1
|
Wang L, Yang YP, Tian Y, Huang SC, Ruan Y, Wen CN, Liu M, Ma BJ. Purification and characterization of two non-starch polysaccharides from bulbils of Dioscorea opposita Thunb. 'Tiegun' and their antioxidant and hypoglycemic activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40276989 DOI: 10.1002/jsfa.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Dioscorea opposita Thunb. cv. 'Tiegun' has substantial agricultural and economic value. Its underground tubers are used widely in food and traditional medicine but the bulbils - small globular structures in the leaf axils - are frequently overlooked and discarded. This wastes biological resources and reduces overall plant productivity. RESULTS To address this, subcritical water extraction was applied to extract substances from the bulbils, followed by separation and purification. As a result, two non-starch polysaccharide components, DBP1 and DBP2, were obtained, with extraction rates of 2.25% and 0.85% respectively. Subsequent research on their properties and activity showed that DBP1 (21.9 kDa) was a neutral polysaccharide mainly made of Gal and Glc, and DBP2 (109.8 kDa) was an acidic polysaccharide composed of GalA and Gal. Due to the higher yield of DBP1, its structure was studied in greater depth. Methylation experiments indicated that its main chain consisted of 1,4-Galp and 1,4,6-Glcp glycosidic bonds with branch points, consistent with nuclear magnetic resonance (NMR) results. Scanning electron microscopy revealed that DBP1 and DBP2 had distinct filamentous structures yet similar spherical morphologies. Fourier transform infrared spectroscopy and thermal analysis were used to study their functional groups and thermal stability. In activity tests, DBP1 and DBP2 both showed antioxidant activity and could inhibit α-glucosidase and α-amylase, demonstrating hypoglycemic activity. CONCLUSION In conclusion, DBP1 and DBP2, two non-starch polysaccharides, showed good antioxidant and hypoglycemic effects. They can be used as raw materials for functional foods and drugs and merit further development. Maximizing bulbil utilization promotes green, sustainable agriculture and prevents resource waste. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yu-Peng Yang
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yi Tian
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chun-Nan Wen
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Miao Liu
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Bing-Ji Ma
- Department of Traditional Chinese Medicine, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Liu W, Jiang Y, Shi J. Effects of selenylation on Chinese yam polysaccharides: Structure, antioxidant, and digestive properties. Food Chem X 2025; 27:102435. [PMID: 40264446 PMCID: PMC12013409 DOI: 10.1016/j.fochx.2025.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Natural polysaccharides have unsatisfactory properties in production and processing due to structural limitations. Recent studies have shown that chemical modifications can improve the physicochemical and functional properties of plant polysaccharides. Herein, the effect of selenylation on the structure, functional properties, and in vitro digestion characteristics of yam polysaccharide (YP) was investigated. Selenylated products with different selenium contents (YP-LSe and YP-HSe) were prepared by controlling the addition of sodium selenite, and all samples were identified as acidic polysaccharides. Selenylation induced alterations in the chemical composition of YP. FT-IR spectral analysis revealed that YP-LSe and YP-HSe exhibited characteristic vibrational absorption peaks associated with selenium-containing groups. Microstructure analysis showed that YP-LSe and YP-HSe presented stacked leaf-like structures with sphere attachments. Moreover, selenylation significantly enhanced the emulsion capacity, foaming capacity, and antioxidant capacity of YP. In the simulated digestion process, YP-LSe and YP-HSe exhibited greater resilience against the gastrointestinal environment than YP. This study provides a theoretical basis for the development and utilization of selenylation of YP in the field of functional foods.
Collapse
Affiliation(s)
- Weiling Liu
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujun Jiang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, PR China
| | - Jia Shi
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, PR China
| |
Collapse
|
3
|
Zhang Q, Huang R, Chen G, Guo F, Hu Y. Effect of Planting Systems on the Physicochemical Properties and Bioactivities of Strawberry Polysaccharides. Foods 2025; 14:238. [PMID: 39856904 PMCID: PMC11765286 DOI: 10.3390/foods14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Suitable planting systems are critical for the physicochemical and bioactivities of strawberry (Fragaria × ananassa Duch.) polysaccharides (SPs). In this study, SPs were prepared through hot water extraction, and the differences in physicochemical characteristics and bioactivities between SPs derived from elevated matrix soilless planting strawberries (EP-SP) and those from and conventional soil planting strawberries (GP-SP) were investigated. A higher extraction yield was observed for EP-SP (5.88%) than for GP-SP (4.67%), and slightly higher values were measured for the average molecular weight (632.10 kDa vs. 611.88 kDa) and total sugar content (39.38% vs. 34.92%) in EP-SP. In contrast, a higher protein content (2.12% vs. 1.65%) and a more ordered molecular arrangement were exhibited by GP-SP. Monosaccharide composition analysis revealed that EP-SP contained higher levels of rhamnose (12.33%) and glucose (49.29%), whereas GP-SP was richer in galactose (11.06%) and galacturonic acid (19.12%). Thermal analysis indicated only minor differences in decomposition temperatures (approximately 225-226 °C) and thermal stability between the samples. However, GP-SP showed a higher enthalpy change (ΔHg = 18.74 J/g) compared to EP-SP (13.93 J/g). Biological activity assays revealed that GP-SP generally exerted stronger non-enzymatic glycation inhibition at both early and final stages (IC50: 7.47 mg/mL vs. 7.82 mg/mL and 11.18 mg/mL vs. 11.87 mg/mL, respectively), whereas EP-SP was more effective against intermediate α-dicarbonyl compounds (maximum inhibition of 75.32%). Additionally, GP-SP exerted superior α-glucosidase inhibition (IC50 = 2.4583 mg/mL), in line with kinetic and fluorescence quenching analyses showing a higher enzyme-substrate complex binding affinity (Kis = 1.6682 mg/mL; Ka = 5.1352 × 105 M-1). Rheological measurements demonstrated that EP-SP solutions exhibited a pronounced increase in apparent viscosity at higher concentrations (reaching 3477.30 mPa·s at 0.1 s-1 and 70 mg/mL) and a stronger shear-thinning behavior, while GP-SP showed a comparatively lower viscosity and lower network order. These findings suggest that different planting systems significantly affect both the molecular structures and functionalities of SPs, with GP-SP demonstrating enhanced hypoglycemic and anti-glycation properties. It is therefore recommended that suitable planting systems be selected to optimize the functionality of plant-derived polysaccharides for potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | - Yan Hu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (Q.Z.); (R.H.); (G.C.); (F.G.)
| |
Collapse
|
4
|
Liu W, Lei L, Ma F, Zhan M, Zhu J, Khan MZH, Liu X. A Dioscorea opposita Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects. ACS Biomater Sci Eng 2025; 11:415-428. [PMID: 39743314 DOI: 10.1021/acsbiomaterials.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As common complications of diabetes, long-term hyperglycemia and inflammatory infiltration often lead to prolonged unhealing of chronic diabetic wounds. The natural hydrogel-containing plant polysaccharides were recorded to have effective hypoglycemic and anti-inflammatory effects. This study focused on the accelerating effect of diabetic wound healing of hydrogels doped with Dioscorea opposita polysaccharide (DOP)─calcium carbonate (CaCO3) microspheres, which have glucose-responsive insulin release and anti-inflammatory effects. The hydrogel defined as PL-PVA/DOP-CaCO3 was designed via the borate ester bonds between polylysine-phenylboronic acids (PL-PBA) and dihydroxyl groups of poly(vinyl alcohol) (PVA). DOP modified on the surface of CaCO3 microspheres can simultaneously act with PBA to dope into the PL-PVA hydrogel and maintain glucose sensitivity. The mechanical and swelling properties of the hybrid hydrogels were reinforced by the incorporated microspheres. Meanwhile, the hyperglycemia was also regulated by the released insulin and DOP. The in vitro results indicated that the PL-PVA/DOP-CaCO3 hydrogel had good biocompatibility and inflammatory activity and could promote fibroblast proliferation and migration. In vivo experiments demonstrated that the INS@PL-PVA/DOP-CaCO3 hydrogel can significantly promote wound healing in diabetic rats by glucose-responsive regulation of hyperglycemia, inhibiting inflammation, improving angiogenesis, and accelerating the secretion of endothelial cells and proliferation of fibroblasts on wound tissues. The results bring new insights into the field of glucose-responsive hydrogels, showing their potential as drug delivery systems of macromolecular therapeutics to treat diabetic skin wounds.
Collapse
Affiliation(s)
- Wei Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Fanyi Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Mengke Zhan
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Md Zaved H Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Yong Y, Ahmad HN, Zhang H, Gu Y, Zhu J. Topological structure, rheological characteristics and biological activities of exopolysaccharides produced by Saccharomyces cerevisiae ADT. Int J Biol Macromol 2025; 286:138297. [PMID: 39631608 DOI: 10.1016/j.ijbiomac.2024.138297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Saccharomyces cerevisiae ADT is an edible fungus, with limited research on its exopolysaccharides (EPS). Three types of exopolysaccharides (EPS60, EPS80, and EPS100) were obtained through multiple purification steps using varying concentrations of ethanol in this study. The topological structure, rheological properties, and biological characteristics of EPS were investigated. High performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) analyses indicated that the three EPS are primarily made up of mannose with a small amount of glucose. Acetyl groups were also found, along with the presence of α-type pyranose and β-type pyranose. The Congo Red test and X-ray diffraction results reflected the absence of a triple helix structure and crystal properties. Atomic force microscopy (AFM) revealed the self-assembly of three exopolysaccharides into various topological structures under different concentration gradients, and a clear network structure of entangled chains was observed. EPS60, EPS80 and EPS100 displayed pseudoplasticity, weak gel behavior and thermal stability. Significantly, EPS exhibited antioxidant activity in a dose-dependent manner and showed no acute cytotoxicity to RAW264.7 and HEK293T cells. Therefore, EPS in this study is anticipated to be utilized in natural antioxidants, medications, and functional materials.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Zhang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
6
|
Medina-López SV, Molina García C, Lizarazo-Aparicio MC, Hernández-Gómez MS, Fernández-Trujillo JP. Purple Yampee Derivatives and Byproduct Characterization for Food Applications. Foods 2024; 13:4148. [PMID: 39767089 PMCID: PMC11675807 DOI: 10.3390/foods13244148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
This study assessed the technological potential and bioactive compounds present in purple yampee (Dioscorea trifida L.f.) lyophilized powder, peeled and whole flour, as well as the tuber peel, starch residual fiber, and wastewater mucilage. Although most values approached neutrality, flour showed a lower pH and high density, while greater acidity was observed in the mucilage. Color differed statistically and perceptibly between all samples, with similar values of °hue to purple flours from other sources, and the maximum chroma was found in lyophilized pulp and lightness in fiber. Average moisture levels around 7.2% and water activity levels of 0.303 (0.194 for whole flour) in fractions suggested favorable storability, while the interaction of the powders with water was similar to other root and tuber powdered derivatives. Yampee periderm had the highest swelling power, oil absorption capacity, water holding capacity, and absorption index and capacity. Mucilage had a higher solubility index and outstanding emulsion activity, greater than 90%. Twelve anthocyanins, with new reports of petunidin derivatives for the species, and more than 30 phytochemicals were identified through advanced liquid chromatography techniques. The greatest amounts of pinitol and myo-inositol were found in the mucilage, and sucrose, glucose, and fructose prevailed in the other powders. Successfully characterized yampee fractions showed high potential as functional food ingredients.
Collapse
Affiliation(s)
- Sandra V. Medina-López
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá 111321, Colombia; (S.V.M.-L.); (M.C.L.-A.); (M.S.H.-G.)
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Cristian Molina García
- Servicio de Apoyo a la Investigación Tecnológica (SAIT), Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
| | - Maria Cristina Lizarazo-Aparicio
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá 111321, Colombia; (S.V.M.-L.); (M.C.L.-A.); (M.S.H.-G.)
| | - Maria Soledad Hernández-Gómez
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá 111321, Colombia; (S.V.M.-L.); (M.C.L.-A.); (M.S.H.-G.)
- Instituto Amazónico de Investigaciones Científicas (SINCHI), Bogotá 110311, Colombia
| | | |
Collapse
|
7
|
Song C, Xie J, Pan Y. System sensory analysis of yogurt based on texture analyzer. J Dairy Sci 2024:S0022-0302(24)01375-4. [PMID: 39647621 DOI: 10.3168/jds.2024-25703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
System sensory analysis of yogurt plays a crucial role in the research and development of new yogurt products. This study developed a sensory evaluation system for yogurt, encompassing hardness, ductility, viscosity, cohesiveness, silkiness, and stickiness. The system simulates human sensory evaluation based on the measurement principles of a texture analyzer, offering an intuitive, user-friendly, and data-efficient method. This provides a practical and systematic approach for the diverse development of the yogurt industry. In addition, using yogurt fortified with yam polysaccharide (YP) and auricularia auricula polysaccharide (AAP), which have nutritional and medicinal value, the study found that adding AAP alone improved the texture by reducing the hardness, ductivity, and cohesiveness while increasing the viscosity, silkiness, and stickiness compared with YP. Furthermore, the increased cohesiveness in yogurt at a WGS:AAP:YP ratio of 1:2:2 was linked to higher AAP content, while the reduced hardness and ductility at a ratio of 2:2:1 were associated with lower YP content. After 28 d of low-temperature storage, the decreased hardness, ductility, and cohesiveness, along with the increased viscosity, silkiness, stickiness in yogurt, were closely tied to the reduced YP content. This study enhances the convenience and safety of assessing sensory quality changes in yogurt due to added nutritional components during the development of new yogurt products.
Collapse
Affiliation(s)
- Chunbo Song
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| | - Jing Xie
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yongjian Pan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
8
|
Duan JL, Liu MQ, Liu YN, Liang XF, Cao C, Yao AN, Zhao LQ, Guo S, Qian DW, Bao CJ, Zhao M, Duan JA. Comparative study on physicochemical characterization and immunomodulatory activities of neutral and acidic Lycium barbarum polysaccharides. Biomed Pharmacother 2024; 181:117659. [PMID: 39486371 DOI: 10.1016/j.biopha.2024.117659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Lycium barbarum polysaccharides (LBPs) are recognized as key bioactive constituents of Lycium barbarum with diverse biological activities. However, current research on LBPs is largely confined to crude extracts, offering limited insight into the structural properties underlying their biological effects. In this study, we separated crude LBP into acidic LBP (ALBP) and neutral LBP (NLBP), which exhibited distinct physicochemical properties. ALBP, consisting of 76.18 % galacturonic acid (GalA), demonstrated crystallinity, thermal stability and gelatinous characteristics. In contrast, NLBP, with only 3.16 % GalA, displayed a more porous structure and superior fluidity. Furthermore, functional analysis revealed that NLBP exhibited enhanced immunoregulatory effects by activating dendritic cells and repolarizing macrophages. In a B16F10 melanoma-bearing C57BL/6 J mice model, NLBP significantly inhibited tumor growth with an inhibition rate of 66.7 % through macrophage repolarization. The findings highlight the distinct biological effects of NLBP and ALBP, providing a theoretical foundation for the refined utilization of LBP.
Collapse
Affiliation(s)
- Jia-Lun Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Meng-Qiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ya-Nan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Fei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An-Ni Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Qiang Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chun-Jie Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Province Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Luo S, Xiao Y, Ali A, Zhu Q, Shan N, Sun J, Wang S, Xiao J, Huang Y, Zhou Q. Structural Characteristics and Immunological Function of a New Non-Starch Polysaccharide from Red Sprout Taro. Foods 2024; 13:3531. [PMID: 39593948 PMCID: PMC11593330 DOI: 10.3390/foods13223531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Taro is a tuber crop that is used for nutritional and medicinal purposes due to its abundance of non-starch polysaccharides (NSPs). Red Sprout taro is a local variety in Southern China, but the characteristics and bioactivities of its NSPs are currently unknown. In this study, NSPs were isolated from the corms of Red Sprout taro using hot-water extraction, ion-exchange chromatography, and ethanol precipitation; their molecular weight, monosaccharide composition, structural formulae, and immunomodulatory effects were examined. A novel NSP named Colocasia esculenta polysaccharide 1 (CEP1) was purified and characterized and was shown to mainly consist of glucose (60.49%) and galactose (25.92%) and have a molecular weight of 4556.272 kDa. The backbone of CEP1 consisted primarily of →4)-α-D-Glcp-(1→, →4,6)-β-D-Galp-(1→, and →3)-β-D-Galp-(1→ residues, with a branch consisting of the β-D-Glcp-(1→ residue. In addition, 25-400 µg/mL CEP1 was shown to have immunomodulatory effects on RAW264.7 macrophages. CEP1 not only increased cell viability, phagocytic capacity, inducible nitric oxide synthase secretion, and nitric oxide generation in RAW264.7 cells, but it also activated M1 and M2 macrophages to generate tumor necrosis factor α, interleukin 6, transforming growth factor β, and interleukin 10. These findings could lead to the use of CEP1 from Red Sprout taro as a possible immunomodulatory polysaccharide in functional foods.
Collapse
Affiliation(s)
- Sha Luo
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| | - Yao Xiao
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| | - Asjad Ali
- Queensland Department of Agriculture and Fisheries, P.O. Box 1054, Mareeba, QLD 4880, Australia;
| | - Qianglong Zhu
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| | - Nan Shan
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| | - Jingyu Sun
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| | - Shenglin Wang
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| | - Jianhui Xiao
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology, Genetic Breeding of the Ministry of Education, Nanchang 330045, China
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (Y.X.); (Q.Z.); (N.S.); (J.S.); (S.W.); (J.X.)
| |
Collapse
|
10
|
Qiang Y, He M, Zhang S, Lin S, Guo Z, Zeng S, Zheng B. Pressure-controlled steam explosion as pretreatment for efficient extraction of Tremella fuciformis polysaccharide: Structure and bioactivity. Int J Biol Macromol 2024; 280:135766. [PMID: 39299434 DOI: 10.1016/j.ijbiomac.2024.135766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Tremella fuciformis (TF) is a mushroom with rich nutritional and medicinal value. This study aimed to develop an efficient extraction technique for TF polysaccharide (TFP) to enhance its health benefits. TF was subjected to steam explosion (SE) pretreatment at 0.5, 1.0, and 1.5 MPa for 60 s, followed by polysaccharide extraction. The extraction yield of TFP increased from 15.42 % to 50.16 % at 1.0 MPa. SE disrupted the dense structure of TFP, significantly improving total sugar and uronic acid contents, monosaccharide molar percentages of mannose and glucose, specific surface area, and ζ potential by 0.16, 0.4, 0.01, 0.83, 0.19, and 0.26 times at 0.5 MPa (P < 0.05). With increasing SE pressure, the thermal stability of TFP was enhanced, while its elasticity, viscosity, molecular weight, and particle size were reduced. TFP at 0.5 MPa significantly extended the lifespan of Drosophila melanogaster, with Tmax reaching 74 d for females and 60 d for males at a dosage of 0.015625 %, indicating a 0.32-fold enhancement. TFP enhanced climbing ability and antioxidant stress resistance, increased antioxidant enzyme activities and total antioxidant capacity, and reduced malondialdehyde levels, indicating its anti-aging effects. These findings provide theoretical and technical support for the high-value development and utilization of TFP.
Collapse
Affiliation(s)
- Yueyue Qiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Miaoyuan He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Shiyu Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China.
| |
Collapse
|
11
|
Jiang S, Xie H, Zuo Y, Sun J, Wu D, Shu X. Structural and functional properties of polysaccharides extracted from three Dioscorea species. Int J Biol Macromol 2024; 281:136469. [PMID: 39396596 DOI: 10.1016/j.ijbiomac.2024.136469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dioscorea has a history spanning over 2000 years for both medicinal and edible purposes in China. It contains rich polysaccharides, which are frequently utilized as thickening and stabilizing agents in the food industry. However, there has been relatively little focus on polysaccharides from common Dioscorea species besides D. opposita, such as D. alata and D. esculenta. In this study, non-starch crude polysaccharides were isolated from D. opposita (BD), D. alata (WC), and D. esculenta (GZ). Their structures, physicochemical compositions, and functional properties were characterized and compared. The results indicated three polysaccharides all exhibited characteristic peaks of polysaccharides and possessed triple-helix structures. The Glc (36.78-83.90 %), Man (6.71-26.68 %), and GalA (8.54-10.22 %) were identified as the primary monosaccharide components. In terms of functionality, three polysaccharide solutions demonstrated non-Newtonian flow characteristics and displayed commendable thermal stability. It is worth noting that the antioxidant and emulsifying properties of polysaccharides isolated from D. opposita (BD) and D. alata (WC) were superior to those of D. esculenta (GZ), making them more suitable for use as antioxidants and stabilizers. By comparing polysaccharides derived from different Dioscorea species, this study provides valuable insights into the food, cosmetic, and pharmaceutical industries based on the unique properties of these different polysaccharides.
Collapse
Affiliation(s)
- Shuo Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Huifang Xie
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Youming Zuo
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China
| | - Dianxing Wu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Xiaoli Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
12
|
Li Y, Pang J, Lin Y, Liu W, Zou Z, Liu G, Liu Q. Structural characterization and mast cell stabilizing activity of Red-edge tea polysaccharide. Food Chem X 2024; 23:101613. [PMID: 39100250 PMCID: PMC11295999 DOI: 10.1016/j.fochx.2024.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The potential anti-allergic properties of tea have been demonstrated in studies supporting theanine and catechin. However, research on tea polysaccharides' anti-allergic properties has been limited. In this study, we extracted red-edge tea crude polysaccharide (RETPS) and evaluated its anti-allergic activity using the mast cell, passive cutaneous anaphylaxis, and passive systemic anaphylaxis models. We purified RETPS using the DEAE-52 cellulose column, analyzed its composition and structural characteristics, and compared the anti-allergic properties of different polysaccharide fractions. The purified components RETPS-3 and RETPS-4 displayed higher galacturonic acid content and lower molecular weight (106.61 kDa and 53.95 kDa, respectively) compared to RETPS (310.54 kDa). In addition, RETPS-3 and RETPS-4 demonstrated superior anti-allergic activity than RETPS in mice's passive cutaneous and systemic allergic reactions. Our findings provide evidence of the anti-allergic potential of tea polysaccharides and offer a theoretical foundation for developing tea polysaccharides as a functional anti-allergic food product.
Collapse
Affiliation(s)
- Yan Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Jinhao Pang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yongfeng Lin
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Wenmei Liu
- San Ming MING BAWEI Industry Research Institute, Sanming 353000, China
- Changting County Green Economy Ecological Health Industry Research Institute, Longyan 366300, China
| | - Zehua Zou
- San Ming MING BAWEI Industry Research Institute, Sanming 353000, China
- Changting County Green Economy Ecological Health Industry Research Institute, Longyan 366300, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| |
Collapse
|
13
|
Xie Y, An L, Wang X, Ma Y, Bayoude A, Fan X, Yu B, Li R. Protection effect of Dioscoreae Rhizoma against ethanol-induced gastric injury in vitro and in vivo: A phytochemical and pharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118427. [PMID: 38844251 DOI: 10.1016/j.jep.2024.118427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscoreae Rhizoma, a kind of Chinese yam, is a medicinal and edible plant used in China for strengthening the spleen and stomach. However, there is a lack of modern pharmacology studies regarding its anti-gastric injury activity. AIM OF THE STUDY This study aimed to investigate the phytochemical composition of Chinese yam aqueous extract (CYW) and evaluate its gastroprotective effects against ethanol-induced gastric injury in vitro and in vivo. MATERIALS AND METHODS The active components of CYW were identified using HPLC-QTOF-MS/MS in combination with the GNPS molecular networking and network pharmacology. In vitro studies were performed in the RAW264.7/GES-1 cell coculture system. In vivo study, mice were treated with CYW (0.31, 0.63, and 3.14 g/kg BW, orally) for 14 days, followed by a single oral dose of ethanol (10 mL/kg BW) to induce gastric injury. The biochemical, inflammation and oxidative stress markers were analyzed using commercial kits. Histopathology was used to assess the degree of gastric injury. Gene and protein expressions were studied using RT-qPCR and western blotting, respectively. RESULTS CYW significantly restored the levels of SOD, GPx and CAT, and reduced the MDA content. Further analyses showed that CYW significantly alleviated the gastric oxidative stress by inhibiting the inflammation via decreasing p-NF-κB and p-IκB-α expression levels and inhibiting the generation of IL-6, TNF-α, and IL-1β. At the same time, the fraction remarkably upregulated Bcl-2, downregulated Bax and increased growth factor secretion, thereby prevented gastric mucous cell. Besides, The combination of HPLC-QTOF-MS/MS, GNPS molecular networking analysis, and network pharmacology demonstrated that linoleic acid, 3-acetyl-11-keto-beta-boswellic acid, adenosine, aminocaproic acid, tyramine, DL-tryptophan, cycloleucine, lactulose, melibiose, alpha-beta-trehalose, and sucrose would be the main active compounds of CYW against ethanol-induced gastric injury. CONCLUSION This study showed that CYW is potentially rich source of anti-oxidant and anti-inflammatory bioactive compounds. It showed efficacy against ethanol-induced gastric injury by inhibiting inflammation, oxidative stress, and apoptosis in the stomach. The results of the current work indicate that Dioscoreae Rhizoma could be utilized as a type of natural resource for production of new medicine and functional foods to prevent and/or ameliorate ethanol-induced gastric injury.
Collapse
Affiliation(s)
- Yujun Xie
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Luyao An
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyan Wang
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yajie Ma
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Alamusi Bayoude
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xinxin Fan
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Renshi Li
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
14
|
Zhang L, Wang S, Zhang W, Chang G, Guo L, Li X, Gao W. Prospects of yam (Dioscorea) polysaccharides: Structural features, bioactivities and applications. Food Chem 2024; 446:138897. [PMID: 38430768 DOI: 10.1016/j.foodchem.2024.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Yam (Dioscorea) is a tuber crop cultivated for food security, revenue, and medicinal purposes. It has been used to treat diabetes, asthma, diarrhea, and other diseases. The main active ingredients in yam, polysaccharides, are regarded to be the important reason for its widespread applications. Now, a comprehensive review of research developments of yam polysaccharides (YPs) was presented to explore their prospects. We outlined the structural characteristics, biological activities, structure-activity relationships, and potential applications. Around 13 neutral components and 17 acidic components were separated. They exhibited various bioactivities, including immunomodulatory, hypoglycemic, hypolipidemic, antioxidant, gastrointestinal protective, anti-fatigue, and senile disease treatment activities, as well as prebiotic effect. Structure-activity relationships illustrated that unique structural properties, chemical modifications, and carried biopolymers could influence the bioactivities of YPs. The potential applications in medicine, food, and other fields have also been summarized.
Collapse
Affiliation(s)
- Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Weimei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin 300402, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
15
|
Otegbayo BO, Tran T, Ricci J, Gibert O. In situ dynamic rheological analysis of raw yam tubers: a potential phenotyping tool for quality evaluation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4746-4757. [PMID: 37127918 DOI: 10.1002/jsfa.12662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Most rheological analyses in yam have been done on starch gels, which requires starch extraction from the tubers. In situ rheology bypasses the need of starch extraction and relies on the original cell structure and complex matrix organization under stress or strain. Dynamic rheological properties of tuber from 16 accessions belonging to four yam species (Dioscorea rotundata, D. alata. D. bulbifera and D. dumetorum) were investigated for potential use as a medium throughput phenotyping screening tool that can indicate the quality of yam food products or their industrial potentials. RESULTS Rheographs of the tubers illustrated differences in the structure of D. bulbifera compared to other yam species. High initial storage modulus (G') of yam parenchyma indicated tubers with strong and rigid structure which do not lose their structural integrity easily on heating. Dioscorea rotundata and D. alata varieties exhibited a lower temperature at which gelatinization took place (Tgel) equivalent to the irreversible transition during starch gelatinization (75.3 and 79.8 °C) and took shorter time (867 and 958 s, respectively) to reach the G' maximum, compared to other species. The stress relaxation test showed that the higher the dry matter of the tubers, the higher the work to rupture the structure. CONCLUSION Rheological characteristics G', loss modulus (G″), swelling capacity and Tgel showed potential as suitable quality indicators for yam products. In situ rheological characterization of yam tubers could be used as an instrumental screening tool to phenotype for quality in yam products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Thierry Tran
- CIRAD, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Universite, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- Alliance of Bioversity-International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Julien Ricci
- CIRAD, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Universite, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Olivier Gibert
- CIRAD, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Universite, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- CIRAD, AGAP Institute, Montpellier, France
- University of Montpellier, CIRAD-INRAE-Institut Agro, University of Montpellier, Montpellier, France
| |
Collapse
|
16
|
Wang Z, Zhang M, Hao L, Jiao X, Wu C. Two novel polysaccharides from Huangshui: Purification, structure, and bioactivities. Int J Biol Macromol 2024; 267:131396. [PMID: 38582468 DOI: 10.1016/j.ijbiomac.2024.131396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 → 4)-Glcp-(1 → 2)-Glcp-(1 → 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 → 6)-Manp-(1 → 3)-Glcp-(1 → 6)-Glcp-(1 → 2)-Manp-(1 → 6)-Glcp-(1 → 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.
Collapse
Affiliation(s)
- Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Cao Y, Kou R, Huang X, Wang N, Di D, Wang H, Liu J. Separation of polysaccharides from Lycium barbarum L. by high-speed countercurrent chromatography with aqueous two-phase system. Int J Biol Macromol 2024; 256:128282. [PMID: 38008142 DOI: 10.1016/j.ijbiomac.2023.128282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The traditional method for isolation and purification of polysaccharides is time-consuming. It often involves toxic solvents that destroy the function and structure of the polysaccharides, thus limiting in-depth research on the essential active ingredient of Lycium barbarum L. Therefore, in this study, high-speed countercurrent chromatography (HSCCC) and aqueous two-phase system (ATPS) were combined for the separation of crude polysaccharides of Lycium barbarum L. (LBPs). Under the optimized HSCCC conditions of PEG1000-K2HPO4-KH2PO4-H2O (12:10:10:68, w/w), 1.0 g of LBPs-ILs was successfully divided into three fractions (126.0 mg of LBPs-ILs-1, 109.9 mg of LBPs-ILs-2, and 65.4 mg of LBPs-ILs-3). Moreover, ATPS was confirmed as an efficient alternative method of pigment removal for LBPs purification, with significantly better decolorization (97.1 %) than the traditional H2O2 method (88.5 %). Then, the different partitioning behavior of LBPs-ILs in the two-phase system of HSCCC was preliminarily explored, which may be related to the difference in monosaccharide composition of polysaccharides. LBPs-ILs-1 exhibited better hypoglycemic activities than LBPs-ILs-2 and LBPs-ILs-3 in vitro. Therefore, HSCCC, combined with aqueous two-phase system, was an efficient separation and purification method with great potential for separating and purifying active polysaccharides in biological samples.
Collapse
Affiliation(s)
- Yu Cao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Renbo Kou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Xinyi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ningli Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Han Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
18
|
Helim R, Zazoua A, Jaffrezic-Renault N, Korri-Youssoufi H. Label free electrochemical sensors for Pb(II) detection based on hemicellulose extracted from Opuntia Ficus Indica cactus. Talanta 2023; 265:124784. [PMID: 37356191 DOI: 10.1016/j.talanta.2023.124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
We aim to develop an electrochemical sensor for a divalent metal ion (lead II), a highly toxic water contaminant. We explore a sensor formed with a hemicellulose polysaccharide extracted from the Opuntia Ficus Indica cactus associated with agarose as a sensitive layer deposited on a gold electrode. This sensor combines the functional groups of hemicellulose that could form a complex with metal ions and agarose with gelling properties to form a stable membrane. The sensor demonstrated a loading ability of Pb2+, with higher affinity compared to other metal ions such as Hg2+, Ni2+, and Cu2+, thanks to the chemical structure of hemicellulose. The detection was measured by square wave voltammetry based on a well-defined redox peak of the metal ions. The sensor shows high sensitivity towards Pb2+ with a detection limit of 1.3 fM. The application in river and sea water using the standard addition method for lead detection was studied.
Collapse
Affiliation(s)
- Rabiaa Helim
- University of Jijel, Laboratory of Applied Energetics and Materials, Jijel, 18000, Ouled Aissa, Algeria; Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, 17 avenue des sciences, 91400, Orsay, France.
| | - Ali Zazoua
- University of Jijel, Laboratory of Applied Energetics and Materials, Jijel, 18000, Ouled Aissa, Algeria; ENP of Constantine, Laboratoire de Génie des Procédés pour le Développement Durable et les Produits de Santé, Constantine, 25000, Algeria.
| | | | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, 17 avenue des sciences, 91400, Orsay, France.
| |
Collapse
|
19
|
Yao Z, Guo J, Du B, Hong L, Zhu Y, Feng X, Hou Y, Shi A. Effects of Shenling Baizhu powder on intestinal microflora metabolites and liver mitochondrial energy metabolism in nonalcoholic fatty liver mice. Front Microbiol 2023; 14:1147067. [PMID: 37538846 PMCID: PMC10394096 DOI: 10.3389/fmicb.2023.1147067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Background & purpose Non-alcoholic fatty liver disease (NAFLD) is characterised by the excessive accumulation of triglycerides in the liver. Shenling Baizhu powder (SLBZP) is formulated from various natural medicinal plants that protect the liver and are used to treat intestinal diseases. SLBZP improves the symptoms of NAFLD. However, its mechanism of action remains unclear. Herein, we investigated the ameliorative effect of SLBZP on model mice with high-fat-diet (HFD)-induced NAFLD. Additionally, we evaluated the impact of SLBZP on the intestinal flora and its metabolites and mitochondrial energy metabolism in NAFLD. Methods We used HFD to establish a mouse model of NAFLD. Different drug interventions were administered. We measured serum biochemical indices. Liver sections were visualised with hematoxylin-eosin and oil red O staining. 16S rDNA amplicon sequencing technology was used to analyse the diversity and abundance of the intestinal flora. Short-chain fatty acids (SCFAs) in the intestinal contents were detected using GC-MS. Liver tissue was sampled to detect mitochondrial membrane functional indices. Western blotting was used to determine the levels of mitochondrial pathway-related proteins, namely, uncoupling protein 2 (UCP2), adenosine monophosphate-activated protein kinase (AMPK) and inhibitory factor 1 (IF1) of F1Fo ATP synthesis/hydrolase, in the liver. Results The spleen-invigorating classic recipe of SLBZP reduced liver lipid deposition in mice with HFD-induced NAFLD. Additionally, SCFAs produced by intestinal flora metabolism regulated the UCP2/AMPK/IF1 signalling pathway involved in liver mitochondrial energy metabolism to improve the liver mitochondrial membrane permeability, respiratory state and oxidative phosphorylation efficiency of mice with NAFLD. Finally, SLBZP increased the liver ATP level. Conclusion Our results suggest that the therapeutic effect of SLBZP on NAFLD is related to the regulation of hepatic mitochondrial energy metabolism by intestinal flora and its metabolites and is possibly associated with the UCP2/AMPK/IF1 signalling pathway.
Collapse
Affiliation(s)
- Zheng Yao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming, China
| | - Jia Guo
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Dongtai City Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Du
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Harbin, China
| | - Li Hong
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Wuhan Special Service Recuperation Center, Wuhan, China
| | - Ying Zhu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Feng
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanlu Hou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming, China
| |
Collapse
|
20
|
Hu Z, Luo Z, Wang Y, Zhou Q, Liu S, Wang Q. Texture Feature Extraction from 1H NMR Spectra for the Geographical Origin Traceability of Chinese Yam. Foods 2023; 12:2476. [PMID: 37444214 DOI: 10.3390/foods12132476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Adulteration is widespread in the herbal and food industry and seriously restricts traditional Chinese medicine development. Accurate identification of geo-authentic herbs ensures drug safety and effectiveness. In this study, 1H NMR combined intelligent "rotation-invariant uniform local binary pattern" identification was implemented for the geographical origin confirmation of geo-authentic Chinese yam (grown in Jiaozuo, Henan province) from Chinese yams grown in other locations. Our results showed that the texture feature of 1H NMR image extracted with rotation-invariant uniform local binary pattern for identification is far superior compared to the original NMR data. Furthermore, data preprocessing is necessary. Moreover, the model combining a feature extraction algorithm and support vector machine (SVM) classifier demonstrated good robustness. This approach is advantageous, as it is accurate, rapid, simple, and inexpensive. It is also suitable for the geographical origin traceability of other geographical indication agricultural products.
Collapse
Affiliation(s)
- Zhongyi Hu
- College of Computer Science and Artifical Intelligence, Wenzhou University, Wenzhou 325035, China
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China
| | - Zhenzhen Luo
- Zhenhai District Finance Bureau, Ningbo 315202, China
| | - Yanli Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Institute of Reproductive Health Science and Technology, Zhengzhou 450002, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shuangyan Liu
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Qiang Wang
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, China
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450063, China
| |
Collapse
|
21
|
Effects of Lactobacillus fermentation on Eucheuma spinosum polysaccharides: Characterization and mast cell membrane stabilizing activity. Carbohydr Polym 2023; 310:120742. [PMID: 36925257 DOI: 10.1016/j.carbpol.2023.120742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eucheuma polysaccharides have varieties of biological activities. However, it is accompanied by problems like large molecular weight, high viscosity, and low utilization. Here, we first prepared fermented Eucheuma spinosum polysaccharides (F-ESP) by Lactobacillus fermentation, compared with low-temperature freeze-thaw ESP (L-ESP) prepared by the freeze-thaw method, explored the composition and structural characteristics of F-ESP and L-ESP, and evaluation of the ability of different samples to inhibit mast cell degranulation using classical mast cell model. Then, the activity of L-ESP and F-ESP in vivo was preliminarily evaluated using a passive cutaneous anaphylaxis model. Two kinds of F-ESP named F1-ESP-3 and F2-ESP-3 were obtained by fermentation of Eucheuma spinosum with the selected strains of Lactobacillus.sakei subsp.sakei and Lactobacillus.rhamnosus. Compared with the purified component L-ESP-3, the monosaccharide composition of F1-ESP-3 contains more glucuronic acid, the molecular weight reduced from >600 kDa (L-ESP-3) to 28.30 kDa (F1-ESP-3) and 33.58 kDa (F2-ESP-3), F1-ESP-3 has higher solubility and lower apparent viscosity. Fermentation did not destroy the functional groups and structure of ESP. Moreover, F1-ESP-3 significantly inhibited RBL-2H3 cell degranulation by reducing depolymerization of F-actin and Ca2+ influx. F1-ESP-3 reduced the symptoms of mast cell-mediated passive cutaneous anaphylaxis, indicating that F1-ESP-3 may have better anti-allergic activity in vivo.
Collapse
|
22
|
Li F, Li T, Zhao J, Fan M, Qian H, Li Y, Wang L. Entanglement between Water Un-Extractable Arabinoxylan and Gliadin or Glutenins Induced a More Fragile and Soft Gluten Network Structure. Foods 2023; 12:foods12091800. [PMID: 37174338 PMCID: PMC10178768 DOI: 10.3390/foods12091800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to investigate the effects of water-unextractable arabinoxylan (WUAX) on the gluten network structure, especially on gliadins and glutenins. The results indicated that the free sulfhydryl (free SH) of gliadins increased by 25.5% with 100 g/kg WUAX, whereas that of glutenins increased by 65.2%, which inhibited the formation of covalent bonds. Furthermore, β-sheets content decreased 5.63% and 4.75% for gliadins and glutenins with 100 g/kg WUAX, respectively, compared with the control. WUAX increased β-turns prevalence for gliadins, while the content of α-helixes and random coils had less fluctuation. In glutenins, the contents of α-helixes and β-sheets decreased and β-turns increased. Moreover, compared with the control, the weight loss rate for gliadins and glutenins increased by 2.49% and 2.04%, respectively, with 60 g/kg WUAX. The dynamic rheological analysis manifested that WUAX impaired the viscoelasticity property of gliadin and glutenin. Overall, WUAX weakened the structure of the gliadins and glutenins, leading to quality deterioration of gluten.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou 225000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
23
|
Wu S, Chen X, Cai R, Chen X, Zhang J, Xie J, Shen M. Sulfated Chinese Yam Polysaccharides Alleviate LPS-Induced Acute Inflammation in Mice through Modulating Intestinal Microbiota. Foods 2023; 12:foods12091772. [PMID: 37174310 PMCID: PMC10178587 DOI: 10.3390/foods12091772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to test the preventive anti-inflammatory properties of Chinese yam polysaccharides (CYP) and sulfated Chinese yam polysaccharides (SCYP) on LPS-induced systemic acute inflammation in mice and investigate their mechanisms of action. The results showed that SCYP can efficiently reduce plasma TNF-α and IL-6 levels, exhibiting an obvious anti-inflammation ability. Moreover, SCYP reduced hepatic TNF-α, IL-6, and IL-1β secretion more effectively than CYP, and significantly altered intestinal oxidative stress levels. In addition, a 16S rRNA gene sequencing analysis showed that CYP regulated the gut microbiota by decreasing Desulfovibrio and Sutterella and increasing Prevotella. SCYP changed the gut microbiota by decreasing Desulfovibrio and increasing Coprococcus, which reversed the microbiota dysbiosis caused by LPS. Linear discriminant analysis (LDA) effect size (LEfSe) revealed that treatment with CYP and SCYP can produce more biomarkers of the gut microbiome that can promote the proliferation of polysaccharide-degrading bacteria and facilitate the intestinal de-utilization of polysaccharides. These results suggest that SCYP can differentially regulate intestinal flora, and that they exhibit anti-inflammatory effects, thus providing a new reference to rationalize the exploitation of sulfated yam polysaccharides.
Collapse
Affiliation(s)
- Shihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ruixin Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaodie Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
24
|
The synergistic gelation of Dendrobium officinale polysaccharide (Dendronans) with xanthan gum and its rheological and texture properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
25
|
Rheological and microstructural properties of polysaccharide obtained from the gelatinous Tremella fuciformis fungus. Int J Biol Macromol 2023; 228:153-164. [PMID: 36566809 DOI: 10.1016/j.ijbiomac.2022.12.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The gelatinous feature of Tremella fuciformis polysaccharide (TFP) has attracted growing interest in its application as a thickening agent in the food industry. This study aims to reveal the microstructure and rheological properties of TFP. Results showed that TFP randomly distributed in aqueous solutions in an irregular worm-like morphology and formed a more extensive entangled network and stiffer chains at higher concentration solutions. The further rheological study indicated that the TFP solutions exhibited a shear-thinning behavior. Multiple results of dynamic oscillation tests confirmed the viscoelastic properties of TFP. Frequency sweep data display that TFP solutions exhibit solid-like behavior at high frequencies, showing the oscillatory behavior of entangled polymers. The temperature sweep demonstrated that the rheological behavior of TFP is thermally reversible. These results enriched the understanding of the rheology-microstructure relationship of TFP solution and were beneficial to expanding the application of TFP in food processing.
Collapse
|
26
|
Zhu H, Xu L, Wang J, Zhang Z, Xu X, Yang K, Sun P, Liao X, Cai M. Rheological behaviors of ethanol-fractional polysaccharides from Dendrobium officinale in aqueous solution: Effects of concentration, temperature, pH, and metal ions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Du H, Liu J, Pan B, Yang HY, Liu GB, Lu K. Fabrication of the low molecular weight peptide-based hydrogels and analysis of gelation behaviors. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Luo Z, Gao Q, Li Y, Bai Y, Zhang J, Xu W, Xu J. Flammulina velutipes Mycorrhizae Attenuate High Fat Diet-Induced Lipid Disorder, Oxidative Stress and Inflammation in the Liver and Perirenal Adipose Tissue of Mice. Nutrients 2022; 14:nu14183830. [PMID: 36145203 PMCID: PMC9505303 DOI: 10.3390/nu14183830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Flammulina velutipes (FV) is edible mushroom that has nutritional and medicinal values. FV mycorrhizae, the by-products of FV, are an abundant source and receive less attention. The objective of this study was to investigate the composition of FV mycorrhizae, and its effects on high fat diet (HFD)-induced lipid disorder, oxidative stress, and inflammatory cytokines, both in the liver and perirenal adipose tissue (PAT) of mice. The results showed that FV mycorrhizae contain abundant trace elements, polysaccharide, amino acids and derivatives, and organic compounds. It was found that 4% FV mycorrhizae (HFDFV) supplementation decreased HFD-induced liver weight and triglyceride (TG) in the plasma, liver and PAT, altered plasma and hepatic fatty acids profiles, promoted gene expression involved in lipid hydrolysis, fatty acid transportation and β-oxidation in the liver and reduced lipid synthesis in the liver and PAT. HFDFV attenuated HFD-induced oxidative stress and pro-inflammatory cytokine by increasing GSH/GSSG, and decreasing levels of MDA and IL6 both in the liver and PAT, while it differentially regulated gene expression of IL1β, IL6, and CCL2 in liver and PAT. The results indicated that FV mycorrhizae are effective to attenuate HFD-induced lipid disorder, oxidative stress and inflammation in the liver and PAT, indicating their promising constituents for functional foods and herbal medicine.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingying Gao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanfei Li
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Yifei Bai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weina Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-021-34205767
| |
Collapse
|
29
|
Zheng Q, Jia RB, Luo D, Lin L, Chen C, Zhao M. The effect of extraction solution pH level on the physicochemical properties and α-glucosidase inhibitory potential of Fucus vesiculosus polysaccharide. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Liu C, Wang F, Zhang R. An Acidic Polysaccharide with Anti-Inflammatory Effects from Blackened Jujube: Conformation and Rheological Properties. Foods 2022; 11:foods11162488. [PMID: 36010488 PMCID: PMC9407416 DOI: 10.3390/foods11162488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
An acidic polysaccharide fraction (BJP-4) was isolated from blackened jujube, and its advanced structures and anti-inflammatory activity were investigated. X-ray diffraction showed that BJP-4 exhibits both crystalline and amorphous portions. Atomic force microscopy data suggested that it contains a large number of spherical lumps. Circular dichroism and Congo red experiments revealed that it has no triple-helix conformation. In steady shear flow results, the BJP-4 solution was a pseudoplastic non-Newtonian fluid with acid-base stability. BJP-4 (20 mg/mL) showed liquid-like properties (G″ > G′), while it performed weak gel-like behavior at a high concentration (40 mg/mL) (G′ > G″). The anti-inflammatory effects of BJP-4 were further evaluated through in vitro experiments. BJP-4 could down-regulate the over-secretion of inflammatory factors (NO, IL-6, IL-1β, TNF-α, iNOS and COX-2) in RAW264.7 cells due to LPS stimulation. Moreover, it demonstrated that BJP-4 restrained the NF-κB signal pathway by regulating TLR4 expression, reducing IκBα phosphorylation level and NF-κB p65 nuclear translocation. In summary, this present study contributes to the application of blackened jujube polysaccharides in the foods and medicine field.
Collapse
|
31
|
Liu W, Wang X, Zhou D, Fan X, Zhu J, Liu X. A Dioscorea opposita Thunb Polysaccharide-Based Dual-Responsive Hydrogel for Insulin Controlled Release. Int J Mol Sci 2022; 23:ijms23169081. [PMID: 36012342 PMCID: PMC9409491 DOI: 10.3390/ijms23169081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
A novel hydrogel (DOP/PEI-PBA) based on the “three-component” reaction of 2-formylphenylboric acid (2-FPBA), the primary amine group of polyethyleneimine (PEI) and the cis-o-dihydroxy groups of Dioscorea opposita Thunb polysaccharide (DOP) was designed in this work. The hydrogel can be easily prepared by simply mixing the three reactants at room temperature. The hydrogel had dual responsiveness to glucose and pH, and can realize the controllable release of insulin. Moreover, the hydrogel combining insulin and DOP can inhibit the reactive oxygen species (ROS) level and malondialdehyde (MDA) content, and promote glucose consumption as well as the level of superoxide dismutase (SOD), in high-glucose-induced injury in HL-7702 cells, which reflects the synergistic effect of insulin and DOP to protect hepatocytes from oxidative stress at the same time. Further in vitro cytotoxicity studies showed that the hydrogel had good biocompatibility and no obvious toxicity to cells. These indicate that the prepared hydrogel (DOP/PEI-PBA) can be expected to be applied in the clinical treatment of insulin deficiency in diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Jinhua Zhu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| | - Xiuhua Liu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| |
Collapse
|
32
|
Li Q, Zhao T, Shi J, Xia X, Li J, Liu L, Julian McClements D, Cao Y, Fu Y, Han L, Lin H, Huang J, Chen X. Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea (Camellia sinensis). Food Chem 2022; 395:133625. [DOI: 10.1016/j.foodchem.2022.133625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
|
33
|
Luo W, Zhou J, Yang X, Wu R, Liu H, Shao H, Huang B, Kang X, Yang L, Liu D. A Chinese medical nutrition therapy diet accompanied by intermittent energy restriction alleviates type 2 diabetes by enhancing pancreatic islet function and regulating gut microbiota composition. Food Res Int 2022; 161:111744. [DOI: 10.1016/j.foodres.2022.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
|
34
|
Fan R, Mao G, Xia H, Zeng J. Chemical elucidation and rheological properties of a pectic polysaccharide extracted from Citrus medica L. fruit residues by gradient ethanol precipitation. Int J Biol Macromol 2022; 198:46-53. [PMID: 34958815 DOI: 10.1016/j.ijbiomac.2021.12.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022]
Abstract
Citron (Citrus. medica L.) fruits are commonly utilized in the production of essential oil, therefore, the fruits residues turn out to be industrial byproducts. In the present study, a crude polysaccharide was extracted from citron fruit residues by hot water extraction and precipitation of ethanol (95%), after deproteinization, a major polysaccharide component (CMLP-2) was obtained by gradient ethanol precipitation (20%-80%). The physicochemical properties of CMLP-2 such as surface morphology, functional groups, and thermostability were examined by FT-IR spectroscopy, SEM, and thermogravimetric analysis. Moreover, the chemical structure of CMLP-2 was elucidated that CMLP-2 is an acidic pectic polysaccharide consisting of arabinose (Ara), galacturonic acid (GalA), and rhamnose (Rha) in a molar ratio of 4:2:1 with a molecular weight of 202.18 kDa. CMLP-2 is a novel pectic polysaccharide rich in rhamnogalacturonan I (RG-I). Moreover, rheological tests revealed that CMLP-2 solution is pseudoplastic and temperature resistant. The result could be a good basis for the utilization of Citrus medica L. fruits residues as plant-derived food additive.
Collapse
Affiliation(s)
- Ruiyi Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Genlin Mao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Hongqi Xia
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
35
|
Li Q, Shi J, Li J, Liu L, Zhao T, McClements DJ, Fu Y, Wu Z, Duan M, Chen X. Influence of thermal treatment on the physicochemical and functional properties of tea polysaccharide conjugates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Physicochemical properties and antioxidant activity of Maillard reaction products derived from Dioscorea opposita polysaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Yao YT, Wang WY, Liu HM, Hou LX, Wang XD. Emulsifying properties of Chinese quince seed gum in oil-in-water emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Gong L, Hu L, Feng D, Chi J, Wang B, Wang J. Effects of different household cooking methods on the biological properties of Chinese yam. Food Chem 2021; 363:130246. [PMID: 34116491 DOI: 10.1016/j.foodchem.2021.130246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Yam (Dioscorea opposite Thunb) is used as a staple food and a traditional medicine in China. This study investigated the effects of different household cooking methods on the bioactive components (phenolic compounds, diosgenin and allantoin) and their bioaccessibility as well as the biological properties (antioxidant activity, hypoglycemic activity, anti-angiotensin I-converting enzyme (ACE) or anti-acetylcholinesterase (AChE)) of Chinese yam using an in vitro simulated digestion model. The results demonstrated that cooking caused significant losses of total soluble phenolic compounds (lowest loss of 20% for boiling at atmospheric pressure) and diosgenin content (lowest loss of 27.37% for microwaving) but no changes in the allantoin content. The cooking methods affected the bioaccessibility of the bioactive components differently. Normal steaming resulted in the highest amount of bioaccessible phenolic compounds (71.21%) and allantoin (79.07%), whereas high-pressure boiling in the highest content of diosgenin (75.58%). The concentration of bioactive components in the digesta fluid was correlated with the antioxidant activity and enzymatic inhibitory activities. Overall, household cooking processes allow the biological activity of yam to be retained by changing the profile of bioactive components potentially available for intestinal absorption. Thus, a household cooking method such as normal pressure steaming appeared to be most suitable for achieving the expected health benefits of yam.
Collapse
Affiliation(s)
- Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Linlin Hu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dannin Feng
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jingwen Chi
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bohan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
39
|
Huang R, Xie J, Liu X, Shen M. Sulfated modification enhances the modulatory effect of yam polysaccharide on gut microbiota in cyclophosphamide-treated mice. Food Res Int 2021; 145:110393. [PMID: 34112396 DOI: 10.1016/j.foodres.2021.110393] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023]
Abstract
Our previous study has demonstrated that sulfated yam polysaccharide (SCYP) had a stronger immunomodulatory activity than yam polysaccharide (CYP). In order to investigate how the sulfated modification influence the immunological activity of CYP, this research was mainly focused on the study of gut microbiotal. The results showed that SCYP treatment could increase the digestive enzyme activities of colon contents and restore the production of short-chain fatty acids (SCFAs) in mice that were decreased by cyclophosphamide (Cy) treatment. Furthermore, SCYP treatment could modulate the structure of the gut microbiota, which was mainly manifest in the result of an increased abundances of Lactobacillus, Bacteroidetes and Akkermansia, and the decrease of the proportion of Proteobacteria and Verrucomicrobia in the microbial community. Diversity and overall structure of microbial community were also improved by SCYP treatment based on alpha-diversity and beta-diversity analysis results. The biomarkers of the gut microbial that were regulated by SCYP have been identified by linear discriminant analysis (LDA) effect size (LEfSe). These findings further indicate that there is great potential for SCYP to be developed into prebiotics or functional foods.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
40
|
Zhou S, Huang G, Chen G. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam. Food Chem 2021; 361:130089. [PMID: 34029907 DOI: 10.1016/j.foodchem.2021.130089] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
The polysaccharide of yam was extracted by hot water method and purified by column chromatography. The physicochemical properties of Chinese yam polysaccharide were analyzed by UV, IR, GPC, 1D-NMR and 2D-NMR spectra. The results showed that Chinese yam polysaccharide had α-d-Gluc-(1 → 4) glycoside bond, and the C2 hydroxyl group was replaced by ethoxyl group. The average molecular weight was determined to be 7.28 × 104. It showed that The scavenging effect of yam polysaccharide on hydroxyl radicals was similar to VC. The sulfated polysaccharide (SP), phosphorylated polysaccharide (PP), carboxymethylated polysaccharide (CP) and acetylated polysaccharide (A-P) were identified by IR and NMR. The results showed that P and its derivatives showed good antioxidant activity. Especially, their scavenging ability to hydroxyl radicals reached the level of VC. This laid a theoretical foundation for the development of yam polysaccharide-related foods.
Collapse
Affiliation(s)
- Shiyang Zhou
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing 401331, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China
| |
Collapse
|
41
|
Ma F, Li X, Ren Z, Särkkä-Tirkkonen M, Zhang Y, Zhao D, Liu X. Effects of concentrations, temperature, pH and co-solutes on the rheological properties of mucilage from Dioscorea opposita Thunb. and its antioxidant activity. Food Chem 2021; 360:130022. [PMID: 33984568 DOI: 10.1016/j.foodchem.2021.130022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 01/27/2023]
Abstract
The mucilage from Dioscorea opposita (DOM) dispersions presented shear-thinning behaviour that well fitted to the Power Law model. The effects of different concentrations (2%-10% w/v), temperatures (25-80 °C), pH (3.0-9.0), freeze-thaw conditions (thawed at 25 °C and 4 °C), co-salts (KCl and CaCl2) and co-sugars (sucrose, fructose and mannose) on the rheological properties were investigated. Generally, higher concentrations, neutral pH, Ca2+ and sugars increased the viscosity of DOM, while increasing temperature (25-65 °C) had opposite effects. The results suggested that cross-linked networks exist in DOM, and viscosity changes may be related to the ionisation of carboxyl groups, structural changes and enhancement/reduction of molecular interactions. Particularly, Ca2+ could interact with uronic acids of two or more polysaccharide molecules, modify the network-structure through cross-linking with carboxyl groups, and enhance the stronger carboxylate-cation2+-carboxylate interactions. Therefore, DOM is suitable for food applications as thickening or gelling agents in aqueous solutions.
Collapse
Affiliation(s)
- Fanyi Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaojing Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zeyue Ren
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | | | - Yun Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Dongbao Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiuhua Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, School of Pharmacy, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
42
|
1H NMR-based metabolic profiling approach to identify the geo-authentic Chinese yam (Dioscorea polystachya Turczaninow cv. Tiegun). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. Int J Biol Macromol 2021; 183:90-100. [PMID: 33872613 DOI: 10.1016/j.ijbiomac.2021.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
A water-soluble polysaccharide identified here as ADP80-2 was acquired from Angelica dahurica. ADP80-2 was a gluco-arabinan composed of arabinose and a trace of glucose with a molecular weight of 9950 g/mol. The backbone of ADP80-2 comprised →5)-α-L-Araf-(1→, →3, 5)-α-L-Araf-(1→, →6)-α-D-Glcp-(1→, with a terminal branch α-L-Araf-(1 → residue. In terms of immunoregulatory activity, ADP80-2 can significantly promote the phagocytosis, the production of nitric oxide (NO), and the secretion of cytokines (IL-6, IL-1β, and TNF-α) of macrophage. In addition to the cellular immunomodulatory activities, the chemokines related to immunoregulation were significantly increased in the zebrafish model after treated with ADP80-2. These biological results indicated that ADP80-2 with immunomodulatory effects was expected to be useful for the development of new immunomodulatory agents. Simultaneously, the discovery of ADP80-2 further revealed the chemical composition of A. dahurica used as a traditional Chinese medicine and spice.
Collapse
|
44
|
Gao G, Wang H, Zhou J, Rao P, Ke L, Lin JJ, Sun Pan B, Zhang Y, Wang Q. Isolation and Characterization of Bioactive Proteoglycan-Lipid Nanoparticles from Freshwater Clam ( Corbicula fluminea Muller) Soup. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1610-1618. [PMID: 33501827 DOI: 10.1021/acs.jafc.0c02402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticles can be prepared by several sophisticated processes but until now, it cannot be prepared by simple home cooking. Here, we report that two incidental food nanoparticles (iFNPs) consisting of proteoglycans and phytosterols were isolated from soup made from freshwater clam (Corbicula fluminea Muller), a renowned folk remedy for liver problems in China and other parts of East Asia. These two bioactive iFNPs were obtained and characterized by anionic exchange chromatography coupled with multi-angle laser light scattering measurement. Their hydrodynamic diameters and ζ-potentials were 50 ± 0.2 nm and -28.0 mV and 67 ± 0.4 nm and -9.96 mV, respectively. FT-IR revealed that the proteoglycans in the particles contained α-type heteropolysaccharides. Both iFNPs were resistant to pH changes and separation by mechanical force but responsive to temperature changes. They effectively inhibited cholesterol uptake in vitro, which resonates with the traditional belief that freshwater clam soup provides hepatoprotective benefits. This study suggests that these two proteoglycan-lipid iFNPs are the active moieties and offers a supramolecular structure-based approach to study the function of such complex matrices derived from food.
Collapse
Affiliation(s)
- Guanzhen Gao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huiqin Wang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jianwu Zhou
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijing Ke
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Jen Lin
- Department of Food Science, National Taiwan Ocean University, Keelung City 202, Taiwan
| | - Bonnie Sun Pan
- Department of Food Science, National Taiwan Ocean University, Keelung City 202, Taiwan
| | - Yue Zhang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
45
|
Zeng M, Ren Y, Zhang B, Wang S, Liu M, Jia J, Guo P, Zhang Q, Zheng X, Feng W. In vitro Non-Small Cell Lung Cancer Inhibitory Effect by New Diphenylethane Isolated From Stems and Leaves of Dioscorea oppositifolia L. via ERβ-STAT3 Pathway. Front Pharmacol 2021; 12:622681. [PMID: 33708130 PMCID: PMC7941213 DOI: 10.3389/fphar.2021.622681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most leading cause of cancer mortality throughout the world, of which about 85% cases comprise the non-small cell lung cancer (NSCLC). Estrogen and estrogen receptors are known to be involved in the pathogenesis and development of lung cancer. Dioscorea oppositifolia L. is a traditional Chinese medicine and a nutritious food, and can be an excellent candidate as an anti-cancer agent owing to its estrogen-like effects. However, the stems and leaves of D. oppositifolia L. are piled up in the field as a waste, causing environmental pollution and waste of resources. In the present study, a new diphenylethane (D1) was isolated from the stems and leaves of D. oppositifolia L. It was observed that D1 reduced the cell viability, migration, energy metabolism, and induced apoptosis in the A549 cells. Mechanistic studies showed that D1 reduced the STAT3 nuclear localization and downregulated the expression of the STAT3 target genes like Mcl-1, Bcl-xL and MMP-2 that are involved in the cell survival and mobility. Moreover, our results indicated that D1 exhibited estrogenic activities mediated by ERβ, and antagonising ERβ decreased the cytotoxic effect of D1 in A549 cells. In addition, inhibition of the nuclear translocation of STAT3 did not interfere with the binding of D1 and ERβ. However, after antagonizing ERβ, the nuclear translocation of STAT3 increased, thereby demonstrating that STAT3 was the downstream signaling molecule of ERβ. In conclusion, the D1 mediated anti-NSCLC in vitro effects or at least in part can be attributed to the ERβ-STAT3 signaling. Our findings suggest the role of D1 in treating NSCLC on a molecular level, and can help to improve the comprehensive utilization rate of D. oppositifolia L.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yingjie Ren
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
46
|
Shi XD, Yin JY, Cui SW, Wang Q, Wang SY, Nie SP. Plant-derived glucomannans: Sources, preparation methods, structural features, and biological properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Physical properties of mucilage polysaccharides from Dioscorea opposita Thunb. Food Chem 2020; 311:126039. [DOI: 10.1016/j.foodchem.2019.126039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022]
|
48
|
Chen JN, Gao Q, Liu CJ, Li DJ, Liu CQ, Xue YL. Comparison of volatile components in 11 Chinese yam (Dioscorea spp.) varieties. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. Int J Biol Macromol 2020; 147:109-116. [DOI: 10.1016/j.ijbiomac.2020.01.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
50
|
Guo H, Feng KL, Zhou J, Liu L, Wei SY, Zhao L, Qin W, Gan RY, Wu DT. Carboxymethylation of Qingke β-glucans and their physicochemical properties and biological activities. Int J Biol Macromol 2020; 147:200-208. [DOI: 10.1016/j.ijbiomac.2020.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
|