1
|
Ghaffarinasab M, Kaeidi A, Hassanshahi J. Mitigating Remote Organ-Induced Brain Injury in Renal Ischemia-Reperfusion: The Role of Oleuropein in Inhibiting Oxidative Stress, Inflammation, Ferroptosis, and Apoptosis in Male Rats. J Neuroimmune Pharmacol 2025; 20:24. [PMID: 40056289 DOI: 10.1007/s11481-025-10184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/26/2025] [Indexed: 03/10/2025]
Abstract
Renal ischemia-reperfusion (RIR) induces brain damage as a distant organ. Oleuropein has antioxidant properties. This study aimed to explore oleuropein's protective effects against brain injury following RIR in rats. Thirty-six male Wistar rats were divided into six groups (n = 6) including sham, oleuropein (200 mg/kg), RIR, and RIR groups treated with oleuropein (50, 100, and 200 mg/kg). 48 h after injury, blood urea nitrogen (BUN) and creatinine levels were surveyed. The western blotting analysis was performed to assay the interleukin-1 beta (IL-1β), IL-10, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-κB p65), Bcl-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), cleaved caspase-3, glutathione peroxidase-4 (GPX4), nuclear factor erythroid-related factor-2 (NRF2), solute carrier family 7, member 11 (SLC7A11), and anti-acyl-CoA synthetase long-chain family 4 (ACSL4) proteins in kidney and/or brain tissues. Also, malondialdehyde (MDA) and total antioxidant capacity (TAC) levels, the activity of GPx, catalase, and superoxide dismutase (SOD) were evaluated. Kidney and brain tissues damage scores (KTDS and BTDS) were determined by H&E staining method. Prussian blue staining was conducted to identify iron accumulation. RIR significantly increased BUN, serum creatinine levels, KTDS, BTDS, iron deposition, MDA concentration, Bax, cleaved caspase-3, IL-1β, TNF-α, NF-κB p65, ACSL4 proteins expression levels, while decreasing TAC content, SOD, GPx, and catalase activity, Bcl-2, GPX4, SLC7A11 and NRF2 proteins expression in kidney and/or brain tissue of RIR group versus the sham (P < 0.05). Moreover, oleuropein attenuated these indicators in the RIR + oleuropein (200 mg/kg) group versus the RIR group (P < 0.05). Our study showed that RIR induced brain damage, and oleuropein exhibited protective effects against brain injury induced by RIR, through inhibiting oxidative stress, inflammation, ferroptosis, and apoptosis mechanisms.
Collapse
Affiliation(s)
- Mohammad Ghaffarinasab
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Khalije Fars Blvd., Pistachio Co. Street, P.O. Box 77175-835, Rafsanjan, 7719617996, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Khalije Fars Blvd., Pistachio Co. Street, P.O. Box 77175-835, Rafsanjan, 7719617996, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jalal Hassanshahi
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Demirer B, Samur G. Health Benefits of Olive Leaf: The Focus on Efficacy of Antiglycation Mechanisms. Nutr Rev 2025; 83:551-561. [PMID: 39530765 DOI: 10.1093/nutrit/nuae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Olive leaves have been a therapeutic herbal agent for diseases for centuries. Olive leaves contain many health-beneficial nutrients and bioactive components. There is much evidence for the positive effects of the phenolic compounds they contain on health. The main active phenolic component in olive leaves is oleuropein, which can constitute 6%-9% of the leaf's dry matter and has been intensively studied for its promising results/effects on human health. In addition, olive leaf provides health benefits through bioactive components, such as secoiridoids, flavonoids, triterpenes, and lignans. The anti-inflammatory, antioxidant, anticancer, antidiabetic, and antihypertensive properties of bioactive components, especially oleuropein, are well known. In addition, various health benefits, such as neuroprotective effects and microbiota modulation, are also mentioned. In recent years, in vitro studies have shown that olive leaves and bioactive components from olive leaves may have antiglycation effects. Currently, it is thought that the components found in olive leaves have a direct or indirect antiglycation effect. It is thought that, their direct effects include reducing the interaction between sugars and amino acids, nucleic acids, and lipids and sequestering reactive dicarbonyl species, and their indirect effects include preventing the formation of advanced glycation end-products (AGEs) by reducing inflammation and oxidative stress. However, in vivo and clinical studies are needed to prove these mechanisms and understand how their metabolism works in the human body. This review examines the beneficial health effects of olive leaves and their potential antiglycation role.
Collapse
Affiliation(s)
- Büşra Demirer
- Nutrition and Dietetics, Karabuk University, Karabuk 78050, Turkey
| | - Gülhan Samur
- Nutrition and Dietetics, Hacettepe University, Ankara 06320, Turkey
| |
Collapse
|
3
|
Teslić N, Pojić M, Stupar A, Mandić A, Mišan A, Pavlić B. PhInd database - Polyphenol content in Agri-food by-products and trends in extraction technologies: A critical review. Food Chem 2024; 458:140474. [PMID: 39043067 DOI: 10.1016/j.foodchem.2024.140474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
Sustainable Development Goal 12 and target 12.3 set by the United Nations aims to reduce"food waste" per capita global for 50% losses by 2030. Databases such as the PhInd could help us to achieve set goals via mapping the potential ways for valorization of polyphenols from the agri-food by-products and waste. Fruit by-products (73.2% of the PhInd entries) are the most studied sources of polyphenols and future studies might be more focused on vegetables. More than half (55.8%) of entries were evaluated polyphenols in samples created in laboratory. These samples could have significantly different composition from industrial samples. Solid-liquid extraction (53.5%) and solvents like water, ethanol and aqueous ethanol (51.5%) were the most often used for extraction of polyphenols. Green solvents as NADES (0.4%) are rarely used in studies and should be more explored.
Collapse
Affiliation(s)
- Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Milica Pojić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Anamarija Mandić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Aleksandra Mišan
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, BP, Serbia.
| |
Collapse
|
4
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
5
|
Fiorentini C, Leni G, de Apodaca ED, Fernández-de-Castro L, Rocchetti G, Cortimiglia C, Spigno G, Bassani A. Development of Coated PLA Films Containing a Commercial Olive Leaf Extract for the Food Packaging Sector. Antioxidants (Basel) 2024; 13:519. [PMID: 38790624 PMCID: PMC11117849 DOI: 10.3390/antiox13050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
A commercial olive leaf extract (OL), effective against Salmonella enterica, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, was added to three different coating formulations (methylcellulose, MC; chitosan, CT; and alginate, ALG) to produce active polylactic acid (PLA) coated films. Evaluation of these coated PLA films revealed significant inhibition of S. aureus growth, particularly with the MC and CT formulations exhibiting the highest inhibition rates (99.7%). The coated films were then tested for food contact compatibility with three food simulants (A: 10% ethanol; B: 3% acetic acid; D2: olive oil), selected to assess their suitability for pre-cut hams and ready-to-eat vegetables in relation to overall migration. However, coated films with active functions exhibited migration values in simulants A and B above legal limits, while promising results were obtained for simulant D2, highlighting the need to deeply investigate these coatings' impact on a real food system. Untargeted metabolomics revealed that the type of coating influenced the selective release of certain phenolic classes based on the food simulant tested. The Oxitest analysis of simulant D2 demonstrated that the MC and ALG-coated PLA films slightly slowed down the oxidation of this food simulant, which is an edible vegetable oil.
Collapse
Affiliation(s)
- Cecilia Fiorentini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Giulia Leni
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Elena Díaz de Apodaca
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, C/Leonardo Da Vinci 11, 01510 Miñano, Álava, Spain; (E.D.d.A.); (L.F.-d.-C.)
| | - Laura Fernández-de-Castro
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, C/Leonardo Da Vinci 11, 01510 Miñano, Álava, Spain; (E.D.d.A.); (L.F.-d.-C.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy;
| | - Claudia Cortimiglia
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Giorgia Spigno
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Andrea Bassani
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| |
Collapse
|
6
|
Ronca CL, Duque-Soto C, Samaniego-Sánchez C, Morales-Hernández ME, Olalla-Herrera M, Lozano-Sánchez J, Giménez Martínez R. Exploring the Nutritional and Bioactive Potential of Olive Leaf Residues: A Focus on Minerals and Polyphenols in the Context of Spain's Olive Oil Production. Foods 2024; 13:1036. [PMID: 38611342 PMCID: PMC11012209 DOI: 10.3390/foods13071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Lyophilized plant-origin extracts are rich in highly potent antioxidant polyphenols. In order to incorporate them into food products, it is necessary to protect these phytochemicals from atmospheric factors such as heat, light, moisture, or pH, and to enhance their bioavailability due to their low solubility. To address these challenges, recent studies have focused on the development of encapsulation techniques for antioxidant compounds within polymeric structures. In this study, lyophilized olive leaf extracts were microencapsulated with the aim of overcoming the aforementioned challenges. The method used for the preparation of the studied microparticles involves external ionic gelation carried out within a water-oil (W/O) emulsion at room temperature. HPLC analysis demonstrates a high content of polyphenols, with 90% of the bioactive compounds encapsulated. Meanwhile, quantification by inductively coupled plasma optical emission spectroscopy (ICP-OES) reveals that the dried leaves, lyophilized extract, and microencapsulated form contain satisfactory levels of macro- and micro-minerals (calcium, potassium, sodium). The microencapsulation technique could be a novel strategy to harness the polyphenols and minerals of olive leaves, thus enriching food products and leveraging the antioxidant properties of the polyphenolic compounds found in the lyophilized extract.
Collapse
Affiliation(s)
- Carolina L. Ronca
- Department of Pharmacy, University of Federico II of Naples, 80138 Naples, Italy;
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Carmen Duque-Soto
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Cristina Samaniego-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | | | - Manuel Olalla-Herrera
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Jesús Lozano-Sánchez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| | - Rafael Giménez Martínez
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain; (C.D.-S.); (C.S.-S.); (M.O.-H.); (R.G.M.)
| |
Collapse
|
7
|
Barzan G, Sacco A, Giovannozzi AM, Portesi C, Schiavone C, Salafranca J, Wrona M, Nerín C, Rossi AM. Development of innovative antioxidant food packaging systems based on natural extracts from food industry waste and Moringa oleifera leaves. Food Chem 2024; 432:137088. [PMID: 37688815 DOI: 10.1016/j.foodchem.2023.137088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Active packaging that prolongs food shelf life, maintaining its quality and safety, is an increasing industrial demand, especially if integrated in a circular economy model. In this study, the fabrication and characterization of sustainable cellulose-based active packaging using food-industry waste and natural extracts as antioxidant agents was assessed. Grape marc, olive pomace and moringa leaf extracts obtained by supercritical fluid, antisolvent and maceration extraction in different solvents were compared for their antioxidant power and phenolic content. Grape and moringa macerates in acetone and methanol, as the most efficient and cost-effective extracts, were incorporated in the packaging as coatings or in-between layers. Both systems showed significant free-radical protection in vitro (antioxidant power 50%) and more than 50% prevention of ground beef lipid peroxidation over 16 days by indirect TBARS and direct in situ Raman microspectroscopy measurements. Therefore, these systems are promising for industrial applications and more sustainable farm-to-fork food production systems.
Collapse
Affiliation(s)
- Giulia Barzan
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy.
| | - Alessio Sacco
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| | - Andrea Mario Giovannozzi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy.
| | - Chiara Portesi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| | - Consolato Schiavone
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Jesús Salafranca
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Magdalena Wrona
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Cristina Nerín
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Andrea Mario Rossi
- Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy
| |
Collapse
|
8
|
Kourti M, Skaperda Z, Tekos F, Stathopoulos P, Koutra C, Skaltsounis AL, Kouretas D. The Bioactivity of a Hydroxytyrosol-Enriched Extract Originated after Direct Hydrolysis of Olive Leaves from Greek Cultivars. Molecules 2024; 29:299. [PMID: 38257212 PMCID: PMC10818913 DOI: 10.3390/molecules29020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, olive leaf polyphenols have been at the center of scientific interest due to their beneficial effects on human health. The most abundant polyphenol in olive leaves is oleuropein. The biological properties of oleuropein are mainly due to the hydroxytyrosol moiety, a drastic catechol group, whose biological activity has been mentioned many times in the literature. Hence, in recent years, many nutritional supplements, food products, and cosmetics enriched in hydroxytyrosol have been developed and marketed, with unexpectedly positive results. However, the concentration levels of hydroxytyrosol in olive leaves are low, as it depends on several agricultural factors. In this study, a rapid and easy methodology for the production of hydroxytyrosol-enriched extracts from olive leaves was described. The proposed method is based on the direct acidic hydrolysis of olive leaves, where the extraction procedure and the hydrolysis of oleuropein are carried out in one step. Furthermore, we tested the in vitro bioactivity of this extract using cell-free and cell-based methods, evaluating its antioxidant and DNA-protective properties. Our results showed that the hydroxytyrosol-enriched extract produced after direct hydrolysis of olive leaves exerted significant in vitro antioxidant and geno-protective activity, and potentially these extracts could have various applications in the pharmaceutical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Maria Kourti
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Christina Koutra
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| |
Collapse
|
9
|
Cho HG, Kim HY. Effects of Mustard Seed Extract on Physicochemical and Storage Characteristics of Dry-aged Pork Loin Ham. Food Sci Anim Resour 2023; 43:961-974. [PMID: 37969332 PMCID: PMC10636225 DOI: 10.5851/kosfa.2023.e50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 11/17/2023] Open
Abstract
This study investigated the effects of mustard seed extracts on physicochemical and storage characteristics of dry-aged pork loin ham during the aging period. In experiment 1, antioxidant activity was assessed for mustard seed extracted with varying ethanol concentrations and the results showed high antioxidant activity at 25%, 50%, and 75% ethanol concentrations. In experiment 2, pork loin was treated with mustard seed extracts obtained using different ethanol concentrations: not treated (control), 25% (MS25), 50% (MS50), and 75% (MS75). Physicochemical and storage characteristics of pork loin ham were measured in wk 0, 2, 4, and 6. The pH, aw, CIE b*, thiobarbituric acid reactive substances and volatile basic nitrogen values were lower in treated samples compared to the control (p<0.05). In conclusion, applying mustard seed extracts, particularly MS75, in the dry-aged pork loin ham production process could enhance storage stability and improve color attributes without having negative impacts on product quality.
Collapse
Affiliation(s)
- Han-Gyeol Cho
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
- Resources Science Research, Kongju
National University, Yesan 32439, Korea
| |
Collapse
|
10
|
Elayeb R, Vardouli F, Majdoub H, Kalogianni EP, Kyriakoudi A, Achour S, Trigui M, Theocharidou A, Ritzoulis C. Emulsifiers from olive stones. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
11
|
Pushparaj K, Balasubramanian B, Kandasamy Y, Arumugam VA, Kaliannan D, Arumugam M, Abdulrahman Alodaini H, Atef Hatamleh A, Pappuswamy M, Meyyazhagan A. Green synthesis, characterization of silver nanoparticles using aqueous leaf extracts of Solanum melongena and in vitro evaluation of antibacterial, pesticidal and anticancer activity in human MDA-MB-231 breast cancer cell lines. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102663. [DOI: 10.1016/j.jksus.2023.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
|
12
|
Mechi D, Pérez-Nevado F, Montero-Fernández I, Baccouri B, Abaza L, Martín-Vertedor D. Evaluation of Tunisian Olive Leaf Extracts to Reduce the Bioavailability of Acrylamide in Californian-Style Black Olives. Antioxidants (Basel) 2023; 12:antiox12010117. [PMID: 36670979 PMCID: PMC9854615 DOI: 10.3390/antiox12010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The aim of this work was analyzing the use of olive leaf extracts (OLE) obtained from two local Tunisian olive tree cultivars 'Chemlali' and 'Sayali' to reduce the acrylamide in Californian-style black olives. The phenol profile, antioxidant, and antibacterial activity of the two OLE extracts were evaluated. The principal phenols found were hydroxytyrosol (1809.6 ± 25.3 mg 100 g-1), oleuropein (2662.2 ± 38 mg 100 g-1) and luteolin-7-O-glucoside (438.4 ± 38 mg 100 g-1) presented higher levels in 'Sayali' variety. Small differences were observed between the two kinds of extracts used; the greatest activity of OLE was observed against S. choleraesuis, with values up to 50% inhibition. The extract of 'Chemlali' cultivar was added to the Californian-style table olive, improving its phenol content and its antioxidant characteristics without negatively affecting its sensorial characteristics; these olives showed the highest firmness and proper quality characteristics. The gastrointestinal activity on the acrylamide concentration showed a partial degradation of this compound through the digestion, although the addition of the extract does not seem influence in its gastrointestinal digestion. These findings prove the usefulness of by-products to generate a high-quality added-value product, and this would also be relevant as a step towards a more sustainable, circular economy model.
Collapse
Affiliation(s)
- Dalel Mechi
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
- Faculty of Science of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Francisco Pérez-Nevado
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Correspondence: (F.P.-N.); (D.M.-V.); Tel.: +34-924-012-664 (D.M.-V.)
| | - Ismael Montero-Fernández
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Bechir Baccouri
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Leila Abaza
- Laboratory of Olive Biotechnology, Centre of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif 2050, Tunisia
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Correspondence: (F.P.-N.); (D.M.-V.); Tel.: +34-924-012-664 (D.M.-V.)
| |
Collapse
|
13
|
Xie P, Deng Y, Huang L, Zhang C. Effect of olive leaf ( Olea europaea L.) extract addition to broiler diets on the growth performance, breast meat quality, antioxidant capacity and caecal bacterial populations. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Pujun Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yejun Deng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
14
|
Musolino V, Macrì R, Cardamone A, Serra M, Coppoletta AR, Tucci L, Maiuolo J, Lupia C, Scarano F, Carresi C, Nucera S, Bava I, Marrelli M, Palma E, Gliozzi M, Mollace V. Nocellara Del Belice ( Olea europaea L. Cultivar): Leaf Extract Concentrated in Phenolic Compounds and Its Anti-Inflammatory and Radical Scavenging Activity. PLANTS (BASEL, SWITZERLAND) 2022; 12:27. [PMID: 36616158 PMCID: PMC9824270 DOI: 10.3390/plants12010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Olea europaea L. is a plant belonging to the Oleaceae family, widely grown around the Mediterranean Basin and its leaves are a source of phenolic compounds with antioxidant and anti-inflammatory capacity. Among these, oleuropein and luteolin-7-O-glucoside represent two major polyphenolic compounds in olive-leaf extract. Herein, a polystyrene resin was used to recover the polyphenolic fraction from the acetone-water leaf extract from Nocellara del Belice cultivar, which showed the higher level of analysed bioactive compounds, compared to Carolea cultivar. The antioxidant activity of the extract concentrated in phenolic compounds (OLECp) was evaluated through a classical assay and electron paramagnetic resonance (EPR) for DPPH and hydroxyl radicals scavenging. Thus, the anti-inflammatory activity and the potential beneficial effects in reducing lipid accumulation in an in vitro model of NAFLD using McA-RH7777 cells exposed to oleic acid (OA) were evaluated. Nile Red and Oil Red O have been used to stain the lipid accumulation, while the inflammatory status was assessed by Cytokines Bioplex Assay. OLECp (TPC: 92.93 ± 9.35 mg GAE/g, TFC: 728.12 ± 16.04 mg RE/g; 1 g of extract contains 315.250 mg of oleuropein and 17.44 mg of luteolin-7-O-glucoside) exerted a good radical scavenging capability (IC50: 2.30 ± 0.18 mg/mL) with a neutralizing power against DPPH and hydroxyl radicals, as confirmed by the decreased signal area of the EPR spectra. Moreover, OLECp at concentration of 25, 50 and 100 μg/mL counteracted the intracellular inflammatory status, as result of decreased intracellular lipid content. Our results highlighted the multiple properties and applications of an O. europaea extract concentrated in polyphenols, and the possibility to formulate novel nutraceuticals with antioxidant properties, destined to ameliorate human health.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Difonzo G, Crescenzi MA, Piacente S, Altamura G, Caponio F, Montoro P. Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season. PLANTS (BASEL, SWITZERLAND) 2022; 11:3321. [PMID: 36501360 PMCID: PMC9735528 DOI: 10.3390/plants11233321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A (HR)LC-ESI-ORBITRAP-MS analysis with a multivariate statistical analysis approach using PCA and/or PLS-DA projection methods were applied to identify polyphenols in olive leaf extracts of five varieties from the Apulia region (Italy) in two different seasonal times. A total of 26 metabolites were identified, further finding that although metabolites are common among the different cultivars, they differ in the relative intensity of each peak and within each cultivar in the two seasonal periods taken into consideration. The results of the total phenol contents showed the highest content in November for Bambina and Cima di Mola varieties (1816 and 1788 mg/100 g, respectively), followed by Coratina, Leccino, and Cima di Melfi; a similar trend was found for the antioxidant activity and RapidOxy evaluations by reaching in Bambina values of 45 mmol TE/100 g and 85 min of induction time.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Maria Assunta Crescenzi
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
- PhD Program in Drug Discovery & Development, Pharmacy Department, University of the Study of Salerno, I-84135 Salerno, Italy
| | - Sonia Piacente
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| | - Giuseppe Altamura
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, I-70010 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Paola Montoro
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| |
Collapse
|
16
|
Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem 2022; 405:134964. [DOI: 10.1016/j.foodchem.2022.134964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
17
|
Šimat V, Skroza D, Tabanelli G, Čagalj M, Pasini F, Gómez-Caravaca AM, Fernández-Fernández C, Sterniša M, Smole Možina S, Ozogul Y, Generalić Mekinić I. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants (Basel) 2022; 11:antiox11091656. [PMID: 36139730 PMCID: PMC9495989 DOI: 10.3390/antiox11091656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic profiles, antioxidant, and antimicrobial activities of hydroethanolic olive leaf extracts from six Mediterranean olive cultivars (Croatian: Lastovka, Levantinka, Oblica; Italian: Moraiolo, Frantoio, Nostrana di Brisighella) were investigated. As expected, various distributions of phenolic levels were observed for each cultivar and the total phenolic content showed high variability (ranging from 4 to 22 mg GAE/g of dry extract), with the highest amount of phenolics found in the Oblica sample, which also provided the highest antiradical (ORAC) and reducing activity (FRAP). The screening of individual compounds was performed by HPLC-PDA-ESI-QTOF-MS and the main detected compounds were oleuropein, hydroxytyrosol, oleoside/secologanoside, verbascoside, rutin, luteolin glucoside, hydroxyoleuropein, and ligstroside. While the antioxidant activity of the samples was relatively high, they showed no bactericidal and bacteriostatic activity against E. coli and S. Typhimurium; weak activity against Staphylococcus aureus, Bacillus cereus, and Listeria innocua; and inhibitory effects against Campylobacter jejuni at 0.5 mg dry extract/mL. The obtained results support the fact that olive leaf extracts, and especially those from the Oblica cultivar, could potentially be applied in various industries as natural preservatives and effective and inexpensive sources of valuable antioxidants.
Collapse
Affiliation(s)
- Vida Šimat
- Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
- Correspondence: ; Tel.: +385-21510192
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Martina Čagalj
- Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Federica Pasini
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Carmen Fernández-Fernández
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Meta Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|
18
|
Ceratonia siliqua L. kibbles, seeds and leaves as a source of volatile bioactive compounds for antioxidant food biopackaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|
20
|
Abi-Khattar AM, Boussetta N, Rajha HN, Abdel-Massih RM, Louka N, Maroun RG, Vorobiev E, Debs E. Mechanical damage and thermal effect induced by ultrasonic treatment in olive leaf tissue. Impact on polyphenols recovery. ULTRASONICS SONOCHEMISTRY 2022; 82:105895. [PMID: 34972073 PMCID: PMC8799614 DOI: 10.1016/j.ultsonch.2021.105895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 05/05/2023]
Abstract
The influence of ultrasound treatment (US) on cellular damage of olive leaf tissue was studied. Mechanical damage and thermal effect of US were characterized. The level of tissue damage was defined by the diffusivity disintegration index ZD based on the diffusivity of solutes extracted from olive leaves differently treated. The Arrhenius form using the temperature dependences of the thermal treatment time within the temperature interval 20-90 °C was observed for the thermal process. The corresponding activation energy ΔUT was estimated as 57 kJ/mol. The temperature dependences of electrical conductivity were measured for extracts of intact and maximally treated olive leaves. Then the diffusivity disintegration index ZD and total phenolic compounds recovery for three studied US powers were calculated (100, 200, and 400 W). The results evidenced that the mechanically stimulated damage in olive leaf tissue can occur even at a low US power of 100 W if treatment time is long enough (t = 3.5 h). The US treatment noticeably accelerated the diffusion process mechanically in addition to its thermal effect. Trials in aqueous solution revealed the dependence of polyphenols extraction on damage level with respect to the US power applied.
Collapse
Affiliation(s)
- Anna-Maria Abi-Khattar
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Nadia Boussetta
- Université de Technologie de Compiègne, Génie des Procédés Industriels, EA 4297, Unité Transformations Intégrées de la Matière Renouvelable, 60205 Compiègne Cedex, France
| | - Hiba N Rajha
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon; Ecole Supérieure d'Ingénieurs de Beyrouth (ESIB), Saint-Joseph University, CST Mkalles Mar Roukos, P. O. Box 11-514, Riad El Solh, Beirut 1107 2050, Lebanon
| | - Roula M Abdel-Massih
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P. O. Box 100, Tripoli, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Eugene Vorobiev
- Université de Technologie de Compiègne, Génie des Procédés Industriels, EA 4297, Unité Transformations Intégrées de la Matière Renouvelable, 60205 Compiègne Cedex, France
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P. O. Box 100, Tripoli, Lebanon.
| |
Collapse
|
21
|
Soleimanifar M, Jafari SM, Assadpour E, Mirarab A. Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Otero P, Garcia-Oliveira P, Carpena M, Barral-Martinez M, Chamorro F, Echave J, Garcia-Perez P, Cao H, Xiao J, Simal-Gandara J, Prieto M. Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies. Trends Food Sci Technol 2021; 116:1084-1104. [DOI: 10.1016/j.tifs.2021.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Lee SJ, Kim HS, Eom JS, Choi YY, Jo SU, Chu GM, Lee Y, Seo J, Kim KH, Lee SS. Effects of Olive ( Olea europaea L.) Leaves with Antioxidant and Antimicrobial Activities on In Vitro Ruminal Fermentation and Methane Emission. Animals (Basel) 2021; 11:2008. [PMID: 34359136 PMCID: PMC8300123 DOI: 10.3390/ani11072008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
We evaluated whether olive leaves (OLs) are effective as feed additives and supplements for ruminants and the potential methane reduction effects during in vitro fermentation. Two Hanwoo cows (460 ± 20 kg) equipped with cannula were fed Timothy hay and corn-based feed 3% of the body weight at a ratio of 6:4 (8:30 a.m. and 5:00 p.m.). Ruminal fluid from the cows was collected and mixed before morning feeding. In vitro batch fermentation was monitored after 12 and 24 h of incubation at 39 °C, and OLs were used as supplements to achieve the concentration of 5% in the basal diet. At 12 h of fermentation, methane production decreased in the 5% OLs group compared to that in the control group, but not at 24 h. The proportion of cellulose-degrading bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens, tended to increase in the 5% OLs group at 12 h. The amount of ammonia produced was the same as the polymerase chain reaction result for Prevotella ruminicola. At 12 h, the proportion of Prevotella ruminicola was significantly higher in the 5% OLs group. OLs may be used incorporated with protein byproducts or other methane-reducing agents in animal feed.
Collapse
Affiliation(s)
- Shin Ja Lee
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Korea;
| | - Hyun Sang Kim
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Korea; (H.S.K.); (J.S.E.); (Y.Y.C.); (S.U.J.)
| | - Jun Sik Eom
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Korea; (H.S.K.); (J.S.E.); (Y.Y.C.); (S.U.J.)
| | - You Young Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Korea; (H.S.K.); (J.S.E.); (Y.Y.C.); (S.U.J.)
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Korea; (H.S.K.); (J.S.E.); (Y.Y.C.); (S.U.J.)
| | - Gyo Moon Chu
- Nonghyupfeed INC. 337, Uam-ro, Nam-gu, Busan 48475, Korea;
| | - Yookyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonju-si 55365, Jeonrabuk-do, Korea;
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Kyoung Hoon Kim
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Gangwon-do, Korea;
- Department of Ecofriendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Gangwon-do, Korea
| | - Sung Sill Lee
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Korea;
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Korea; (H.S.K.); (J.S.E.); (Y.Y.C.); (S.U.J.)
| |
Collapse
|
24
|
Suárez Montenegro ZJ, Álvarez-Rivera G, Sánchez-Martínez JD, Gallego R, Valdés A, Bueno M, Cifuentes A, Ibáñez E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021; 10:foods10071507. [PMID: 34209864 PMCID: PMC8306477 DOI: 10.3390/foods10071507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Abstract
The neuroprotective potential of 32 natural extracts obtained from olive oil by-products was investigated. The online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption allowed the selective enrichment of olive leaves extracts in different terpenoids’ families. Seven commercial adsorbents based on silica gel, zeolite, aluminum oxide, and sea sand were used with SFE at three different extraction times to evaluate their selectivity towards different terpene families. Collected fractions were analyzed by gas chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS) to quantify the recoveries of monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30). A systematic analysis of the neuroprotective activity of the natural extracts was then carried out. Thus, a set of in vitro bioactivity assays including enzymatic (acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), and anti-inflammatory (lipoxidase (LOX)), as well as antioxidant (ABTS), and reactive oxygen and nitrogen species (ROS and RNS, respectively) activity tests were applied to screen for the neuroprotective potential of these extracts. Statistical analysis showed that olive leaves adsorbates from SS exhibited the highest biological activity potential in terms of neuroprotective effect. Blood–brain barrier permeation and cytotoxicity in HK-2 cells and human THP-1 monocytes were studied for the selected olive leaves fraction corroborating its potential.
Collapse
|
25
|
Suárez Montenegro ZJ, Álvarez-Rivera G, Mendiola JA, Ibáñez E, Cifuentes A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO 2 Process. Foods 2021; 10:foods10061301. [PMID: 34198926 PMCID: PMC8229582 DOI: 10.3390/foods10061301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023] Open
Abstract
This work reports the use of GC-QTOF-MS to obtain a deep characterization of terpenoid compounds recovered from olive leaves, which is one of the largest by-products generated by the olive oil industry. This work includes an innovative supercritical CO2 fractionation process based on the online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption for the selective enrichment of terpenoids in the different olive leaves extracts. The selectivity of different commercial adsorbents such as silica gel, zeolite, and aluminum oxide was evaluated toward the different terpene families present in olive leaves. Operating at 30 MPa and 60 °C, an adsorbent-assisted fractionation was carried out every 20 min for a total time of 120 min. For the first time, GC-QTOF-MS allowed the identification of 40 terpenoids in olive leaves. The GC-QTOF-MS results indicate that silica gel is a suitable adsorbent to partially retain polyunsaturated C10 and C15 terpenes. In addition, aluminum oxide increases C20 recoveries, whereas crystalline zeolites favor C30 terpenes recoveries. The different healthy properties that have been described for terpenoids makes the current SFE-GC-QTOF-MS process especially interesting and suitable for their revalorization.
Collapse
|
26
|
Difonzo G, Squeo G, Pasqualone A, Summo C, Paradiso VM, Caponio F. The challenge of exploiting polyphenols from olive leaves: addition to foods to improve their shelf-life and nutritional value. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3099-3116. [PMID: 33275783 DOI: 10.1002/jsfa.10986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Olive leaves represent a waste from the olive oil industry which can be reused as source of polyphenols. The most representative phenolic compound of olive leaves is the secoiridoid oleuropein, followed by verbascoside, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and simple phenols. The attention towards these compounds derives above all from the large number of studies demonstrating their beneficial effect on health, in fact olive leaves have been widely used in folk medicine in the Mediterranean regions. Moreover, the growing demand from consumers to replace the synthetic antioxidants, led researchers to conduct studies on the addition of plant bioactives in foods to improve their shelf-life and/or to obtain functional products. The current study overviews the findings on the addition of polyphenol-rich olive leaf extract (OLE) to foods. In particular, the effect of OLE addition on the antioxidant, microbiological and nutritional properties of different foods is examined. Most studies have highlighted the antioxidant effect of OLE in different food matrices, such as oils, meat, baked goods, vegetables, and dairy products. Furthermore, the antimicrobial activity of OLE has been observed in meat and vegetable foods, highlighting the potential of OLE as a replacer of synthetic preservatives. Finally, several authors studied the effect of OLE addition with the aim of improving the nutritional properties of vegetable products, tea, milk, meat and biscuits. Advantages and drawbacks of the different use of OLE were reported and discussed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Vito M Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Zhang Y, Wang B, Lu F, Wang L, Ding Y, Kang X. Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1237-1248. [PMID: 33979271 DOI: 10.1080/19440049.2021.1885745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nowadays, the food industry is focused on improving the shelf life of products by controlling lipid oxidation using natural antioxidants. The study of natural antioxidants is a field that attracts great interest because of their greater safety compared to synthetic ones. Plant-derived antioxidants being eco-friendly and effective are increasingly playing an important role in food preservation. When incorporated into active packaging, plant-derived antioxidants have no direct contact with foods, and will not change the colour or taste of the foods. They will, however, inhibit the development of rancidity, retard formation of toxic oxidation products, maintain nutritional quality, and prolong the shelf life of products. This review summarises research on the development of plant-derived antioxidants in food packaging. Antioxidants are found in plants such as green tea, olive leaves, ginkgo leaves, rosemary, Indian gooseberry, cinnamon, savoury, bay leaves, mango leaves, sage and clove etc. Antioxidants can scavenge free radicals and inhibit the activity of polyphenol oxidase. Therefore, they can inhibit lipid oxidation and browning of fruit and vegetables. These active substances can be obtained through extracting the plants using solvents with different polarities. The oxidation resistance of active substances can be determined by DPPH radical scavenging capacity, oxygen radical absorbance capacity, PPO enzyme inhibition capacity and other methods. In recent years, research on the preparation of food packaging with plant-derived antioxidants has also made significant progress. One development is to encapsulate plant-derived antioxidants such as tea polyphenols with capsules containing inorganic components. Thus, they can be blended with polyethylene granules and processed into active packaging film by industrial production methods such as melting, extrusion and blowing film. This research promotes the commercial application of active packaging incorporated with plant-derived antioxidants.
Collapse
Affiliation(s)
- Yan Zhang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Baoying Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Fangfang Lu
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lin Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Yanhong Ding
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Xinya Kang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| |
Collapse
|
28
|
Cádiz-Gurrea MDLL, Pinto D, Delerue-Matos C, Rodrigues F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics-A Preliminary Study. Antioxidants (Basel) 2021; 10:245. [PMID: 33562523 PMCID: PMC7914505 DOI: 10.3390/antiox10020245] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Olea europaea cultivar, native in the Mediterranean basin, has expanded worldwide, mainly due to the olive oil industry. This expansion is attributed to the benefits of olive oil consumption, since this product is rich in nutritional and bioactive compounds. However, the olive industry generates high amounts of wastes, which could be related to polluting effects on soil and water. To minimize the environmental impact, different strategies of revalorization have been proposed. In this sense, the aim of this work was to develop high cosmetic value added oleuropein-enriched extracts (O20 and O30), a bioactive compound from olive byproducts, performing a comprehensive characterization using high performance liquid chromatography coupled to mass spectrometry and evaluate their bioactivity by in vitro assays. A total of 49 compounds were detected, with oleuropein and its derivatives widely found in O30 extract, whereas iridoids were mainly detected in O20 extract. Moreover, 10 compounds were detected for the first time in olive leaves. Both extracts demonstrated strong antioxidant and antiradical activities, although O30 showed higher values. In addition, radical oxygen and nitrogen species scavenging and enzyme inhibition values were higher in O30, with the exception of HOCl and hyaluronidase inhibition assays. Regarding cell viability, olive byproduct extracts did not lead to a decrease in keratinocytes viability until 100 µg/mL. All data reported by the present study reflect the potential of industrial byproducts as cosmetic ingredients.
Collapse
Affiliation(s)
- María de la Luz Cádiz-Gurrea
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (C.D.-M.)
| | | | | | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (C.D.-M.)
| |
Collapse
|
29
|
Food By-Products to Extend Shelf Life: The Case of Cod Sticks Breaded with Dried Olive Paste. Foods 2020; 9:foods9121902. [PMID: 33352666 PMCID: PMC7765858 DOI: 10.3390/foods9121902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023] Open
Abstract
Recently, the interest in recovery bioactive compounds from food industrial by-products is growing abundantly. Olive oil by-products are a source of valuable bioactive compounds with antioxidant and antimicrobial properties. One of the most interesting by-products of olive oil obtained by a two-phase decanter is the olive paste, a wet homogeneous pulp free from residuals of the kernel. To valorize the olive paste, ready-to-cook cod sticks breaded with dried olive oil by-products were developed. Shelf-life tests were carried out on breaded cod sticks and during 15 days of storage at 4 °C pH evolution, microbiological aspects, and sensory properties were also monitored. In addition, the chemical quality of both control and active samples was assessed in terms of total phenols, flavonoids, and antioxidant activity. The enrichment with olive paste increased the total phenols, the flavonoids, and the antioxidant activity of the breaded fish samples compared to the control. Furthermore, the bioactive compounds acted as antimicrobial agents, without compromising the sensory parameters. Therefore, the new products recorded a longer shelf life (12 days) than the control fish sample that remained acceptable for nine days.
Collapse
|
30
|
Pérez-Santaescolástica C, Munekata PES, Feng X, Liu Y, Bastianello Campagnol PC, Lorenzo JM. Active edible coatings and films with Mediterranean herbs to improve food shelf-life. Crit Rev Food Sci Nutr 2020; 62:2391-2403. [DOI: 10.1080/10408398.2020.1853036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Paulo E. S. Munekata
- Parque Tecnológico de Galicia, Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Xi Feng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA, USA
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Jose M. Lorenzo
- Parque Tecnológico de Galicia, Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
31
|
Martiny TR, Raghavan V, de Moraes CC, da Rosa GS, Dotto GL. Bio-Based Active Packaging: Carrageenan Film with Olive Leaf Extract for Lamb Meat Preservation. Foods 2020; 9:foods9121759. [PMID: 33261179 PMCID: PMC7761303 DOI: 10.3390/foods9121759] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023] Open
Abstract
Carrageenan-based active packaging film was prepared by adding olive leaf extract (OLE) as a bioactive agent to the lamb meat packaging. The OLE was characterized in terms of its phenolic compounds (T.ph), antioxidant activity (AA), oleuropein, and minimum inhibitory concentration (MIC) against Escherichia coli. The film’s formulation consisted of carrageenan, glycerol as a plasticizer, water as a solvent, and OLE. The effects of the OLE on the thickness, water vapor permeability (WVP), tensile strength (TS), elongation at break (EB), elastic modulus (EM), color, solubility, and antimicrobial capacity of the carrageenan film were determined. The OLE had the following excellent characteristics: the T.ph value was 115.96 mgGAE∙g−1 (d.b), the AA was 89.52%, the oleuropein value was 11.59 mg∙g−1, and the MIC was 50 mg∙mL−1. The results showed that the addition of OLE increased the thickness, EB, and WVP, and decreased the TS and EM of the film. The solubility was not significantly affected by the OLE. The color difference with the addition of OLE was 64.72%, which had the benefit of being a barrier to oxidative processes related to light. The film with the OLE was shown to have an antimicrobial capacity during the storage of lamb meat, reducing the count of psychrophiles five-fold when compared to the samples packed by the control and commercial films; therefore, this novel film has the potential to increase the shelf life of lamb meat, and as such, is suitable for use as active packaging.
Collapse
Affiliation(s)
- Thamiris Renata Martiny
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil;
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil;
| | - Vijaya Raghavan
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada;
| | - Caroline Costa de Moraes
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil;
| | - Gabriela Silveira da Rosa
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil;
- Graduate Program in Materials Science and Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 96413-172, Brazil;
- Correspondence: ; Tel.: +55-53-9996-722-26
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil;
| |
Collapse
|
32
|
Dilucia F, Lacivita V, Conte A, Del Nobile MA. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020; 9:E857. [PMID: 32630106 PMCID: PMC7404480 DOI: 10.3390/foods9070857] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Fruit and vegetable by-products are the most abundant food waste. Industrial processes such as oil, juice, wine or sugar production greatly contribute to this amount. These kinds of residues are generally thrown away in form of leftover and used as feed or composted, but they are a great source of bioactive compounds like polyphenols, vitamins or minerals. The amount of residue with potential utilization after processing has been estimated in millions of tons every year. For this reason, many researchers all around the world are making great efforts to valorize and reuse these valuable resources. Of greatest importance is the by-product potential to enhance the properties of packaging intended for food applications. Therefore, this overview collects the most recent researches dealing with fruit and vegetable by-products used to enhance physical, mechanical, antioxidant and antimicrobial properties of packaging systems. Recent advances on synthetic or bio-based films enriched with by-product components are extensively reviewed, with an emphasis on the role that by-product extracts can play in food packaging materials.
Collapse
Affiliation(s)
| | | | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71121 Foggia, Italy; (F.D.); (V.L.); (M.A.D.N.)
| | | |
Collapse
|
33
|
Phytochemical Profile of Capsicum annuum L. cv Senise, Incorporation into Liposomes, and Evaluation of Cellular Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9050428. [PMID: 32429083 PMCID: PMC7278623 DOI: 10.3390/antiox9050428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Overproduction of oxidants in the human body is responsible for oxidative stress, which is associated with several diseases. High intake of vegetables and fruits can reduce the risk of chronic diseases, as they are sources of bioactive compounds capable of contrasting the free radical effects involved in cancer, obesity, diabetes, and neurodegenerative and cardiovascular diseases. Capsicum annuum L. cv Senise is a sweet pepper that is grown in the Basilicata region (Italy). It is an important source of polyphenols, carotenoids, and capsinoids and can play a key role in human health. In this study, an ethanol extract was obtained from C. annuum dried peppers and the analysis of the phytochemical composition was performed by LC-ESI/LTQ Orbitrap/MS. The extract was incorporated into liposomes, which showed small size (~80 nm), good homogeneity, negative surface charge, and good stability in storage. The biological activity of the extract was evaluated in the human hepatoma (HepG2) cell line, used as model cells. The extract showed no cytotoxic activity and reduced the intracellular reactive oxygen species (ROS) level in stressed cells. The antioxidant activity was further improved when the extract was loaded into liposomes. Moreover, the extract promoted the expression of endogenous antioxidants, such as catalase, superoxide dismutase, and glutathione peroxidase through the Nrf-2 pathway evaluated by RT-PCR.
Collapse
|
34
|
Kuzin YI, Gorbatchuk VV, Rogov AM, Stoikov II, Evtugyn GA. Electrochemical Properties of Multilayered Coatings Implementing Thiacalix[4]arenes with Oligolactic Fragments and DNA. ELECTROANAL 2020. [DOI: 10.1002/elan.201900499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu. I. Kuzin
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| | - V. V. Gorbatchuk
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| | - A. M. Rogov
- Interdisciplinary Centre of Analytical MicroscopyKazan Federal University Kazan
| | - I. I. Stoikov
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| | - G. A. Evtugyn
- Analytical Chemistry Department of A.M. Butlerov' Chemistry InstituteKazan Federal University Kremlevskaya Street 18 Kazan 420008 Kazan Russian Federation
| |
Collapse
|
35
|
Journal of Food Quality Evaluation of Effect of Extraction Solvent on Selected Properties of Olive Leaf Extract. J FOOD QUALITY 2020. [DOI: 10.1155/2020/3013649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The quest for natural preservatives and functional foods with health benefits has seen an increasing demand for natural products having therapeutic value. Herein, we investigated the influence of ethanol, methanol, acetone (50%, 70%, and 90% v/v), and distilled water on selected properties of olive leaf extract and determined the yield, total phenolic content (TPC), antioxidant activity, and antimicrobial activity. Extracts were analyzed for their oleuropein, hydroxytyrosol, and tyrosol contents by high-performance liquid chromatography (HPLC). The highest extraction yield of 20.41% was obtained when using 90 vol% methanol, while the highest total polyphenol contents of 232 and 231 mggallic-acid-equivalent/100 g were obtained for 90 vol% methanol and 90 vol% ethanol, respectively. Antioxidant activity was determined using the α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging assay, by determining the ferric reducing antioxidant power (FRAP), and using the Fe2+-chelating activity assay, which provided the highest values when 90 vol% methanol was used (33.84%, 0.75, and 12.91%, respectively). HPLC analysis showed that the highest oleuropein contents corresponded to the extracts obtained using 90 and 70 vol% methanol (26.10 ± 0.20 and 24.92 ± 1.22 g/L, respectively), and the highest antimicrobial activity was observed for 90 vol% methanol and distilled water. Olive leaf extracts using 90 vol% methanol had high levels of polyphenols and were highly antioxidant and antimicrobial. The results of this study facilitate the commercial applications of natural extracts with antioxidant and antibacterial activities and are expected to establish a foundation for further optimization studies.
Collapse
|
36
|
da Rosa GS, Vanga SK, Gariepy Y, Raghavan V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102234] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
In Vitro Anticoccidial Activity of Olive Pulp (Olea europaea L. var. Chemlal) Extract Against Eimeria Oocysts in Broiler Chickens. Acta Parasitol 2019; 64:887-897. [PMID: 31493179 DOI: 10.2478/s11686-019-00113-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/23/2019] [Indexed: 11/20/2022]
Abstract
AIM The objective of the present study was to investigate in vitro anticoccidial effect of olive pulp (Olea europaea L var. Chemlal) extract on the destruction of Eimeria spp. oocysts isolated from infected chickens naturally. MATERIALS AND METHODS The olive pulp (OP) powder was stirred manually in aqueous ethanol in preparation for extraction using the microwave-assisted extraction system. The identification of the phenolic compounds was obtained by ultra-high-performance liquid chromatography-mass spectrometry with electrospray ionisation (HPLC-ESI-MS). The treatment of Eimeria oocyst with OP extract and standard compounds (quercetin and oleuropein) leads to their lysis as shown by the release of substances absorbing at 273 nm. RESULTS Our results showed that the maximum number of reduced oocysts was recorded after 8 h of incubation of optimum OP extract, quercetin and oleuropein for different periods of time. Also, the number of Eimeria oocysts decreased considerably with increase concentrations after adding the optimum of OP extract in concentration ranging from 0.023 to 0.371 mg/ml. Positive correlation between the optimum OP extract concentrations and the number of Eimeria oocysts reduced was R2 = 0.959. From this in vitro experiment, it can be concluded that the OP extract possesses an anti-Eimeria spp activity. CONCLUSION To our knowledge, this is the first time that quercetin and oleuropein were tested to evaluate their anticoccidial activity. The findings of this study showed that phenolic compound of OP extract tested separately possesses anti-Eimeria spp. effect. Further studies should be carried out to test its in vivo efficacy of the OP bioactive compounds in broiler chickens.
Collapse
|
38
|
Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019; 24:E4132. [PMID: 31731614 PMCID: PMC6891691 DOI: 10.3390/molecules24224132] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, great interest has been focused on using natural antioxidants in food products, due to studies indicating possible adverse effects that may be related to the consumption of synthetic antioxidants. A variety of plant materials are known to be natural sources of antioxidants, such as herbs, spices, seeds, fruits and vegetables. The interest in these natural components is not only due to their biological value, but also to their economic impact, as most of them may be extracted from food by-products and under-exploited plant species. This article provides an overview of current knowledge on natural antioxidants: their sources, extraction methods and stabilization processes. In addition, recent studies on their applications in the food industry are also addressed; namely, as preservatives in different food products and in active films for packaging purposes and edible coatings.
Collapse
Affiliation(s)
| | | | - Vítor D. Alves
- LEAF, Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.C.L.); (M.M.-M.)
| |
Collapse
|
39
|
Palmeri R, Parafati L, Trippa D, Siracusa L, Arena E, Restuccia C, Fallico B. Addition of Olive Leaf Extract (OLE) for Producing Fortified Fresh Pasteurized Milk with An Extended Shelf Life. Antioxidants (Basel) 2019; 8:antiox8080255. [PMID: 31366135 PMCID: PMC6720734 DOI: 10.3390/antiox8080255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
An olive leaf extract (OLE) has been tested in vitro for its antibacterial activity and ability to inhibit α-glucosidase enzyme. OLE was also evaluated for its potential, when added to pasteurized milk, to preserve nutritional parameters and to limit microbial growth, thus prolonging shelf life. In vitro assays demonstrated a strong antibacterial efficacy of OLE mainly against Bacillus cereus and the capacity to inhibit α-glucosidase enzyme (IC50) when used at 0.2 mg oleuropein/mL. The milk fortification with OLE at 3.6 mg of oleuropein/mL of milk reduced total mesophilic bacteria at undetectable level after 6 d (expiration date) and by 1 log CFU/mL after 10 d. Moreover, OLE addition at 1.44 and 3.6 mg of oleuropein/mL of milk significantly reduced fat and lactose losses up to 10 d. The results motivate the use of the OLE to make a new functional milk with an extended shelf life.
Collapse
Affiliation(s)
- Rosa Palmeri
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, via S. Sofia 100, 95123 Catania, Italy
| | - Lucia Parafati
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, via S. Sofia 100, 95123 Catania, Italy
| | - Daniela Trippa
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, via S. Sofia 100, 95123 Catania, Italy
| | - Laura Siracusa
- CNR-ICB, Consiglio Nazionale delle Ricerche-Istituto di Chimica Biomolecolare, via Paolo Gaifami 18, 95126 Catania, Italy
| | - Elena Arena
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, via S. Sofia 100, 95123 Catania, Italy
| | - Cristina Restuccia
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, via S. Sofia 100, 95123 Catania, Italy.
| | - Biagio Fallico
- Di3A, Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
40
|
Ultrasound-Assisted Extraction as a First Step in a Biorefinery Strategy for Valorisation of Extracted Olive Pomace. ENERGIES 2019. [DOI: 10.3390/en12142679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Currently, interest in finding new feedstock as sources of natural food antioxidants is growing. The extracted olive pomace (EOP), which is an agro-industrial residue from the olive pomace extracting industries, is generated yearly in big amounts, mainly in the Mediterranean countries. EOP was subjected to an ultrasound assisted extraction with ethanol-water mixtures. The effect of main parameters, such as ethanol concentration (30–70% v/v), ultrasound amplitude (20–80%), and extraction time (5–15 min), on the extraction of antioxidant compounds was evaluated according to a Box–Behnken experimental design. The antioxidant capacity of the resulting extracts was determined by measuring their content in total phenolic compounds (TPC) and flavonoids (TFC), as well as their antioxidant activity by DPPH, ferric reducing antioxidant power (FRAP), and ABTS assays. Considering the simultaneous maximization of these five responses, the optimal conditions were found to be 43.2% ethanol concentration, 70% amplitude, and 15 min. The ultrasound assisted extraction of EOP under these optimized conditions yielded an extract with a phenolic and flavonoid content (per gram of EOP) of 57.5 mg gallic acid equivalent (GAE) and 126.9 mg rutin equivalent (RE), respectively. Likewise, the values for DPPH, ABTS, and FRAP assay (per gram of EOP) of 56.7, 139.1, and 64.9 mg Trolox equivalent, respectively were determined in the optimized extract.
Collapse
|
41
|
Zia J, Paul UC, Heredia-Guerrero JA, Athanassiou A, Fragouli D. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves. Molecules 2019; 24:molecules24101998. [PMID: 31137706 PMCID: PMC6572269 DOI: 10.3390/molecules24101998] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/23/2023] Open
Abstract
Olive leaf extracts are of special interest due to their proven therapeutic effects. However, they are still considered a by-product of the table olive and the oil industries. In order to learn possible ways of exploiting this waste for health purposes, we investigated the phytochemical profiles and antioxidant activities in the leaves of 15 Italian Olea europaea L. cultivars grown in the same pedoclimatic conditions. The phenolic profiles and amounts of their seven representative compounds were analyzed using HPLC ESI/MS-TOF. The antioxidant activities were determined using three different antioxidant assays (DPPH, ORAC, and superoxide anion scavenging assay). Wide ranges of total phenolic content (11.39-48.62 g GAE kg-1 dry weight) and antioxidant activities (DPPH values: 8.67-29.89 µmol TE mg-1 dry weight, ORAC values: 0.81-4.25 µmol TE mg-1 dry weight, superoxide anion scavenging activity values: 27.66-48.92 µmol TE mg-1 dry weight) were found in the cultivars. In particular, the cultivars Itrana, Apollo, and Maurino, showed a high amount of total phenols and antioxidant activity, and therefore represent a suitable natural source of biological compounds for use in terms of health benefits.
Collapse
|
43
|
Testa B, Lombardi SJ, Macciola E, Succi M, Tremonte P, Iorizzo M. Efficacy of olive leaf extract ( Olea europaea L. cv Gentile di Larino) in marinated anchovies ( Engraulis encrasicolus, L.) process. Heliyon 2019; 5:e01727. [PMID: 31193311 PMCID: PMC6526228 DOI: 10.1016/j.heliyon.2019.e01727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 01/31/2023] Open
Abstract
In this study, the antimicrobial activity and the preservative properties of olive leaf extract (OLE) Olea europaea L. "Gentile di Larino" cultivar, were evaluated. The antibacterial activity was performed in vitro against spoilage bacterial strains: Pseudomonas fluorescens (ATCC 13525), Pseudomonas fragi (ATCC 4973), Pseudomonas putida (ATCC 17514), Brochotrix thermosphacta (ATCC 11509), Clostridium sporogenes (ATCC 11437), and Listeria innocua (ATCC 33090). About the preservative properties of OLE, they were evaluated in the marinating process of anchovy fillets. During the process have been determined the change of sensory characteristics and monitored these chemical parameters: pH, aw, salt content (% NaCl), thiobarbituric acid index (mgMA/Kg), total volatile basic nitrogen (mg/100g), and trimethylamine nitrogen (mg/100g). Moreover, were determined the spoilage bacteria on raw material, after 7 days and at the end of marination process, 22 days. The OLE exhibited an inhibitory effect against the bacteria tested. In marinated anchovy fillets, showed that the extract improves their shelf life without modifying the organoleptic characteristics of the product; this suggests that it could be considered in the food industry as a natural antioxidant and antimicrobial food additive.
Collapse
Affiliation(s)
| | | | | | | | | | - Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
44
|
Ganjalikhan Hakemi S, Sharififar F, Haghpanah T, Babaee A, Eftekhar-Vaghefi SH. The Effects of Olive Leaf Extract on The Testis, Sperm Quality and Testicular Germ Cell Apoptosis in Male Rats Exposed to Busulfan. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:57-65. [PMID: 30644246 PMCID: PMC6334023 DOI: 10.22074/ijfs.2019.5520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022]
Abstract
Background Busulfan (BU) has a destructive effect on the male reproductive system. The goal of this study was to
assess the effects of olive leaf extract (OLE) as a source of antioxidants and phenolic compounds, on BU-induced
damages in rat testes. Materials and Methods In this experimental study, 40 male Wistar rats were randomly divided into 5 groups. The
control group (CTL) received a single intraperitoneal (i.p.) injection of dimethyl sulfoxide (DMSO), followed by
oral administration of distilled water for 5 weeks. In BU group, BU (10 mg/kg) was administrated i.p. once. In co-
treatment groups, first, received BU (10 mg/kg, a single i.p. injection) then, OLE was administrated orally at different
doses of 250 mg/kg (BU+OLE 250), 500 mg/kg (BU+OLE 500) and 750 mg/kg (BU+OLE 750), for 5 weeks. Next,
blood and sperm samples were collected. The left testis was removed to investigate testicular parameters and apop-
tosis by using H&E and TUNEL staining, respectively. All data were analyzed by SPSS software and a P<0.05 was
considered significant. Results There was a significant decline in sperm viability (P=0.017), number of primary spermatocyte (PS) (P=0.001)
and Leydig cells (P=0.023) in the BU group versus the CTL group. OLE at three doses could repair these defects ver-
sus BU group. Increases in apoptotic spermatogonia cells (SG) due to BU were significantly reduced by OLE 250
and 500 mg/kg (P<0.01). A reduction in germinal epithelium height and an increase in apoptotic SG were observed in
BU+OLE 750 group vs. other groups (P<0.01) and alkaline phosphatase (ALP) was at the highest level, also Aspartate
aminotransferase (AST) increased markedly vs. CTL (P=0.024). Conclusion Oral administration of OLE at the doses of 250 and 500 mg/kg could be helpful in ameliorating BU-
induced toxicity in rat testes, while OLE 750 mg/kg not only did not cause positive effects, but also could exacerbate
the harmful effects.
Collapse
Affiliation(s)
- Sepideh Ganjalikhan Hakemi
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. Electronic Address:
| | - Abdolreza Babaee
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Department of Clinical Biochemistry, Babol University of Medical Science, Babol, lran.,Department of Anatomy, Kerman Branch, Islamic Azad University, Kerman, Iran.Electronic Address:
| |
Collapse
|
45
|
Arsyad MA, Akazawa T, Ogawa M. Effects of Olive Leaf Powder on Mechanical Properties of Heat-Induced Surimi Gel. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2018. [DOI: 10.1080/10498850.2018.1559904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Muh Ali Arsyad
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Sciences, Ehime University Affiliated to Kagawa University, Kita-gun, Kagawa, Japan
- Department of Fisheries Processing Technology, Pangkep State of Agriculture Polytechnic, Pangkep, Sulawesi Selatan, Indonesia
| | - Takashi Akazawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Sciences, Ehime University Affiliated to Kagawa University, Kita-gun, Kagawa, Japan
| | - Masahiro Ogawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Sciences, Ehime University Affiliated to Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
46
|
Gullón B, Gullón P, Eibes G, Cara C, De Torres A, López-Linares JC, Ruiz E, Castro E. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:533-542. [PMID: 30029129 DOI: 10.1016/j.scitotenv.2018.07.155] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
A large amount of olive-derived biomass is generated yearly in Spain, which could be used as a potential source of bioactive compounds. The present work evaluates the recovery of natural antioxidants from olive tree pruning (OTP) and olive mill leaves (OML). For this purpose, the effect of different solvents on the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity was evaluated. The solvent was found to have a significant effect (p < 0.05) on the TPC, TFC, and the DPPH, ABTS, and FRAP activity, affording similar results for the extracts from the two by-products. The extracts obtained using 50% ethanol showed high TPC (23.85 and 27.54 mg GAE/gdw for OTP and OML, respectively) and TFC (52.82 and 52.39 mg RE/gdw for OTP and OML, respectively). Also, the OTP and OML extracts exhibited notable antioxidant activity as measured by the ABTS method (45.96 and 42.71 mg TE/gdw, respectively). Using pyrolysis-gas chromatography/mass spectrometry, 30 bioactive compounds were detected in both extracts. Additionally, UPLC-DAD-ESI-MS allowed the identification of 15 compounds in the samples. Furthermore, the antioxidant extracts were found to inhibit the growth of several food pathogenic bacteria. This research demonstrates that these by-products from olive grove farming are a good source of antioxidant compounds with antibacterial properties, which have potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Beatriz Gullón
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Patricia Gullón
- Department of Chemical and Environmental Engineering, University of Basque Country, San Sebastian, Spain
| | - Gemma Eibes
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristóbal Cara
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Centre for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonia De Torres
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Juan Carlos López-Linares
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Centre for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Centre for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
47
|
Franco P, Aliakbarian B, Perego P, Reverchon E, De Marco I. Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paola Franco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Bahar Aliakbarian
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Opera Pia 15, 16145 Genova, Italy
- The Axia Institute-Department of Supply Chain Management, Michigan State University, 715 E. Main Street, Suite 115, Midland, Michigan 48640, United States
- The School of Packaging, Michigan State University, East Lansing, Michigan 48824, United States
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Opera Pia 15, 16145 Genova, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
48
|
Arsyad MA, Akazawa T, Nozaki C, Yoshida M, Oyama K, Mukai T, Ogawa M. Effects of olive leaf powder supplemented to fish feed on muscle protein of red sea bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1299-1308. [PMID: 29790092 DOI: 10.1007/s10695-018-0521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Olive leaf is known to have the high polyphenol content of 6-9% in dry weight. We investigated the effects of olive leaf powder (OLP) supplemented to fish feed on muscle protein of red sea bream (Pagrus major). Fish reared with feed containing 8% OLP for 40 days had 1.4 times higher myofibril content and 2.2 times higher acid-soluble collagen content than fish reared with control feed for the same period. On the other hand, sarcoplasmic protein content and collagenase activity of the muscle were almost the same between the control fish and OLP-diet fish. Microstructure observation of fish muscle showed that OLP-diet fish has more rigid endomysium structure than that of the control-diet fish. Since collagen fiber in endomysium is responsible for the texture of the muscle, feeding OLP to aquaculture fish will lead to a harder muscle texture. The present study suggests that OLP is a useful feed additive to enhance the texture of aquaculture red sea bream muscle through strengthening of the collagen structure in the muscle.
Collapse
Affiliation(s)
- Muh Ali Arsyad
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Science, Ehime University Affiliated to Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Pangkep State of Agriculture Polytechnic, Jalan Poros Makassar-Pare Km. 83, Kabupaten Pangkep, Sulawesi Selatan, Indonesia
| | - Takashi Akazawa
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Science, Ehime University Affiliated to Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Chie Nozaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Makoto Yoshida
- Kagawa Prefectural Fisheries Experimental Station, 75-5 Yashima higashi machi, Takamatsu, Kagawa, 761-0111, Japan
| | - Kenichi Oyama
- Kagawa Prefectural Fisheries Experimental Station, 75-5 Yashima higashi machi, Takamatsu, Kagawa, 761-0111, Japan
| | - Tatsuo Mukai
- Kagawa Prefectural Fisheries Experimental Station, 75-5 Yashima higashi machi, Takamatsu, Kagawa, 761-0111, Japan
| | - Masahiro Ogawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| |
Collapse
|
49
|
Characterization of olive leaf extract polyphenols loaded by supercritical solvent impregnation into PET/PP food packaging films. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Liu X, Yan X, Bi J, Liu J, Zhou M, Wu X, Chen Q. Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava
L.). Electrophoresis 2018; 39:1654-1662. [DOI: 10.1002/elps.201700479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Xuan Liu
- Key Laboratory of Agro-Products Processing Ministry of Agriculture; Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Xu Yan
- Key Laboratory of Agro-Products Processing Ministry of Agriculture; Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Processing Ministry of Agriculture; Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Jianing Liu
- Key Laboratory of Agro-Products Processing Ministry of Agriculture; Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Mo Zhou
- Key Laboratory of Agro-Products Processing Ministry of Agriculture; Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Xinye Wu
- Key Laboratory of Agro-Products Processing Ministry of Agriculture; Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Qinqin Chen
- Key Laboratory of Agro-Products Processing Ministry of Agriculture; Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| |
Collapse
|