1
|
Xiong M, Zeng Y, Qiu R, He H, Zhang Y, Nie Z, Wang B. Renewable Magnetic NH 2-MIL-101(Fe) for the Efficient Removal of Bisphenol A from Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9520-9531. [PMID: 40170607 DOI: 10.1021/acs.langmuir.5c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Bisphenol A (BPA) is extensively utilized as an industrial chemical in the production of certain plastics and epoxy resins. They are frequently found in environmental water and have the potential to cause risks to both the environment and human health. To efficiently remove the endocrine disruptor BPA from aqueous solutions, sea urchin-like magnetic material Fe3O4@PDA@NH2-MIL-101 (Fe) was synthesized via hydrothermal methods. Fe3O4@PDA@NH2-MIL-101 (Fe) has excellent adsorption performance, with a theoretical maximum adsorption capacity of 300.47 mg/g for BPA. The adsorption kinetics of BPA by Fe3O4@PDA@NH2-MIL-101 (Fe) followed the pseudo-second-order kinetic model and Liu's isotherm model. Magnetic separation experiments reveal a high recovery efficiency, maintaining 94.82% of its initial adsorption capacity after five cycles. The primary adsorption mechanisms of Fe3O4@PDA@NH2-MIL-101 (Fe) on BPA included pore filling, hydrogen bonding, π-π interaction, and Lewis acid-base interaction. Additionally, the material showed excellent removal performance of BPA, with a maximum adsorbed amount of 135.27 mg/g for total organic carbon (TOC) in the shale gas fracturing flowback fluid. These findings suggest that Fe3O4@PDA@NH2-MIL-101 (Fe) holds significant potential as an adsorbent for BPA removal from actual wastewater, offering promising prospects for practical applications.
Collapse
Affiliation(s)
- Mingyang Xiong
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yao Zeng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- China National Nuclear Corporation, Research Institute of Nuclear Industry, NO.270, Nanchang 330200, China
| | - Ruisi Qiu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Hongxing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yi Zhang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
2
|
Li H, Cao H, Zhang Z, Tian F, Zhang Y, Wu L. Application of Polydopamine-Based Magnetic Solid-Phase Extraction for Highly Sensitive Determination of Aristolochic Acid I from Traditional Chinese Medicine Samples. J Chromatogr Sci 2025; 63:bmae055. [PMID: 39474901 DOI: 10.1093/chromsci/bmae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/28/2024] [Indexed: 03/29/2025]
Abstract
A low cost-effective and simple synthesis method combining magnetic solid-phase extraction (MSPE) and high-pressure liquid chromatography was developed for the analysis of aristolochic acids I (AAI) in traditional Chinese medicine samples. A novel polydopamine (PDA) modified magnetic nanoparticles with one single carbon layer (Fe3O4@1C NPs) via one-pot hydrothermal approach was prepared and then successfully employed to extract AAI for the first time. Dopamine (DA) can form a PDA layer on Fe3O4@1C NPs surface through self-polymerization to form Fe3O4@1C@PDA. As a surface modifier of DA, PDA offered more adsorption sites to AAI due to π-π stacking, hydrogen bonding and electrostatic interactions. The parameters of MSPE were optimized by univariate and multivariate methods (Box-Behnken design) in detail. High degree of linearity was obtained in the range of 0.05-200.0 μg/mL. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.08 and 0.25 μg/mL, respectively. The recoveries of AAI in spiked Xiaoqinglong mixture samples were in the range of 86.7 to 108.5% with the relative standard deviation of less than 5.2%. Thus, a fast, convenient, sensitive and eco-friendly method was successfully proposed and became a promising approach for the determination of AAI in herbal plants or its preparation in the manufacturing procedure.
Collapse
Affiliation(s)
- Huimin Li
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Huina Cao
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Zixin Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Fei Tian
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lijie Wu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
3
|
Shao Q, Liu J, Chen Q, Yu J, Luo Z, Guan R, Lin Z, Li M, Li Y, Liu C, Li Y. Design and Synthesis of Phthalocyanine-Sensitized Titanium Dioxide Photocatalysts: A Dual-Pathway Study. MATERIALS (BASEL, SWITZERLAND) 2025; 18:202. [PMID: 39795847 PMCID: PMC11722483 DOI: 10.3390/ma18010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Phthalocyanine-sensitized TiO2 significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO2 on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (N-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of Fe3O4@SiO2@TiO2 (FST). On the other hand, Pc was immobilized on a silane coupling agent ((3-aminopropyl) triethoxysilane) grafted onto the surface of the FST. Through photocatalytic experiments on the two types of composite materials synthesized, the results showed that the photocatalyst obtained by directly sensitizing Pc (FSTP) exhibited better performance on rhodamine B(RhB) removal than did the other photocatalyst using the silane coupling agent (FSTAP). Further mechanistic studies showed that directly sensitized FSTP exhibited more efficient photogenerated electron-hole pair separation, whereas FSTAP linked by a silane coupling agent created an additional transport distance that might greatly affect the photogenerated electron transport. Therefore, the dual-pathway research in this work provides new guidance for efficiently constructing phthalocyanine-sensitized TiO2 photocatalysts.
Collapse
Affiliation(s)
- Qi Shao
- School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China
| | - Jiaqi Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Qiwang Chen
- School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China
| | - Jing Yu
- School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China
| | - Zhongbao Luo
- School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China
| | - Rongqiang Guan
- School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China
| | - Zichen Lin
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Mingxuan Li
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yi Li
- School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China
| | - Cong Liu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yan Li
- School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China
| |
Collapse
|
4
|
Bahçıvan A, Şaylan M, Sagdic O, Bakırdere S. CoSn(OH) 6 nanocubes as a solid sorbent for the effective preconcentration of copper ions in cinnamon (Cinnamomum zeylanicum) extract. Food Chem 2024; 447:139037. [PMID: 38513484 DOI: 10.1016/j.foodchem.2024.139037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
This study was aimed at developing a simple and efficient CoSn(OH)6 nanocubes-based preconcentration method for the preconcentration of copper ions from cinnamon extracts for determination by flame atomic absorption spectrometry. The cube-shaped sorbent was synthesized using the simple stoichiometric co-precipitation method under ambient conditions. Experimental factors of the method were evaluated with a comprehensive optimization approach to maximize the extraction efficiency for the analyte. Under the optimal conditions, the limit of detection (LOD), limit of quantitation (LOQ), and linear dynamic range were recorded as 0.98 µg/L, 3.28 µg/L, and 4.0-75 µg/L, respectively. The enhancement factor was calculated as 101.6-fold by comparing the LODs of the optimized and direct analysis systems. Percent recoveries were found to be within an acceptable range (77.6-115 %), with high repeatability using matrix matching calibration strategy. Results validated the proposed method as a highly efficient extraction approach for the monitoring of copper ions in herbal cinnamon extracts.
Collapse
Affiliation(s)
- Aleyna Bahçıvan
- Yıldız Technical University, Department of Food Engineering, 34220 İstanbul, Turkiye
| | - Meltem Şaylan
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Turkiye; İstanbul Health and Technology University, Department of Pharmacy, 34421 İstanbul, Turkiye
| | - Osman Sagdic
- Yıldız Technical University, Department of Food Engineering, 34220 İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya 06670, Ankara, Turkiye.
| |
Collapse
|
5
|
Alharbi W, Alharbi KH, Alotaibi AA, Gomaa HEM, Abdel Azeem SM. Digital image determination of copper in food and water after preconcentration and magnetic tip separation for in-cavity desorption/color development. Food Chem 2024; 442:138435. [PMID: 38266415 DOI: 10.1016/j.foodchem.2024.138435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
A new analytical method for measuring copper in food and water was developed and validated, employing a solid-phase extraction (SPE) technique combined with digital-image-based (DIB) detection. A novel magnetic adsorbent of zinc ferrite/Citrullus colocynthis biochar (ZF@C.BC) was used to preconcentrate copper. A magnetic tip was used to separate the copper-loaded adsorbent from the extraction medium and to dispense it to the DIB plate. In-situ desorption and development of the spot color with iodide-starch reagent were carried out, and a digital image of the developed spots was captured using a smartphone and processed using ImageJ software. The copper adsorption capacity was 91.3 mg g-1. Desorption was effected using a 0.3 mol L-1 hydrochloric acid. The preconcentration factor was 300, the limit of detection was 4.8 μg L-1, the linearity was 16-600 μg L-1 and the sample throughput was 12 h-1. The developed approach was validated by analyzing food and water samples, confirming recoveries ≥ 91 % and 88 %, respectively, with RSD ≤ 8.4 %, n = 3.
Collapse
Affiliation(s)
- Walaa Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Khadijah H Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Abdullah A Alotaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, 11911, AdDawadimi, Saudi Arabia; Water Research Group, College of Science and Humanities at Ad-Dawadmi, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia.
| | - Hassan E M Gomaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, 11911, AdDawadimi, Saudi Arabia; Department of Nuclear Safety Engineering, Nuclear Installations Safety Division, Atomic Energy Authority, Cairo 11765, Egypt; Water Research Group, College of Science and Humanities at Ad-Dawadmi, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia.
| | - Sami M Abdel Azeem
- Chemistry Department, Faculty of Science, Fayoum University, 35514 Fayoum, Egypt; Chemistry Department, Al-Quwayiyah College of Science and Humanities, Shaqra University, 11971, Kingdom of Saudi Arabia; Water Research Group, College of Science and Humanities at Ad-Dawadmi, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia.
| |
Collapse
|
6
|
Zhou Z, He L, Wang T, Tang H, Qin S, Nan X, Cheng W, He H, Bai P. Preparation of magnetic amphiphilic resin microspheres via the one-step polymerization method and extraction of four glucocorticoids for HPLC-MS analysis. J Chromatogr A 2024; 1720:464785. [PMID: 38458141 DOI: 10.1016/j.chroma.2024.464785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Amphiphilic materials can be used for sample preparation of chromatography or mass spectrometry. Amphiphilic materials with magnetic properties in combination with magnetic suction devices allow for automated sample preparation. However, conventional synthesis methods are cumbersome and not suitable for the mass production of the material. In this study, a micro-suspension polymerization method was developed to synthesize magnetic amphiphilic resin microspheres (MARMs), providing new ideas for the preparation of amphiphilic microspheres. MARMs with particle sizes ranging from 3 to 6 μm were successfully prepared, with BET surface area up to 653.2 m2/g. A magnetic solid-phase extraction method based on MARM-5 was developed for the extraction of four glucocorticoids including Cortisone, Hydrocortisone, Cortodoxone, and Corticosterone. This method had a very short adsorption time of 0.5 min and a total extraction time of only 13 min. The limit of detection for the four glucocorticoids ranged from 0.22 to 0.82 ng/L. There was a good linear relationship between sample concentration and peak area in the range of 25∼500 ng/L. Relative recovery of 98 %∼108 % and internal standard normalized matrix effect factors of 95∼114 % were obtained, and the relative standard deviation was between 2.3 % and 6.3 %. The MARMs would be used as excellent solid extraction material for glucocorticoids.
Collapse
Affiliation(s)
- Zibo Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Liang He
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Tianyi Wang
- Tianjin Guoke Medical Engineering and Technology Development Co., Ltd, Tianjin, 300300, PR China
| | - Hongzhen Tang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Suzi Qin
- Tianjin Guoke Medical Engineering and Technology Development Co., Ltd, Tianjin, 300300, PR China.
| | - Xueyan Nan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Wenbo Cheng
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Tianjin Guoke Medical Engineering and Technology Development Co., Ltd, Tianjin, 300300, PR China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| |
Collapse
|
7
|
Yılmaz Ö, Koyuncu İ. Determination of copper and cobalt in different tea samples at trace levels by FAAS after preconcentration with a novel iron PAMAM-OH-encapsulated magnetic nanoparticle as SPE sorbent. ANAL SCI 2024; 40:633-641. [PMID: 38252257 DOI: 10.1007/s44211-023-00495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024]
Abstract
Environmental contamination caused by heavy metals is a significant global concern. The presented study investigated the efficiency of iron PAMAM-OH encapsulated magnetic nanoparticles (Fe-MNP-G2-OH) as sorbent for the preconcentration of copper and cobalt from tea samples. High metal-chelating ethylenediamine core polyamidoethanol generation-2 (PAMAM-G2-OH) was encapsulated with iron oxide (Fe3O4) to synthesize the sorbent. Limit of detection (LOD) values for copper and cobalt extracted and detected by the developed Fe-MNP-G2-OH -SPE-FAAS method were 0.52 and 1.1 μg L-1, respectively. There were 230- and 101-fold improvement in detection limits for copper and cobalt, respectively, when compared to direct FAAS measurement. The percent recovery results for the analytes in green and black tea samples ranged from 93 to 107%, with low relative standard deviation (%RSD) values. The synthesis of nanoparticle was carried out through a unique method, which was characterized by thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) methods. The analytical results demonstrated the applicability and effectiveness of Fe-MNP-G2-OH nanoparticles on the preconcentration of copper and cobalt from tea samples and the developed method is suitable for the trace detection of heavy metals by FAAS method. To the best our knowledge, this is the first study where copper and cobalt in green and black tea samples were extracted by Fe-MNP-G2-OH adsorbent and precipitation of the adsorbent during its synthesis was carried out in acetone medium rather than aqueous one.
Collapse
Affiliation(s)
- Özge Yılmaz
- Faculty of Arts and Sciences, Department of Chemistry, Yıldız Technical University, Esenler, İstanbul, Türkiye.
| | - İkbal Koyuncu
- Faculty of Arts and Sciences, Department of Chemistry, Yıldız Technical University, Esenler, İstanbul, Türkiye
| |
Collapse
|
8
|
Chen Y, Zhang M, Yang C, Gao M, Yan Y, Deng C, Sun N. Designed Directional Growth of Ti-Metal-Organic Frameworks for Decoding Alzheimer's Disease-Specific Exosome Metabolites. Anal Chem 2024; 96:2727-2736. [PMID: 38300748 DOI: 10.1021/acs.analchem.3c05868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Exosomes, a growing focus for liquid biopsies, contain diverse molecular cargos. In particular, exosome metabolites with valuable information have exhibited great potential for improving the efficiency of liquid biopsies for addressing complex medical conditions. In this work, we design the directional growth of Ti-metal-organic frameworks on polar-functionalized magnetic particles. This design facilitates the rapid synergistic capture of exosomes with the assistance of an external magnetic field and additionally synergistically enhances the ionization of their metabolites during mass spectrometry detection. Benefiting from this dual synergistic effect, we identified three high-performance exosome metabolites through the differential comparison of a large number of serum samples from individuals with Alzheimer's disease (AD) and normal cognition. Notably, the accuracy of AD identification ranges from 93.18 to 100% using a single exosome metabolite and reaches a flawless 100% with three metabolites. These findings emphasize the transformative potential of this work to enhance the precision and reliability of AD diagnosis, ushering in a new era of improved diagnostic accuracy.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Man Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Chenyu Yang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Mingxia Gao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Tokalıoğlu Ş, Shahir S, Yılmaz Y, Patat Ş. Selective and fast magnetic dispersive solid phase micro-extraction of copper and lead in water and vegetables after synthesis of magnetic mesoporous carbon. Talanta 2024; 266:125002. [PMID: 37536105 DOI: 10.1016/j.talanta.2023.125002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Magnetic mesoporous carbon (Fe3O4@C, MMC) was synthesized and characterized. It was used for the first time as a sorbent for the magnetic dispersive solid phase microextraction (M-dSPμE) of copper and lead in water and vegetables. FAAS was used to determine the analyte concentrations after elution. The MMC was found to be have surface area of 145.9 m2 g-1 and average pore diameter of 15 nm. The analytical parameters affecting M-dSPμE of copper and lead were optimized. They were pH of sample, 6; eluent, 2 mol L-1 HCl (3 mL); and sample volume, 250 mL. The MMC reaches equilibrium very fast without vortexing for adsorption and only 5 s for elution. The LOD and PF of the M-dSPμE method for copper and lead were found to be 0.87 μg L-1 and 83 for Cu(II) and 2.8 μg L-1 and 167 for Pb(II), respectively. The precision of the M-dSPμE method was found to be ≤ 3.2%. The M-dSPμE method was verified by certificate reference materials (TMDA-53.3 Fortified Lake water and NIST SRM 1573a Tomato Leaves). It was successfully applied to the determination of copper and lead in lake water, wastewaters, sea water, radish, spinach, lettuce, and celery samples.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | - Shukria Shahir
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey
| | - Yakup Yılmaz
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey
| | - Şaban Patat
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey
| |
Collapse
|
10
|
Qi J, Zhao H, Ning M, Wang K, Yuan Y, Yue T. Strategy for Avoiding Alicyclobacillus acidocaldarius Contamination of Apple Juice by Adding Magnetosomes/Antibacterial Peptide Composites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12819-12828. [PMID: 37596994 DOI: 10.1021/acs.jafc.3c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
The survival of Alicyclobacillus acidocaldarius (A. acidocaldarius) in fruit juice after pasteurization results in high economic losses due to unpalatability. The present work addressed this issue by inhibiting the growth of A. acidocaldarius in apple juice by the addition of MN@IDR-1018 composites formed of innate defense regulator 1018 (IDR-1018) antibacterial peptides that are coupled on the surfaces of magnetosomes (MN) via amidation reactions. MN@IDR-1018 was demonstrated to provide excellent antibacterial activity against A. acidoterrestris with a minimum inhibitory concentration of 100 μg mL-1, which led to cell death via membrane dissolution and rupture. In addition, this concentration of MN@IDR-1018 was proved to present low toxicity in mice and had no discernible effect on the color, flavor, and aroma of apple juice. This enables the active material to be extracted from the apple juice by the application of a magnetic field, thereby avoiding the development of antibiotic resistance.
Collapse
Affiliation(s)
- Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongfan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
11
|
Song Y, Xie R, Tian M, Mao B, Chai F. Controllable synthesis of bifunctional magnetic carbon dots for rapid fluorescent detection and reversible removal of Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131683. [PMID: 37276695 DOI: 10.1016/j.jhazmat.2023.131683] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/30/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Mercury is one of the most toxic heavy metals, whose identification and separation are crucial for environmental remediation. Till now, it remains a significant challenge upon simultaneous detection and removal of Hg2+. Herein, bifunctional probe magnetic carbon dots were synthesized and optimized via systematic structure manipulation of the carbon and iron precursors towards fluorescence, Hg2+ adsorption and magnetic separation. The probe exhibited blue emission at 440 nm with high quantum yield of 55 % and a high paramagnetism with the saturation magnetization value of 22.70 emu/g. Furthermore, the fluorescent detection of Hg2+ with limit of 5.40 nM and high selectivity were achieved through surface structure manipulation with moderate -NH2, -SH and Fe contents. As a result, the magnetic removal of Hg2+ was consecutively effectuated with high removal efficiency of 98.30 %. The detection and recovery of Hg2+ in real samples were further verified and demonstrated the excellent environmental tolerance of probe. The reusability was viable with recycling at least three turns by external magnet. This work not only provides a promising approach for simultaneous detection and removal of heavy metal pollution, but also provides an excellent example as a versatile platform for multifunction integration via the structure manipulation for other applications.
Collapse
Affiliation(s)
- Ying Song
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ruyan Xie
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miaomiao Tian
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fang Chai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
12
|
Farajzadeh MA, Shaghaghipour S, Abbaspour M, Afshar Mogaddam MR. Magnetic dispersive solid-phase extraction of some pesticides from fruit juices using monodisperse nanosorbent combined with dispersive liquid-liquid micro-extraction. ANAL SCI 2023; 39:303-312. [PMID: 36539608 DOI: 10.1007/s44211-022-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
In this study, the new synthesized magnetic nanoparticles based on amorphous carbon have been used as a sorbent in magnetic dispersive solid-phase extraction prior to dispersive liquid-liquid micro-extraction. The developed method was applied for analysis of ten pesticides from different fruit juice samples by gas chromatography-flame ionization detection. In this work, a few mg of the sorbent is added into an aqueous solution containing the analytes. Adsorption and desorption of the compounds of interest are accelerated by vortexing and sonication, respectively. To achieve high enrichment factors, a suitable organic solvent (iso-propanol) is used to elute the target analytes from the nanosorbent. The obtained iso-propanol is phased and 1,1,2-trichloroethane are employed as the disperser and extraction solvents, respectively, in the following micro-extraction procedure. The synthesized magnetic nanoparticles were characterized by scanning electron microscope, X-ray diffraction, vibrating sample magnetometer, and Fourier-transform infrared spectrophotometer. To achieve the high extraction efficiency and optimum conditions, all parameters that could affect the extraction yield were investigated. Under optimum conditions, the method had broad linear ranges with a proper linearity (r2 ≥ 0.9987). Limits of detection and quantification for analysis of the selected pesticides were found in the ranges of 0.5-1.0 and 1.7-3.3 µg L-1, respectively. High enrichment factors and extraction recoveries were obtained in the ranges of 321-438 and 64-88%, respectively. To evaluate repeatability of the method, it was performed on two sets of standard solutions at the concentrations of 10 and 50 µg L-1 (each analyte). Relative standard deviations varied in the ranges of 2-6% and 4-7% for intra- (n = 6) and inter-day (n = 5) precisions, respectively.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran. .,Engineering Faculty, Near East University, 99138, Nicosia, Mersin 10, Turkey, North Cyprus.
| | - Shabnam Shaghaghipour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Maryam Abbaspour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Baghaei PAM, Mogaddam MRA, Farajzadeh MA, Mohebbi A, Sorouraddin SM. Application of deep eutectic solvent functionalized cobalt ferrite nanoparticles in dispersive micro solid phase extraction of some heavy metals from aqueous samples prior to ICP-OES. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Şaylan M, Demirel R, Ayyıldız MF, Chormey DS, Çetin G, Bakırdere S. Nickel hydroxide nanoflower-based dispersive solid-phase extraction of copper from water matrix. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:133. [PMID: 36409393 DOI: 10.1007/s10661-022-10653-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, a dispersive solid-phase extraction method based on Ni(OH)2 nanoflowers (Ni(OH)2-NFs-DSPE) was developed to separate and preconcentrate copper ions from tap water samples for determination by flame atomic absorption spectrometry (FAAS). Ni(OH)2-NFs was synthesized using a homogeneous precipitation technique and used as sorbent for copper preconcentration. X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to characterize the synthesized sorbent. All experimental variables were carefully optimized to achieve a high enhancement factor of 107.5-folds with respect to the detection sensitivity of the conventional FAAS. The proposed method's analytical parameters including LOD, LOQ, and linear range were determined as 1.33 μg/L, 4.42 μg/L, and 3.0-40 μg/L, respectively. To assess the applicability and reliability of the developed method, optimal conditions were applied to tap water samples and satisfactory percent recoveries (94-103%) were obtained for the samples spiked at 20 and 30 μg/L. This validated the accuracy and feasibility of the developed method to real samples. The developed method can be described as a simple, efficient, and rapid analytical approach for the accurate determination of trace copper ions in water samples.
Collapse
Affiliation(s)
- Meltem Şaylan
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey
- Department of Pharmacy, İstanbul Health and Technology University, Seyitnizam Street, No: 85, Istanbul, Turkey
| | - Rabia Demirel
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey
| | | | - Doste Selali Chormey
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, Istanbul, Turkey
| | - Gülten Çetin
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey.
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, 34220, Istanbul, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Cankaya, 06690, Ankara, Turkey.
| |
Collapse
|
16
|
Li Z, Che T, Yang M, Hu X. Flame atomic absorption spectrometry combined with surface-modified magnetic mesoporous silica microspheres by polyethyleneimine for enrichment, isolation and determination of Cu 2+ in preserved eggs after high-temperature digestion. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1828-1842. [PMID: 36084166 DOI: 10.1080/19440049.2022.2119286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A new efficient magnetic solid-phase extractant based on a surface-modified magnetic mesoporous silica microsphere referred as MMSM-PEI was synthesised and used for the enrichment and isolation of copper ions (Cu2+) in preserved eggs. The physicochemical properties and morphology of MMSM-PEI were characterized by X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), vibration sample magnetometry (VSM), scanning electron microscopy (SEM) and thermos-gravimetric analyses (TGA). The concentrations of trace Cu2+ in the preserved egg were determined by flame atomic absorption spectroscopy (FAAS). The effects of important parameters were examined. The most suitable pH values and temperature for adsorbing Cu2+ were 6.5 and 25 °C, respectively. According to the determination of Cu2+ in egg white, egg yolk and the outer coating mixture (TOCM) of preserved eggs, the spiked recovery and RSD were 94.1-103.8% and 0.96-4.35%, respectively. The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.14 mg/kg and 0.46 mg/kg, respectively. The developed method improved the sensitivity and accuracy of FAAS for the determination of Cu2+ and it could be applied to the determination of trace Cu2+ in real samples.
Collapse
Affiliation(s)
- Zhengxiang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tong Che
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Minghong Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xujia Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
17
|
Potential of sodium dodecyl sulfate micellar solutions as eluents in magnetic dispersive micro-solid phase extraction with polydopamine-coated magnetite nanoparticles. Application to antidepressant drugs. J Chromatogr A 2022; 1680:463430. [PMID: 36030567 DOI: 10.1016/j.chroma.2022.463430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
In this paper, the potential of micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) as eluents in dispersive micro-solid phase extraction (D-μSPE) using polydopamine-coated magnetite nanoparticles (Fe3O4@PDA NPs) for the extraction and preconcentration of seven basic drugs (bupropion, citalopram, fluoxetine, mianserin, nomifensine, trimipramine, and viloxazine) is explored for the first time (to the best to our knowledge) and compared with conventional hydro-organic eluents. The impact of the sample solution pH, Fe3O4@PDA NPs and PDA coating amounts and extraction time on the extraction efficiency (EE), as well as the composition of the eluent on the overall efficiency (OE) are studied. Under the selected experimental conditions (50 mg of Fe3O4@PDA NPs, 100 μL of 1 M NH3, 5 min of extraction time and 0.15 M SDS at pH 2.6 as eluent), EE and OE values were higher than 90% for all compounds and for the most hydrophobic compounds (trimipramine, fluoxetine and mianserin), respectively. The results shown in this paper demonstrate the suitability of Fe3O4@PDA NPs as a sorbent for the extraction of antidepressants as well as the advantages of using SDS micellar solutions over classic hydro-organic eluents containing methanol, acetonitrile or tetrahydrofuran. Finally, the stability and reusability of the Fe3O4@PDA NPs is proven.
Collapse
|
18
|
Minaberry YS, Costa C, Diz V, Tudino M. An ion imprinted magnetic organosilica nanocomposite for the selective determination of traces of Cd(II) in a minicolumn flow-through preconcentration system coupled with graphite furnace atomic absorption spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2920-2928. [PMID: 35861161 DOI: 10.1039/d2ay00804a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper we present the determination of ultratraces of cadmium ions in water by means of a minicolumn (MC) flow-through preconcentration system coupled with graphite furnace atomic absorption spectrometry. The core of the system is a lab-made ion imprinted magnetic organosilica nanocomposite which is employed as filler of the MC for the selective retention of the analyte. In this case superparamagnetic magnetite nanoparticles were coated with an amine-functionalized shell and ion imprinted with Cd(II) by a simple sol-gel co-condensation method. The setup was completed with the inclusion of a magnet fixed around the packed MC. This assembly - which is studied with an MII material for the first time here - allowed a homogeneous distribution of the solid on the walls of the MC, leaving a hole in the center and enabling the absence of material bleeding or obstructions to the free movement of fluids. Ion imprinted (MII) and non-imprinted (MNI) materials were studied for comparison purposes. Both were characterized and compared by DRX, FTIR, and SEM and their magnetic behavior by magnetization curves. Batch experiments showed an equilibration time of less than 10 minutes and a maximum adsorption pH of around 7 for both solids. The maximum capacity for MII was greater than that of MNI (200 mg g-1 and 30 mg g-1 respectively) and thus, the former was chosen for analytical purposes. Under MC dynamic conditions, sample and elution flow rates, volumes of the sample and eluant, and type and concentration of the most suitable eluant have been thoroughly investigated and optimized. Under the optimal experimental conditions, the MII filler showed a preconcentration factor of 200, a limit of detection of 0.64 ng L-1, a linear range of 2.5-100 ng L-1, RSD% of 1.9 (n = 6; 10 ng L-1) and a lifetime of more than 800 cycles of concentration-elution with no loss of sensitivity or need for refilling. The effect of potentially interfering ions on the percent recovery of cadmium was also studied. The proposed method was successfully applied to the determination of traces of Cd(II) in osmosis and tap water with recoveries of 98.0-101.3%. A comparison with similar methods is also provided.
Collapse
Affiliation(s)
- Yanina Susana Minaberry
- Laboratorio de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina.
| | - Cecilia Costa
- Departamento de Química Inorgánica, Analítica y Química Física,, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Virginia Diz
- Departamento de Química Inorgánica, Analítica y Química Física,, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Mabel Tudino
- Laboratorio de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Firoozichahak A, Rahmani A, Mehregan F, Rahimpoor R. Sensitive and selective magnetic dispersive microextraction of diazinon from urine samples by molecularly imprinted polymer based on core-shell metal-organic frameworks. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123364. [PMID: 35853392 DOI: 10.1016/j.jchromb.2022.123364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
A core-shell magnetic metal-organic framework (Fe3O4 SiO2/ PAEDTC@ MIL- 101 (Fe)) was synthesized as the substrate and then covered with a surface molecularly imprinted polymer (MIP) layer. Next, Fe3O4 SiO2/ PAEDTC@ MIL- 101 (Fe) @ MIP was characterized by XRD, FT-IR, BET, VSM, TEM, and FE-SEM techniques and applied for selective, fast, and sensitive magnetic dispersive solid-phase microextraction (M-DµSPE) of diazinon from urine samples by the GC- FID detection method. The key experimental variables affecting M-DµSPE were studied and optimized by central composite design (CCD). Under optimum conditions (5 mL; sample at pH: 7.0, the mass of solid sorbent; 6 mg, extraction time; 4 min, acetonitrile as an eluent solvent; 1.5 mL, and desorption time; 3 min, and then reconstituted with 100 µL of methanol), the proposed method exhibits high sensitivity with limits of detection and quantification of 0.005 and 0.017 ng mL-1, respectively. Excellent extraction recovery (98.5 %), wide linearity range (0.02-200000 ng mL-1, R2 > 0.992), high enrichment factors (47-53), and satisfactory precision (<6.3 % RSD) were achieved. The MIP- MOF@ M-DµSPE -GC-FID method can be used with high precision and wide linearity to extract and analyze trace levels of diazinon in real urine samples.
Collapse
Affiliation(s)
- Ali Firoozichahak
- Department of Occupational Health Engineering, Faculty of Health, , Research Center for Health Sciences Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolrasoul Rahmani
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Faeze Mehregan
- Department of Medical science, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran.
| |
Collapse
|
20
|
Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms. Anal Chim Acta 2022; 1216:339987. [DOI: 10.1016/j.aca.2022.339987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022]
|
21
|
Pasechnik LA, Skachkov VM, Bibanaeva SA, Medyankina IS, Bamburov VG. Composition and Properties of Iron Oxides in the Products of Hydrothermal Treatment of Red Mud and Bauxites. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622060183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Ozdemir S, Turkan Z, Kilinc E, Bayat R, Soylak M, Sen F. Preconcentrations of Cu (II) and Mn (II) by magnetic solid-phase extraction on Bacillus cereus loaded γ-Fe 2O 3 nanomaterials. ENVIRONMENTAL RESEARCH 2022; 209:112766. [PMID: 35085567 DOI: 10.1016/j.envres.2022.112766] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
For the simultaneous preconcentrations of Cu(II) and Mn(II), a novel preconcentration technique was developed and described. Bacillus cereus loaded magnetic ɣ-Fe2O3 nanoparticles were prepared and used as support materials on solid-phase extraction procedure. Important experimental parameters were investigated in details and pH 6.0, 3 mL min-1 of flow rate, 5 mL of 1 mol L-1 of HCl as eluent, 200 mg of biomass, and 200 mg of magnetic ɣ-Fe2O3 nanoparticles as support material was found as the best conditions. The preconcentrations factor were found to be 80 for Cu (II) and Mn(II). It was confirmed by the results that SPE columns could be used in 32 cycles. The LOD values calculated for Cu (II) and Mn (II) were 0.09 and 0.08 ng mL-1, respectively. The RSD values found were less than 3.4%. The extraction recoveries were achieved as higher than 98%. The biosorption capacities of Cu (II), and Mn (II) were 26.0 mg g-1, 30.3 mg g-1 respectively. The approach devised for analyzing analyte concentrations in food samples proved to be successful.
Collapse
Affiliation(s)
- Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkey
| | | | - Ersin Kilinc
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Dicle University, Diyarbakir, 21200, Turkey.
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, 43000, Dumlupınar University, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Science Faculty, Erciyes University, 38039, Kayseri, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, 43000, Dumlupınar University, Turkey.
| |
Collapse
|
23
|
Sohrabi-Gilani N, Ghayournezhad A, Rostamzadeh Mansour S. Determination of Ultratrace Levels of Cobalt (II) and Chromium (III) by Magnetic Dispersive Solid-Phase Extraction (SPE) Using Urea-Formaldehyde Polymer/Magnetite Nanoparticles with Flame Atomic Absorption Spectrometry (FAAS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2067863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
24
|
Guo D, Zhou X, Muhammad N, Huang S, Zhu Y. An overview of poly (amide-amine) dendrimers functionalized chromatographic separation materials. J Chromatogr A 2022; 1669:462960. [PMID: 35305456 DOI: 10.1016/j.chroma.2022.462960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023]
Abstract
Chromatography is one of the most important separation techniques in analytical chemistry. In which, the separation materials are the core for good separation results. Poly (amide-amine) dendrimers with regular three-dimensional structure, abundant terminal groups, controllable molecule chains, and unique cavities appear to have a positive impact on chromatographic separation materials. In the past decades, poly (amide-amine) grafted adsorbents and stationary phases have presented high grafting efficiency, controllable surface structure, good dispersion, and wide practical applications. In this review, the prepared poly (amide-amine) functionalized separation materials and their applications are systematically summarized. Functions, significance, structure-actvity relationships and benefits of poly (amide-amine) dendrimers in the proposed separation materials are discussed in detail. And we hope to provide a useful reference for the future development of chromatographic separation materials and inspire new discoveries in the study of poly (amide-amine) functionalized materials.
Collapse
Affiliation(s)
- Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China; Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Xiaoqian Zhou
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Nadeem Muhammad
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Environmental Engineering, Wuchang University of Technology, Wuhan 430223, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China.
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
25
|
Yu X, Zhong T, Zhang Y, Zhao X, Xiao Y, Wang L, Liu X, Zhang X. Design, Preparation, and Application of Magnetic Nanoparticles for Food Safety Analysis: A Review of Recent Advances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:46-62. [PMID: 34957835 DOI: 10.1021/acs.jafc.1c03675] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review (with 126 references) aims at providing an updated overview of the recent developments and innovations of the preparation and application of magnetic nanoparticles for food safety analysis. During the past two decades, various magnetic nanoparticles with different sizes, shapes, and surface modifications have been designed, synthesized, and characterized with the prospering development of material science. Analytical scientists and food scientists are among the ones who bring these novel materials from laboratories to commercial applications. Powerful and versatile surface functional groups and high surface to mass ratios make these magnetic nanoparticles useful tools for high-efficiency capture and preconcentration of certain molecules, even when they exist in trace levels or complicated food matrices. This is why more and more methods for sensitive detection and quantification of hazards in foods are developed based on these magic magnetic tools. In this review, the principles and superiorities of using magnetic nanoparticles for food pollutant analysis are first introduced, like the mechanism of magnetic solid phase extraction, a most commonly used method for food safety-related sample pretreatment. Their design and preparation are presented afterward, alongside the mechanisms underlying their application for different analytical purposes. After that, recently developed magnetic nanoparticle-based methods for dealing with food pollutants such as organic pollutants, heavy metals, and pathogens in different food matrices are summarized in detail. In the end, some humble outlooks on future directions for work in this field are provided.
Collapse
Affiliation(s)
- Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Yujia Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
26
|
Li G, Row KH. Single-drop microextraction technique for the determination of antibiotics in environmental water. J Sep Sci 2021; 45:883-895. [PMID: 34919334 DOI: 10.1002/jssc.202100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
Growing concerns related to antibiotic residues in environmental water have encouraged the development of rapid, sensitive, and accurate analytical methods. Single-drop microextraction has been recognized as an efficient approach for the isolation and preconcentration of several analytes from a complex sample matrix. Thus, single-drop microextraction techniques are cost-effective and less harmful to the environment, subscribing to green analytical chemistry principles. Herein, an overview and the current advances in single-drop microextraction for the determination of antibiotics in environmental water are presented were included. In particular, two main approaches used to perform single-drop microextraction (direct immersion-single-drop microextraction and headspace-single-drop microextraction) are reviewed. Furthermore, the impressive analytical features and future perspectives of single-drop microextraction are discussed in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, P. R. China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402751, Korea
| |
Collapse
|
27
|
Nie Y, Luo Y, Luo S, Cao X, Song G, Deng C. Amphiphilic copolymers grafted on monodisperse magnetic microspheres as an efficient adsorbent for the extraction of safrole in the plasma. J Chromatogr A 2021; 1662:462733. [PMID: 34902718 DOI: 10.1016/j.chroma.2021.462733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
Polystyrene (PS) microsphere is a kind of attractive extracting medium due to its high stability in different matrices and its particle size can be controlled. The attachment of amphiphilic copolymers to the PS microsphere surface can overcome the drawback of PS relevant to its hydrophobic nature and low wettability. In our previous work, the magnetic composite based on PS microsphere (5 µm) and poly (divinylbenzene-co-N-vinylpyrrolidone, DVB-co-NVP) shell was successfully fabricated and applied for the extraction of safrole in cola drinks. However, the large size and ease of sedimentation limited its application in the enrichment of safrole from blood samples. Considering the adjustability of PS microsphere size, we synthesized the porous PS microspheres with the uniform size of 3 µm and then functionalized with Fe3O4 nanoparticles and poly (DVB-co-NVP) layer in this work. Using the proposed material as extraction sorbent, a simple and fast magnetic solid phase extraction (MSPE) method coupled with HPLC was developed for quantification of safrole in the plasma. Under the optimized conditions, the response to safrole was linear in the range of 0.02-12 µg mL-1, and the limit of detection (LOD) was 0.006 µg mL-1. Satisfactory recoveries were obtained between 85.67% and 97.74% (spiked at 0.05, 0.2, 2 µg mL-1) and the relative standard deviations (RSDs) for the above spiked levels of the analyte were below 3.9% (n = 6). The adsorbent can be reused for 6 cycles without a significant loss of extraction capability.
Collapse
Affiliation(s)
- Ying Nie
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Yuan Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Xiujun Cao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Research Center of Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai 200438, China; Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Guoxin Song
- Research Center of Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
28
|
Facile fabrication of surface molecularly imprinted magnetic polydopamine for selective adsorption of fluoroquinolone from aqueous solutions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Salehi N, Moghimi A, Shahbazi H. Magnetic nanobiosorbent (MG-Chi/Fe 3 O 4 ) for dispersive solid-phase extraction of Cu(II), Pb(II), and Cd(II) followed by flame atomic absorption spectrometry determination. IET Nanobiotechnol 2021; 15:575-584. [PMID: 34694739 PMCID: PMC8675810 DOI: 10.1049/nbt2.12025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
Trace amounts of Cu (II), Pb (II), and Cd (II) in a wastewater sample were preconcentrated with a novel cross‐linked magnetic chitosan modified with a new synthesised methionine‐glutaraldehyde Schiff's base (MG‐Chi/Fe3O4) as a dispersive solid‐phase extraction (DSPE) adsorbent. The adsorbed metal ions were then eluted with a specific volume of suitable solution and determined by flame atomic absorption spectrometry (FAAS). Various parameters affecting the extraction efficiency of the metal ions were investigated and optimised, including pH, amount of adsorbent, extraction time, type and volume rate of eluent, elution time, sample volume, and effect of interfering ions. The adsorption kinetics are more consistent with the pseudo‐second order model. The results were statistically interpreted and the analytical performance of the proposed method was found to have preconcentration factors of 55, 60, and 50 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, limits of detection were 0.22, 0.24, and 0.10 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, with a relative standard deviation (1.5%‐2.8 %), and the liner range was 5–1000 for Cu(II) and Pb(II) and 2.5–1000 for Cd(II). It was concluded that this method was suitable for successful simultaneous determination of Cu(II), Pb(II), and Cd(II) in industrial wastewater samples.
Collapse
Affiliation(s)
- Narges Salehi
- Department of Chemistry, Varamine (Pishva) Branch, Islamic Azad University, Varamin, Iran
| | - Ali Moghimi
- Department of Chemistry, Varamine (Pishva) Branch, Islamic Azad University, Varamin, Iran
| | - Hamidreza Shahbazi
- Department of Chemistry, Varamine (Pishva) Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
30
|
Akbari M, Jafari H, Rostami M, Mahdavinia GR, Sobhani nasab A, Tsurkan D, Petrenko I, Ganjali MR, Rahimi-Nasrabadi M, Ehrlich H. Adsorption of Cationic Dyes on a Magnetic 3D Spongin Scaffold with Nano-Sized Fe 3O 4 Cores. Mar Drugs 2021; 19:512. [PMID: 34564174 PMCID: PMC8467319 DOI: 10.3390/md19090512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
The renewable, proteinaceous, marine biopolymer spongin is yet the focus of modern research. The preparation of a magnetic three-dimensional (3D) spongin scaffold with nano-sized Fe3O4 cores is reported here for the first time. The formation of this magnetic spongin-Fe3O4 composite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA) (TGA-DTA), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analyses. Field emission scanning electron microscopy (FE-SEM) confirmed the formation of well-dispersed spherical nanoparticles tightly bound to the spongin scaffold. The magnetic spongin-Fe3O4 composite showed significant removal efficiency for two cationic dyes (i.e., crystal violet (CV) and methylene blue (MB)). Adsorption experiments revealed that the prepared material is a fast, high-capacity (77 mg/g), yet selective adsorbent for MB. This behavior was attributed to the creation of strong electrostatic interactions between the spongin-Fe3O4 and MB or CV, which was reflected by adsorption mechanism evaluations. The adsorption of MB and CV was found to be a function of pH, with maximum removal performance being observed over a wide pH range (pH = 5.5-11). In this work, we combined Fe3O4 nanoparticles and spongin scaffold properties into one unique composite, named magnetic spongin scaffold, in our attempt to create a sustainable absorbent for organic wastewater treatment. The appropriative mechanism of adsorption of the cationic dyes on a magnetic 3D spongin scaffold is proposed. Removal of organic dyes and other contaminants is essential to ensure healthy water and prevent various diseases. On the other hand, in many cases, dyes are used as models to demonstrate the adsorption properties of nanostructures. Due to the good absorption properties of magnetic spongin, it can be proposed as a green and uncomplicated adsorbent for the removal of different organic contaminants and, furthermore, as a carrier in drug delivery applications.
Collapse
Affiliation(s)
- Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan 8719657891, Iran;
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 5518183111, Iran; (H.J.); (G.R.M.)
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran 1983969411, Iran;
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 5518183111, Iran; (H.J.); (G.R.M.)
| | - Ali Sobhani nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan 8719657891, Iran;
- Core Research Lab, Kashan University of Medical Sciences, Kashan 8719657891, Iran
| | - Dmitry Tsurkan
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
| | - Iaroslav Petrenko
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 1983969411, Iran;
- Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1983969411, Iran
| | - Mehdi Rahimi-Nasrabadi
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1951683759, Iran
| | - Hermann Ehrlich
- Institute for Electronics and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (D.T.); (I.P.)
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
31
|
Shahrashoub M, Bakhtiari S, Afroosheh F, Googheri MS. Recovery of iron from direct reduction iron sludge and biosynthesis of magnetite nanoparticles using green tea extract. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Targuma S, Njobeh PB, Ndungu PG. Current Applications of Magnetic Nanomaterials for Extraction of Mycotoxins, Pesticides, and Pharmaceuticals in Food Commodities. Molecules 2021; 26:4284. [PMID: 34299560 PMCID: PMC8303358 DOI: 10.3390/molecules26144284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.
Collapse
Affiliation(s)
- Sarem Targuma
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick G. Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
33
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
34
|
Wang B, Liu B, Yan Y. Facile Preparation of ZIF-8 MOF Coated Mesoporous Magnetic Nanoarticles to Provide a Magnetic Solid Phase Extraction Platform. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821040110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Comparison of two polythiophene nanocomposites-based dispersive micro solid-phase extraction procedures coupled with salt-induced/magnetic separations for efficient preconcentration of toxic metal ions from food samples. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Khan WA, Arain MB, Soylak M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food Chem Toxicol 2020; 145:111704. [DOI: 10.1016/j.fct.2020.111704] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
|
37
|
Synthesis and application of magnetic@layered double hydroxide as an anti-inflammatory drugs nanocarrier. J Nanobiotechnology 2020; 18:155. [PMID: 33121499 PMCID: PMC7596963 DOI: 10.1186/s12951-020-00718-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Magnetic nanocomposites with a core-shell nanostructure have huge applications in different sciences especially in the release of the drugs, because of their exclusive physical and chemical properties. In this research, magnetic@layered double hydroxide multicore@shell nanostructure was synthesized by the facile experiment and is used as novel drug nanocarrier. METHODS Magnetic nanospheres were synthesized by a facile one-step solvothermal route, and then, layered double hydroxide nanoflakes were prepared on the magnetic nanospheres by coprecipitation experiment. The synthesized nanostructures were characterized by FTIR, XRD, SEM, VSM, and TEM, respectively. After intercalation with Ibuprofen and Diclofenac as anti-inflammatory drugs and using exchange anion experiment, the basal spacing of synthesized layered double hydroxides was compared with brucite nanosheets from 0.48 nm to 2.62 nm and 2.22 nm, respectively. RESULTS The results indicated that Ibuprofen and Diclofenac were successfully intercalated into the interlay space of LDHs via bridging bidentate interaction. In addition, in-vitro drug release experiments in pH 7.4, phosphate-buffered saline (PBS) showed constant release profiles with Ibuprofen and Diclofenac as model drugs with different lipophilicity, water solubility, size, and steric effect. CONCLUSION The Fe3O4@LDH-ibuprofen and Fe3O4@LDH-diclofenac had the advantage of the strong interaction between the carboxyl groups with higher trivalent cations by bridging bidentate, clarity, and high thermal stability. It is confirmed that Fe3O4@LDH multicore-shell nanostructure may have potential application for constant drug delivery.
Collapse
|
38
|
Changsan T, Wannapob R, Kaewpet M, Shearman K, Wattanasin P, Cheung Mak W, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. Magnetic microsphere sorbent on CaCO 3 templates: Simple synthesis and efficient extraction of trace carbamate pesticides in fresh produce. Food Chem 2020; 342:128336. [PMID: 33077280 DOI: 10.1016/j.foodchem.2020.128336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Polypyrrole magnetic microspheres were synthesized and used to extract carbaryl, carbofuran, and methomyl before analysis by a high-performance liquid chromatography with diode array detection. Under optimal conditions, four times the preconcentration was achieved with the use of only 1.2 mL of sample. Good linearity with ranges of 3.0-7.5 × 103, 6.0-4.5 × 103, and 15-3.0 × 103 ng kg-1 and limits of detection of 1.37 ± 0.10, 4.7 ± 1.2, and 10.1 ± 5.7 ng kg-1 were obtained, respectively. Good reproducibility (RSDs < 5%) was achieved over 24 cycles of extraction and regeneration. Good accuracy (recoveries 81.6 ± 1.5%-108.3 ± 2.2%) and good precision (RSDs 0.11%-4.5%) were obtained. Carbaryl was detected in apple (2.75 ± 0.23 ng kg-1), carbofuran in tomato (11.34 ± 0.61 ng kg-1), and methomyl in watermelon (34.7 ± 1.7 ng kg-1). The relative expanded uncertainty of the measurement method was less than 14% for all three pesticides.
Collapse
Affiliation(s)
- Titiwan Changsan
- Department of Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Rodtichoti Wannapob
- Department of Physics, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Morakot Kaewpet
- Department of Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kittiya Shearman
- National Institute of Metrology (Thailand), Ministry of Higher Education, Science, Research and Innovation, Headquarter, Technopolis Campus, Klong Luang, Pathumthani 12120, Thailand
| | - Panwadee Wattanasin
- Department of Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wing Cheung Mak
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Proespichaya Kanatharana
- Department of Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Department of Physics, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chongdee Thammakhet-Buranachai
- Department of Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
39
|
|
40
|
Heidari N, Ghiasvand A, Abdolhosseini S, Ghaedrahmati L, Barkhordari A, Jalili V. Magnetic field-assisted solid-phase extraction of nucleoside drugs using Fe3O4@PANI core/shell nanocomposite. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1798249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nahid Heidari
- Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Lorestan University, Khoramabad, Iran
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Australia
| | | | | | - Abdullah Barkhordari
- Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Vahid Jalili
- Student Research Committee, Department of Occupational Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Chemical synthesis–free and facile preparation of magnetized polyethylene composite and its application as an efficient magnetic sorbent for some pesticides. J Chromatogr A 2020; 1625:461340. [DOI: 10.1016/j.chroma.2020.461340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
42
|
Zengin H, Marsan H, Gürkan R. Selective extraction of Cu+ and Cu2+ ions from mushroom and lichen samples prior to analysis by micro-volume UV-Vis spectrophotometry: Application of a novel poly (SMIm)-Tris-Fe3O4 nanocomposite. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Öztürk Er E, Dalgıç Bozyiğit G, Büyükpınar Ç, Bakırdere S. Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit Rev Anal Chem 2020; 52:231-249. [DOI: 10.1080/10408347.2020.1797465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elif Öztürk Er
- Chemical Engineering Department, Yıldız Technical University, İstanbul, Turkey
| | - Gamze Dalgıç Bozyiğit
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Çağdaş Büyükpınar
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
44
|
Mehdinia A, Hazrati N, Mozaffari S. Synthesis and characterization of Fe3O4@polythionine-Au for the removal and pre-concentration of Cu(II) from marine samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01989-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Zhu J, Li Y, Xiang Y, Zhou L, Li Y. Magnetic solid phase extraction followed with LC-MS/MS for determination of glimepiride in beagle dog plasma and its application to bioequivalence study. J Pharm Biomed Anal 2020; 184:113180. [DOI: 10.1016/j.jpba.2020.113180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023]
|
46
|
Tang HZ, Wang YH, Li S, Wu J, Gao ZX, Zhou HY. Development and application of magnetic solid phase extraction in tandem with liquid-liquid extraction method for determination of four tetracyclines by HPLC with UV detection. Journal of Food Science and Technology 2020; 57:2884-2893. [PMID: 32624594 DOI: 10.1007/s13197-020-04320-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 02/04/2023]
Abstract
A novel HPLC-UV method was developed for the determination of four tetracyclines based on magnetic solid phase extraction in tandem with liquid-liquid extraction. The water-soluble amino functionalized magnetite nanoparticle (MNP-NH2) was used as an adsorbent for extraction/preconcentration of tetracycline, oxytetracycline, chlortetracycline, and doxycycline from bovine milk samples. Fourier transform infrared spectrometer, transmission electron microscope, X-ray diffraction, and elemental analyze techniques were used to characterize the material. Some key parameters which influence liquid-liquid extraction and magnetic dispersive solid-phase extraction procedure, including volume of extraction solvent, the amount of adsorbent, the pH, extraction and desorption time, the composition of the eluent, and elution frequency were investigated. The proposed method exhibited a linear range of 50.0-2500.0 μg L-1 (r2 = 0.9941) with and good reproducibility (RSD < 2.2%, n = 3). The limit of detection and quantification were 40.0 and 50.0 μg L-1. This method was verified using milk sample spiked with four tetracyclines (100.0-200.0 μg L-1), and accuracies of 87.8-107.5%, which confirmed its applicability in real-sample analysis. The proposed method also shows potential application prospects for other water-soluble adsorbents.
Collapse
Affiliation(s)
- Hong-Zhi Tang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yong-Hui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Huan-Ying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| |
Collapse
|
47
|
Cao X, Zhang K, Yan W, Xia Z, He S, Xu X, Ye Y, Wei Z, Liu S. Calcium ion assisted fluorescence determination of microRNA-167 using carbon dots-labeled probe DNA and polydopamine-coated Fe 3O 4 nanoparticles. Mikrochim Acta 2020; 187:212. [PMID: 32157454 DOI: 10.1007/s00604-020-4209-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
A selective and sensitive fluorescence biosensor is described for determination of microRNA-167 using fluorescent resonant energy transfer (FRET) strategy. The FRET system comprises carbon dots (CDs, donor) labeled with probe DNA (pDNA) and polydopamine (PDA)-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs, acceptor). The CDs-pDNA can be absorbed onto the surface of Fe3O4@PDA NPs because of the strong π interaction between pDNA and PDA. With the enhanced adsorption ability of Fe3O4@PDA NPs by Ca2+, the fluorescence intensity of CDs at 445 nm (excitation at 360 nm) is quenched. In presence of microRNA-167, the hybridized complex of CDs-pDNA-microRNA-167 will be released from the surface of Fe3O4@PDA NPs due to the weak π interaction of the complex and PDA. This results in the fluorescence recovery of CDs. By application of twice-magnetic separation, the biosensor shows a wide linear range of 0.5-100 nM to microRNA-167 with a 76 pM detection limit. The method was applied to the determination of microRNA-167 in samples of total microRNA extractions from A. thaliana seedlings, and the recoveries ranged from 96.4 to 98.3%.
Collapse
Affiliation(s)
- Xiaodong Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kairui Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wuwen Yan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zihao Xia
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shudong He
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuan Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yongkang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
48
|
Mehdinia A, Salamat M, Jabbari A. Preparation of a magnetic polystyrene nanocomposite for dispersive solid-phase extraction of copper ions in environmental samples. Sci Rep 2020; 10:3279. [PMID: 32094397 PMCID: PMC7039917 DOI: 10.1038/s41598-020-60232-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
The core shell nanostructure of magnetic polystyrene (PS@Fe3O4) was prepared and its physic-chemical properties were studied FT-IR, SEM, TEM, VSM and BET + BJH. The new adsorbent was applied in the dispersive solid phase extraction technique for measuring copper ions in water, Soil and Oyster samples. Analysis is carried out using a flame atomic absorption spectrometry system. Effective parameters on extraction efficiency, such as pH of extraction solution, sorbent dosage, contact time, concentration and volume of desorption eluent and desorption time were optimized using one at a time method. N2 adsorption-desorption experiment resulted in high BET surface area (32.002 m2 g−1) and large pore volume (0.1794 cm3 g−1) for PS@ Fe3O4 nanocomposite. Under the optimum conditions, a calibration curve within the range of 5–40 ng mL−1 with an appropriate coefficient of determination (R2) of 0.9946 was obtained. Preconcentration factor (PF) and limit of detection (LOD) were found to be 55 and 1.6 ng mL−1, respectively. The repeatability and reproducibility for three replicate measurements at the concentration of 25 ng mL−1 were 2.5%–1.4%, respectively. The Freundlich adsorption isotherm and pseudo-second-order kinetic model were consistent to experimental data in adsorption mechanism study. The maximum adsorption capacity was 19.56 mg g−1 for Cu (II). Finally, the efficiency of the method was investigated for analysis of the copper in environmental samples and good relative recoveries (RR%) were obtained within the range of 99.2% to 101.2%.
Collapse
Affiliation(s)
- Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science, P.O. Box: 141554781, Tehran, Iran.
| | - Maede Salamat
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Jabbari
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
49
|
Oymak T, Tokalıoğlu Ş, Cam Ş, Demir S. Determination of color additive tartrazine (E 102) in food samples after dispersive solid phase extraction with a zirconium-based metal-organic framework (UiO-66(Zr)-(COOH) 2). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:731-741. [PMID: 32083510 DOI: 10.1080/19440049.2020.1726501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new and rapid dispersive solid phase extraction method by using a green-synthesised UiO-66(Zr)-(COOH)2 (Zr-BTeC) adsorbent with body-centred cubic (bcu) topology was developed for determination of tartrazine in food samples. Zr-BTeC was used for the first time as an adsorbent for tartrazine. It was synthesised and characterised by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller surface area analysis, and zeta potential measurements. Tartrazine was determined at 405 nm spectrophotometrically. Experimental conditions were optimised in order to achieve quantitative recoveries. The sample acidity was found to be 0.02 mol L-1 HCl. The amount of Zr-BTeC was 10 mg. Both adsorption and elution contact times were only 5 s without the need for vortexing. Elution was with 2 mL of 0.5 mol L-1 NH3. A sample volume of 45 mL was selected as optimum. The adsorption capacity for tartrazine with Zr-BTeC was found to be 185 mg g-1 and the adsorbent was reusable up to 40 cycles. The tartrazine concentrations found by the developed method in food supplements were compared with the results obtained by HPLC method for the same samples. Statistical analysis results showed that there are insignificant differences between the results of the two methods (p = .05). The method was successfully applied to the determination of tartrazine in spiked chewing gums, lemon flavoured icing glaze, and jelly samples.
Collapse
Affiliation(s)
- Tülay Oymak
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Şerife Tokalıoğlu
- Faculty of Science, Chemistry Department, Erciyes University, Kayseri, Turkey
| | - Şafak Cam
- Faculty of Arts and Sciences, Chemistry Department, Recep Tayyip Erdogan University, Rize, Turkey
| | - Selçuk Demir
- Faculty of Arts and Sciences, Chemistry Department, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
50
|
Wu S, Yu Y, Zhang C, Chen F. Colorimetric determination of amaranth followed enrichment and separation using buoyant adsorbents. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-0204-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractA buoyant solid-phase extraction adsorbent was prepared by sodium alginate-coated hollow glass microspheres (HGMs) modified with 3-aminopropyltrimethoxysilane (3-APTS) for the separation and enrichment of anionic dye amaranth. After adsorbing amaranth, these low-density adsorbents can float on the surface of the solution, so the separation between adsorbents and substrates can be carried out by flotation. Quantitative determination of amaranth after separation and enrichment can be achieved by combining spectrophotometry. Under the optimum conditions, the linear range and detection limit for amaranth detection were 0.02 mg L−1–2.0 mg L−1 and 0.0021 mg L−1, respectively. The proposed method was applied to the determination of amaranth in different beverages, and the results were in good agreement with those by high-performance liquid chromatography (HPLC). The recoveries of amaranth in different beverages were between 97.93 and 105.91%. The floating adsorbent can be used as a conventional sample preparation method for the detection of low concentration analytes in complex samples.
Collapse
|