1
|
Farias TRB, Sanches NB, Petrus RR. The amazing native Brazilian fruits. Crit Rev Food Sci Nutr 2024; 64:9382-9399. [PMID: 37195442 DOI: 10.1080/10408398.2023.2212388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A number of native Brazilian plant species are under exploited by the scientific community, despite the country's precious biodiversity. The vast majority of native Brazilian fruits (NBF) is source of compounds that provide many health benefits and can potentially be used to prevent diseases and formulate high-added value products. This review covers the scientific research over the last decade (2012-2022) on eight NBF, and focuses on information about the production and market panorama, physical description, physicochemical characterization, nutritional composition, their functional value of bioactive compounds and health benefits, as well as the potential for utilizations for each. The studies herein compiled reveal the outstanding nutritional value of these NBF. They are sources of vitamins, fibers, minerals and bioactive compounds that exhibit antioxidant activity, and they contain phytochemicals with anti-inflammatory action, anti-obesity and other functions that bring many health benefits to consumers. NBF can be also used as raw material for multiple products such as nectars, juices, jams, frozen pulps, liquor, among others. The dissemination of knowledge about NBF has fundamental implications worldwide.
Collapse
Affiliation(s)
| | | | - Rodrigo Rodrigues Petrus
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| |
Collapse
|
2
|
Rodrigues FC, Morais-Braga MFB, Almeida-Bezerra JW, Bezerra JJL, Fonseca VJA, de Araújo ACJ, Coutinho HDM, Ribeiro PRV, Canuto KM, Mendonça ACAM, de Oliveira AFM. Chemical composition and antimicrobial activity of Cordiera myrciifolia leaves against pathogenic bacteria and fungi: Drug potentiation ability and inhibition of virulence. Fitoterapia 2024; 176:106027. [PMID: 38777073 DOI: 10.1016/j.fitote.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Cordiera myrciifolia is an abundant species in Northeast Brazil that presents metabolites of biological/therapeutic interest. From this perspective, the present study aimed to investigate the chemical constituents and evaluate the in vitro antimicrobial activity of hexane (HECM) and ethanolic (EECM) extracts of C. myrciifolia leaves. The extracts were analyzed by chromatographic techniques (GC and UPLC) coupled with mass spectrometry. The antimicrobial activity of the extracts and the extracts combined with conventional drugs was evaluated by microdilution. The in vitro effect of the treatments on Candida's morphological transition was verified through cultivation in humid chambers. In HECM, 11 constituents including fatty acids, and triterpenes, including phytosterols, alkanes, tocols, and primary alcohols were identified. Triterpenes represented >40% of the identified constituents, with Lupeol being the most representative. In EECM, 13 constituents were identified, of which eight belonged to the class of flavonoids. High antibacterial activity of HECM was detected against Escherichia coli and Staphylococcus aureus, with Minimum Inhibitory Concentrations of 8 and 16 μg/mL, respectively. The combined activity was more effective when combined with Norfloxacin and Imipenem. In anti-Candida activity, the IC50 of the extracts ranged from 36.6 to 129.1 μg/mL. There was potentiating effect when associated with Fluconazole. Both extracts inhibited the filamentous growth of C. tropicalis at a concentration of 512 μg/mL. C. myrciifolia extracts prove to be candidates for the development of new therapeutic formulations to treat bacterial and fungal infections.
Collapse
Affiliation(s)
- Felicidade Caroline Rodrigues
- Department of Botany, Federal University of Pernambuco - UFPE, Av. da Engenharia, s/n, Cidade Universitária, Recife, Pernambuco 50670-420, Brazil.
| | | | - José Weverton Almeida-Bezerra
- Department of Botany, Federal University of Pernambuco - UFPE, Av. da Engenharia, s/n, Cidade Universitária, Recife, Pernambuco 50670-420, Brazil
| | - José Jailson Lima Bezerra
- Department of Botany, Federal University of Pernambuco - UFPE, Av. da Engenharia, s/n, Cidade Universitária, Recife, Pernambuco 50670-420, Brazil
| | - Victor Juno Alencar Fonseca
- Department of Biological Sciences, Regional University of Cariri - URCA, Rua Cel. Antônio Luís, 1161, Crato, Ceará 63105-000, Brazil
| | - Ana Carolina Justino de Araújo
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís no 1161, Crato, Ceará 63105-000, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís no 1161, Crato, Ceará 63105-000, Brazil
| | - Paulo Riceli Vasconcelos Ribeiro
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Tropical Agroindustry, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará 60511-110, Brazil
| | - Kirley Marques Canuto
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Tropical Agroindustry, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará 60511-110, Brazil
| | | | - Antônio Fernando Morais de Oliveira
- Department of Botany, Federal University of Pernambuco - UFPE, Av. da Engenharia, s/n, Cidade Universitária, Recife, Pernambuco 50670-420, Brazil
| |
Collapse
|
3
|
Holanda VN, Brito TGS, de Oliveira JRS, da Cunha RX, da Silva APS, da Silva WV, Araújo TFS, Tavares JF, dos Santos SG, Figueiredo RCBQ, Lima VLM. Potential Effects of Essential Oil from Plinia cauliflora (Mart.) Kausel on Leishmania: In Vivo, In Vitro, and In Silico Approaches. Microorganisms 2024; 12:207. [PMID: 38276192 PMCID: PMC10819817 DOI: 10.3390/microorganisms12010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
In the search for new chemotherapeutic alternatives for cutaneous leishmaniasis (CL), essential oils are promising due to their diverse biological potential. In this study, we aimed to investigate the chemical composition and leishmanicidal and anti-inflammatory potential of the essential oil isolated from the leaves of Plinia cauliflora (PCEO). The chemical composition of PCEO showed β-cis-Caryophyllene (24.4%), epi-γ-Eudesmol (8%), 2-Naphthalenemethanol[decahydro-alpha] (8%), and trans-Calamenene (6.6%) as its major constituents. Our results showed that the PCEO has moderate cytotoxicity (CC50) of 137.4 and 143.7 μg/mL on mice peritoneal exudate cells (mPEC) and Vero cells, respectively. The PCEO was able to significantly decrease mPEC infection by Leishmania amazonensis and Leishmania braziliensis. The value of the inhibitory concentration (IC50) on amastigote forms was about 7.3 µg/mL (L. amazonensis) and 7.2 µg/mL (L. braziliensis). We showed that PCEO induced drastic ultrastructural changes in both species of Leishmania and had a high selectivity index (SI) > 18. The in silico ADMET analysis pointed out that PCEO can be used for the development of oral and/or topical formulation in the treatment of CL. In addition, we also demonstrated the in vivo anti-inflammatory effect, with a 95% reduction in paw edema and a decrease by at least 21.4% in migration immune cells in animals treated with 50 mg/kg of PCEO. Taken together, our results demonstrate that PCEO is a promising topical therapeutic agent against CL.
Collapse
Affiliation(s)
- Vanderlan N. Holanda
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Thaíse G. S. Brito
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - João R. S. de Oliveira
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Rebeca X. da Cunha
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Ana P. S. da Silva
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| | - Welson V. da Silva
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (W.V.d.S.); (R.C.B.Q.F.)
| | - Tiago F. S. Araújo
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco, José de Sá Maniçoba, S/N, Petrolina 56304-917, PE, Brazil;
| | - Josean F. Tavares
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, Rua Tabelião Stanislau Eloy, 41, Castelo Branco III, João Pessoa 58033-455, PB, Brazil;
| | - Sócrates G. dos Santos
- Laboratório de Tecnologia Farmacêutica, Instituto de Pesquisa em Drogas e Medicamentos, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, João Pessoa 58033-455, PB, Brazil;
| | - Regina C. B. Q. Figueiredo
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (W.V.d.S.); (R.C.B.Q.F.)
| | - Vera L. M. Lima
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (T.G.S.B.); (J.R.S.d.O.); (R.X.d.C.); (A.P.S.d.S.)
| |
Collapse
|
4
|
Dos Santos FR, da Fonseca Rezende SR, Dos Santos LV, da Silva ERMN, Silva Caiado M, Alves de Souza MA, Guedes Pontes E, de Carvalho MG, Braz Filho R, Castro RN. Larvicidal and Fungicidal Activity of the Leaf Essential Oil of Five Myrtaceae Species. Chem Biodivers 2023; 20:e202300823. [PMID: 37917799 DOI: 10.1002/cbdv.202300823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Myrtaceae is one of the most diverse and abundant botanical families, exhibiting wide diversity in the chemical composition of essential oils (EOs). EOs have various biotechnological applications such as controlling the populations of organisms that negatively impact humans. This study aimed to extract EOs from Myrtaceae species, chemically characterize them, and evaluate their larvicidal and fungicidal effects. EOs were extracted from the leaves of Eugenia brasiliensis, Eugenia uniflora, Psidium cattleyanum, Psidium guajava, and Syzygium cumini by hydrodistillation for 3 h and characterized by chromatographic analysis. Larvaes of Aedes aegypti and colonies of Fusarium oxysporum were subjected to increasing EO concentrations to determine the larvicidal and fungicidal potential. The EOs of Eugenia and Psidium species are primarily composed of sesquiterpenes (>80 %), whereas S. cumini EO is rich in monoterpenes (more than 60 %). The Eugenia species had similar amounts of oxygenated monoterpenes, which may explain their higher larvicidal potential compared to other species, with CL50 of 86.68 and 147.46 PPM, respectively. In addition to these two study species, S. cumini showed a high inhibition of fungal growth, with more than 65 % inhibition. We demonstrated that the actions of five EOs from Myrtaceae with different biological activities are associated with chemical diversity.
Collapse
Affiliation(s)
- Frances Regiane Dos Santos
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sabrina Rita da Fonseca Rezende
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luan Valim Dos Santos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Elaine R M Nery da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Matheus Silva Caiado
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marco Andre Alves de Souza
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Emerson Guedes Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mario Geraldo de Carvalho
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Raimundo Braz Filho
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rosane Nora Castro
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
5
|
Dos Santos ECF, Andrade de Lima JM, Barbosa Machado JC, Assunção Ferreira MR, Lira Soares LA. Validation of stability-indicating LC method, degradation study, and impact on antioxidant and antifungal activities of Eugenia uniflora leaves extract. Biomed Chromatogr 2023; 37:e5723. [PMID: 37581307 DOI: 10.1002/bmc.5723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
The aim of this study is to demonstrate the stability-indicating capacity of an analytical method for Eugenia uniflora, enhance understanding of the stability of myricitrin, and assess the effect of degradation of spray-dried extract (SDE) on antioxidant and antifungal activities. Validation of the stability-indicating method was carried out through a forced degradation study of SDE and standard myricitrin. The antioxidant and antifungal activities of SDE were evaluated both before and after degradation. The quantification method described was found to be both accurate and precise in measuring myricitrin levels in SDE from E. uniflora, with excellent selectivity that confirmed its stability-indicating capability. The forced degradation study revealed that the marker myricitrin is sensitive to hydrolysis, but generally stable under other stress conditions. By contrast, the standard myricitrin displayed greater susceptibility to degradation under forced degradation conditions. Analysis of the antioxidant activity of SDE before and after degradation showed a negative impact in this activity due to degradation, while no significant effect was observed on antifungal activity. The method described can be a valuable tool in the quality control of E. uniflora, and the findings can assist in determining the optimal conditions and storage of products derived from this species.
Collapse
Affiliation(s)
- Ewelyn Cintya Felipe Dos Santos
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Juliana Morais Andrade de Lima
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Janaína Carla Barbosa Machado
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
de Lima Silva MG, de Lima LF, Alencar Fonseca VJ, Santos da Silva LY, Calixto Donelardy AC, de Almeida RS, de Morais Oliveira-Tintino CD, Pereira Bezerra Martins AOB, Ribeiro-Filho J, Bezerra Morais-Braga MF, Tintino SR, Alencar de Menezes IR. Enhancing the Antifungal Efficacy of Fluconazole with a Diterpene: Abietic Acid as a Promising Adjuvant to Combat Antifungal Resistance in Candida spp. Antibiotics (Basel) 2023; 12:1565. [PMID: 37998767 PMCID: PMC10668680 DOI: 10.3390/antibiotics12111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The increasing antifungal resistance rates against conventional drugs reveal the urgent need to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of fluconazole. Abietic acid was tested both individually and in combination with fluconazole against Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium. The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While the IC50 of the drugs alone ranged between 1065 and 3255 μg/mL, the IC50 resulting from the combination of abietic acid and fluconazole ranged between 7563 and 160.1 μg/mL. Whether used in combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration (MFC) values exceeding 1024 μg/mL against Candida albicans, Candida krusei and Candida tropicalis. However, it was observed that the antifungal effect of fluconazole was enhanced when used in combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness of fluconazole, thereby reducing antifungal resistance.
Collapse
Affiliation(s)
- Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Luciene Ferreira de Lima
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Victor Juno Alencar Fonseca
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ana Cecília Calixto Donelardy
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ray Silva de Almeida
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | | | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio 61773-270, Ceará, Brazil;
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| |
Collapse
|
7
|
Silva RRS, Malveira EA, Aguiar TKB, Neto NAS, Roma RR, Santos MHC, Santos ALE, Silva AFB, Freitas CDT, Rocha BAM, Souza PFN, Teixeira CS. DVL, lectin from Dioclea violacea seeds, has multiples mechanisms of action against Candida spp via carbohydrate recognition domain. Chem Biol Interact 2023; 382:110639. [PMID: 37468117 DOI: 10.1016/j.cbi.2023.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Lectins are proteins of non-immunological origin with the ability to bind to carbohydrates reversibly. They emerge as an alternative to conventional antifungals, given the ability to interact with carbohydrates in the fungal cell wall inhibiting fungal growth. The lectin from D. violacea (DVL) already has its activity described as anti-candida in some species. Here, we observed the anti-candida effect of DVL on C. albicans, C. krusei and C. parapsilosis and its multiple mechanisms of action toward the yeasts. Additionally, it was observed that DVL induces membrane and cell wall damage and ROS overproduction. DVL was also able to cause an imbalance in the redox system of the cells, interact with ergosterol, inhibit ergosterol biosynthesis, and induce cytochrome c release from the mitochondrial membrane. These results endorse the potential application of DVL in developing a new antifungal drug to fight back against fungal resistance.
Collapse
Affiliation(s)
- Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Ellen A Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Maria H C Santos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Ana L E Santos
- Medical School, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Bruno A M Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, 60451-970, CE, Brazil; Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-275, CE, Brazil.
| | - Claudener S Teixeira
- Center for Agricultural Sciences and Biodiversity, Federal University of Cariri, Crato, 63130-025, Brazil.
| |
Collapse
|
8
|
Ferreira MRA, Lima LB, Santos ECF, Machado JCB, Silva WAV, Paiva PMG, Napoleão TH, Soares LAL. Eugenia uniflora: a promising natural alternative against multidrug-resistant bacteria. BRAZ J BIOL 2023; 83:e274084. [PMID: 37585932 DOI: 10.1590/1519-6984.274084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
This work aimed to evaluate the chemical composition, antioxidant and antimicrobial activities from crude extract and fractions from leaves of Eugenia uniflora Linn. The crude extract was obtained by turbo extraction and their fractions by partitioning. Chromatographic analysis were performed, and the antioxidant capacity was verified by two methods (DPPH• and ABTS•+). The Minimal Inhibitory/Bactericidal Concentration were conducted against twenty-two bacteria, selecting five strains susceptible to extract/fractions and resistant to the antibiotics tested. Ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with Ethyl Acetate Fraction (EAF) against multidrug-resistant strains in modulatory and checkerboard tests. The chromatographic data showed gallic acid, ellagic acid, and myricitrin in crude extract, with enrichment in the EAF. The electron transfer activity demonstrated in the antioxidant tests is related to the presence of flavonoids. The Gram-positive strains were more susceptible to EAF, and their action spectra were improved by association, comprising Gram-negative bacilli. Synergisms were observed to ciprofloxacin and gentamicin against Pseudomonas aeruginosa colistin-resistant. The results demonstrate that the extract and enriched fraction obtained from the leaves of E. uniflora act as a promising natural alternative against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- M R A Ferreira
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - L B Lima
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - E C F Santos
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - J C B Machado
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - W A V Silva
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - P M G Paiva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - T H Napoleão
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - L A L Soares
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| |
Collapse
|
9
|
Dantas AM, Fernandes FG, Magnani M, da Silva Campelo Borges G. Gastrointestinal digestion assays for evaluating the bioaccessibility of phenolic compounds in fruits and their derivates: an overview. Food Res Int 2023; 170:112920. [PMID: 37316040 DOI: 10.1016/j.foodres.2023.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
Fruits and their derivatives are sources of phenolic compounds, which contribute to the maintenance of health benefits. In order to exert such properties, these compounds must be exposed to gastrointestinal conditions during digestion. In vitro methods of gastrointestinal digestion have been developed to simulate and evaluate the changes that compounds undergo after being exposed to various conditions. We present, in this review, the major in vitro methods for evaluating the effects of gastrointestinal digestion of phenolic compounds in fruits and their derivatives. We discuss the concept of bioaccessibility, bioactivity, and bioavailability, as well as the conceptual differences and calculations among studies. Finally, the main changes caused by in vitro gastrointestinal digestion in phenolic compounds are also discussed. The significant variation of parameters and concepts observed hinders a better evaluation of the real effects on the antioxidant activity of phenolic compounds, thus, the use of standardized methods in research would contribute for a better understanding of these changes.
Collapse
Affiliation(s)
- Aline Macedo Dantas
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Graciele da Silva Campelo Borges
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil; Center of Chemistry, Pharmaceutical and Foods Sciences, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Barros DB, Nascimento NS, Sousa AP, Barros AV, Borges YWB, Silva WMN, Motta ABS, Pinto JEL, Sampaio MGV, Barbosa MFS, Fonseca MC, Silva LA, Lima LO, Borges MGSA, Oliveira MBM, Correia MTS, Castellano LRC, Guerra FQS, Silva MV. Antifungal activity of terpenes isolated from the Brazilian Caatinga: a review. BRAZ J BIOL 2023; 83:e270966. [PMID: 37283336 DOI: 10.1590/1519-6984.270966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Terpenoids, also named terpenes or isoprenoids, are a family of natural products found in all living organisms. Many plants produce terpenoids as secondary metabolites, and these make up a large part of essential oils. One of most important characteristic is that the compounds are volatile, have odor and can be used in a variety of applications in different industrial segments and traditional medicine. Brazil has a rich and diverse flora that can be used as a source of research for obtaining new molecules. Within the Brazilian flora, it is worth mentioning the Caatinga as an exclusively Brazilian biome where plants adapt to a specific series of weather conditions and therefore become a great storehouse of the terpenoid compounds to be described herein. Fungal infections have become increasingly common, and a great demand for new agents with low toxicity and side effects has thus emerged. Scientists must search for new molecules exhibiting antifungal activity to develop new drugs. This review aims to analyze scientific data from the principal published studies describing the use of terpenes and their biological applications as antifungals.
Collapse
Affiliation(s)
- D B Barros
- Universidade Federal de Pernambuco - UFPE, Biosciences Center, Post-graduation in Sciences, Recife, PB, Brasil
| | - N S Nascimento
- Universidade de São Paulo - USP, Department of Biochemistry and Pharmaceutical Technology, São Paulo, SP, Brasil
| | - A P Sousa
- Universidade Federal da Paraíba - UFPB, Department of Physiology and Pathology, João Pessoa, PB, Brasil
| | - A V Barros
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| | - Y W B Borges
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| | - W M N Silva
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| | - A B S Motta
- Universidade Federal da Paraíba - UFPB, Technical School of Health, Health Sciences Center, João Pessoa, PB, Brasil
| | - J E L Pinto
- Universidade de São Paulo - USP, Post-graduation in immunology, Institute of Biomedical Sciences, São Paulo, SP, Brasil
| | - M G V Sampaio
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| | - M F S Barbosa
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| | - M C Fonseca
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences, João Pessoa, PB, Brasil
| | - L A Silva
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences, João Pessoa, PB, Brasil
| | - L O Lima
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences, João Pessoa, PB, Brasil
| | - M G S A Borges
- Universidade Federal de Pernambuco - UFPE, Biosciences Center, Post-graduation in Sciences, Recife, PB, Brasil
| | - M B M Oliveira
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| | - M T S Correia
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| | - L R C Castellano
- Universidade Federal da Paraíba - UFPB, Technical School of Health, Health Sciences Center, João Pessoa, PB, Brasil
| | - F Q S Guerra
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences, João Pessoa, PB, Brasil
| | - M V Silva
- Universidade Federal de Pernambuco - UFPE, Department of Biochemistry, Recife, PB, Brasil
| |
Collapse
|
11
|
Chen M, Chen RQ, Guo Y, Chen JX, Jin Q, Chen MH, Chen BY, Tu ZC, Ye WC, Wang L. Eugenilones A-N: sesquiterpenoids from the fruits of Eugenia uniflora. PHYTOCHEMISTRY 2023; 211:113699. [PMID: 37105351 DOI: 10.1016/j.phytochem.2023.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
(+) and (-)-Eugenilones A-K, 11 pairs of undescribed enantiomeric sesquiterpenoids, together with three undescribed biogenetically related members eugenilones L-N, were discovered from the fruits of Eugenia uniflora Linn. (Myrtaceae). Structurally, eugenilones A-D were four caged sesquiterpenoids featuring 9,10-dioxatricyclo [6.2.2.02,7]dodecane, 11-oxatricyclo [5.3.1.03,8]undecane, and tricyclo [4.4.0.02,8]decane cores, respectively. Eugenilones E-K were eudesmane-type sesquiterpenoids, while eugenilones L-N were epoxy germacrane-type sesquiterpenoids. Notably, eugenilones A-K were efficiently resolved by chiral HPLC to give 11 pairs of optically pure enantiomers. The structures and absolute configurations of eugenilones A-N were determined through spectroscopic analyses, X-ray crystallography, and ECD calculations. The putative biosynthetic pathways for these undescribed isolates were proposed. Moreover, eugenilones A and E exhibited significant anti-inflammatory effects by inhibiting LPS-stimulated NO overproduction in RAW264.7 cells (IC50 values of 4.89 ± 0.37 μM and 20.89 ± 1.49 μM, respectively) and TNF-α-induced NF-κB activation in HEK293 cells (IC50 values of 10.97 ± 1.03 μM and 28.63 ± 1.59 μM, respectively).
Collapse
Affiliation(s)
- Mu Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Run-Qiang Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yuan Guo
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Xin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qian Jin
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Mei-Hong Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Bo-Yong Chen
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zheng-Chao Tu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
12
|
Antonelo FA, Rodrigues Soares M, Cruz LC, Pagnoncelli MG, Alves da Cunha MA, Bonatto SJR, Busso C, Júnior AW, Montanher PF. Bioactive compounds derived from Brazilian Myrtaceae species: Chemical composition and antioxidant, antimicrobial and cytotoxic activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Cabezudo I, Salazar MO, Ramallo IA, Furlan RLE. Effect-directed analysis in food by thin-layer chromatography assays. Food Chem 2022; 390:132937. [PMID: 35569399 DOI: 10.1016/j.foodchem.2022.132937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Thin-layer chromatography (TLC) is widely used for food analysis and quality control. As an open chromatographic system, TLC is compatible with microbial-, biochemical-, and chemical-based derivatization methods. This compatibility makes it possible to run in situ bioassays directly on the plate to obtain activity-profile chromatograms, i.e., the effect-directed analysis of the sample. Many of the properties that can be currently measured using this assay format are related to either desired or undesired features for food related products. The TLC assays can detect compounds related to the stability of foods (antioxidant, antimicrobial, antibrowning, etc.), contaminants (antibiotics, pesticides, estrogenic compounds, etc.), and compounds that affect the absorption, metabolism or excretion of nutrients and metabolites or could improve the consumers health (enzyme inhibitors). In this article, different food related TLC-assays are reviewed. The different detection systems used, the way in which they are applied as well as selected examples are discussed.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
14
|
Phytochemical Analysis, Antibacterial Activity and Modulating Effect of Essential Oil from Syzygium cumini (L.) Skeels. Molecules 2022; 27:molecules27103281. [PMID: 35630757 PMCID: PMC9145283 DOI: 10.3390/molecules27103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.
Collapse
|
15
|
Franzolin MR, Courrol DDS, de Souza Barreto S, Courrol LC. Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities. Microorganisms 2022; 10:microorganisms10050999. [PMID: 35630442 PMCID: PMC9147378 DOI: 10.3390/microorganisms10050999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Eugenia uniflora linnaeus, known as Brazilian cherry, is widely distributed in Brazil, Argentina, Uruguay, and Paraguay. E. uniflora L. extracts contain phenolic compounds, such as flavonoids, tannins, triterpenes, and sesquiterpenes. The antimicrobial action of essential oils has been attributed to their compositions of bioactive compounds, such as sesquiterpenes. In this paper, the fruit extract of E. uniflora was used to synthesize silver and gold nanoparticles. The nanoparticles were characterized by UV–Vis, transmission electron microscopy, elemental analysis, FTIR, and Zeta potential measurement. The silver and gold nanoparticles prepared with fruit extracts presented sizes of ~32 nm and 11 nm (diameter), respectively, and Zeta potentials of −22 mV and −14 mV. The antimicrobial tests were performed with Gram-negative and Gram-positive bacteria and Candida albicans. The growth inhibition of EuAgNPs prepared with and without photoreduction showed the important functional groups in the antimicrobial activity.
Collapse
Affiliation(s)
- Marcia Regina Franzolin
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Daniella dos Santos Courrol
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Susana de Souza Barreto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (M.R.F.); (D.d.S.C.); (S.d.S.B.)
| | - Lilia Coronato Courrol
- Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
- Correspondence:
| |
Collapse
|
16
|
Fidelis EM, Savall ASP, de Oliveira Pereira F, Quines CB, Ávila DS, Pinton S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Chen M, Cao JQ, Ang S, Zeng TN, Li NP, Yang TJ, Liu JS, Wu Y, Ye WC, Wang L. Eugenunilones A–H: rearranged sesquiterpenoids from Eugenia uniflora. Org Chem Front 2022. [DOI: 10.1039/d1qo01629f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Six rearranged sesquiterpenoids (1–6) with four types of new polycyclic caged skeletons were isolated from Eugenia uniflora.
Collapse
Affiliation(s)
- Mu Chen
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jia-Qing Cao
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Song Ang
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ting-Ni Zeng
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ni-Ping Li
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Tang-Jia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan Wu
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Cai Ye
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Wang
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
18
|
Bezerra JN, Gomez MCV, Rolón M, Coronel C, Almeida-Bezerra JW, Fidelis KR, Menezes SAD, Cruz RPD, Duarte AE, Ribeiro PRV, Brito ESD, Coutinho HDM, Morais-Braga MFB, Bezerra CF. Chemical composition, Evaluation of Antiparasitary and Cytotoxic Activity of the essential oil of Psidium brownianum MART EX. DC. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Ferreira OO, da Silva SHM, de Oliveira MS, Andrade EHDA. Chemical Composition and Antifungal Activity of Myrcia multiflora and Eugenia florida Essential Oils. Molecules 2021; 26:7259. [PMID: 34885839 PMCID: PMC8658826 DOI: 10.3390/molecules26237259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
The essential oils of three specimens of Myrcia multiflora (A, B and C) and Eugenia florida were extracted by hydrodistillation, and the chemical compositions from the essential oils were identified by gas chromatography and flame ionization detection (CG/MS and CG-FID). The fungicide potential of the EOs against five fungicide yeasts was assessed: Candida albicans INCQS-40175, C. tropicalis ATCC 6258, C. famata ATCC 62894, C. krusei ATCC 13803 and C. auris IEC-01. The essential oil of the specimen Myrcia multiflora (A) was characterized by the major compounds: α-bulnesene (26.79%), pogostol (21.27%) and δ-amorphene (6.76%). The essential oil of the specimen M. multiflora (B) was rich in (E)-nerolidol (44.4%), (E)-γ-bisabolene (10.64%) and (E,E)-α-farnesene (8.19%), while (E)-nerolidol (92.21%) was the majority of the specimen M. multiflora (C). The sesquiterpenes seline-3,11-dien-6-α-ol (12.93%), eremoligenol (11%) and γ-elemene (10.70%) characterized the chemical profile of the EOs of E. florida. The fungal species were sensitive to the essential oil of M. multiflora (B) (9-11 mm), and the lowest inhibitory concentration (0.07%) was observed in the essential oil of M. multiflora (A) against the yeasts of C. famata. Fungicidal action was observed in the essential oils of M. multiflora (A) against C. famata, with an MIC of 0.78 µL/mL and 3.12 µL/mL; C. albicans, with an MFC of 50 µL/mL and M. multiflora (C) against C. albicans; and C. krusei, with a MFC of 50 µL/mL.
Collapse
Affiliation(s)
- Oberdan Oliveira Ferreira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Brazil; (O.O.F.); (E.H.d.A.A.)
| | - Silvia Helena Marques da Silva
- Seção de Bacteriologia e Micologia LabMicol—SABMI Laboratório de Micologia, Instituto Evandro Chagas—IEC/SVS/MS, Rodovia BR 316 KM 07, Levilândia, Ananindeua 67030-000, Brazil;
| | - Mozaniel Santana de Oliveira
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Brazil
| | - Eloisa Helena de Aguiar Andrade
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Brazil; (O.O.F.); (E.H.d.A.A.)
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Brazil
| |
Collapse
|
20
|
Chemical Composition and Antioxidant Activity of Essential Oils from Leaves of Two Specimens of Eugenia florida DC. Molecules 2021; 26:molecules26195848. [PMID: 34641394 PMCID: PMC8512050 DOI: 10.3390/molecules26195848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Eugenia florida DC. belongs to the Myrtaceae family, which is present in almost all of Brazil. This species is popularly known as pitanga-preta or guamirim and is used in folk medicine to treat gastrointestinal problems. In this study, two specimens of Eugenia florida (Efl) were collected in different areas of the same region. Specimen A (EflA) was collected in an area of secondary forest (capoeira), while specimen B (EflB) was collected in a floodplain area. The essential oils (EOs) were extracted from both specimens of Eugenia florida by means of hydrodistillation. Gas chromatography coupled to mass spectrometry (GC/MS) was used to identify the volatile compounds present, and the antioxidant capacity of the EOs was determined by antioxidant capacity (AC-DPPH) and the Trolox equivalent antioxidant (TEAC) assay. For E. florida, limonene (11.98%), spathulenol (10.94%) and α-pinene (5.21%) were identified as the main compounds of the EO extracted from sample A, while sample B comprised selina-3,11-dien-6α-ol (12.03%), eremoligenol (11.0%) and γ-elemene (10.70%). This difference in chemical composition impacted the antioxidant activity of the EOs between the studied samples, especially in sample B of E. florida. This study is the first to report on the antioxidant activity of Eugenia florida DC. essential oils.
Collapse
|
21
|
Silva JDL, Pereira PS, Oliveira CVB, de Freitas MA, Silva JRDL, Costa AR, Oliveira-Tintino CDDM, Braga MFBM, Duarte AE, Coutinho HDM, Barros LM. Study of the capacity of the essential oil of Lantana montevidensis to modulate the action of fluconazole on Candida albicans and Candida tropicalis strains. J Mycol Med 2021; 31:101171. [PMID: 34224939 DOI: 10.1016/j.mycmed.2021.101171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
In recent decades, fungal infections have been increasing, as well as the indiscriminate use of large-scale antifungal. The objective of the present study was to characterize the chemical components of L. montevidensis leaf essential oil (EOLm) and evaluate its antifungal potential and fluconazole modulating activity against Candida strains. The essential oil was obtained by hydrodistillation and its chemical components were determined by Gas Chromatography coupled to Mass Spectrometry. The antifungal activity was determined by the microdilution method to determine the minimum inhibitory concentration. The modulatory activity of fluconazole by the oil (EOLm) was evaluated against the four Candida strains. Our results demonstrated a predominance of β-Caryophyllene (34.96%) and Germacrene D (25.49%), while (E)-Caryophyllene (0.08%) and δ-Cadinene (0.13%) were the minor constituents. For the antifungal activity, it was evidenced that the EOLm did not inhibit the growth of Candida albicans (CA LM 77 and CA INQS 40006) and Candida tropicalis (CT INCQS 40042 and CT LM 23), but, potentiated the effect of fluconazole in particular against C. tropicalis, although the FIC index indicates indifferent modulation for all strains tested. This study strongly suggests that administration of the fluconazole in combination with plant essential oils can provide a new opportunity to improve the outcome of the drug effect.
Collapse
Affiliation(s)
| | - Pedro Silvino Pereira
- Microscopy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil.
| | | | - Maria Audilene de Freitas
- Microbiology and Molecular Biology Laboratory - LMBM, Regional University of Cariri - URCA, Crato, CE, Brazil
| | | | | | | | | | - Antonia Eliene Duarte
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | | |
Collapse
|
22
|
Hsu H, Sheth CC, Veses V. Herbal Extracts with Antifungal Activity against Candida albicans: A Systematic Review. Mini Rev Med Chem 2021; 21:90-117. [PMID: 32600229 DOI: 10.2174/1389557520666200628032116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
In the era of antimicrobial resistance, fungal pathogens are not an exception. Several strategies, including antimicrobial stewardship programs and high throughput screening of new drugs, are being implemented. Several recent studies have demonstrated the effectiveness of plant compounds with antifungal activity. In this systematic review, we examine the use of natural compounds as a possible avenue to fight fungal infections produced by Candida albicans, the most common human fungal pathogen. Electronic literature searches were conducted through PubMed/MEDLINE, Cochrane, and Science Direct limited to the 5 years. A total of 131 articles were included, with 186 plants extracts evaluated. Although the majority of the natural extracts exhibited antifungal activities against C. albicans (both in vivo and in vitro), the strongest antifungal activity was obtained from Lawsonia inermis, Pelargonium graveolens, Camellia sinensis, Mentha piperita, and Citrus latifolia. The main components with proven antifungal activities were phenolic compounds such as gallic acid, thymol, and flavonoids (especially catechin), polyphenols such as tannins, terpenoids and saponins. The incorporation of nanotechnology greatly enhances the antifungal properties of these natural compounds. Further research is needed to fully characterize the composition of all herbal extracts with antifungal activity as well as the mechanisms of action of the active compounds.
Collapse
Affiliation(s)
- Hsuan Hsu
- Department of Dentistry, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| | - Chirag C Sheth
- Department of Medicine, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| | - Veronica Veses
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera, CEU Universities, Moncada 46113, Valencia, Spain
| |
Collapse
|
23
|
Cipriano RR, Maia BHLNS, Deschamps C. Chemical variability of essential oils of Eugenia uniflora L. genotypes and their antioxidant activity. AN ACAD BRAS CIENC 2021; 93:e20181299. [PMID: 33909815 DOI: 10.1590/0001-3765202120181299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/27/2019] [Indexed: 11/22/2022] Open
Abstract
Eugenia uniflora, known as the "Brazilian cherry", is an economically important neotropical Myrtaceae in the cosmetics and pharmaceutical industries due the production of essential oils with antioxidant activity. On account of its significant genetic variability, genotype evaluations are needed in order to identify genetic features related to the essential oil production that meet the industry requirements. The main objective of the present study was to evaluate the yield, composition, and antioxidant activity of essential oils isolated from the leaves of 36 genotypes of E. uniflora. Essential oil samples were obtained by hydrodistillation, and their composition was determined by gas chromatography coupled with mass spectrometry. A variation of 0.22% to 1.68% in the essential oil yield was observed, in which 78 compounds, namely oxygenated sesquiterpenes, were identified. According to the cluster analysis of the major compounds, six groups were revealed. The observed diversity demonstrates the genetic variability of the species. Also, the antioxidant activity was affected by the composition of the essential oils, ranging from 176.66 to 867.57 µM TEAC.
Collapse
Affiliation(s)
- Roger R Cipriano
- Programa de Pós-Graduação em Agronomia/Produção Vegetal, Universidade Federal do Paraná, Setor de Ciências Agrárias, Departamento de Fitotecnia e Fitossanitarismo, Rua dos Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR, Brazil
| | - Beatriz H L N S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Paraná, Setor de Ciências Exatas, Departamento de Química, Centro Politécnico, Av. Cel. Francisco H. Santos, 100, Jardim das Américas, 81531-980 Curitiba, PR, Brazil
| | - Cícero Deschamps
- Programa de Pós-Graduação em Agronomia/Produção Vegetal, Universidade Federal do Paraná, Setor de Ciências Agrárias, Departamento de Fitotecnia e Fitossanitarismo, Rua dos Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR, Brazil
| |
Collapse
|
24
|
Tessaro L, Luciano CG, Quinta Barbosa Bittante AM, Lourenço RV, Martelli-Tosi M, José do Amaral Sobral P. Gelatin and/or chitosan-based films activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract encapsulated in double emulsion. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
da Silva BD, Bernardes PC, Pinheiro PF, Fantuzzi E, Roberto CD. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci 2021; 176:108463. [PMID: 33640647 DOI: 10.1016/j.meatsci.2021.108463] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
The antimicrobial activity of essential oils (EO) is associated with the presence of secondary metabolites synthesized by plants. Its mechanism of action involves the interaction of its hydrophobic components with the lipids present in the cell membrane of microorganism, resulting in metabolic damages and cell death. Spoilage and pathogenic microorganisms are contaminants in meat and meat products with considerable impacts on food quality and safety. Research shows the potential of applying essential oils in the preservation of meat food systems as compounds of low toxicity, extracted from a natural source, and as an alternative to consumer demand for healthy foods with a more natural appeal. In addition, there is a great diversity of plants from which essential oils can be extracted, whose antimicrobial activity in vitro and in meat and meat products has been proven.
Collapse
Affiliation(s)
- Bruno Dutra da Silva
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Patrícia Campos Bernardes
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Patrícia Fontes Pinheiro
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Elisabete Fantuzzi
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Consuelo Domenici Roberto
- Departamento de Engenharia de Alimentos, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil.
| |
Collapse
|
26
|
Selina-1,3,7(11)-trien-8-one and Oxidoselina-1,3,7(11)-trien-8-one from Eugenia uniflora Leaf Essential Oil and Their Cytotoxic Effects on Human Cell Lines. Molecules 2021; 26:molecules26030740. [PMID: 33572682 PMCID: PMC7867026 DOI: 10.3390/molecules26030740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
The sesquiterpenes selina-1,3,7(11)-trien-8-one and oxidoselina-1,3,7(11)-trien-8-one were isolated from the essential oil of Eugenia uniflora L. leaves. The structures were elucidated using spectrometric methods (UV, GC-MS, NMR, and specific optical rotation). The relationship between antioxidant activity, as determined by DPPH assay, and the cytotoxic effect was evaluated using tumor cells, namely lung adenocarcinoma epithelial cells (A549) and human hepatoma carcinoma cells (HepG2), as well as a model of normal human lung fibroblast cells (IMR90). Both compounds did not show prominent free-radical scavenging activity according to DPPH assay, and did not inhibit lipid peroxidation in Wistar rat brain homogenate. The isolated compounds showed pro-oxidative effects and cytotoxicity in relation to the IMR90 cell line.
Collapse
|
27
|
Barata LM, Andrade EH, Ramos AR, de Lemos OF, Setzer WN, Byler KG, Maia JGS, da Silva JKR. Secondary Metabolic Profile as a Tool for Distinction and Characterization of Cultivars of Black Pepper ( Piper nigrum L.) Cultivated in Pará State, Brazil. Int J Mol Sci 2021; 22:ijms22020890. [PMID: 33477389 PMCID: PMC7830865 DOI: 10.3390/ijms22020890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the chemical compositions of the leaves and fruits of eight black pepper cultivars cultivated in Pará State (Amazon, Brazil). Hydrodistillation and gas chromatography-mass spectrometry were employed to extract and analyze the volatile compounds, respectively. Sesquiterpene hydrocarbons were predominant (58.5-90.9%) in the cultivars "Cingapura", "Equador", "Guajarina", "Iaçará", and "Kottanadan", and "Bragantina", "Clonada", and "Uthirankota" displayed oxygenated sesquiterpenoids (50.6-75.0%). The multivariate statistical analysis applied using volatile composition grouped the samples into four groups: γ-Elemene, curzerene, and δ-elemene ("Equador"/"Guajarina", I); δ-elemene ("Iaçará"/"Kottanadan"/"Cingapura", II); elemol ("Clonada"/"Uthirankota", III) and α-muurolol, bicyclogermacrene, and cubebol ("Bragantina", IV). The major compounds in all fruit samples were monoterpene hydrocarbons such as α-pinene, β-pinene, and limonene. Among the cultivar leaves, phenolics content (44.75-140.53 mg GAE·g-1 FW), the enzymatic activity of phenylalanine-ammonia lyase (20.19-57.22 µU·mL-1), and carotenoids (0.21-2.31 µg·mL-1) displayed significant variations. Due to black pepper's susceptibility to Fusarium infection, a molecular docking analysis was carried out on Fusarium protein targets using each cultivar's volatile components. F. oxysporum endoglucanase was identified as the preferential protein target of the compounds. These results can be used to identify chemical markers related to the susceptibility degree of black pepper cultivars to plant diseases prevalent in Pará State.
Collapse
Affiliation(s)
- Luccas M. Barata
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, PA 66075-110, Brazil;
| | - Eloísa H. Andrade
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, PA 66077-830, Brazil;
| | - Alessandra R. Ramos
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA 68507-590, Brazil;
| | - Oriel F. de Lemos
- Centro de Pesquisa Agroflorestal da Amazônia Oriental, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Belém, PA 66095-100, Brazil;
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Correspondence: (W.N.S.); (J.K.R.d.S.); Tel.: +1-256-824-6519 (W.N.S.); +55-91-3201-7297 (J.K.R.d.S.)
| | - Kendall G. Byler
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís, MA 65080-805, Brazil;
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, PA 66075-110, Brazil;
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Correspondence: (W.N.S.); (J.K.R.d.S.); Tel.: +1-256-824-6519 (W.N.S.); +55-91-3201-7297 (J.K.R.d.S.)
| |
Collapse
|
28
|
Synthesis, characterization and cytotoxicity of the Eugenia brejoensis essential oil inclusion complex with β-cyclodextrin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Nidhi P, Rolta R, Kumar V, Dev K, Sourirajan A. Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113135. [PMID: 32693117 DOI: 10.1016/j.jep.2020.113135] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrus aurantium L. is used in traditional medicine in India for treating stomach ache, vomiting, blood pressure, dysentery, diarrhea, cardiovascular analeptic, sedative, boils and urinary tract infections. Its essential oil from fruit peels has antioxidant, antimicrobial, antifungal, antiparasitic, and anti-inflammatory activities. AIM OF THE STUDY The aim of the study was to characterize the antifungal activity and synergistic potential of essential oil extracted from leaves of Citrus aurantium L. of North-Western Himalayas against Candida albicans. MATERIALS AND METHODS Citrus aurantium essential oil (CAEO) was extracted from leaves and characterized by GC-MS. The antifungal activity and synergistic potential of CAEO against C. albicans was studied by agar well diffusion, and broth microdilution assay. The anti-fungal potential of the phytoconstituents of CAEO was studied by in silico interaction with two fungal drug targets, N-myristoyl transferase (NMT) and Cytochrome P450 14 Alpha-sterol Demethylase (CYP51). RESULTS CAEO exhibited strong antifungal activity against two strains of C. albicans, with fungicidal effect. The MIC of CAEO against C. albicans strains was 0.15 - 0.31% (v/v). CAEO exhibited synergistic potential with fluconazole and amphotericin B against C. albicans and enhanced the antifungal efficacy of the clinical drugs by 8.3 to 34.4 folds. The GC-MS analysis of CAEO identified at least ten compounds, with 2-β pinene, δ-3 Carene and D-limonene as the major compounds. In silico molecular docking of the three major phytocompounds of CAEO with NMT and CYP51 revealed their potential to interact with both targets. δ-3 Carene showed best binding (Etotal of -131.13 kcal/mol) with NMT, while D-limonene exhibited highest binding energy (Etotal of -175.23 kcal/mol) with CYP51. ADME/T analysis showed that 2-β pinene, δ-3 Carene and D-limonene exhibit drug likeliness and ideal toxicity profiles for their use as drug candidates. CONCLUSIONS Thus, the essential oil from leaves of C. aurantium and its phytocomponents can be used as sustainable and natural therapeutic to treat candidiasis as well as a resource to enhance the potency of clinical antibiotics, which have lost efficacy due to emergence of drug resistance in C. albicans.
Collapse
Affiliation(s)
- Prakriti Nidhi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Vikas Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.
| |
Collapse
|
30
|
Boren K, Crown A, Carlson R. Multidrug and Pan-Antibiotic Resistance—The Role of Antimicrobial and Synergistic Essential Oils: A Review. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20962595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacterial resistance to antibiotics continues to be a grave threat to human health. Because antibiotics are no longer a lucrative market for pharmaceutical companies, the development of new antibiotics has slowed to a crawl. The World Health Organization reported that the 8 new bacterial agents approved since July 2017 had limited clinical benefits. While a cohort of biopharmaceutical companies recently announced plans to develop 2-4 new antibiotics by 2030, we needn’t wait a decade to find innovative antibiotic candidates. Essential oils (EOs) have long been known as antibacterial agents with wide-ranging arsenals. Many are able to penetrate the bacterial membrane and may also be effective against bacterial defenses such as biofilms, efflux pumps, and quorum sensing. EOs have been documented to fight drug-resistant bacteria alone and/or combined with antibiotics. This review will summarize research showing the significant role of EOs as nonconventional regimens against the worldwide spread of antibiotic-resistant pathogens. The authors conducted a 4-year search of the US National Library of Medicine (PubMed) for relevant EO studies against methicillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Escherichia coli, EO combinations/synergy with antibiotics, against MDR fungal infections, showing the ability to permeate bacterial membranes, and against the bacterial defenses listed above. EOs are readily available and are a needed addition to the arsenal against resistant pathogens.
Collapse
|
31
|
de Veras BO, Dos Santos YQ, Oliveira FGDS, Almeida JRGDS, da Silva AG, Correia MTDS, Diniz KM, de Oliveira JRS, Lima VLDM, Navarro DMDAF, de Aguiar JCRDOF, de Oliveira MBM, Lopes ACDS, da Silva MV. Algrizea Minor Sobral, Faria & Proença (Myrteae, Myrtaceae): chemical composition, antinociceptive, antimicrobial and antioxidant activity of essential oil. Nat Prod Res 2020; 34:3013-3017. [PMID: 31014086 DOI: 10.1080/14786419.2019.1602832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 03/24/2019] [Indexed: 01/01/2023]
Abstract
This work aimed to investigate the chemical composition, antimicrobial, antinociceptive, acute toxicity and antioxidant activity of the essential oil of Algrizea minor (EOAm). The essential oil presented as the major constituents β-Pinene (56.99%), α-Pinene (16.57%), Germacrene D (4.67%), Bicyclogermacrene (4.66%), (E)-Caryophyllene (3.76%) and Limonene (1.71%). It was verified that the essential oil did not show acute toxicity in the maximum dose of 5,000 mg/kg. In the evaluation of the antinociceptive activity it was verified that the essential oil reduced in 65.84% the number of writhing in the mice, reducing the pain in 59.17%, and the mechanism of action in pain reduction was opioid, similar to morphine. The essential oil also presented significant antimicrobial against Gram positive and Gram-negative bacteria and fungi, and the antioxidant activity was relevant. Therefore, these results demonstrate the great potential for the future development of pharmaceutical products with the essential oil of Algrizea minor (EOAm) .[Figure: see text].
Collapse
|
32
|
Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100498] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
da Silva Neto JX, da Costa HPS, Vasconcelos IM, Pereira ML, Oliveira JTA, Lopes TDP, Dias LP, Araújo NMS, Moura LFWG, Van Tilburg MF, Guedes MIF, Lopes LA, Morais EG, de Oliveira Bezerra de Sousa D. Role of membrane sterol and redox system in the anti-candida activity reported for Mo-CBP 2, a protein from Moringa oleifera seeds. Int J Biol Macromol 2020; 143:814-824. [PMID: 31734363 DOI: 10.1016/j.ijbiomac.2019.09.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Plant proteins are emerging as an alternative to conventional treatments against candidiasis. The aim of this study was to better understand the mechanism of action of Mo-CBP2 against Candida spp, evaluating redox system activity, lipid peroxidation, DNA degradation, cytochrome c release, medium acidification, and membrane interaction. Anti-candida activity of Mo-CBP2 decreased in the presence of ergosterol, which was not observed with antioxidant agents. C. albicans treated with Mo-CBP2 also had catalase and peroxidase activities inhibited, while superoxide dismutase was increased. Mo-CBP2 increased the lipid peroxidation, but it did not alter the ergosterol profile in live cells. External medium acidification was strongly inhibited, and cytochrome c release and DNA degradation were detected. Mo-CBP2 interacts with cell membrane constituents, changes redox system enzymes in C. albicans and causes lipid peroxidation by ROS overproduction. DNA degradation and cytochrome c release suggest apoptotic or DNAse activity. Lipid peroxidation and H+-ATPases inhibition may induce the process of apoptosis. Finally, Mo-CBP2 did not have a cytotoxic effect in mammalian Vero cells. This study highlights the biotechnological potential of Mo-CBP2 as a promising molecule with low toxicity and potent activity. Further studies should be performed to better understand its mode of action and toxicity.
Collapse
Affiliation(s)
- João Xavier da Silva Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Ilka Maria Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Jose Tadeu Abreu Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Lucas Pinheiro Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Mauricio Fraga Van Tilburg
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, CE, Brazil
| | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, CE, Brazil
| | - Larissa Alves Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Eva Gomes Morais
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
34
|
Antibiotic Potential and Chemical Composition of the Essential Oil of Piper caldense C. DC. (Piperaceae). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infections by multiresistant microorganisms have led to a continuous investigation of substances acting as modifiers of this resistance. By following this approach, the chemical composition of the essential oil from Piper caldense leaf and its antimicrobial potential were investigated. The antimicrobial activity was determined by broth microdilution method providing values for minimum inhibitory concentration (MIC), IC50, and minimum fungicidal concentration (MFC). The essential oil was tested as a modulator for several antibiotics, and its effect on the morphology of Candida albicans (CA) strains was also investigated. The chemical characterization revealed an oil composed mainly of sesquiterpenes. Among them are caryophyllene oxide (13.9%), spathulenol (9.1%), δ-cadinene (7.6%) and bicyclogermacrene (6.7%) with the highest concentrations. The essential oil showed very low activity against the strains of CA with the lowest values for IC50 and MFC of 1790 μg/mL and 8192 μg/mL, respectively. The essential oil modulated the activity of fluconazole against CA URM 4387 strain, which was demonstrated by the lower IC50 obtained, 2.7 μg/mL, whereas fluconazole itself presented an IC50 of 7.76 μg/mL. No modulating effect was observed in the MFC bioassays. The effect on fungal morphology was observed for both CA INCQS 40006 and URM 4387 strains. The hyphae projection was completely inhibited at 4096 μg/mL and 2048 μg/mL, respectively. Thus, the oil has potential as an adjuvant in antimicrobial formulations.
Collapse
|
35
|
Figueiredo PLB, Fernandes HA, da Silva ARC, Alves NSF, Setzer WN, da Silva JKR, Maia JGS. Variability in the Chemical Composition of Eugenia biflora Essential Oils from the Brazilian Amazon. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19892439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eugenia species are well known for their great economic potential as edible fruits. The leaves of 4 Eugenia biflora specimens (Ebi-1 to Ebi-4) were sampled in the Caratateua Island, Pará state, Brazilian Amazon. Then, the essential oils were hydrodistilled, analyzed by gas chromatography (GC) and GC mass spectroscopy, and their volatile compositions submitted to multivariate analysis (principal component analysis and hierarchical cluster analysis). Ebi-1 and Ebi-2 specimens were classified in the caryophyllene group, with significant content for the sesquiterpenes ( E)-caryophyllene (16.8% and 11.4%) and caryophyllene oxide (28.6% and 20.5%). Ebi-3 specimen was grouped into the cadinane group, characterized by the presence of α-cadinol (14.7%), an oxygenated sesquiterpene. EBI-4 specimen was inserted into the aromadendrane group, with the predominance of the sesquiterpenes globulol (9.8%), germacrene B (7.9%), and γ-elemene (3.1%). Based on the results, a remarkable chemical variability was observed in the oils of Eugenia biflora with occurrence in Pará state, North Brazil. This work is presenting for the first time its caryophyllene, cadinane, and aromadendrane profiles.
Collapse
Affiliation(s)
- Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, Brazil
- Departamento de Ciências Naturais, Centro de Ciências Sociais e Educação, Universidade do Estado do Pará, Belém, Brazil
| | - Henryck A. Fernandes
- Programa Institucional de Bolsas de Iniciação Científica, Universidade Federal do Pará, Belém, Brazil
| | | | | | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, USA
- Aromatic Plant Research Center, Lehi, UT, USA
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, Brazil
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís, Brazil
| |
Collapse
|
36
|
Pereira Carneiro JN, da Cruz RP, da Silva JCP, Rocha JE, de Freitas TS, Sales DL, Bezerra CF, de Oliveira Almeida W, da Costa JGM, da Silva LE, Amaral WD, Rebelo RA, Begnini IM, Melo Coutinho HD, Bezerra Morais-Braga MF. Piper diospyrifolium Kunth.: Chemical analysis and antimicrobial (intrinsic and combined) activities. Microb Pathog 2019; 136:103700. [PMID: 31472258 DOI: 10.1016/j.micpath.2019.103700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
The secular use of plants in popular medicine has emerged as a source for the discovery of new compounds capable of curing infections. Among microbial resistance to commercial drugs, species such as Piper diospyrifolium Kunth, which are used in popular therapy, are targets for pharmacological studies. With this in mind, antimicrobial experiments with the essential oil from the P. diospyrifolium (PDEO) species were performed and its constituents were elucidated. The oil compounds were identified by gas chromatography coupled to mass spectrometry (GC/MS). The broth microdilution method with colorimetric readings for bacterial tests (Escherichia coli and Staphylococcus aureus) and spectrophotometric readings for fungal tests (Candida albicans and Candida tropicalis), whose data were used to create a cell viability curve and calculate its IC50 against fungal cells, were used to determine the minimum inhibitory concentration of the oil and its combined action with commercial drugs. The oil's minimal fungicidal concentration and its action over fungal morphological transition were analyzed by subculture and microculture, respectively. Chemical analysis revealed Z-Carpacin, Pogostol and E-Caryophyllene as the most abundant compounds. Results from the intrinsic analysis were considered clinically irrelevant, however the oil presented a synergistic effect against multiresistant E. coli and S. aureus strains when associated with gentamicin, and against the standard and isolated C. tropicalis strains with fluconazole. A fungicidal effect was observed against the C. albicans isolate. Candida spp. hyphae inhibition was verified for all strains at the highest tested concentrations. The P. diospyrifolium essential oil presented a promising effect when associated with commercial drugs and against a fungal virulence factor. Thus, the oil presented active compounds which may help the development of new drugs, however, new studies are needed in order to clarify the oil's mechanism of action, as well as to identify its active constituents.
Collapse
Affiliation(s)
| | - Rafael Pereira da Cruz
- Universidade Regional do Cariri, URCA, Cel Antônio Luis, 1161, 63105-000, Pimenta, Crato, CE, Brazil
| | | | - Janaína Esmeraldo Rocha
- Universidade Regional do Cariri, URCA, Cel Antônio Luis, 1161, 63105-000, Pimenta, Crato, CE, Brazil
| | - Thiago Sampaio de Freitas
- Universidade Regional do Cariri, URCA, Cel Antônio Luis, 1161, 63105-000, Pimenta, Crato, CE, Brazil
| | - Débora Lima Sales
- Universidade Regional do Cariri, URCA, Cel Antônio Luis, 1161, 63105-000, Pimenta, Crato, CE, Brazil
| | - Camila Fonseca Bezerra
- Universidade Regional do Cariri, URCA, Cel Antônio Luis, 1161, 63105-000, Pimenta, Crato, CE, Brazil
| | | | | | - Luiz Everson da Silva
- Universidade Federal do Paraná, UFPR, XV de Novembro, 1299, 80.060-000, Centro, Curitiba, PR, Brazil
| | - Wanderlei do Amaral
- Universidade Federal do Paraná, UFPR, XV de Novembro, 1299, 80.060-000, Centro, Curitiba, PR, Brazil
| | - Ricardo Andrade Rebelo
- Universidade Regional de Blumenau, FURB, Antônio da Veiga, 140, 89030-903, Itoupava Seca, Blumenau, SC, Brazil
| | - Ieda Maria Begnini
- Universidade Regional de Blumenau, FURB, Antônio da Veiga, 140, 89030-903, Itoupava Seca, Blumenau, SC, Brazil
| | | | | |
Collapse
|
37
|
Almeida Bezerra JW, Rodrigues Costa A, de Freitas MA, Rodrigues FC, de Souza MA, da Silva ARP, dos Santos ATL, Vieiralves Linhares K, Melo Coutinho HD, de Lima Silva JR, Bezerra Morais-Braga MF. Chemical composition, antimicrobial, modulator and antioxidant activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants. Comp Immunol Microbiol Infect Dis 2019; 65:58-64. [DOI: 10.1016/j.cimid.2019.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/26/2022]
|
38
|
Inhibition of the growth of human dermatophytic pathogens by selected australian and asian plants traditionally used to treat fungal infections. J Mycol Med 2019; 29:331-344. [PMID: 31248775 DOI: 10.1016/j.mycmed.2019.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Syzygium australe (H.L. Wnddl. ex. Link) B. Hyland, Syzygium luehmannii (F. Muell.) L.A.S. Johnson, Syzygium jambos L. (Alston), Terminalia ferdinandiana Exell. and Tasmannia lanceolata (Poir.) A.C.Sm. are used in traditional Australian Aboriginal and Asian healing systems to treat a variety of pathogenic diseases including fungal skin infections, yet they are yet to be examined for the ability to inhibit the growth of human dermatophytes. MATERIALS AND METHODS The fungal growth inhibitory activity of extracts produced from selected Australian and Asian plants was assessed against a panel of human dermatophytes by standard disc diffusion and liquid dilution MIC methods. The toxicity of the extracts was evaluated by Artemia lethality and MTS HDF cell viability assays. The phytochemistry of the most promising extracts were examined by GC-MS headspace analysis and some interesting compounds were highlighted. RESULTS The aqueous and methanolic extracts of all plant species were good antifungal agents, inhibiting the growth of all of the dematophytes tested. The methanolic S. australe (SA) and S. luehmannii (SL) extracts were particularly potent fungal growth inhibitors. MIC values of 39 and 53μg/mL were recorded for the methanolic SL fruit extract against T. mentagrophytes and T. rubrum respectively. Similar MICs were also noted for the methanolic SL leaf extract (88 and 106μg/mL respectively). The methanolic SL leaf extract was a particularly good fungal growth inhibitor, with MIC values≤100μg/mL against the reference C. albicans strain (96μg/mL), E. floccosum (53μg/mL), and T. mentagrophytes (88μg/mL). This extract also produced MICs≤200μg/mL against all other fungal species/strains tested. Similarly good activity was seen for the methanolic S. australe leaf and fruit extracts, as well as the S. lehmannii fruit and S. jambos leaf extracts, with MIC values 100-500μg/mL. Interestingly, these extracts had low toxicity and high therapeutic indices, indicating their suitability for clinical use. GC-MS headspace analysis highlighted several monoterpenoids and sesquiterpenoids in the methanolic SA and SL extracts. T. ferdinandiana and T. lanceolata extracts also had promising antifungal activity, albeit with substantially higher MICs. CONCLUSION Whilst multiple extracts inhibited fungal growth, the methanolic S. australe and S. luehmannii leaf extracts and the S. luehmannii fruit extracts showed particularly potent activity against each of these dermatophytes, indicating that they are promising leads for the development of anti-dermatophytic therapeutics.
Collapse
|
39
|
Figueiredo PLB, Pinto LC, da Costa JS, da Silva ARC, Mourão RHV, Montenegro RC, da Silva JKR, Maia JGS. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:30-38. [PMID: 30543916 DOI: 10.1016/j.jep.2018.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oils and extracts of Eugenia uniflora have been reported as antimicrobial, antifungal, antinociceptive, antiprotozoal, antioxidant and cytotoxic. AIM OF THE STUDY The oils of five specimens (E1 to E5) that occur in the Brazilian Amazon were extracted, analyzed for their chemical composition, and submitted to antioxidant and cytotoxic assays. MATERIAL AND METHODS Oils were hydrodistilled, analyzed by GC and GC-MS, and submitted to PCA and HCA analyses. The antioxidant activity of the oils was evaluated by the DPPH radical scavenging and the β-carotene/linoleic acid assays. Antiproliferative effects of the oils and curzerene were tested against colon (HCT-116), gastric (AGP-01), and melanoma (SKMEL-19) human cancer cell lines and a normal human fibroblast cell line (MRC-5), using MTT assay. RESULTS Oxygenated sesquiterpenes and sesquiterpene hydrocarbons such as curzerene, selina-1,3,7(11)-trien-2-one, selina-1,3,7(11)-trien-2-one epoxide, germacrene B, caryophyllene oxide, and (E)-caryophyllene were predominant in the oils. PCA and HCA analyses classified the oils samples into four chemotypes. TEAC values of chemotype II (E3 oil, 228.3 ± 19.2 mg TE/mL) and chemotype III (E4 oil, 217.0 ± 23.3 mg TE/mL) displayed significant antioxidant activities. The oils E2 and E4 showed cytotoxic activity against all cell lines tested HCT-116 (IC50 E2:16.26 μg/mL; IC50 E4:9.28 μg/mL), AGP-01, (IC50 E2:12.60 μg/mL; IC50 E4:8.73 μg/mL), SKMEL-19 (IC50 E2:12.20 μg/mL; IC50 E4:15.42 μg/mL), and MRC-5 (IC50 E2:10.27 μg/mL; IC50 E4:14.95 μg/mL). Curzerene showed the more significant activity against melanoma cells (SKMEL-19, IC50:5.17 μM), induced apoptosis at 5.0 μM and 10.0 μM compared to DMSO, exhibiting a decrease in the cell migration at 5.0 μM and 10.0 μM, after 30 h of treatment. CONCLUSION The curzerene chemotype oil and E. uniflora oils can be indicated as drug candidates for anticancer activity of the lung, colon, stomach, and melanoma, with a real prospect to their subsequent phytotherapeutic development.
Collapse
Affiliation(s)
- Pablo Luis B Figueiredo
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil.
| | - Laine C Pinto
- Laboratório de Citogenética, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Jamile S da Costa
- Programa Institucional de Bolsas de Iniciação Científica, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | | | - Rosa Helena V Mourão
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, 68035-110 Santarém, PA, Brazil
| | - Raquel C Montenegro
- Laboratório de Farmacogenética, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Joyce Kelly R da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil.
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil.
| |
Collapse
|
40
|
de Araújo FF, Neri-Numa IA, de Paulo Farias D, da Cunha GRMC, Pastore GM. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res Int 2019; 121:57-72. [PMID: 31108783 DOI: 10.1016/j.foodres.2019.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022]
Abstract
The Myrtaceae is one of the most common plant families in Brazil, including >1000 species of native fruit spread from North to South, where around 50% of all species are endemic to the Atlantic Rain Forest Biome. Most Brazilian species belong to Eugenia, Campomanesia, Psidium and Myrciaria genera. In general, they are characterized by the presence of leaves opposite, simple, entire, with pellucid glands containing ethereal oils and produces berry-like, fleshy fruits with a wide diversity of beneficial characteristics. Several parts of these plants are widely used in regional folk medicine as an astringent, anti-inflammatory, antihypertensive, to treat gastrointestinal disorders, and so on. Some species have already been studied and most of their metabolic effects are attributed to the presence of polyphenols, carotenoids as well as sesquiterpenes and monoterpenes. In addition, the Myrtaceae family has great economic potential, because of the sensory characteristics which encourages their commercial exploitation plus the presence of phytochemicals which play an important role in managing several degenerative chronic diseases besides representing a hotspot of technological innovation for food, cosmetic and pharmaceutical purposes. In this context, this review discusses about the importance of some Eugenia genera representatives such as Eugenia uniflora, Eugenia stipitata, Eugenia brasiliensis, Eugenia pyriformis and Eugenia dysenterica, emphasizing its profile of bioactive compounds as well as the knowledge of the nutritional and functional fruit potential, providing information for further studies aiming to stimulate the cultivation of Brazilian wild berries, for consumption and new food ingredients.
Collapse
Affiliation(s)
| | | | - David de Paulo Farias
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
41
|
D’Arrigo M, Bisignano C, Irrera P, Smeriglio A, Zagami R, Trombetta D, Romeo O, Mandalari G. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp. Altern Ther Health Med 2019; 19:6. [PMID: 30612544 PMCID: PMC6322278 DOI: 10.1186/s12906-018-2425-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/26/2018] [Indexed: 12/02/2022]
Abstract
Background Candida sp. represent the most common cause of fungal infections worldwide. In the present work, we have evaluated the activity of an essential oil extracted from pistachio hulls against a number of standard and clinical strains of Candida sp. Methods C. albicans ATCC 64550, C. parapsilosis ATCC 22019, 4 clinical strains of C. albicans, 3 clinical strains of C. parapsilosis and 3 clinical strains of C. glabrata were used. All clinical isolates were identified by species-specific PCR-based methods. Susceptibility studies were performed using pistachio hull essential oil alone or in combination with antifungal compounds. The interactions between pistachio hull essential oil and selected antifungal compounds were also evaluated using the checkerboard method and the mechanisms of interaction investigated by droplet size distribution. Results Pistachio hull essential oil was fungicidal at the concentrations between 2.50 and 5.0 mg/ml. D-limonene and 3-Carene were the components with major activity. An antagonistic effect was observed with all combinations tested. Conclusion The antifungal activity of pistachio hull essential oil could be used to help control resistance in Candida species. More studies need to be performed to elucidate the mechanisms responsible for the activity of pistachio hull essential oil.
Collapse
|
42
|
Qi J, Pang Y, An P, Jiang G, Kong Q, Ren X. Determination of metabolites of Geotrichum citri-aurantii treated with peppermint oil using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. J Food Biochem 2018; 43:e12745. [PMID: 31353560 DOI: 10.1111/jfbc.12745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Sour rot is a leading disease of citrus fruit caused by the postharvest pathogen Geotrichum citri-aurantii. It has been reported that essential oils can be used as substitutes for synthetic fungicides to control the pathogen. In this study, changes in metabolites and antifungal effects of G. citri-aurantii treated with peppermint oil (PO) were investigated. The inhibition rate of the mycelial growth increased as the PO concentration increased, and 6 μl PO/disk resulted in a radial growth inhibition of 79.2%. The electrical conductivity of G. citri-aurantii treated with PO increased compared to the control. By comparing the metabolic profiles of treated and untreated G. citri-aurantii cells, a total of 53 distinct metabolites 9 were up-regulated and 44 were down-regulated were found, including 16 lipid metabolites, 6 carbohydrate metabolites, 2 amino acid metabolites, 5 alcohols, 2 glycoside metabolites, and 3 ketone metabolites, etc, and these metabolites are involved in 25 major metabolic pathways. PRACTICAL APPLICATIONS: Chemical fungicides can effectively control G. citri-aurantii during fruit postharvest period. However, synthetic chemical fungicides have gradually led to buildup of resistance of fungil, which seriously causes the frequent of food-borne diseases. PO extracted from natural plants can be used as natural additive in many foods due to their antioxidant, antibacterial, and antifungal properties. Therefore, PO can be considered as a promising bacteriostatic agent for the defense of G. citri-aurantii during fruit postharvest period.
Collapse
Affiliation(s)
- Jianrui Qi
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, China
| | - Yaxing Pang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, China
| | - Peipei An
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, China
| | - Guoshan Jiang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xueyan Ren
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, China.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
43
|
Rodrigues FFG, Colares AV, Nonato CDFA, Galvão-Rodrigues FF, Mota ML, Moraes Braga MFB, Costa JGMD. In vitro antimicrobial activity of the essential oil from Vanillosmopsis arborea Barker (Asteraceae) and its major constituent, α-bisabolol. Microb Pathog 2018; 125:144-149. [DOI: 10.1016/j.micpath.2018.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/24/2022]
|