-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023] Open
Abstract
In the case of Tenebrionidae family insects, studies focus on larval stage, leaving a lack of information regarding other stages. Therefore, this study was performed in order to understand the differences between the nutritional composition and the bioactivity of two species of this family in their adult stage, fed with a specific diet. Adult beetles of both species were defatted, lyophilized and protein extracted with buffer. Proximal and phytochemical analysis of the extracts of each insect were performed, along with protein extract and hydrolysis analysis by Tris-Tricine and Tris Glycine SDS PAGE. This analysis showed that T. molitor contained more protein and fat than U. dermestoides but contained less crude fiber. The protein extraction was made with PBS, where 130 and 45 kDa bands showed predominant for U. dermestoides, and less protein was present for T. molitor. Antioxidant and antimicrobial activities of the enzymatic protein hydrolysates and protein crude extracts were determined. Presence of protein associated with the antioxidant activity were found in both insects. Nonetheless U. dermestoides had a higher antioxidant activity with the protein extract in contrast with the higher antioxidant activity shown by U. dermestoides once the extracts were digested. After proteolysis, protein extracts showed an increasing antioxidant activity, plus, the ability to inhibit microbial growth of Proteus, Shigella and Bacillus. Insect protein hydrolysates with protease open the possibility for the use of these beetles as new sources of encrypted peptides for microbiological control once characterized.
Collapse
Affiliation(s)
- Daniel R. Flores
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| | - Luz E. Casados
- Life and Science Division, Food Department, University of Guanajuato, Campus Irapuato-Salamanca, Km 9 carretera Irapuato-Silao ap 311, 36500 Irapuato, Guanajuato Mexico
| | - Sandra F. Velasco
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| | - Ana C. Ramírez
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| | - Gilberto Velázquez
- Chemistry Department, University of Guadalajara, 1421 Marcelino García Barragán Blvd, 44430 Guadalajara, Jalisco Mexico
| |
Collapse
|
39
|
Mohammadi-Moghaddam T, Firoozzare A, Kariminejad M, Sorahi M, Tavakoli Z. Black plum peel as a useful by-product for the production of new foods: chemical, textural, and sensory characteristics of Halva Masghati. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1835953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Toktam Mohammadi-Moghaddam
- Department of Nutritional Sciences & Food Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Firoozzare
- Department of Agricultural Economics, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohaddeseh Kariminejad
- Department of Nutritional Sciences & Food Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Sorahi
- Department of Nutritional Sciences & Food Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zahra Tavakoli
- Department of Nutritional Sciences & Food Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
40
|
Estaji M, Mohammadi-Moghaddam T, Gholizade-Eshan L, Firoozzare A, Hooshmand-Dalir MAR. Physicochemical characteristics, sensory attributes, and antioxidant activity of marmalade prepared from black plum peel. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1835954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohsen Estaji
- Department of Food Science and Technology, Azad Islamic University of Sabzevar, Sabzevar, Iran
| | - Toktam Mohammadi-Moghaddam
- Department of Nutritional Sciences & Food Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Leila Gholizade-Eshan
- Department of Food Science and Technology, Professional and Technical College Girls Neyshabur, Neyshabur, Iran
| | - Ali Firoozzare
- Department of Agricultural Economics, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
41
|
Rezende YRRS, Nogueira JP, Silva TOM, Barros RGC, Oliveira CSD, Cunha GC, Gualberto NC, Rajan M, Narain N. Enzymatic and ultrasonic-assisted pretreatment in the extraction of bioactive compounds from Monguba (Pachira aquatic Aubl) leaf, bark and seed. Food Res Int 2020; 140:109869. [PMID: 33648187 DOI: 10.1016/j.foodres.2020.109869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
The present study aims to characterize leaf, bark and seed of monguba in terms of their physicochemical and bioactive composition, and to determine total phenolic compounds (TPC) and total flavonoids (TF), well as their antioxidant activities (AA), of three organic solvent extracts with and without enzyme pretreatment by ultrasonic assisted extraction. Physicochemical composition was measured by pH, total titratable acidity, total soluble solids, moisture, ashes, lipids, crude protein, raw fiber, total carbohydrates, and water activity as well as, phytochemical composition analysis constituted of sugars, condensed (CT) and hydrolysable tannins (HT), carotenoids, total anthocyanins (TA), and organic acids contents. TPC and TF contents, and UHPLC/PDA/QDa flavonoids and phenolic acids quantification were performed for the solvent extracts. Antioxidant activity was determined by radical scavenging capacity assays (ABTS, DPPH, and ORAC), and reducing power assay (FRAP). Results showed that the leaf stood out with higher concentrations of ash, HT, TA and carotenoids; the bark with higher concentrations of raw fiber, total carbohydrates and organic acids (tartaric, quinic and 3.4-dihydroxybenzoic acids); in contrast, the seeds showed high concentrations of lipids, crude protein, sugars (fructose and sucrose), CT, and high values in all AA. The solvents significantly influenced the extraction of TPC and TF, highlighting ethanol. In general, the enzymatic treatments empowered the phenolic extraction and AA. The monguba seed extracts showed higher concentrations of hydroxycinnamic acids (chlorogenic acid, mainly), and flavanols (catechin and epicatechin), whereas the leaf extracts, flavanones (narigenin), flavonols (rutin, mainly) and flavones (acacetin). The bark extracts stood out for the presence of vanillin. The monguba seed extract can be used in functional foods production.
Collapse
Affiliation(s)
| | - Juliete Pedreira Nogueira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Taís Oliveira Matos Silva
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Romy Gleyse Chagas Barros
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Graziele Costa Cunha
- Laboratory of Studies of Natural Organic Matter, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Murugan Rajan
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão - SE, Brazil.
| |
Collapse
|
42
|
Brito TBN, Ferreira MSL, Fai AEC. Utilization of Agricultural By-products: Bioactive Properties and Technological Applications. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1804930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- T. B. N. Brito
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
| | - M. S. L Ferreira
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
- Department of Food Science, School of Nutrition, UNIRIO, Rio de Janeiro/RJ, Brazil
| | - Ana E. C. Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro, UERJ, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
43
|
Effects of ultrasound on submerged fermentation for producing antioxidant metabolites from Botryosphaeria dothidea. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Barros RGC, Pereira UC, Andrade JKS, de Oliveira CS, Vasconcelos SV, Narain N. In vitro gastrointestinal digestion and probiotics fermentation impact on bioaccessbility of phenolics compounds and antioxidant capacity of some native and exotic fruit residues with potential antidiabetic effects. Food Res Int 2020; 136:109614. [PMID: 32846632 DOI: 10.1016/j.foodres.2020.109614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 01/27/2023]
Abstract
A bioaccessibility study on polyphenols, flavonoids and antioxidant capacity after the in vitro simulated digestion was evaluated for extract of fruit (caja-umbu, cashew apple, canafistula, cupuassu, soursop, manguba and strawberry) residues. The results show that ORAC assay presented a significant increase (p ≤ 0.05) in bioaccessibility varying from 35.99 ± 0.02% (caja-umbu residue) to 339.83 ± 0.06% (cupuassu residue) after the digestion process. Approximately 15.01 ± 1.54 to 237.77 ± 4.10% of phenolic compounds were bioaccessible after probiotics fermentation. The identification and quantification of phenolic compounds were performed through the UHPLC-QDa-MS system. Catechin and epicatechin were widely detected in all fruit residues. After the gastrointestinal digestion and probiotics fermentation the contents of simple phenolics and hydroxybenzoic acids increased. Also, the α-amylase inhibitory activity exhibited a maximum value of 98.66 ± 1.41% for soursop residue. To the best of our knowledge, for the first time, bioaccessibility study on caja-umbu, canafistula and manguba residues was performed in association with antidiabetic effects. The soursop residue presented the highest bioaccessibility and can be potentially explored for application in functional foods and pharmaceuticals. Therefore, the joint consumption of probiotics and phytochemicals are essential for the effective assimilation by the human organism.
Collapse
Affiliation(s)
- Romy Gleyse Chagas Barros
- Laboratory of Flavor & Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil.
| | - Ubatã Corrêa Pereira
- Laboratory of Flavor & Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Julianna Karla Santana Andrade
- Laboratory of Flavor & Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor & Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Stefanie Vieira Vasconcelos
- Laboratory of Flavor & Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor & Chromatographic Analysis, PROCTA, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
| |
Collapse
|
45
|
Moo-Huchin VM, Ac-Chim DM, Chim-Chi YA, Ríos-Soberanis CR, Ramos G, Yee-Madeira HT, Ortiz-Fernández A, Estrada-León RJ, Pérez-Pacheco E. Huaya (Melicoccus bijugatus) seed flour as a new source of starch: physicochemical, morphological, thermal and functional characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00573-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Zheng M, Lu S, Xing J. Enhanced antioxidant, anti-inflammatory and α-glucosidase inhibitory activities of citrus hesperidin by acid-catalyzed hydrolysis. Food Chem 2020; 336:127539. [PMID: 32763730 DOI: 10.1016/j.foodchem.2020.127539] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Hesperidin hydrolysates (HHS) was produced by the hydrolysis of hesperidin (HDN) in previous studies. The potential components in HHS were identified by LC-MS, and minor components (MCS) in HHS were isolated. Antioxidant activities by radical-scavenging capacities, reducing capacity and β-carotene-linoleate assay, anti-inflammatory effects by inhibiting NO production of RAW 264.7 cells, and α-glucosidase inhibitory effects of HDN, HHS, MCS and henperetin (HTN) were investigated in present study. HHS showed higher radical scavenging activities, higher reducing capacity, and higher inhibitory activity in the β-carotene-linoleate assay than HDN. HHS inhibited the production of NO and pro-inflammatory cytokines of RAW 264.7 cells more strongly than HDN. HHS also intensively inhibited α-glucosidase activity whereas HDN showed little activity. In addition, the effects of MCS on above activities showed it play a synergistic part with HTN. This work suggested that hydrolyzation of HDN enhance the activities, and provided valuable information on effective utilization of HDN.
Collapse
Affiliation(s)
- Meiyu Zheng
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Shengmin Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China.
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| |
Collapse
|
47
|
Olvera-Aguirre G, Mendoza-Taco MM, Arcos-Álvarez DN, Piñeiro-Vázquez AT, Moo-Huchin VM, Canul-Solís JR, Castillo-Sánchez L, Ramírez-Bautista MA, Vargas-Bello-Pérez E, Chay-Canul AJ. Effect of Feeding Lactating Ewes with Moringa oleifera Leaf Extract on Milk Yield, Milk Composition and Preweaning Performance of Ewe/Lamb Pair. Animals (Basel) 2020; 10:ani10071117. [PMID: 32610660 PMCID: PMC7401604 DOI: 10.3390/ani10071117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The use of plant extracts as supplemental additives in ruminant diets shows beneficial effects. This study evaluated the effects of different doses of Moringa oleifera leaf extract (MOE) on milk production and milk composition in ewes and on preweaning performance of their lambs. At different doses, MOE supplementation did not affect overall productive traits in ewes and lambs and did not have negative effects on milk production and milk quality. Abstract The objective this study was to evaluate the effect of different doses of Moringa oleifera leaf extract (MOE) on milk production and milk composition in ewes and on preweaning performance of their lambs. Twenty-four lactating ewes were housed individually with their lambs and assigned to four groups in a completely randomized design. The treatments included a basal diet without MOE (MOE0) or a basal diet supplemented with either 20 mL MOE per ewe per day (MOE20), 40 mL MOE per ewe per day (MOE40) or 60 mL MOE per ewe per day (MOE60). Over 45 days, milk production was recorded weekly and individual milk samples were collected for chemical analysis. Milk yield, fat-corrected milk and daily yields were similar among the four treatments. The supply of MOE did not affect ewe weaning efficiency and average daily gain or litter weaning weight of the lambs. Overall, the results from this study showed that dietary supplementation of hydroalcoholic extracts of Moringa oleifera leaves at doses of 20, 40 or 60 mL/ewes/d in lactating ewes does not have negative effects on milk yield, milk composition or lamb performance.
Collapse
Affiliation(s)
- Gabriel Olvera-Aguirre
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, km 25. Carretera Villahermosa-Teapa, R/A La Huasteca., Colonia Centro Tabasco 86280, Mexico; (G.O.-A.); (M.M.M.-T.)
| | - Miriam Marleny Mendoza-Taco
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, km 25. Carretera Villahermosa-Teapa, R/A La Huasteca., Colonia Centro Tabasco 86280, Mexico; (G.O.-A.); (M.M.M.-T.)
| | - Darwin Nicolas Arcos-Álvarez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán 97345, Mexico; (D.N.A.-Á.); (A.T.P.-V.)
| | - Angel Trinidad Piñeiro-Vázquez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán 97345, Mexico; (D.N.A.-Á.); (A.T.P.-V.)
| | - Victor Manuel Moo-Huchin
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, km 5 Mérida-Progreso, Mérida, Yucatán 97120, Mexico;
| | - Jorge Rodolfo Canul-Solís
- Tecnológico Nacional de México, Instituto Tecnológico de Tizimín, Tizimín, Yucatán 97000, Mexico; (J.R.C.-S.); (L.C.-S.)
| | - Luis Castillo-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico de Tizimín, Tizimín, Yucatán 97000, Mexico; (J.R.C.-S.); (L.C.-S.)
| | | | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
- Correspondence: (E.V.-B.-P.); (A.J.C.-C.)
| | - Alfonso Juventino Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, km 25. Carretera Villahermosa-Teapa, R/A La Huasteca., Colonia Centro Tabasco 86280, Mexico; (G.O.-A.); (M.M.M.-T.)
- Correspondence: (E.V.-B.-P.); (A.J.C.-C.)
| |
Collapse
|
48
|
Salehi B, Gültekin-Özgüven M, Kirkin C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra CF, da Silva TG, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Cho WC, Martins N. Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective. Front Endocrinol (Lausanne) 2020; 11:295. [PMID: 32595597 PMCID: PMC7303264 DOI: 10.3389/fendo.2020.00295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Anacardium plants have received increasing recognition due to its nutritional and biological properties. A number of secondary metabolites are present in its leaves, fruits, and other parts of the plant. Among the diverse Anacardium plants' bioactive effects, their antioxidant, antimicrobial, and anticancer activities comprise those that have gained more attention. Thus, the present article aims to review the Anacardium plants' biological effects. A special emphasis is also given to their pharmacological and clinical efficacy, which may trigger further studies on their therapeutic properties with clinical trials.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Celale Kirkin
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Özyegin University, Istanbul, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Istanbul, Turkey
| | | | - Joara Nalyda Pereira Carneiro
- Laboratory of Applied Mycology of Cariri, Department of Biological Sciences, Cariri Regional University, Crato, Brazil
| | - Camila Fonseca Bezerra
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | - Teresinha Gonçalves da Silva
- Laboratory of Planning and Synthesis of Drugs, Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | - Benabdallah Amina
- Department of Agronomy, SAPVESA Laboratory, Nature and Life Sciences Faculty, University Chadli Bendjedid, El-Tarf, Algeria
| | - Lorene Armstrong
- State University of Ponta Grossa, Department of Pharmaceutical Sciences, Ponta Grossa, Paraná, Brazil
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, Nigde, Turkey
| | - Mustafa Sevindik
- Osmaniye Korkut Ata University, Bahçe Vocational School, Department of Food Processing, Osmaniye, Turkey
| | - Zubaida Yousaf
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mahmoud Muddathir
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción, Chile
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Uttarakhand, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
49
|
Zhu C, Zhou X, Long C, Du Y, Li J, Yue J, Pan S. Variations of Flavonoid Composition and Antioxidant Properties among Different Cultivars, Fruit Tissues and Developmental Stages of Citrus Fruits. Chem Biodivers 2020; 17:e1900690. [PMID: 32311206 DOI: 10.1002/cbdv.201900690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
A large number of biologically active compounds are present in ripe citrus fruits. However, few studies have been focused on the changes in flavonoids and the evolution of antioxidant activity during citrus fruit growth. In this study, fruits of five citrus cultivars cultivated in China were sampled at 60-210 days post-anthesis (DPA) at intervals of 30 days. The amounts of main flavonoids in the peel and pulp were analyzed by HPLC and their activities were studied by DPPH, ABTS and FRAP. The results showed that the contents of hesperidin, diosmin, eriodictyol, rutin and nobiletin increased before 90 DPA and then decreased with the growth and development of fruits, but an opposite tendency was observed for naringin and narirutin. The antioxidant activities in citrus peel and pulp were found to be significantly correlated with some flavonoids. The results may be of guiding values in citrus production and utilization of citrus fruit by-products.
Collapse
Affiliation(s)
- Chunhua Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Road, Wuhan, 430070, Hubei, P. R. China.,Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Changqin Road, Ruili, 678600, Yunnan, P. R. China
| | - Xianyan Zhou
- Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Changqin Road, Ruili, 678600, Yunnan, P. R. China
| | - Chunrui Long
- Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Changqin Road, Ruili, 678600, Yunnan, P. R. China
| | - Yuxia Du
- Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Changqin Road, Ruili, 678600, Yunnan, P. R. China
| | - Jinxue Li
- Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Changqin Road, Ruili, 678600, Yunnan, P. R. China
| | - Jianqiang Yue
- Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Changqin Road, Ruili, 678600, Yunnan, P. R. China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Road, Wuhan, 430070, Hubei, P. R. China.,Key Laboratory of Environmental Food, Ministry of Education, Huazhong Agricultural University, Shizishan Road, Wuhan, 430070, Hubei, P. R. China
| |
Collapse
|
50
|
Boeri P, Piñuel L, Dalzotto D, Monasterio R, Fontana A, Sharry S, Barrio DA, Carrillo W. Argentine Patagonia barberry chemical composition and evaluation of its antioxidant capacity. J Food Biochem 2020; 44:e13254. [PMID: 32346894 DOI: 10.1111/jfbc.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023]
Abstract
An important portion of vitamins, minerals and polyphenols components in human diet are captured from fruit consumption. Argentinean Patagonia Berberis microphylla was characterized with the phenolic content, the proximate composition and the identification and quantification of anthocyanins, not-anthocyanins and proteins. The antioxidant capacity of berberis ethanolic extracts (EB) was determined by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. EB was used to reduce production of reactive substances species (ROS) in zebrafish. EB presented a total polyphenols content of 1,035.03 mg GAE/100 g fresh weight (FW). EB presented an ABTS value of 116.25 ± 17 μmol TE/g FW. EB presented a DPPH value of 137.80 ± 1.90 μmol TE/g FW. EB was able of reducing the ROS in zebrafish. Berberies Protein Isolate (BPI) presented proteins with bands from 15 to 62 kDa. BPI presented an ABTS value of 593.11 ± 8.60 μmol TE/g. The BPI duodenal digest presented a value of 641.07 ± 12.60 μmol TE/g digests. PRACTICAL APPLICATIONS: The practical applications of the present study are to increase scientific knowledge for consumers about the quality and benefits of the consumption of the native fruit (Berberis microphylla) from the Patagonia region of Argentine. This work describes the protein profile of berberies, their digestibility and their antioxidant activity. This study allows to better understand the phytonutrients that make up this fruit. Future studies may identify the peptides present in hydrolyzates. The bio-compounds of this fruit could be used as functional ingredients by the food industry for different purposes.
Collapse
Affiliation(s)
- Patricia Boeri
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | - Lucrecia Piñuel
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | | | - Romina Monasterio
- Institute of Agricultural Biology of Mendoza (IBAM), UNCuyo-CONICET, Mendoza, Argentina
| | - Ariel Fontana
- Institute of Agricultural Biology of Mendoza (IBAM), UNCuyo-CONICET, Mendoza, Argentina
| | - Sandra Sharry
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,Wood Research Laboratory (LIMAD), Faculty of Agricultural and Forestry Sciences, National University of La Plata, La Plata, Argentina
| | - Daniel Alejandro Barrio
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | - Wilman Carrillo
- Faculty of Agricultural Sciences, Technical University of Babahoyo, Babahoyo, Ecuador
| |
Collapse
|