1
|
Pereira TF, Borchardt H, Wanderley WF, Vasconcelos U, Leite IF. Pequi Pulp ( Caryocar brasiliense) Oil-Loaded Emulsions as Cosmetic Products for Topical Use. Polymers (Basel) 2025; 17:226. [PMID: 39861298 PMCID: PMC11768242 DOI: 10.3390/polym17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The pequi (Caryocar brasiliense) is a typical fruit from the Brazilian Cerrado. From it, pequi pulp oil is extracted, a valuable product for cosmetic applications due to its high levels of unsaturated fatty acids and carotenoids. Carotenoids are antioxidant compounds that are easily oxidized. To improve pulp stability, emulsification techniques with carboxymethylcellulose at 1% (w/w) were used to encapsulate the pequi pulp oil at 1, 3, 5% (w/w), and 8% (w/w) of polysorbate 80® using a high-rotation mechanical stirrer. The pequi pulp oil was first characterized by FTIR and GC-MS. The results indicated the presence of chemical groups characteristic of the oil itself and the presence of a large proportion of fatty acids, which are essential for the maintenance of cutaneous hydration and the barrier, also acting in the tissue repair process. All emulsions presented stable over 120 days with slightly acidic pH values and were compatible with human skin. The droplet diameter was less than 330 nm, and the polydispersity index was around 0.3, indicating systems with low polydispersity. The Zeta potential (ζ) exhibited negative values sufficient to stabilize the emulsified systems. All emulsions behaved as non-Newtonian fluids, presenting pseudo-plastic and thixotropic properties that are considered important for topical applications.
Collapse
Affiliation(s)
- Tácio Fragoso Pereira
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Huelinton Borchardt
- Graduação em Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Wvandson F. Wanderley
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de Campina Grande, Campina Grande 58429-900, PB, Brazil;
| | - Ulrich Vasconcelos
- Departamento de Biotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Itamara F. Leite
- Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
2
|
Feng L, Jia X, Yin L. Role of pectin in the delivery of β-carotene embedded in interpenetrating emulsion-filled gels made with soy protein isolate. Food Chem 2024; 446:138797. [PMID: 38442678 DOI: 10.1016/j.foodchem.2024.138797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
This study investigated the effects of different matrices on gel properties, lipid digestibility, β-carotene bioaccessibility, released free amino acids and gel network degradation. Microstructure studies have proven that sugar beet pectin/soy protein isolate-based emulsion-filled gel (SBP/SPI-E) with interpenetrating networks was formed. SBP/SPI-E exhibited higher hardness (2.67 N, p < 0.05) and released lesser free amino acids (269.48-μmol/g SPI) than soy protein isolate-based emulsion-filled gel (SPI-E) in simulated intestinal fluid (SIF); however, both had similar free amino acids contents in simulated colonic fluid. SBP has the potential to delay gel network degradation in SIF, as evidenced by the sugar stain strips of SDS-PAGE and microstructure observation. Furthermore, SBP/SPI-E and SPI-E exhibited similar β-carotene bioaccessibility in SIF, suggesting that SBP from composite gel could not affect the aforementioned bioaccessibility. The study provides useful information for the design of functional gels in the application of fat-soluble nutrient delivery.
Collapse
Affiliation(s)
- Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Jia
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lijun Yin
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Bianchi JRDO, de la Torre LG, Costa ALR. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type. Foods 2023; 12:3385. [PMID: 37761094 PMCID: PMC10527709 DOI: 10.3390/foods12183385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Microfluidic technology has emerged as a powerful tool for several applications, including chemistry, physics, biology, and engineering. Due to the laminar regime, droplet-based microfluidics enable the development of diverse delivery systems based on food-grade emulsions, such as multiple emulsions, microgels, microcapsules, solid lipid microparticles, and giant liposomes. Additionally, by precisely manipulating fluids on the low-energy-demand micrometer scale, it becomes possible to control the size, shape, and dispersity of generated droplets, which makes microfluidic emulsification an excellent approach for tailoring delivery system properties based on the nature of the entrapped compounds. Thus, this review points out the most current advances in droplet-based microfluidic processes, which successfully use food-grade emulsions to develop simple and complex delivery systems. In this context, we summarized the principles of droplet-based microfluidics, introducing the most common microdevice geometries, the materials used in the manufacture, and the forces involved in the different droplet-generation processes into the microchannels. Subsequently, the encapsulated compound type, classified as lipophilic or hydrophilic functional compounds, was used as a starting point to present current advances in delivery systems using food-grade emulsions and their assembly using microfluidic technologies. Finally, we discuss the limitations and perspectives of scale-up in droplet-based microfluidic approaches, including the challenges that have limited the transition of microfluidic processes from the lab-scale to the industrial-scale.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Ana Leticia Rodrigues Costa
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
- Institute of Exact and Technological Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal 35690-000, Brazil
| |
Collapse
|
4
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
5
|
Šeregelj V, Estivi L, Brandolini A, Ćetković G, Tumbas Šaponjac V, Hidalgo A. Kinetics of Carotenoids Degradation during the Storage of Encapsulated Carrot Waste Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248759. [PMID: 36557892 PMCID: PMC9782125 DOI: 10.3390/molecules27248759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The encapsulates of carrot waste oil extract improved the antioxidant properties of durum wheat pasta. The aim of this research was to study the kinetics of carotenoids degradation in the freeze-dried (FDE) and spray-dried (SDE) encapsulates of carrot waste extract during storage at four different temperatures (+4, +21.3, +30, +37 °C) up to 413 days by HPLC. Carotenoids levels decreased as a function of time and temperature, following zero-order kinetics. At 4 °C carotenes were stable for at least 413 days, but their half-lives decreased with increasing temperatures: 8-12 months at 21 °C; 3-4 months at 30 °C; and 1.5-2 months at 37 °C. The freeze-drying technique was more effective against carotenes degradation. An initial lag-time with no or very limited carotenes degradation was observed: from one week at 37 °C up to 3 months (SDE) or more (FDE) at 21 °C. The activation energies (Ea) varied between 66.6 and 79.5 kJ/mol, and Ea values tended to be higher in FDE than in SDE.
Collapse
Affiliation(s)
- Vanja Šeregelj
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21101 Novi Sad, Serbia
| | - Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.)
| | - Andrea Brandolini
- Council for Agricultural Research and Economics-Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29, 26900 Lodi, Italy
| | - Gordana Ćetković
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21101 Novi Sad, Serbia
| | - Vesna Tumbas Šaponjac
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21101 Novi Sad, Serbia
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.)
| |
Collapse
|
6
|
Zhou P, Wen L, Ai T, Liang H, Li J, Li B. A novel emulsion gel solely stabilized by the hot water extracted polysaccharide from psyllium husk: Self-healing plays a key role. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Huang Z, Zeng YJ, Wu XL, Li MF, Zong MH, Lou WY. Development of Millettia speciosa champ polysaccharide conjugate stabilized oil-in-water emulsion for oral delivery of β-carotene: Protection effect and in vitro digestion fate. Food Chem 2022; 397:133764. [PMID: 35905621 DOI: 10.1016/j.foodchem.2022.133764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
In this study, a natural antioxidant emulsifier, Millettia speciosa Champ polysaccharide conjugates (MSC-PC), was used for fabricating oil-in-water emulsion, and the influences of MSC-PC on β-carotene stability and bioaccessibility were studied. Results suggested that MSC-PC stabilized emulsion exhibited excellent resistance to a wide range of salt levels (0-500 mM of Na+), thermal treatments (50-90 °C) and pH values (3.0-11.0). MSC-PC also exhibited an outstanding inhibition capacity on lipid oxidation. Besides, MSC-PC stabilized emulsion had a better protective effect on β-carotene than other systems. Interestingly, in spite of similar lipolysis extent, β-carotene bioaccessibility in MSC-PC fabricated emulsion (14.75 %) was markedly higher than that in commercial Tween 80 fabricated emulsion (10.08 %), likely due to the steric-hindrance effect and antioxidant ability of MSC-PC, building interfacial layers that prevented β-carotene from degradation. This work supplied a deep insight into elucidating the mechanisms of emulsifying performance and β-carotene protection effect of MSC-PC fabricated emulsion.
Collapse
Affiliation(s)
- Zhi Huang
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Ying-Jie Zeng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Meng-Fan Li
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
9
|
Lakshmanan M, Moses JA, Chinnaswamy A. Encapsulation of β‐carotene in 2‐hydroxypropyl‐β‐cyclodextrin/carrageenan/soy protein using a modified spray drying process. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahalakshmi Lakshmanan
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu 613005 India
- PhD student affiliated to Bharathidasan University Tiruchirappalli Tamil Nadu 620024 India
| | - Jeyan A. Moses
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu 613005 India
| | - Anandharamakrishnan Chinnaswamy
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu 613005 India
| |
Collapse
|
10
|
Toumi S, Yahoum MM, Lefnaoui S, Hadjsadok A. Synthesis and physicochemical evaluation of octenylsuccinated kappa-carrageenan: Conventional versus microwave heating. Carbohydr Polym 2022; 286:119310. [DOI: 10.1016/j.carbpol.2022.119310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
|
11
|
Lavelli V, Sereikaitė J. Kinetic Study of Encapsulated β-Carotene Degradation in Aqueous Environments: A Review. Foods 2022; 11:317. [PMID: 35159470 PMCID: PMC8834023 DOI: 10.3390/foods11030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
The provitamin A activity of β-carotene is of primary interest to address one of the world's major malnutrition concerns. β carotene is a fat-soluble compound and its bioavailability from natural sources is very poor. Hence, studies have been focused on the development of specific core/shell micro- or nano-structures that encapsulate β-carotene in order to allow its dispersion in liquid systems and improve its bioavailability. One key objective when developing these structures is also to accomplish β-carotene stability. The aim of this review is to collect kinetic data (rate constants, activation energy) on the degradation of encapsulated β-carotene in order to derive knowledge on the possibility for these systems to be scaled-up to the industrial production of functional foods. Results showed that most of the nano- and micro-structures designed for β-carotene encapsulation and dispersion in the water phase provide better protection with respect to a natural matrix, such as carrot juice, increasing the β-carotene half-life from about 30 d to more than 100 d at room temperature. One promising approach to increase β-carotene stability was found to be the use of wall material, surfactants, or co-encapsulated compounds with antioxidant activity. Moreover, a successful approach was the design of structures, where the core is partially or fully solidified; alternatively, either the core or the interface or the outer phase are gelled. The data collected could serve as a basis for the rational design of structures for β-carotene encapsulation, where new ingredients, especially the extraordinary natural array of hydrocolloids, are applied.
Collapse
Affiliation(s)
- Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
12
|
Zhang X, Chen X, Gong Y, Li Z, Guo Y, Yu D, Pan M. Emulsion gels stabilized by soybean protein isolate and pectin: Effects of high intensity ultrasound on the gel properties, stability and β-carotene digestive characteristics. ULTRASONICS SONOCHEMISTRY 2021; 79:105756. [PMID: 34562736 PMCID: PMC8473777 DOI: 10.1016/j.ultsonch.2021.105756] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 05/07/2023]
Abstract
In this study, soybean protein isolate (SPI) and pectin emulsion gels were prepared by thermal induction, and the effects of high intensity ultrasound (HIU) at various powers (0, 150, 300, 450 and 600 W) on the structure, gel properties and stability of emulsion gels were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that the interaction between SPI and pectin was enhanced and the crystallinity of the emulsion gels was changed due to the HIU treatment. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) observations revealed that the particle size of the emulsion gels was decreased significantly by HIU treatment. The emulsion gel structure became more uniform and denser, which was conducive to storage stability. In addition, according to the low field nuclear magnetic resonance (LF-NMR) analysis, HIU treatment had no obvious impact on the content of bound water as the power increased to 450 W, while the content of free water decreased gradually and became immobilized water, which indicated that the water holding capacity of the emulsion gels was enhanced. Compared with untreated emulsion gel, differential scanning calorimetry (DSC) analysis showed that the denaturation temperature reached 131.9 ℃ from 128.2 ℃ when treated at 450 W. The chemical stability and bioaccessibility of β-carotene in the emulsion gels were improved significantly after HIU treatment during simulated in vitro digestion.
Collapse
Affiliation(s)
- Xin Zhang
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xing Chen
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuhang Gong
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ziyue Li
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Guo
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Mingzhe Pan
- School of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Li J, Wang C, Chang C, Jiao H, Su Y, Gu L, Yang Y, Yu H. Changes in stability and in vitro digestion of egg-protein stabilized emulsions and β-carotene gels in the presence of sodium tripolyphosphate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5591-5598. [PMID: 33709411 DOI: 10.1002/jsfa.11210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Egg proteins are effective emulsifiers and gelators in food systems. However, the physicochemical stability and control release properties of egg-protein stabilized emulsions and gels need to be further improved. The potential of sodium tripolyphosphate (St) to improve the functionality of egg proteins was evaluated. RESULTS The emulsions with St had smaller particle sizes and higher zeta potential, leading to better physical stability. Furthermore, the oxidation stability increased with increasing St contents, possibly due to its metal chelating capacity and the improved emulsifying activity of whole-egg dispersions. Phosphate had a positive impact on the chemical stability of β-carotene in whole-egg liquids and gels, decreasing the degradation during thermal treatment. The gel made with St was firm and broke down slowly, leading to a low rate of digestion and β-carotene release in simulated gastric fluid. CONCLUSION This study shows that St is useful to improve the egg proteins stabilized emulsions and gels, which is applicable in the development of emulsion-based food grade gel products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Han Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haitao Yu
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| |
Collapse
|
14
|
Girón-Hernández J, Gentile P, Benlloch-Tinoco M. Impact of heterogeneously crosslinked calcium alginate networks on the encapsulation of β-carotene-loaded beads. Carbohydr Polym 2021; 271:118429. [PMID: 34364569 DOI: 10.1016/j.carbpol.2021.118429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
This study investigated the impact of heterogeneity of crosslinking on a range of physical and mechanical properties of calcium alginate networks formed via external gelation with 0.25-2% sodium alginate and 2.5 and 5% CaCl2. Crosslinking in films with 1-2% alginate was highly heterogeneous, as indicated by their lower calcium content (35-7 mg Ca·g alginate-1) and apparent solubility (5-6%). Overall, films with 1-2% alginate showed higher resistance (tensile strength = 51-147 MPa) but lower elasticity (Elastic Modulus = 2136-10,079 MPa) than other samples more homogeneous in nature (0.5% alginate, Elastic Modulus = 1918 MPa). Beads with 0.5% alginate prevented the degradation of β-carotene 1.5 times more efficiently than 1% beads (5% CaCl2) at any of the storage temperatures studied. Therefore, it was postulated that calcium alginate networks crosslinked to a greater extent and in a more homogeneous manner showed better mechanical performance and barrier properties for encapsulation applications.
Collapse
Affiliation(s)
- Joel Girón-Hernández
- Universidad Surcolombiana, Departamento de Ingeniería Agrícola, Avenida Pastrana Borrero - Carrera 1, Neiva 410007, Colombia.
| | - Piergiorgio Gentile
- Newcastle University, School of Engineering, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - María Benlloch-Tinoco
- Northumbria University, Department of Applied Sciences, Faculty of Health and Life Sciences, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
15
|
Shannon E, Conlon M, Hayes M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar Drugs 2021; 19:358. [PMID: 34201794 PMCID: PMC8303941 DOI: 10.3390/md19070358] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
Collapse
Affiliation(s)
- Emer Shannon
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Michael Conlon
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
16
|
Dong Y, Wei Z, Xue C. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Tan KX, Ng LLE, Loo SCJ. Formulation Development of a Food-Graded Curcumin-Loaded Medium Chain Triglycerides-Encapsulated Kappa Carrageenan (CUR-MCT-KC) Gel Bead Based Oral Delivery Formulation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2783. [PMID: 34073859 PMCID: PMC8197192 DOI: 10.3390/ma14112783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
In recent years, curcumin has been a major research endeavor in food and biopharmaceutical industries owing to its miscellaneous health benefits. There is an increasing amount of research ongoing in the development of an ideal curcumin delivery system to resolve its limitations and further enhance its solubility, bioavailability and bioactivity. The emergence of food-graded materials and natural polymers has elicited new research interests into enhanced pharmaceutical delivery due to their unique properties as delivery carriers. The current study is to develop a natural and food-graded drug carrier with food-derived MCT oil and a seaweed-extracted polymer called k-carrageenan for oral delivery of curcumin with improved solubility, high gastric resistance, and high encapsulation of curcumin. The application of k-carrageenan as a structuring agent that gelatinizes o/w emulsion is rarely reported and there is so far no MCT-KC system established for the delivery of hydrophobic/lipophilic molecules. This article reports the synthesis and a series of in vitro bio-physicochemical studies to examine the performance of CUR-MCT-KC as an oral delivery system. The solubility of CUR was increased significantly using MCT with a good encapsulation efficiency of 73.98 ± 1.57% and a loading capacity of 1.32 ± 0.03 mg CUR/mL MCT. CUR was successfully loaded in MCT-KC, which was confirmed using FTIR and SEM with good storage and thermal stability. Dissolution study indicated that the solubility of CUR was enhanced two-fold using heated MCT oil as compared to naked or unformulated CUR. In vitro release study revealed that encapsulated CUR was protected from premature burst under simulated gastric environment and released drastically in simulated intestinal condition. The CUR release was active at intestinal pH with the cumulative release of >90% CUR after 5 h incubation, which is the desired outcome for CUR absorption under human intestinal conditions. A similar release profile was also obtained when CUR was replaced with beta-carotene molecules. Hence, the reported findings demonstrate the potencies of MCT-KC as a promising delivery carrier for hydrophobic candidates such as CUR.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Esco Aster, Block 71, Ayer Rajah Crescent, Singapore 139951, Singapore
| | - Ling-Ling Evelyn Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
18
|
The role of mixing sequence in structuring O/W emulsions and emulsion gels produced by electrostatic protein-polysaccharide interactions between soy protein isolate-coated droplets and alginate molecules. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106537] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Maurya VK, Shakya A, Aggarwal M, Gothandam KM, Bohn T, Pareek S. Fate of β-Carotene within Loaded Delivery Systems in Food: State of Knowledge. Antioxidants (Basel) 2021; 10:426. [PMID: 33802152 PMCID: PMC8001630 DOI: 10.3390/antiox10030426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
Nanotechnology has opened new opportunities for delivering bioactive agents. Their physiochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility and biodegradability, make these nanomaterials an attractive tool for β-carotene delivery. Delivering β-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target tissues, but also lessens its sensitivity against environmental factors during processing. Regardless of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modification of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered materials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make conventional delivery systems appear archaic and promise better solubilization, protection during processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This review provides information on the state of knowledge on β-carotene nanodelivery systems adopted for developing functional foods, depicting their classifications, compositions, preparation methods, challenges, release and absorption of β-carotene in the gastrointestinal tract (GIT) and possible risks and future prospects.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | - Amita Shakya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| | - Manjeet Aggarwal
- Department of Basic and Applied Science, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India; (V.K.M.); (M.A.)
| | | | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India;
| |
Collapse
|
20
|
Savic Gajic IM, Savic IM, Gajic DG, Dosic A. Ultrasound-Assisted Extraction of Carotenoids from Orange Peel Using Olive Oil and Its Encapsulation in Ca-Alginate Beads. Biomolecules 2021; 11:biom11020225. [PMID: 33562827 PMCID: PMC7915125 DOI: 10.3390/biom11020225] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/16/2023] Open
Abstract
The paper was aimed at developing an ultrasound-assisted extraction of carotenoids from orange peel using olive oil as a solvent. A central composite design was used to define the optimal conditions for their extraction. Under the optimal conditions (extraction time of 35 min, extraction temperature of 42 ℃, and a liquid-to-solid ratio of 15 mL/g), the experimental and predicted values of carotenoid content were 1.85 and 1.83 mg/100 g dry weight, respectively. The agreement of these values indicated the adequacy of the proposed regression model. The extraction temperature only had a negative influence on carotenoid content. The impact of extraction parameters on the carotenoid content was decreased according to the following order: extraction time, liquid-to-solid ratio, and extraction temperature. Ca-alginate beads were prepared using the extrusion process to increase the stability and protect the antioxidant activity of olive oil enriched with carotenoids. The encapsulation efficiency and particle mean diameter were 89.5% and 0.78 mm, respectively. The presence of oil extract in Ca-alginate beads was confirmed by Fourier-transform infrared spectroscopy. The antioxidant activity of the oil enriched with carotenoids before and after encapsulation in the alginate beads was determined according to the DPPH assay.
Collapse
Affiliation(s)
- Ivana M. Savic Gajic
- Faculty of Technology in Leskovac, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
- Correspondence: ; Tel.: +381-16-247-203
| | - Ivan M. Savic
- Faculty of Technology in Leskovac, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | | | - Aleksandar Dosic
- Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34A, 75400 Zvornik, Republic of Srpska, Bosnia and Herzegovina;
| |
Collapse
|
21
|
Tan Y, McClements DJ. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem 2021; 348:129148. [PMID: 33515946 DOI: 10.1016/j.foodchem.2021.129148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The potency of oil-soluble vitamins (vitamins A, D, E and K) in fortified foods can be improved by understanding how food matrices impact their bioavailability. In this review, the major food matrix effects influencing the bioavailability of oil-soluble vitamins are highlighted: oil content, oil composition, particle size, interfacial properties, and food additives. Droplet size and aggregation state in the human gut impact vitamin bioavailability by modulating lipid digestion, vitamin release, and vitamin solubilization. Vitamins in small isolated oil droplets typically have a higher bioavailability than those in large or aggregated ones. Emulsifiers, stabilizers, or texture modifiers can therefore affect bioavailability by influencing droplet size or aggregation. The dimensions of the hydrophobic domains in mixed micelles depends on lipid type: if the domains are too small, vitamin bioavailability is low. Overall, this review highlights the importance of carefully designing food matrices to improve vitamin bioavailability.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
22
|
Meléndez-Martínez AJ, Böhm V, Borge GIA, Cano MP, Fikselová M, Gruskiene R, Lavelli V, Loizzo MR, Mandić AI, Brahm PM, Mišan AČ, Pintea AM, Sereikaitė J, Vargas-Murga L, Vlaisavljević SS, Vulić JJ, O'Brien NM. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annu Rev Food Sci Technol 2021; 12:433-460. [PMID: 33467905 DOI: 10.1146/annurev-food-062220-013218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids are versatile isoprenoids that are important in food quality and health promotion. There is a need to establish recommended dietary intakes/nutritional reference values for carotenoids. Research on carotenoids in agro-food and health is being propelled by the two multidisciplinary international networks, the Ibero-American Network for the Study of Carotenoids as Functional Foods Ingredients (IBERCAROT; http://www.cyted.org) and the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN; http://www.eurocaroten.eu). In this review, considerations for their safe and sustainable use in products mostly intended for health promotion are provided. Specifically, information about sources, intakes, and factors affecting bioavailability is summarized. Furthermore, their health-promoting actions and importance in public health in relation to the contribution of reducing the risk of diverse ailments are synthesized. Definitions and regulatory and safety information for carotenoid-containing products are provided. Lastly, recent trends in research in the context of sustainable healthy diets are summarized.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Volker Böhm
- Institute of Nutritional Sciences, Bioactive Plant Products Research Group, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | - M Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Martina Fikselová
- Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia
| | - Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anamarija I Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Paula Mapelli Brahm
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Aleksandra Č Mišan
- Institute of Food Technology in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Adela M Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | | | - Sanja S Vlaisavljević
- Departmant of Chemistry, Biochemistry and Environmental Protection, Faculty of Natural Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jelena J Vulić
- Department of Applied and Engineering Chemistry, Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, T12 Cork, Ireland
| |
Collapse
|
23
|
Nooshkam M, Varidi M. Physicochemical stability and gastrointestinal fate of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-low acyl gellan gum conjugates. Food Chem 2021; 347:129079. [PMID: 33493834 DOI: 10.1016/j.foodchem.2021.129079] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to examine the effect of whey protein isolate-low acyl gellan gum (WPI-GG) conjugate on the physicochemical properties and digestibility of β-carotene-loaded oil-in-water emulsions. The WPI-GG conjugate-stabilized emulsions had lower droplet sizes with more homogenous distribution, more negative surface charge, and higher interfacial protein concentration and viscosity, compared to those stabilized by WPI-GG mixture and WPI. The emulsion droplets coated by the conjugate were also generally more stable to environmental stresses (i.e., storage, pH changes, ionic strength, freeze-thaw cycles, and thermal treatment) along with higher β-carotene retention than other systems. The stability to droplet aggregation during in vitro digestion was remarkably increased for the conjugate-stabilized emulsion. However, the β-carotene bioaccessibility was significantly affected when the conjugate was used to stabilize the emulsions, likely due to the thick interfacial layer, high viscosity, and negative charge of the corresponding emulsions that could inhibit droplet digestion and mixed micelle formation.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran.
| |
Collapse
|
24
|
Maurya VK, Singh J, Ranjan V, Gothandam KM, Bohn T, Pareek S. Factors affecting the fate of β-carotene in the human gastrointestinal tract: A narrative review. INT J VITAM NUTR RES 2020; 92:385-405. [PMID: 32781911 DOI: 10.1024/0300-9831/a000674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carotenoids and their metabolites play crucial roles in human health such as in immunity, cell differentiation, embryonic development, maintenance of plasma membrane integrity, and gastrointestinal functions, in addition to counteracting night blindness and other eye-related diseases. However, carotenoid bioavailability is highly variable and often low. The bioavailability of β-carotene, among the most frequently consumed carotenoid from the diet, is determined by food matrix related factors such as carotenoid dose, its location in food the matrix, the physical state in food, the presence of other food compounds in the matrix such as dietary fiber, dietary lipids, other micronutrients present such as minerals, and food processing, influencing also the size of food particles, and the presence of absorption inhibitors (fat replacers and anti-obesity drugs) or enhancers (nano-/micro-formulations). However, also host-related factors such as physiochemical interactions by gastrointestinal secretions (enzyme and salts) and other host-related factors such as surgery, age, disease, obesity, and genetic variations have shown to play a role. This review contributes to the knowledge regarding factors affecting the bioavailability of β-carotene (food and host-relegated), as well as highlights in vitro models employed to evaluate β-carotene bioavailability aspects.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Science, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Jagmeet Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Vijay Ranjan
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | | | - Torsten Bohn
- Luxembourg Institute of Health (LIH), Department of Population Health, Nutrition and Health Group, L-1445 Strassen, Luxembourg
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| |
Collapse
|
25
|
Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Fontes-Candia C, Ström A, Lopez-Sanchez P, López-Rubio A, Martínez-Sanz M. Rheological and structural characterization of carrageenan emulsion gels. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Microbeads of Sodium Caseinate and κ-Carrageenan as a β-Carotene Carrier in Aqueous Systems. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Reducing carotenoid loss during storage by co-encapsulation of pequi and buriti oils in oil-in-water emulsions followed by freeze-drying: Use of heated and unheated whey protein isolates as emulsifiers. Food Res Int 2020; 130:108901. [PMID: 32156358 DOI: 10.1016/j.foodres.2019.108901] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022]
Abstract
Buriti and pequi oils are rich in carotenoids and beneficial to human health; however, carotenoid oxidation during storage causes color loss in foods, making it difficult to use these oils in food products. This research aimed to encapsulate pequi oil and co-encapsulate pequi and buriti oils by emulsification using whey protein isolate (WPI) as an emulsifier in two forms, natural (unheated) and heated, followed by freeze-drying. The emulsions were studied by droplet size under different stress conditions, instability index, and rheology. The freeze-dried (FD) samples were studied after accelerated oxidation and the total carotenoid retention was determined; for the reconstituted FD, the zeta potential and droplet size were recorded after storage at 37 °C for 30 days. The emulsions were stable in all conditions, with average droplet sizes between 0.88 ± 0.03 and 2.33 ± 0.02 μm, and formulations with heated WPI presented the lowest instability index values. The FD's zeta potential values ranged from -50 ± 3 to -32 ± 3 mV. The co-encapsulated oils presented higher carotenoid retention (50 ± 1 and 48 ± 1%) than the free oils (31 ± 2%) after 30 days. The oxidative stability indexes were 51 ± 4 and 46 ± 3 for the co-encapsulated oils with unheated and heated WPI, respectively, and 20.5 ± 0.1 h for the free oils. FD formulations with 1:3 ratio of oil: aqueous phase and heated or unheated WPI showed the best carotenoid retention and oxidative stability, indicating that FD oil emulsions have potential as next-generation bioactive compound carriers.
Collapse
|
29
|
Basar AO, Prieto C, Durand E, Villeneuve P, Sasmazel HT, Lagaron J. Encapsulation of β-Carotene by Emulsion Electrospraying Using Deep Eutectic Solvents. Molecules 2020; 25:E981. [PMID: 32098315 PMCID: PMC7070406 DOI: 10.3390/molecules25040981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022] Open
Abstract
The encapsulation β-carotene in whey protein concentrate (WPC) capsules through the emulsion electrospraying technique was studied, using deep eutectic solvents (DES) as solvents. These novel solvents are characterized by negligible volatility, a liquid state far below 0 °C, a broad range of polarity, high solubilization power strength for a wide range of compounds, especially poorly water-soluble compounds, high extraction ability, and high stabilization ability for some natural products. Four DES formulations were used, based on mixtures of choline chloride with water, propanediol, glucose, glycerol, or butanediol. β-Carotene was successfully encapsulated in a solubilized form within WPC capsules; as a DES formulation with choline chloride and butanediol, the formulation produced capsules with the highest carotenoid loading capacity. SEM micrographs demonstrated that round and smooth capsules with sizes around 2 µm were obtained. ATR-FTIR results showed the presence of DES in the WPC capsules, which indirectly anticipated the presence of β-carotene in the WPC capsules. Stability against photo-oxidation studies confirmed the expected presence of the bioactive and revealed that solubilized β-carotene loaded WPC capsules presented excellent photo-oxidation stability compared with free β-carotene. The capsules developed here clearly show the significant potential of the combination of DES and electrospraying for the encapsulation and stabilization of highly insoluble bioactive compounds.
Collapse
Affiliation(s)
- Ahmet Ozan Basar
- Novel Materials and Nanotechnology Group, IATA-CSIC, 46980 Valencia, Spain;
- R&D Department, Bioinicia S.L., 46980 Valencia, Spain
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, IATA-CSIC, 46980 Valencia, Spain;
| | - Erwann Durand
- CIRAD, UMR IATE, F-34398 Montpellier, France; (E.D.); (P.V.)
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - Pierre Villeneuve
- CIRAD, UMR IATE, F-34398 Montpellier, France; (E.D.); (P.V.)
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey;
| | - Jose Lagaron
- Novel Materials and Nanotechnology Group, IATA-CSIC, 46980 Valencia, Spain;
| |
Collapse
|
30
|
Liu Q, Huang H, Chen H, Lin J, Wang Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019; 24:E4242. [PMID: 31766473 PMCID: PMC6930561 DOI: 10.3390/molecules24234242] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 01/19/2023] Open
Abstract
Nanoemulsions have attracted significant attention in food fields and can increase the functionality of the bioactive compounds contained within them. In this paper, the preparation methods, including low-energy and high-energy methods, were first reviewed. Second, the physical and chemical destabilization mechanisms of nanoemulsions, such as gravitational separation (creaming or sedimentation), flocculation, coalescence, Ostwald ripening, lipid oxidation and so on, were reviewed. Then, the impact of different stabilizers, including emulsifiers, weighting agents, texture modifiers (thickening agents and gelling agents), ripening inhibitors, antioxidants and chelating agents, on the physicochemical stability of nanoemulsions were discussed. Finally, the applications of nanoemulsions for the delivery of functional ingredients, including bioactive lipids, essential oil, flavor compounds, vitamins, phenolic compounds and carotenoids, were summarized. This review can provide some reference for the selection of preparation methods and stabilizers that will improve performance in nanoemulsion-based products and expand their usage.
Collapse
Affiliation(s)
- Qingqing Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - He Huang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - Honghong Chen
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - Junfan Lin
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - Qin Wang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
31
|
Santos TP, Cunha RL. In vitro digestibility of gellan gels loaded with jabuticaba extract: Effect of matrix-bioactive interaction. Food Res Int 2019; 125:108638. [DOI: 10.1016/j.foodres.2019.108638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
32
|
Rostamabadi H, Sadeghi Mahoonak A, Allafchian A, Ghorbani M. Fabrication of β-carotene loaded glucuronoxylan-based nanostructures through electrohydrodynamic processing. Int J Biol Macromol 2019; 139:773-784. [DOI: 10.1016/j.ijbiomac.2019.07.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
|
33
|
de Moura SC, Berling CL, Garcia AO, Queiroz MB, Alvim ID, Hubinger MD. Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Res Int 2019; 121:542-552. [DOI: 10.1016/j.foodres.2018.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
|
34
|
Chen X, McClements DJ, Zhu Y, Zou L, Li Z, Liu W, Cheng C, Gao H, Liu C. Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9087-9096. [PMID: 30102529 DOI: 10.1021/acs.jafc.8b03003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluid and gelled nutraceutical emulsions were formulated from quercetin-loaded caseinate-stabilized emulsions by the addition of gellan gum with or without acidification with glucono-δ-lactone. Gellan gum addition increased the viscosity or gel strength of the fluid and gelled emulsions, respectively. The behavior of the nutraceutical emulsions in a simulated gastrointestinal tract depended upon their initial composition. Fluid emulsions containing different gellan gum levels (0-0.2%) had similar protein and lipid hydrolysis rates as well as similar quercetin bioaccessibility (∼51%). Conversely, proteolysis, lipolysis, and quercetin bioaccessibility decreased with an increasing gellan gum level in the gelled emulsions. In comparison to gelled emulsions, fluid emulsions were digested more rapidly and led to higher quercetin bioaccessibility. There was a good correlation between quercetin bioaccessibility and the lipolysis rate. These findings are useful for designing nutraceutical-loaded emulsions that can be used in a wide range of food products with different rheological properties.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Yuqing Zhu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Ziling Li
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
- School of Life Science , Jiangxi Science and Technology Normal University , Nanchang , Jiangxi 330013 , People's Republic of China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Ce Cheng
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Hongxia Gao
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|
35
|
McClements DJ. Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct 2018; 9:22-41. [PMID: 29119979 DOI: 10.1039/c7fo01515a] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many researchers are currently developing emulsion-based delivery systems to increase the bioavailability of lipophilic bioactive agents, such as oil-soluble vitamins, nutraceuticals, and lipids. Oil-in-water emulsions can be specifically designed to improve the bioavailability of these bioactives by altering their composition and structural organization. This article reviews recent progress in understanding the impact of emulsion properties on the bioaccessibility of lipophilic bioactive agents, including oil phase composition, aqueous phase composition, droplet size, emulsifier type, lipid physical state, and droplet aggregation state. This knowledge can be used to design emulsions that can enhance the bioavailability and efficacy of encapsulated hydrophobic bioactives.
Collapse
|
36
|
Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: Digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Zhu YQ, Chen X, McClements DJ, Zou L, Liu W. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1398660] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yu Qing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Res Int 2017; 105:962-969. [PMID: 29433295 DOI: 10.1016/j.foodres.2017.12.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023]
Abstract
β-Carotene is a nutraceutical that acts as a coloring agent and as pro-vitamin A, but its incorporation into foods is limited because of its hydrophobicity and low chemical stability. The aim of this study was to improve the physicochemical stability of β-carotene by encapsulating into solid lipid nanoparticles (SLNPs) containing palmitic acid and corn oil, stabilized using whey protein isolate (WPI). The palmitic acid crystals covered the surface of the oil droplets and formed a solid shell to protect the encapsulated β-carotene. Corn oil decreased the exclusion of β-carotene from the solid lipid matrix to the surface of SLNPs. WPI increased the colloidal stability of the system, and improved β-carotene oxidative stability. The rate of color fading due to β-carotene degradation increased with increasing temperature and was faster at lower pH. Lower ionic strengths had a slight impact on β-carotene degradation, while higher ionic strengths accelerated β-carotene breakdown.
Collapse
|
39
|
Lin Q, Liang R, Ye A, Singh H, Zhong F. Effects of calcium on lipid digestion in nanoemulsions stabilized by modified starch: Implications for bioaccessibility of β -carotene. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Physicochemical stability of curcumin emulsions stabilized by Ulva fasciata polysaccharide under different metallic ions. Int J Biol Macromol 2017; 105:154-162. [DOI: 10.1016/j.ijbiomac.2017.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/08/2022]
|
41
|
Soukoulis C, Tsevdou M, Yonekura L, Cambier S, Taoukis PS, Hoffmann L. Does kappa-carrageenan thermoreversible gelation affect β-carotene oxidative degradation and bioaccessibility in o/w emulsions? Carbohydr Polym 2017; 167:259-269. [DOI: 10.1016/j.carbpol.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023]
|