1
|
Zhang S, Guo J, Suo S, Ju L, Jiang Z, Dong P, Wang Y, Dang Y, Du L. In vitro gastrointestinal digestion simulation screening of novel ACEI peptides from broccoli: mechanism in high glucose-induced VSMCs dysfunction. Front Nutr 2025; 12:1528184. [PMID: 39931369 PMCID: PMC11807808 DOI: 10.3389/fnut.2025.1528184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Many natural angiotensin-converting enzyme inhibitory (ACEI) peptides have been widely studied. However, their stability in vivo is poor in most cases. In this study, peptides were initially digested from broccoli in vitro, and absorption was simulated by Caco2 cells transport and then analyzed by Peptideomics and molecular docking. Subsequently, the mechanisms were verified using a high glucose-induced vascular smooth muscle cells (VSMCs) dysfunction model. Results showed that ACEI activity of broccoli crude peptide increased by 70.73 ± 1.42% after digestion. The enzymatic hydrolysates of crude broccoli peptides before and after digestion were detected by HPLC. The digested crude peptides were highly stable (with a stability level > 90%) in the intestine and possessed a strong absorptive potential. Five peptides with high stability and strong permeability were first identified, including HLEVR, LTEVR, LEHGF, HLVNK, and LLDGR, which exhibited high activity with IC50 values of 3.19 ± 0.23 mM, 17.07 ± 1.37 mM, 0.64 ± 0.02 mM, 0.06 ± 0.01 mM, and 2.81 ± 0.12 mM, respectively. When the VSMCs model was exposed to Ang II, the expressions of PCNA, MMP2, and Bcl2 were increased, while the expression of BAX was inhibited. When the VSMCs was exposed to high glucose (HG), the Ang II concentration significantly increased. This indicates that HG elevated Ang II levels. Finally, five peptides significantly attenuated Ang II-induced VSMCs proliferation and migration by down-regulating AT1R expression and inhibiting ERK and p38 MAPK phosphorylation. Notably, in exploring VSMCs dysfunction on a high glucose-induced model, ACEI peptides resulted in down-regulation of ACE and up-regulation of ACE2 expression. Therefore, it can be further referenced for the functional food against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Shuzhi Zhang
- School of Phamacy, Hangzhou Medical College, Hangzhou, China
| | - Jingjing Guo
- Luoyang Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shikun Suo
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Li Ju
- School of Phamacy, Hangzhou Medical College, Hangzhou, China
| | - Zhaoqiang Jiang
- School of Phamacy, Hangzhou Medical College, Hangzhou, China
| | - Pingshuan Dong
- Henan Provincial Key Laboratory of Cardiovascular Disease Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanli Wang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yali Dang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Laijing Du
- Luoyang Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Gudiño I, Casquete R, Martín A, Wu Y, Benito MJ. Comprehensive Analysis of Bioactive Compounds, Functional Properties, and Applications of Broccoli By-Products. Foods 2024; 13:3918. [PMID: 39682990 DOI: 10.3390/foods13233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Broccoli by-products, traditionally considered inedible, possess a comprehensive nutritional and functional profile. These by-products are abundant in glucosinolates, particularly glucoraphanin, and sulforaphane, an isothiocyanate renowned for its potent antioxidant and anticarcinogenic properties. Broccoli leaves are a significant source of phenolic compounds, including kaempferol and quercetin, as well as pigments, vitamins, and essential minerals. Additionally, they contain proteins, essential amino acids, lipids, and carbohydrates, with the leaves exhibiting the highest protein content among the by-products. Processing techniques such as ultrasound-assisted extraction and freeze-drying are crucial for maximizing the concentration and efficacy of these bioactive compounds. Advanced analytical methods, such as high-performance liquid chromatography-mass spectrometry (HPLC-MS), have enabled precise characterization of these bioactives. Broccoli by-products have diverse applications in the food industry, enhancing the nutritional quality of food products and serving as natural substitutes for synthetic additives. Their antioxidant, antimicrobial, and anti-inflammatory properties not only contribute to health promotion but also support sustainability by reducing agricultural waste and promoting a circular economy, thereby underscoring the value of these often underutilized components.
Collapse
Affiliation(s)
- Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Quizhpe J, Ayuso P, Rosell MDLÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024; 13:3513. [PMID: 39517297 PMCID: PMC11544821 DOI: 10.3390/foods13213513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (J.Q.); (P.A.); (M.d.l.Á.R.); (R.P.)
| |
Collapse
|
4
|
Shinali TS, Zhang Y, Altaf M, Nsabiyeze A, Han Z, Shi S, Shang N. The Valorization of Wastes and Byproducts from Cruciferous Vegetables: A Review on the Potential Utilization of Cabbage, Cauliflower, and Broccoli Byproducts. Foods 2024; 13:1163. [PMID: 38672834 PMCID: PMC11049176 DOI: 10.3390/foods13081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The management of vegetable waste and byproducts is a global challenge in the agricultural industry. As a commonly consumed vegetable crop, cruciferous vegetables marked higher amounts of wastage during their supply chain processes, with a significant contribution from cabbage, cauliflower, and broccoli. Therefore, the sustainable and resource-efficient utilization of discarded materials is crucial. This review explores potential applications of cruciferous vegetable waste and byproducts, spotlighting cabbage, cauliflower, and broccoli in food, medicinal, and other industries. Their significance of being utilized in value-added applications is addressed, emphasizing important biomolecules, technologies involved in the valorization process, and future aspects of practical applications. Cabbage, cauliflower, and broccoli generate waste and low-processing byproducts, including leaves, stems, stalks, and rot. Most of them contain high-value biomolecules, including bioactive proteins and phytochemicals, glucosinolates, flavonoids, anthocyanins, carotenoids, and tocopherols. Interestingly, isothiocyanates, derived from glucosinolates, exhibit strong anti-inflammatory and anticancer activity through various interactions with cellular molecules and the modulation of key signaling pathways in cells. Therefore, these cruciferous-based residues can be valorized efficiently through various innovative extraction and biotransformation techniques, as well as employing different biorefinery approaches. This not only minimizes environmental impact but also contributes to the development of high-value-added products for food, medicinal, and other related industries.
Collapse
Affiliation(s)
- Tharushi S. Shinali
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Yiying Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Moater Altaf
- College of Biological Sciences, China Agricultural University, Beijing 100083, China;
| | - Assa Nsabiyeze
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Zixin Han
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Shuyuan Shi
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Ozkan G, Günal-Köroğlu D, Capanoglu E. Valorization of fruit and vegetable processing by-products/wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:1-39. [PMID: 37898537 DOI: 10.1016/bs.afnr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fruit and vegetable processing by-products and wastes are of great importance due to their high production volumes and their composition containing different functional compounds. Particularly, apple, grape, citrus, and tomato pomaces, potato peel, olive mill wastewater, olive pomace and olive leaves are the main by-products that are produced during processing. Besides conventional techniques, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction (sub-critical water extraction), supercritical fluid extraction, enzyme-assisted extraction, and fermentation are emerging tools for the recovery of target compounds. On the other hand, in the view of valorization, it is possible to use them in active packaging applications, as a source of bioactive compound (oil, phenolics, carotenoids), as functional ingredients and as biofertilizer and biogas sources. This chapter explains the production of fruit and vegetable processing by-products/wastes. Moreover, the valorization of functional compounds recovered from the fruit and vegetable by-products and wastes is evaluated in detail by emphasizing the type of the by-products/wastes, functional compounds obtained from these by-products/wastes, their extraction conditions and application areas.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
6
|
An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Structure-function relationships of pectic polysaccharides from broccoli by-products with in vitro B lymphocyte stimulatory activity. Carbohydr Polym 2023; 303:120432. [PMID: 36657866 DOI: 10.1016/j.carbpol.2022.120432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
To study structure-function relationships of pectic polysaccharides with their immunostimulatory activity, broccoli by-products were used. Pectic polysaccharides composed by 64 mol% uronic acids, 18 mol% Ara, and 10 mol% Gal, obtained by hot water extraction, activated B lymphocytes in vitro (25-250 μg/mL). To disclose active structural features, combinations of ethanol and chromatographic fractionation and modification of the polysaccharides were performed. Polysaccharides insoluble in 80 % ethanol (Et80) showed higher immunostimulatory activity than the pristine mixture, which was independent of molecular weight range (12-400 kDa) and removal of terminal or short Ara side chains. Chemical sulfation did not promote B lymphocyte activation. However, the action of pectin methylesterase and endo-polygalacturonase on hot water extracted polysaccharides produced an acidic fraction with a high immunostimulatory activity. The de-esterified homogalacturonan region seem to be an important core to confer pectic polysaccharides immunostimulatory activity. Therefore, agri-food by-products are a source of pectic polysaccharide functional food ingredients.
Collapse
|
8
|
Artés-Hernández F, Martínez-Zamora L, Cano-Lamadrid M, Hashemi S, Castillejo N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023; 12:561. [PMID: 36766089 PMCID: PMC9914545 DOI: 10.3390/foods12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
9
|
A comparative life cycle assessment of cross-processing herring side streams with fruit pomace or seaweed into a stable food protein ingredient. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
11
|
Improve the functional properties of dietary fibre isolated from broccoli by-products by using different technologies. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods 2022; 11:foods11121734. [PMID: 35741932 PMCID: PMC9222756 DOI: 10.3390/foods11121734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/10/2023] Open
Abstract
Broccoli (Brassica oleracea var. italica) stalks account for up to 35% of the broccoli harvest remains with the concomitant generation of unused waste that needs recovery to contribute to the sustainability of the system. However, due to its phytochemical composition, rich in bioactive (poly)phenols and glucosinolates, as well as other nutrients, the development of valorization alternatives as a source of functional ingredients must be considered. In this situation, the present work aims to develop/obtain a new ingredient rich in bioactive compounds from broccoli, stabilizing them and reducing their degradation to further guarantee a high bioaccessibility, which has also been studied. The phytochemical profile of lyophilized and thermally treated (low-temperature and descending gradient temperature treatments), together with the digested materials (simulated static in vitro digestion) were analysed by HPLC-PDA-ESI-MSn and UHPLC-3Q-MS/MS. Broccoli stalks and co-products were featured by containing phenolic compounds (mainly hydroxycinnamic acid derivatives and glycosylated flavonols) and glucosinolates. The highest content of organosulfur compounds corresponding to the cores of the broccoli stalks treated by applying a drying descendant temperature gradient (aliphatic 18.05 g/kg dw and indolic 1.61 g/kg dw, on average, while the breakdown products were more abundant in the bark ongoing low temperature drying 11.29 g/kg dw, on average). On the other hand, for phenolics, feruloylquinic, and sinapoylquinic acid derivatives of complete broccoli stalk and bark, were more abundant when applying low-temperature drying (14.48 and 28.22 g/kg dw, on average, respectively), while higher concentrations were found in the core treated with decreasing temperature gradients (9.99 and 26.26 g/kg dw, on average, respectively). When analysing the bioaccessibility of these compounds, it was found that low-temperature stabilization of the core samples provided the material with the highest content of bioactives including antioxidant phenolics (13.6 and 33.9 g/kg dw of feruloylquinic and sinapoylquinic acids, on average, respectively) and sulforaphane (4.1 g/kg dw, on average). These processing options enabled us to obtain a new product or ingredient rich in bioactive and bioaccessible compounds based on broccoli stalks with the potential for antioxidant and anti-inflammatory capacities of interest.
Collapse
|
13
|
Moraes DP, Farias CAA, Barin JS, Ballus CA, Barcia MT. Application of Microwave Hydrodiffusion and Gravity for Phenolic Compounds Extraction from Fruits. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food supply disruption and shortage verified during the current pandemic events are a scenario that many anticipate for the near future. The impact of climate changes on food production, the continuous decrease in arable land, and the exponential growth of the human population are important drivers for this problem. In this context, adding value to food waste is an obvious strategy to mitigate food shortages, but there is a long way to go in this field. Globally, it is estimated that one-third of all food produced is lost. This is certainly due to many different factors, but the lack of awareness of the consumer about the nutritional value of certain foods parts, namely peels and seeds, is certainly among them. In this review, we will unveil the nutritional and bioactive value of the waste discarded from the most important fresh fruit and vegetables consumed worldwide as a strategy to decrease food waste. This will span the characterization of the bioactive composition of selected waste from fruits and vegetables, particularly their seeds and peels, and their possible uses, whether in our diet or recycled to other ends.
Collapse
|
15
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
16
|
|
17
|
KHAN MKI, GHAURI YM, ALVI T, AMIN U, KHAN MI, NAZIR A, SAEED F, AADIL RM, NADEEM MT, BABU I, MAAN AA. Microwave assisted drying and extraction technique; kinetic modelling, energy consumption and influence on antioxidant compounds of fenugreek leaves. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.56020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Usman AMIN
- University of Agriculture, Pakistan; University of Agriculture, Pakistan
| | | | - Akmal NAZIR
- United Arab Emirates University, United Arab Emirates
| | | | | | | | - Irrum BABU
- Ayub Agriculture Research Institute, Pakistan
| | - Abid Aslam MAAN
- University of Agriculture, Pakistan; University of Agriculture, Pakistan
| |
Collapse
|
18
|
Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Encapsulation of bioactive compounds from fruit and vegetable by-products for food application – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zhou T, Liu Z, Pei J, Pan D, Gao X, Dang Y, Zhao Y. Novel Broccoli-Derived Peptides Hydrolyzed by Trypsin with Dual-Angiotensin I-Converting Enzymes and Dipeptidyl Peptidase-IV-Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10885-10892. [PMID: 34494818 DOI: 10.1021/acs.jafc.1c02985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Broccoli-derived peptides show beneficial metabolic effects, and it is necessary to examine their exact functional sequences. First, peptides from the trypsin hydrolysate of broccoli proteins were isolated and identified using column chromatography and quadrupole time-of-flight mass spectrometry. After that, their functions were verified by oral administration. The results identified two novel peptides as Leu-Pro-Gly-Val-Leu-Pro-Val-Ala (LPGVLPVA) and Tyr-Leu-Tyr-Ser-Pro-Ala-Tyr (YLYSPAY). LPGVLPVA exhibited an ACE IC50 value of 0.776 ± 0.03 μM and a DPP-IV IC50 value of 392 ± 24 μM; YLYSPAY showed an ACE IC50 value of 8.52 ± 0.63 μM and a DPP-IV IC50 value of 181 ± 4 μM. Administration of the peptides reduced the blood pressure of spontaneously hypertensive rats and reduced blood glucose levels in the oral glucose tolerance test in mice. The results indicated that LPGVLPVA and YLYSPAY could be potential nutritional candidates for hypertensive and diabetic people, especially for those with diabetes associated with hypertension.
Collapse
Affiliation(s)
- Tingyi Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zhu Liu
- ZheJiang Institute for Food and Drug Control, Hangzhou 310052, Zhejiang, China
| | - Jingyan Pei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Santos FH, Siqueira LE, Cardoso GP, Molina G, Pelissari FM. Antioxidant packaging development and optimization using agroindustrial wastes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabiana Helen Santos
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Luana Elisa Siqueira
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Giselle Pereira Cardoso
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Franciele Maria Pelissari
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| |
Collapse
|
23
|
Fernandes PAR, Bastos R, Calvão J, Neto F, Coelho E, Wessel DF, Cardoso SM, Coimbra MA, Passos CP. Microwave hydrodiffusion and gravity as a sustainable alternative approach for an efficient apple pomace drying. BIORESOURCE TECHNOLOGY 2021; 333:125207. [PMID: 33932812 DOI: 10.1016/j.biortech.2021.125207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Apple pomace valuation has been impaired by its high perishability and absence of fast drying approaches demanded by industry. This work aimed to assess the feasibility of Microwave Hydrodiffusion and Gravity (MHG) process applied for apple pomace drying using discrete delivery powers (300-900 W) and comparison with hot-air drying (40-100 °C). To dry 0.4 kg of apple pomace (81% moisture), hot-air drying required 3.6-9.9 h with estimated water evaporation flux of 1.0-3.5 mL/min. For MHG, which processed 1.2 kg, these corresponded to 1.0-2.6 h and 5.1-13.9 mL/min. Furthermore, MHG allowed water recovery containing part of apple pomace phenolic compounds and carbohydrates. The dried pomace was stable for 2 years, after which phenolic compounds and polysaccharides were still recoverable by hot water extractions. These results pave the way for MHG to be used for apple pomace and other by-products preservation, boosting their conversion into valuable co-product for valuation of its components.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Bastos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Calvão
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando Neto
- Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dulcineia F Wessel
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; School of Agriculture, Polytechnic Institute of Viseu, 3500-606 Viseu, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Gupta S, Chaudhary A, Singh S, Arora S, Sohal SK. Broccoli ( Brassica oleracea L. var. italica) cultivars, Palam Samridhi and Palam Vichitra affect the growth of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Heliyon 2021; 7:e07612. [PMID: 34355102 PMCID: PMC8322284 DOI: 10.1016/j.heliyon.2021.e07612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/30/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Effect of the ethyl acetate seed extracts of two cultivars of broccoli, Brassica oleracea Italica, Palam Samridhi (PS) and Palam Vichitra (PV) on growth, development and nutritional physiology of an economically important insect pest, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was evaluated by conducting bioassays and nutritional assays. The insect larvae were fed on diets amended with the seed extracts of two cultivars at different concentrations viz. 5, 25, 125, 625 and 3125 ppm and taking water as control. The response of the insect varied with plant varieties. The extracts disrupted the developmental cycle of the pest. Larval mortality and total adult emergence were negatively affected. Larval period and total development period were also negatively influenced. Nutritional indices of S. litura also showed considerable decrease in the RGR, RCR, ECI and ECD as compared to control. The AD values were also enhanced with both the cultivars. The findings of the study revealed a considerable anti-insect potential of the two extracts and needs to be further explored for identification and isolation of bioactive constituents from broccoli for efficient management of the pest population.
Collapse
Affiliation(s)
- Shallina Gupta
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ashun Chaudhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Department of Plant Sciences (Botany), Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Corresponding author.
| |
Collapse
|
25
|
Strategies to Increase the Biological and Biotechnological Value of Polysaccharides from Agricultural Waste for Application in Healthy Nutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115937. [PMID: 34205897 PMCID: PMC8198840 DOI: 10.3390/ijerph18115937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, there is a growing interest in the extraction and identification of new high added-value compounds from the agro-food industry that will valorize the great amount of by-products generated. Many of these bioactive compounds have shown beneficial effects for humans in terms of disease prevention, but they are also of great interest in the food industry due to their effect of extending the shelf life of foods by their well-known antioxidant and antimicrobial activity. For this reason, an additional research objective is to establish the best conditions for obtaining these compounds from complex by-product structures without altering their activity or even increasing it. This review highlights recent work on the identification and characterization of bioactive compounds from vegetable by-products, their functional activity, new methodologies for the extraction of bioactive compounds from vegetables, possibly increasing their biological activity, and the future of the global functional food and nutraceuticals market.
Collapse
|
26
|
Moro KIB, Bender ABB, da Silva LP, Penna NG. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02665-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Rodríguez García SL, Raghavan V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds-A review. Crit Rev Food Sci Nutr 2021; 62:6446-6466. [PMID: 33792417 DOI: 10.1080/10408398.2021.1901651] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Food wastes imply significant greenhouse gas emissions, that increase the challenge of climate change and impact food security. According to FAO (2019), one of the main food wastes come from fruit and vegetables, representing 0.5 billion tons per year, of the 1.3 billion tons of total waste. The wastes obtained from fruit and vegetables have plenty of valuable components, known as bioactive compounds, with many properties that impact positively in human health. Some bioactive compounds hold antioxidant, anti-inflammatory, and anti-cancer properties and they have the capacity of modulating metabolic processes. Currently, the use of fruit and vegetable waste is studied to obtain bioactive compounds, through non-conventional techniques, also known as green extraction techniques. These extraction techniques report higher yields, reduce the use of solvents, employ less extraction time, and improve the efficiency of the process for obtaining bioactive compounds. Once extracted, these compounds can be used in the cosmetic, pharmaceutical, or food industry, the last one being focused on improving food quality.
Collapse
Affiliation(s)
- Sheila Lucía Rodríguez García
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Patidar A, Vishwakarma S, Meena D. Traditional and recent development of pretreatment and drying process of grapes during raisin production: A review of novel pretreatment and drying methods of grapes. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Arvind Patidar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Siddharth Vishwakarma
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Deepoo Meena
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| |
Collapse
|
29
|
Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants (Basel) 2020; 9:antiox9121195. [PMID: 33261112 PMCID: PMC7760773 DOI: 10.3390/antiox9121195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023] Open
Abstract
The agri-food industry is currently one of the main engines of economic development worldwide. The region of Murcia is a reference area in Europe for the cultivation of fruits and vegetables and produces the bulk of Spanish exports of broccoli (Brassica oleracea var. italica). The processing of fresh produce generates a huge number of by-products that represent an important economic and environmental problem when discarded. In this work, an advanced extraction technique using environmentally friendly solvents was applied to assess the revalorization of broccoli by-products, by performing a comparative analysis with conventional extraction. To achieve this goal, supercritical fluid extraction based on response surface methodology was performed using CO2 and ethanol as solvents. The results obtained showed that the supercritical fluid extracts were rich in β-carotene, phenolic compounds, chlorophylls and phytosterols. Moreover, in bioactivity assays, the supercritical fluid extracts exhibited a high antioxidant activity and a cytoprotective effect in a non-tumorigenic keratinocyte cell line exposed to ultraviolet B light. The results indicate that supercritical fluid extracts from broccoli by-products could potentially serve as an ingredient for cosmetic purposes.
Collapse
|
30
|
Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour Behaviour of Polyester-Based Bionanocomposites. Polymers (Basel) 2020; 12:polym12112508. [PMID: 33126539 PMCID: PMC7692781 DOI: 10.3390/polym12112508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
Natural dyes obtained from agro-food waste can be considered promising substitutes of synthetic dyes to be used in several applications. With this aim, in the present work, we studied the use of chlorophyll dye (CD) extracted from broccoli waste to obtain hybrid nanopigments based on calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. The synthesized chlorophyll hybrid nanopigments (CDNPs), optimized by using statistical designed experiments, were melt-extruded with a polyester-based matrix (INZEA) at 7 wt% loading. Mechanical, thermal, structural, morphological and colour properties of the obtained bionanocomposites were evaluated. The obtained results evidenced that the maximum CD adsorption into HT was obtained when adding 5 wt% of surfactant (sodium dodecyl sulphate) without using any biomordant and coupling agent, while the optimal conditions for MMT were achieved without adding any of the studied modifiers. In both cases, an improvement in CD thermal stability was observed by its incorporation in the nanoclays, able to protect chlorophyll degradation. The addition of MMT to INZEA resulted in large ΔE* values compared to HT incorporation, showing bionanocomposite green/yellow tones as a consequence of the CDNPs addition. The results obtained by XRD and TEM revealed a partially intercalated/exfoliated structure for INZEA-based bionanocomposites, due to the presence of an inorganic filler in the formulation of the commercial product, which was also confirmed by TGA analysis. CDNPs showed a reinforcement effect due to the presence of the hybrid nanopigments and up to 26% improvement in Young's modulus compared to neat INZEA. Finally, the incorporation of CDNPs induced a decrease in thermal stability as well as limited effect in the melting/crystallization behaviour of the INZEA matrix. The obtained results showed the potential use of green natural dyes from broccoli wastes, adsorbed into nanoclays, for the development of naturally coloured bionanocomposites.
Collapse
|
31
|
Favela-González KM, Hernández-Almanza AY, De la Fuente-Salcido NM. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J Food Biochem 2020; 44:e13414. [PMID: 32743821 DOI: 10.1111/jfbc.13414] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Nowadays, consumers are demanding nutrient-rich products for health optimal benefits. In this regard, Brassicaceae family plants, previously named cruciferous, group a large number of widely consumed species around the world. The popularity of Brassica is increasing due to their nutritional value and pharmacological effects. The group includes a large number of vegetable foods such as cabbages, broccoli, cauliflower, mustards as well as, oilseed rapeseed, canola, among others. In recent years, the phytochemical composition of Brassicaceae has been studied deeply because they contain many valuable metabolites, which are directly linked to different recognized biological activities. The scientific evidence confirms diverse medical properties for the treatment of chronic diseases such as obesity, type-2 diabetes, cardiovascular diseases (hypertension, stroke), cancer, and osteoporosis. The unique features of Brassicaceae family plants conferred by their phytochemicals, have extended future prospects about their use for beneficial effects on human nutrition and health worldwide. PRACTICAL APPLICATIONS: For years, the Brassicaceae plants have been a fascinating research topic, due to their chemical composition characterized by rich in bioactive compounds. The implementation of extracts of these vegetables, causes various beneficial effects of high biological value in the treatment of diseases, owing to their bioactive properties (anti-obesity, anticancer, antimicrobial, antioxidant, hepatoprotective, cardioprotective, gastroprotective, anti-inflammatory, antianemic, and immunomodulator). Therefore, this review summarizes the chemical composition, describes the bioactive compounds isolated in the plant extracts, and highlights diverse biological activities, mainly the antimicrobial and antioxidant capacity. Brassica plants, as source of natural bioactive agents, have a great potential application to improve the human nutrition and health.
Collapse
Affiliation(s)
- Kenia Mirozlava Favela-González
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| | - Ayerim Yedid Hernández-Almanza
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| | - Norma Margarita De la Fuente-Salcido
- Graduate Program in Biochemical Engineering, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
- Bioprospecting and Bioprocesses Department, Biological Sciences Faculty, Autonomous University of Coahuila, Torreón, México
| |
Collapse
|
32
|
Effect of Drum-Drying Conditions on the Content of Bioactive Compounds of Broccoli Pulp. Foods 2020; 9:foods9091224. [PMID: 32887455 PMCID: PMC7554832 DOI: 10.3390/foods9091224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
This work studied the effect of drum-rotation frequency, drum temperature, and water-to-pulp ratio in a double-drum drier on the content of sulforaphane, glucoraphanin, total phenolic compounds, ascorbic acid, and antioxidant activity of broccoli pulp through a multilevel factorial design with one replicate. Drum-drying conditions did not significantly affect sulforaphane content, unlike glucoraphanin, however the poor adherence of broccoli pulp resulted in a final product with undefined shape and heterogeneous color. On the other hand, antioxidant activity was unevenly affected by drying conditions; however, drum-rotation frequency affected it in the same way that phenolic compounds and ascorbic acid, showing a concordant behavior. The ascorbic acid content decreased significantly after drying, and it was highly dependent on the experimental factors, resulting in a regression model that explained 90% of its variability. Drum-rotation frequency of 5 Hz, drum temperature of 125 °C, and water-to-pulp ratio of 0.25 resulted in an apparent increase of sulforaphane and phenolic compounds content of 13.7% and 47.6%, respectively. Drum drying has great potential to fabricate dehydrated broccoli-based foods with functional properties. Besides, since drum drying has low investment and operation costs, it represents a very attractive option for the industrialization of broccoli derivatives.
Collapse
|
33
|
Secondary Bioactive Metabolites from Plant-Derived Food Byproducts through Ecopharmacognostic Approaches: A Bound Phenolic Case Study. PLANTS 2020; 9:plants9091060. [PMID: 32825034 PMCID: PMC7569828 DOI: 10.3390/plants9091060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022]
Abstract
The climate emergency and the risks to biodiversity that the planet is facing nowadays, have made the management of food resources increasingly complex but potentially interesting. According to FAO, one-third of the edible parts of food produced throughout the whole food supply chain gets lost or wasted globally every year. At the same time, demographic growth makes it necessary to change course toward sustainable economic development in order to satisfy market demands. The European Union supported the idea of a Circular Economy from 2015 and arranged annual Action Plans toward a greener, climate-neutral economy. Following the biorefinery concept, food waste becomes byproducts that can be recovered and exploited as high added-value materials for industrial applications. The use of sustainable extraction processes to manage food byproducts is a task that research has to support through the development of low environmental impact strategies. This review, therefore, aims to take stock of the possibilities of extracting molecules from food waste biomass following ecopharmacognostic approaches inspired by green chemistry guidelines. In particular, the use of innovative hybrid techniques to maximize yields and minimize the environmental impact of processes is reviewed, with a focus on bound phenolic extractions.
Collapse
|
34
|
Lv X, Meng G, Li W, Fan D, Wang X, Espinoza-Pinochet CA, Cespedes-Acuña CL. Sulforaphane and its antioxidative effects in broccoli seeds and sprouts of different cultivars. Food Chem 2020; 316:126216. [DOI: 10.1016/j.foodchem.2020.126216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
|
35
|
Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food Res Int 2020; 132:109055. [DOI: 10.1016/j.foodres.2020.109055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
|
36
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
37
|
Modelling and kinetic study of microwave assisted drying of ginger and onion with simultaneous extraction of bioactive compounds. Food Sci Biotechnol 2020; 29:513-519. [PMID: 32296562 DOI: 10.1007/s10068-019-00695-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022] Open
Abstract
Onion and ginger are rich sources of bioactive compounds which are lost during conventional drying process. The present study was designed to optimize the novel Microwave Assisted Drying and Extraction technique (MADE) for simultaneous drying and extraction/recovery of bioactive compounds from model food products. The time required for drying of samples was 11 (onion) and 16 (ginger) minutes with recovery yield of 87% (onion) and 85% (ginger). The drying time was reduced to 100 times compared to hot air drying and moisture ratio of dried samples was best described by Midilli model. The diffusivities of onion and ginger slices were 1.27 e-11 and 1.43 e-11 m2/s, respectively. Moreover, microwave-based extraction was compared with conventional one. The results of antioxidant activity and total phenolic contents of condensates obtained through MADE were higher compared to conventional method. In short, MADE exhibited better yield of extraction and drying properties compared to conventional methods.
Collapse
|
38
|
Garcia-Vaquero M, Ummat V, Tiwari B, Rajauria G. Exploring Ultrasound, Microwave and Ultrasound-Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar Drugs 2020; 18:E172. [PMID: 32244865 PMCID: PMC7142542 DOI: 10.3390/md18030172] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023] Open
Abstract
This study aims to determine the influence of (1) ultrasound-assisted extraction (UAE), (2) microwave-assisted extraction (MAE) and (3) a combination of ultrasound-microwave-assisted extraction (UMAE) on the yields of fucose-sulphated polysaccharides (FSPs), total soluble carbohydrates and antioxidants extracted from A. nodosum. Scanning electron microscopy (SEM) was used to evaluate the influence of the extraction technologies on the surface of macroalgae while principal component analysis was used to assess the influence of the extraction forces on the yields of compounds. UMAE generated higher yields of compounds compared to UAE and MAE methods separately. The maximum yields of compounds achieved using UMAE were: FSPs (3533.75 ± 55.81 mg fucose/100 g dried macroalgae (dm)), total soluble carbohydrates (10408.72 ± 229.11 mg glucose equivalents/100 g dm) and phenolic compounds (2605.89 ± 192.97 mg gallic acid equivalents/100 g dm). The antioxidant properties of the extracts showed no clear trend or extreme improvements by using UAE, MAE or UMAE. The macroalgal cells were strongly altered by the application of MAE and UMAE, as revealed by the SEM images. Further research will be needed to understand the combined effect of sono-generated and microwave-induced modifications on macroalgae that will allow us to tailor the forces of extraction to target specific molecules.
Collapse
Affiliation(s)
- Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin 4 Belfield, Ireland;
| | - Viruja Ummat
- TEAGASC Food Research Centre, Dublin 15 Ashtown, Ireland; (V.U.); (B.T.)
- School of Biosystems and Food Engineering, University College Dublin, Dublin 4 Belfield, Ireland
| | - Brijesh Tiwari
- TEAGASC Food Research Centre, Dublin 15 Ashtown, Ireland; (V.U.); (B.T.)
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Dublin 4 Belfield, Ireland;
| |
Collapse
|
39
|
Ramirez D, Abellán-Victorio A, Beretta V, Camargo A, Moreno DA. Functional Ingredients From Brassicaceae Species: Overview and Perspectives. Int J Mol Sci 2020; 21:E1998. [PMID: 32183429 PMCID: PMC7139885 DOI: 10.3390/ijms21061998] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Brassicaceae vegetables are important crops consumed worldwide due to their unique flavor, and for their broadly recognized functional properties, which are directly related to their phytochemical composition. Isothiocyanates (ITC) are the most characteristic compounds, considered responsible for their pungent taste. Besides ITC, these vegetables are also rich in carotenoids, phenolics, minerals, and vitamins. Consequently, Brassica's phytochemical profile makes them an ideal natural source for improving the nutritional quality of manufactured foods. In this sense, the inclusion of functional ingredients into food matrices are of growing interest. In the present work, Brassicaceae ingredients, functionality, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Daniela Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Angel Abellán-Victorio
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| | - Vanesa Beretta
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
| | - Alejandra Camargo
- Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, UNCuyo, Mendoza 54 261, Argentina; (D.R.); (V.B.); (A.C.)
- Instituto de Biología Agrícola de Mendoza, CONICET Mendoza 54 261, Argentina
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Laboratory, Department of Food Science and Technology, Spanish National Research Council for Scientific Research (CEBAS-CSIC), Murcia 30100, Spain;
| |
Collapse
|
40
|
Gençdağ E, Görgüç A, Yılmaz FM. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1709203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Esra Gençdağ
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
41
|
Alternative environmental friendly process for dehydration of edible Undaria pinnatifida brown seaweed by microwave hydrodiffusion and gravity. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Mena-García A, Ruiz-Matute A, Soria A, Sanz M. Green techniques for extraction of bioactive carbohydrates. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Recovery of aqueous phase of broccoli obtained by MHG technique for development of hydrogels with antioxidant properties. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Fernandes PAR, Le Bourvellec C, Renard CMGC, Nunes FM, Bastos R, Coelho E, Wessel DF, Coimbra MA, Cardoso SM. Revisiting the chemistry of apple pomace polyphenols. Food Chem 2019; 294:9-18. [PMID: 31126510 DOI: 10.1016/j.foodchem.2019.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/15/2022]
Abstract
Hot water is an easily implementable process for polyphenols extraction. To evaluate the effect of this process on apple pomace, the overall polyphenolic composition was assessed before and after hot water extraction, followed by extractions with aqueous/organic solutions. As determined by UHPLC-DAD, flavan-3-ols were the main apple native polyphenols. Their amount decreased 50% after hot water extraction, while the other classes remained unchanged. Dihydrochalcones and hydroxycinnamic acid oxidation products, were also observed, alongside with non-extractable oxidised procyanidins that represented more than 4-fold the amount of native apple polyphenols in the pomace. Microwave superheated-water extraction of the insoluble cell wall material in water/acetone solutions and the high amounts of polyphenols that were insoluble in water/ethanol solutions suggested that oxidised procyanidins could be covalently linked to polysaccharides. These complexes represented up to 40% of the available polyphenols from apple pomace, potentially relevant for agro-food waste valuation.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carine Le Bourvellec
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Avignon University, F-84000 Avignon, France
| | - Catherine M G C Renard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Avignon University, F-84000 Avignon, France
| | - Fernando M Nunes
- CQ-VR, Chemistry Research Centre, Department of Chemistry, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Rita Bastos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elisabete Coelho
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dulcineia F Wessel
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; School of Agriculture and CI&DETS, Polytechnic Institute of Viseu, 3500-606 Viseu, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M Cardoso
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
45
|
López-Hortas L, Domínguez H, Torres MD. Valorisation of edible brown seaweeds by the recovery of bioactive compounds from aqueous phase using MHG to develop innovative hydrogels. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
González‐Muñoz MJ, Conde E, Domínguez H, Torres MD. Recovery of phytochemical compounds from natural and blanched green broccoli using non‐isothermal autohydrolysis. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- María Jesús González‐Muñoz
- Department of Chemical Engineering University of Vigo (Campus Ourense) Edificio Politécnico, As Lagoas 32004 Ourense Spain
| | - Enma Conde
- Department of Chemical Engineering University of Vigo (Campus Ourense) Edificio Politécnico, As Lagoas 32004 Ourense Spain
| | - Herminia Domínguez
- Department of Chemical Engineering University of Vigo (Campus Ourense) Edificio Politécnico, As Lagoas 32004 Ourense Spain
| | - María Dolores Torres
- Department of Chemical Engineering University of Vigo (Campus Ourense) Edificio Politécnico, As Lagoas 32004 Ourense Spain
| |
Collapse
|
47
|
Gallo M, Ferrara L, Naviglio D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018; 7:foods7100164. [PMID: 30287795 PMCID: PMC6210518 DOI: 10.3390/foods7100164] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023] Open
Abstract
Ultrasound is composed of mechanical sound waves that originate from molecular movements that oscillate in a propagation medium. The waves have a very high frequency, equal to approximately 20 kHz, are divided into two categories (i.e., low-intensity and high-intensity waves) and cannot be perceived by the human ear. Nature has created the first ultrasound applications. Bats use ultrasound to navigate in the dark, and many cetaceans use echolocation to detect prey or obstacles using ultrasound produced by their vocal system. Ultrasound is commonly associated with the biomedical field. Today, ultrasound-based methods and equipment are available to detect organs, motion, tumour masses, and pre/post-natal handicaps, and for kidney stone removal, physiotherapy, and aesthetic cures. However, ultrasound has found multiple applications in many other fields as well. In particular, ultrasound has recently been used in the food industry to develop various effective and reliable food processing applications. Therefore, this review summarizes the major applications of ultrasound in the food industry. The most common applications in the food industry include cell destruction and extraction of intracellular material. Depending on its intensity, ultrasound is used for the activation or deactivation of enzymes, mixing and homogenization, emulsification, dispersion, preservation, stabilization, dissolution and crystallization, hydrogenation, tenderization of meat, ripening, ageing and oxidation, and as an adjuvant for solid-liquid extraction for maceration to accelerate and to improve the extraction of active ingredients from different matrices, as well as the degassing and atomization of food preparations.
Collapse
Affiliation(s)
- Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy.
| | - Lydia Ferrara
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| |
Collapse
|
48
|
Liu M, Zhang L, Ser SL, Cumming JR, Ku KM. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018; 23:E900. [PMID: 29652847 PMCID: PMC6017511 DOI: 10.3390/molecules23040900] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
The phytonutrient concentrations of broccoli (Brassica oleracea var. italica) florets, stems, and leaves were compared to evaluate the value of stem and leaf by-products as a source of valuable nutrients. Primary metabolites, including amino acids, organic acids, and sugars, as well as glucosinolates, carotenoids, chlorophylls, vitamins E and K, essential mineral elements, total phenolic content, antioxidant activity, and expression of glucosinolate biosynthesis and hydrolysis genes were quantified from the different broccoli tissues. Broccoli florets had higher concentrations of amino acids, glucoraphanin, and neoglucobrassicin compared to other tissues, whereas leaves were higher in carotenoids, chlorophylls, vitamins E and K, total phenolic content, and antioxidant activity. Leaves were also good sources of calcium and manganese compared to other tissues. Stems had the lowest nitrile formation from glucosinolate. Each tissue exhibited specific core gene expression profiles supporting glucosinolate metabolism, with different gene homologs expressed in florets, stems, and leaves, which suggests that tissue-specific pathways function to support primary and secondary metabolic pathways in broccoli. This comprehensive nutrient and bioactive compound profile represents a useful resource for the evaluation of broccoli by-product utilization in the human diet, and as feedstocks for bioactive compounds for industry.
Collapse
Affiliation(s)
- Mengpei Liu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Lihua Zhang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
- Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Suk Lan Ser
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| | - Jonathan R Cumming
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|